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Abstract

We define an integral version of Sczech’s Eisenstein cocycle on GLn by smoothing
at a prime `. As a result we obtain a new proof of the integrality of the values at
nonpositive integers of the smoothed partial zeta functions associated to ray class
extensions of totally real fields. We also obtain a new construction of the p-adic L-
functions associated to these extensions. Our cohomological construction allows for
a study of the leading term of these p-adic L-functions at s = 0. We apply Spiess’s
formalism to prove that the order of vanishing at s = 0 is at least equal to the expected
one, as conjectured by Gross. This result was already known from Wiles’ proof of the
Iwasawa Main Conjecture.
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Introduction

Let F be a totally real field of degree n, and let f be an integral ideal of F . For a fractional
ideal a of F relatively prime to the conductor f, consider the partial zeta function

ζf(a, s) =
∑
b∼a

1

Nbs
, Re(s) > 1. (1)

Here the sum ranges over integral ideals b ⊂ F equivalent to a in the narrow ray class
group modulo f, which we denote Gf. A classical result of Siegel and Klingen states that
the partial zeta functions ζf(a, s), which may be extended to meromorphic functions on the
complex plane, assume rational values at nonpositive integers s. Siegel proved this fact
by realizing these special values as the constant terms of certain Eisenstein series on the
Hilbert modular group associated to F . The rationality of the constant terms follows from
the rationality of the other Fourier coefficients, which have a simple form.

Shintani gave an alternate proof of the Siegel–Klingen result using a “geometry of num-
bers” approach. Shintani fixed an isomorphism F⊗QR ∼= Rn, and considered a fundamental
domain D for the action of the group of totally positive units in F congruent to 1 modulo f

on the totally positive orthant of Rn. The partial zeta functions of F could then be expressed
as a sum indexed by the points of D contained in various lattices in Rn. Shintani evaluated
these sums using standard techniques from complex analysis and expressed them explicitly
in terms of sums of products of Bernoulli polynomials.

In 1993, Sczech gave yet another proof of the Siegel–Klingen rationality theorem. He
defined an “Eisenstein” cocycle Ψ on GLn(Q) valued in a space of Q-valued distributions
denoted MQ. He then showed that the cohomology class [Ψ] ∈ Hn−1(GLn(Q),MQ) could be
paired with certain classes in a dual homology group to yield the special values of all totally
real fields F of degree n at nonpositive integers, thereby demonstrating their rationality.
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Each of these proofs of the Siegel–Klingen rationality theorem bears an integral refine-
ment. Deligne and Ribet gave such a refinement of Siegel’s method following an idea initiated
by Serre. They constructed a model over Z of the relevant Hilbert modular scheme, and
proved that its fibers in characteristic p are geometrically irreducible. Meanwhile, Barsky
and Pi. Cassou-Noguès proved an integral refinement of Shintani’s formulas and interpreted
these results in terms of p-adic measures.

The first goal of the present paper is to provide an integral refinement of Sczech’s cocycle
Ψ. We introduce a “smoothing” operation with respect to a prime `, and use it to define
a cocycle Ψ` that satisfies an important integrality property (see Theorem 4 below for a
precise statement). As an application of our results, we give new proofs of the following two
celebrated theorems of Deligne–Ribet and Cassou-Noguès.

Theorem 1. Let c be an integral ideal of F relatively prime to f with prime norm `. The
smoothed zeta function

ζf,c(a, s) = ζf(ac, s)− Nc1−sζf(a, s) (2)

assumes values in Z[1/`] at nonpositive integers s.†

Our integrality results further allow for a new construction of the Deligne–Ribet–Cassou-
Noguès p-adic zeta functions ζf,c,p(a, s) interpolating the classical zeta values ζf,c(a, s). Define
ζ∗f (a, s) as in (1), but with the sum restricted to ideals b relatively prime to p; define ζ∗f,c(a, s)
from ζ∗f (a, s) as in (2). Let W denote the weight space of continuous homomorphisms from

Z∗
p to C∗

p, with k ∈ Z embedded as x 7→ xk.

Theorem 2. Let c be an integral ideal of F relatively prime to fp with prime norm `. There
exists a unique Zp-valued analytic function ζf,c,p(a, s) of the variable s ∈ W such that

ζf,c,p(a,−k) = ζ∗f,c(a,−k)

for all nonnegative integers k.

Our construction of the p-adic zeta functions of totally real fields allows us to embark
on a new study of the behavior of the leading terms of these functions at s = 0. In order
to state our main result, it is convenient to work with the p-adic L-functions associated to
characters rather than the p-adic zeta functions associated to ideal classes. To this end,
let χ : Gal(F/F ) → Q

∗
be a totally odd finite order character with conductor f. We fix

†See Remark 3.2 for a discussion of the condition that c has prime norm. Also, we note that Theorem 1
has the corollary that the “twice smoothed” zeta function

ζf,c,b(a, s) = ζf,b(ac, s)−Nc1−sζf,b(a, s)

= ζf,c(ab, s)−Nb1−sζf,c(a, s)

assumes integer values at nonpositive integers s when (Nb,Nc) = 1. Gross has recently provided an inter-
pretation of these integers in terms of dimensions of certain spaces of automorphic forms [G2].
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embeddings Q ↪→ C and Q ↪→ Qp, so that χ can be viewed as taking values in C or Qp.
Let‡

ω : Gal(F/F ) −→ µp−1 ⊂ Q
∗

denote the Teichmüller character. There is a p-adic L-function Lc,p(χω, s) : Zp−→C∗
p associ-

ated to the totally even character χω, given by

Lc,p(χω, s) :=
∑
a∈Gf

χ(ac)ζf,c,p(a, 〈·〉s),

where 〈x〉 = x/ω(x) for x ∈ Z∗
p. The function Lc,p(χω, s) satisfies the interpolation property

Lc,p(χω,−k) = L∗c (χω
−k,−k)

:= L∗(χω−k,−k)(1− χω−k(c)Nc1+k)

for integers k ≥ 0, where L∗(χ, s) denotes the classical L-function with Euler factors at the
primes dividing p removed.

Let rχ denote the number of primes p of F above p such that χ(p) = 1. It is well-known
that

ords=0 L
∗
c (χ, s) = ords=0 L

∗(χ, s) = rχ

(see [T, 2.6]). In [G], Gross proposed the following:

Conjecture 1 (Gross). We have

ords=0 Lc,p(χω, s) = rχ.

Combining our cohomological construction of the p-adic L-function with Spiess’s formal-
ism (see §5), we prove the following partial result towards Gross’s conjecture:

Theorem 3. We have
ords=0 Lc,p(χω, s) ≥ rχ.

The result of Theorem 3 was already known from Wiles’ proof of the Iwasawa Main
Conjecture under the auxiliary assumption

F∞ ∩H = F,

where H denotes the fixed field of χ and F∞ denotes the cyclotomic Zp-extension of F .
This assumption (namely, that χ has “type S” in Greenberg’s terminology) was removed by
Snaith in [Sn, Theorem 6.2.5] using Brauer induction (see also [BG, pp. 165-166] for further
discussion).

Our method contrasts with that of Wiles in that it is purely analytic; we calculate the
first rχ − 1 derivatives of Lc,p(χω, s) at s = 0 directly and show that they vanish. Spiess
proved Theorem 3 as well using his formalism [Sp2]. His cohomology classes are defined

‡As usual, replace µp−1 by {±1} when p = 2.
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using Shintani’s method. In [CDG] we provide a direct comparison between the cocycles
defined using the methods of Sczech and Shintani.

We conclude the introduction by recalling Sczech’s method, which is central to this article,
and describing our integral refinement. Let P = Q[X1, . . . , Xn]. We denote by Q a certain
space of tuples of linear forms on Rn, defined precisely in Section 1.1. The spaces P and Q
are endowed with a left action of Γ = GLn(Q) given by (AP )(X) = P (XA). Let MQ denote
the Q-vector space of functions

φ : P ×Q× (Q/Z)n −→ Q

that are Q-linear in the first variable and satisfy the distribution relation

φ(P,Q, v) = sgn(λ)n
∑

w∈(Q/Z)n

λw=v

φ(λdeg PP, λ−1Q,w) (3)

for all nonzero integers λ, when P ∈ P is homogeneous.
We view the elements of (Q/Z)n as column vectors and define a left Γ-action on MQ

as follows. Given γ ∈ Γ, choose a nonzero scalar multiple A = λγ with λ ∈ Z such that
A ∈Mn(Z). For f ∈MQ, define

(γf)(P,Q, v) = sgn(det(A))
∑

r∈Zn/AZn

f(AtP,A−1Q,A−1(r + v)). (4)

The distribution relation (3) implies that (4) does not depend on the auxiliary choice of λ.
Sczech defined a homogeneous cocycle

Ψ ∈ Zn−1(Γ,MQ) ⊂ Cn−1(Γ,MQ) = HomΓ(Z[Γn],MQ)

called the Eisenstein cocycle, representing a class

[Ψ] ∈ Hn−1(Γ,MQ).

We recall this definition precisely in Section 1. The values at nonpositive integers of the zeta
functions of all totally real fields F of degree n can be obtained from certain specializations
of [Ψ] as follows.

Fix a conductor f and an integral ideal a as above. Associated to F, f, a, and a nonnegative
integer k, we define a certain homology class

[Za,f,k] ∈ Hn−1(Γ,M
∨
Q),

where MQ denotes the Q-linear dual of MQ. Fix a Z-basis {w1, . . . , wn} for a−1f. Let
P ∈ Z[X1, . . . , Xn] denote the homogeneous polynomial of degree n given up to scalar by
the norm:

P (X1, . . . , Xn) = N(a)N(w1X1 + · · ·+ wnXn). (5)
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Let Q = (Q1, . . . , Qn) be the n-tuple of linear forms given by

Qi = τi(w
∗
1)X1 + · · ·+ τi(w

∗
n)Xn, (6)

where {w∗
1, . . . , w

∗
n} denotes the dual basis with respect to the trace form on F , and the τi

for i = 1, . . . , n denote the embeddings F ↪→ R. Let

v = (Tr(w∗
1), . . . ,Tr(w∗

n)). (7)

Denote by fk = fP,Q,v the element of M∨
Q defined by evaluation at (P k, Q, v):

fk(φ) := φ(P k, Q, v).

Finally, we define elements A1, . . . , An−1 ∈ Γ by considering the action of a basis of
totally positive units of F congruent to 1 modulo f via multiplication on a−1f, in terms of
the basis {wi} for a−1f. Homogenizing and symmetrizing the tuple (A1, . . . , An−1) yields a
certain homogeneous (n− 1)-chain A ∈ Z[Γn] (see (56) for the precise formula).

We then define

Za,f,k = A⊗ fk ∈ Cn−1(Γ,M
∨
Q) = Z[Γn]⊗Γ M

∨
Q.

Using the definition of A in (56), it follows from the fact that the Ai commute and that fk

is invariant under the Ai that Za,f,k is in fact an (n − 1)-cycle. The homology class that it
represents depends only on f, a, and k, and not on any other choices made.

The cap product yields a canonical pairing

〈·, ·〉 : Hn−1(Γ,MQ)×Hn−1(Γ,M
∨
Q) −→ Q

given by 〈[Ψ], [A⊗ f ]〉 = f(Ψ(A)) and extended by linearity. Sczech proved the formula

ζf(a,−k) = 〈[Ψ], [Za,f,k]〉 ∈ Q (8)

for integers k ≥ 0, thereby completing his proof of the Siegel–Klingen rationality theorem.

In this paper, we fix a prime ` and consider the congruence subgroup Γ` ⊂ Γ ∩GLn(Z`)
consisting of matrices whose first column has all elements but the first divisible by `. We
define a cocycle Ψ+

` ∈ Zn−1(Γ`,MQ) derived from Sczech’s Ψ by smoothing at the prime `
(see (24) for a precise formula). We also define a cocycle Ψ` refining Ψ+

` from which Ψ+
` can

be recovered by projecting on to the subspace invariant under the action of multiplication
by −1 on Q. Our key result is the following.

Theorem 4. The cocycle Ψ` takes values in the Z[1
`
][Γ`]-submodule M` ⊂MQ consisting of

distributions φ such that φ(P,Q, v) ∈ 1
m
Z[1

`
] when P ∈ Z[1

`
][X1, . . . , Xn] is homogeneous and

has the property
P (v + 1

`
Z⊕ Zn−1) ⊂ Z[1

`
], (9)

and Q ∈ Q is an m-tuple of linear forms. The cocycle Ψ+
` takes values in 1

2
M`.
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In particular, taking P = 1, we find that Ψ`(A, 1, Q, v) ∈ 1
m
Z[1/`] for all A,Q, and v.

This integrality property of our cocycle Ψ` lies in sharp contrast to Sczech’s Ψ, which assumes
fractional values with p-adically unbounded denominator for each p as v varies (with P = 1
and fixed A,Q).

Now let F be as above, and let c be a prime ideal of F with norm `. Using Sczech’s
formula (8), we prove that certain specializations of the class Ψ+

` yield the smoothed partial
zeta functions of F at nonpositive integers:

ζf,c(a,−k) = 〈[Ψ+
` ], [Za,f,k,`]〉 (10)

where [Za,f,k,`] ∈ Hn−1(Γ`,M
∨
` ) is defined similarly to Za,f,k, but slightly modified to account

for the `-smoothing (see (50)–(56) in Section 3 for the precise definition). Here M∨
` denotes

the Z[1
`
]-dual of M`. Since Hn−1(Γ`,M`) and Hn−1(Γ`,M

∨
` ) pair to Z[1

`
], we arrive at our

proof of Theorem 1.1

We prove Theorem 2 by interpreting the cocycle Ψ` in terms of p-adic measures and
thereby defining a certain measure-valued cocycle µ`. Using the cohomology class [µ`] and
applying equation (10), we construct the p-adic zeta functions ζf,c,p(a, s) with the desired
interpolation property. Theorem 3 is proven by using our cohomological construction of
the p-adic L-function to recognize the values L

(k)
c,p (χω, 0) for nonnegative integers k as the

pairing of [µ`] with certain homology classes denoted [Lk], and applying results of Spiess
(Theorems 5.1 and 5.2) that implies that these homology classes vanish for k < rχ.

The fact that the p-adic zeta functions of all totally real fields of degree n that contain a
prime of norm ` arise as the specializations of a single cohomology class [Ψ`] is striking. It
seems promising to study these p-adic zeta functions by taking certain other specializations
of the same class. As an example of this phenomenon, we hope to study Gross’s conjectural

formula for the leading term L
(rχ)
c,p (χω, 0) in future work, building on our prior investigations

([DD], [Das]). Also in future work ([CDG]), we will demonstrate how to provide an alternate
construction of the Eisenstein class [Ψ`] using Shintani’s method, following prior works by
Solomon, Hill, Colmez, and the second author.

This paper is organized as follows. In Section 1, we give the precise definition of Sczech’s
cocycle Ψ and recall the formula for Ψ in terms of Dedekind sums derived in [GS]. In
Section 2 we define our smoothed cocycle Ψ+

` and its refinement Ψ`. We prove Theorem 4,
the key integrality result concerning Ψ` and the technical heart of the paper. In Section 3 we
combine Theorem 4 with a suitable generalization of Sczech’s formula (8) to prove Theorem 1.
In Section 4, we interpret our construction in terms of p-adic measures, and thereby prove
Theorem 2. We conclude in Section 5 by proving Theorem 3 using Spiess’ results.

1In fact, since the cocycle Ψ+
` defined from Sczech’s method takes values in 1

2M`, and since the Q defined
in (6) and used by Sczech is an n-tuple, the results of this paper prove that the value ζf,c(a, s) lies in 1

2nZ[1/`]
for nonpositive integers s. The factor 1/(2n) can be eliminated by considering the refined cocycle Ψ` and
proving that one need only consider an individual linear form Qi rather than the entire tuple Q. These
aspects are studied in [CDG]; see Remark 2.6 and Section 3 below for further details.
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1 The Eisenstein cocycle

The goal of this section is to recall the definition of Sczech’s cocycle Ψ and some of its salient
properties.

1.1 Sczech’s Eisenstein cocycle for GLn(Q)

We begin by recalling Sczech’s Eisenstein cocycle for Γ = GLn(Q). See [Sc], [GS, Section
6], or [CGS] Section 2 for a more detailed exposition.

Let A = (A1, . . . , An) ∈ Γn be an n-tuple of matrices. Fix x ∈ Rn − {0}. For each
matrix Ai, let σi denote the first (i.e. leftmost) column of Ai such that 〈x, σi〉 6= 0. Denote
by σ = (σij) the square matrix with columns σi, for 1 ≤ i ≤ n, and define

ψA(x) =
det(σ)

〈x, σ1〉 · · · 〈x, σn〉
.

More generally, for any homogeneous polynomial P (X1, . . . , Xn), we consider the partial
differential operator P (−∂x1 , . . . ,−∂xn) and define the function

ψA(P, x) =P (−∂x1 , . . . ,−∂xn)ψA(x)

= det(σ)
∑

r

Pr(σ)
n∏

j=1

1

〈x, σj〉1+rj
, (11)

where r = (r1, . . . , rn) runs over all partitions of deg(P ) into nonnegative integers rj, and
Pr(σ) is the homogeneous polynomial in the σij satisfying the relation

P (Xσt) =
∑

r

Pr(σ)
Xr1

1 · · ·Xrn
n

r1! · · · rn!
. (12)

The Eisenstein cocycle is essentially given by summing the value of ψA(P, x) over all
x ∈ Zn − {0}:

“ Ψ(A,P, v) = (2πi)−n−deg(P )
∑

x∈Zn−{0}

e(〈x, v〉)ψA(P, x). ” (13)

The sum in (13) converges only conditionally, so to make sense of it one uses Sczech’s Q-
summation trick. To this end we fix a family of m linear forms Q1, . . . , Qm on Rn such
that each form Qi is nonvanishing on Qn − {0}. Let Q denote the set of such m-tuples
Q = (Q1, . . . , Qm) of linear forms. We view each Qi as a row vector, and for any row vector
x ∈ Rn we adopt the notation

Qi(x) = Qix
t =

n∑
j=1

Qijxj, Q(x) =
m∏

i=1

Qi(x). (14)
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We can identify Q with an m × n matrix with real rows Qi. The set Q is endowed with a
left action of Γ described in terms of matrices by AQ ↔ (Qij)A

t. The action with respect
to the corresponding functions on row vectors is given by AQ(x) = Q(xA).

Given Q ∈ Q, and a sequence a(x) indexed by a subset L of a lattice in Rn, the Q-
summation of a(x) over L is defined by∑

x∈L

a(x)|Q = lim
t→∞

∑
x∈L

|Q(x)|<t

a(x), (15)

under the assumption that the sum of a(x) over the x ∈ L such that |Q(x)| < t converges
absolutely for all t, and that the limit in (15) exists. Sczech proved that the Q-summation

Ψ(A,P,Q, v) = (2πi)−n−deg(P )
∑

x∈Zn−{0}

e(〈x, v〉)ψA(P, x) |Q (16)

exists.
Let us recall some notation from the Introduction. Define the Q[Γ]-module MQ to be

the space of functions
φ : P ×Q×Qn/Zn −→ Q

that are Q-linear in the first variable and satisfy the distribution relation

φ(P,Q, v) = sgn(λ)n
∑

w∈(Q/Z)n

λw=v

φ(λdeg PP, λ−1Q,w)

for all nonzero integers λ, when P ∈ P is homogeneous. The Γ-action on MQ is given in
equation (4). Sczech proved:

Theorem 1.1. The map A 7→ Ψ(A, ·, ·, ·) defines a MQ-valued homogenous (n− 1)-cocycle
on Γ. Moreover, it represents a non-trivial cohomology class in Hn−1(Γ,MQ).

This is [Sc, Theorem 4], restricted to u = 0.

1.2 Decomposition

For future calculations, it is convenient to decompose the sum in (16) according to the
various matrices σ that may occur. To this end, for each d = (d1, . . . , dn) ∈ Zn such that
1 ≤ di ≤ n, let σ(d) denote the n×n matrix whose ith column is the dith column of Ai. Let
X(d) ⊂ Rn − {0} denote the set of x whose associated matrix σ is equal to σ(d), i.e. such
that the first column of Ai not orthogonal to x is the dith, for each i = 1, . . . , n.

Write 1 = (1, 1, . . . , 1), and for an n-tuple e = (e1, . . . , en), write e =
∑n

i=1 ei. Gathering
the terms together according to the finite partition {X(d)}d of Rn − {0}, we obtain

Ψ(A,P,Q, v) = (−1)n
∑

d

sgn(det(σ(d))
∑

r

Pr(σ)

(1 + r)!
D+(X(d) ∩ Zn, σ(d), 1 + r,Q, v), (17)

where

D+(L, σ, e,Q, v) =
(−1)n| det(σ)|e!

(2πi)e

∑
x∈L

e(〈x, v〉)
〈x, σ1〉e1 · · · 〈x, σn〉en

|Q. (18)

We have introduced the factor (−1)n| det(σ)|e! in (18) to simplify future calculations.
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1.3 Bernoulli distributions

The sums in (18) are Dedekind sums that can be evaluated in terms of Bernoulli distributions,
whose definition we now recall. For each integer k ≥ 0, the Bernoulli polynomial bk(x) is
defined by the generating function

text

et − 1
=

∞∑
k=0

bk(x)
tk

k!
.

For k 6= 1, we define the periodic Bernoulli function Bk(x) = bk({x}), where {x} ∈ [0, 1)
denotes the fractional part of x. For k = 1, we reconcile the discrepancy between b1(0) and
b1(1) by defining

B1(x) =

{
b1({x}) = {x} − 1/2 x 6∈ Z

0 x ∈ Z.

Given an n-tuple of positive integers e = (e1, . . . , en) and an element x ∈ Rn, define

Be(x) =
n∏

j=1

Bej
(xj).

Writing e =
∑
ej, the function Be provides a Q-valued distribution on (Q/Z)n of weight

e− n, in the sense that for each integer N , we have

Be(x) = N e−n
∑

y∈(Z/NZ)n

Be

(
x+ y

N

)
. (19)

To relate the distributions Be to Sczech’s cocycle Ψ, they must be altered by a defect
arising from the Q-limit summation process discussed in Section 1.1.

Definition 1.2. Let e = (e1, . . . , en) be a vector of positive integers, and v ∈ (Q/Z)n. Let

J = {1 ≤ j ≤ n | ej = 1 and vj ∈ Z}. (20)

Define

Be(v,Q) =
1

m

m∑
i=1

(∏
j∈J

signQij

2

)∏
j /∈J

Bej
(vj).

(In particular, if J is empty, then Be(v,Q) = Be(v) does not depend on Q.) Define

B+
e (v,Q) =

1

2
(Be(v,Q) + Be(v,−Q)) =

{
Be(v,Q) if #J is even,

0 otherwise.

The functions Be( . , Q) and B+
e ( . , Q) are distributions on (Q/Z)n of weight e− n.

10



Proposition 1.3 ([GS], Proposition 2.7). Let e be an n-tuple of nonnegative integers, Q ∈ Q,
v ∈ (Q/Z)n, and σ ∈Mn(Z). Let

L = {x ∈ Zn : 〈x, σi〉 6= 0 for 1 ≤ i ≤ n}. (21)

We have
D+(L, σ, e,Q, v) =

∑
x∈Zn/σZn

B+
e (σ−1(x+ v), σ−1Q), (22)

where the right side is understood to have the value 0 when det(σ) = 0.

Proposition 1.3 gives the value of the Dedekind sum appearing in (17) for d = 1; this will
be sufficient for our applications. Whenever L is given in terms of σ as in (21), we drop it
from our notation and write simply D+(σ, e, v,Q).

2 The smoothed cocycle

Let ` be a prime number, and let Z(`) = Z[1/p, p 6= `] denote the localization of Z at the
prime ideal (`). Our aim in this section is to smooth the cocycle Ψ at the prime `, yielding
a cocycle Ψ+

` defined on the congruence subgroup

Γ` := Γ0(`Z(`)) = {A ∈ GLn(Z(`)) : A ≡


∗ ∗ ∗
0 ∗ ∗
...

...
...

0 ∗ ∗

 mod `}.

We will then prove Theorem 4, an integrality result for the smoothed cocycle Ψ+
` and a

refinement Ψ`.

2.1 Definition of the smoothed cocycle

Consider the diagonal matrix whose first entry is ` and other diagonal entries are equal to 1:

π` =


`

1
. . .

1

 .

For A = (A1, . . . , An) ∈ Γn
` , let

A′ = π`Aπ
−1
` = (π`A1π

−1
` , . . . , π`Anπ

−1
` ) ∈ GLn(Z(`))

n.

Fix a polynomial P ∈ P and define P ′ = π−1
` P. It is a straightforward computation to

check that the coefficients of P and P ′ defined in (12) satisfy

P ′
r(σ

′(d)) = Pr(σ(d)) · `−Σ(r,d) where Σ(r, d) =
∑

i: di=1

ri. (23)

11



Here as in Section 1.2, d = (d1, . . . , dn) is a tuple of integers with 1 ≤ di ≤ n, and σ(d)
denotes the square matrix whose ith column is the dith column of Ai. The matrix σ′(d)
denotes the similarly constructed matrix with Ai replaced by A′

i.
Next fix Q ∈ Q as in (14), and let Q′ = π`Q. For v ∈ (Q/Z)n, let v′ = π`v. We define

Ψ+
` (A,P,Q, v) = Ψ(A′, P ′, Q′, v′)− `Ψ(A,P,Q, v). (24)

The following is a straightforward computation using the fact that Ψ is a Γ-cocycle.

Proposition 2.1. The function Ψ+
` is a homogeneous (n− 1)-cocycle on Γ` valued in MQ:

Ψ+
` ∈ Z

n−1(Γ`,MQ).

2.2 A Dedekind sum formula

In this section we prove that in the analogue of the Dedekind sum formula (17) for Ψ`, all
terms other than those arising from d = 1 cancel.

In what follows, all objects associated to A′ instead of A will be denoted with a “prime”,
such as X ′(d) = X(A′, d).

Lemma 2.2. For d 6= 1, the map

π` : (x1, x2, . . . , xn) 7→ (`x1, x2, . . . , xn)

induces a bijection between X ′(d) ∩ Zn and X(d) ∩ Zn.

Proof. Denoting the jth column of the matrix Ai by Aij, note that for x ∈ Rn, we have
〈x,A′

ij〉 = 0 ⇔ 〈π`x,Aij〉 = 0. In particular, π` gives a bijection between X ′(d) and X(d),
and hence induces an injection from X ′(d) ∩ Zn to X(d) ∩ Zn.

To show that map is surjective, we make use of the assumption d 6= 1 to obtain an index
i, say i = 1, for which di > 1. For any given z ∈ X(d) ∩ Zn, the condition 〈z, A11〉 = 0
ensures that its coordinates satisfy

a11z1 + . . .+ an1zn = 0.

This equation implies a11z1 ≡ 0 (mod `) since A1 ∈ Γ`. Moreover, a11 is coprime to ` since
det(A1) ∈ Z∗

(`). We conclude that ` divides z1, hence z is of the form π`x for some x ∈ Zn as
desired.

Next we use Lemma 2.2 to compare ψA′ and ψA on the sets X ′(d) ∩ Zn and X(d) ∩ Zn,
respectively. A direct computation shows that for x ∈ X ′(d), one has

〈x, σ′i(d)〉 =

{
〈π`x, σi(d)〉 if di > 1,

`−1〈π`x, σi(d)〉 if di = 1.
(25)

On the other hand,
det(σ′(d)) = `1−#{i: di=1} det(σ(d)). (26)

12



Equations (25) and (26) yield

det(σ′(d))∏n
i=1〈x, σ′i(d)〉1+ri

=
`1+Σ(r,d) det(σ(d))∏n

i=1〈π`x, σi(d)〉
(27)

for x ∈ X ′(d), where Σ(r, d) is defined as in (23). Multiplying (27) by (23) and recalling the
definition of ψ given in (11), we obtain

ψA′(P ′, x) = `ψA(P, π`x).

Multiplying by
e(〈x, π`v〉) = e(〈π`x, v〉)

and taking the Q′-summation over all x ∈ X ′(d) ∩ Zn, Lemma 2.2 implies that in the
evaluation of

Ψ+
` (A,P,Q, v) = Ψ(A′, P ′, Q′, π`v)− `Ψ(A,P,Q, v),

the terms in (17) for d 6= 1 cancel.
We have therefore proven the following explicit formula for Ψ`. Given A ∈ Γn

` , the matrix
σ = σ(1) has all rows but the first divisible by ` (and all entries in the first row relatively
prime to `). Therefore, the matrix σ` = π``

−1σ has entries in Z(`). Define the `-smoothed
Dedekind sum:

D+
` (σ, e,Q, v) = D+(σ`, e, π`Q, π`v)− `1−n+eD+(σ, e,Q, v).

=
∑

x′∈Zn/σ`Zn

B+
e (σ−1

` (x′ + π`v), σ
−1Q)

− `1−n+e
∑

x∈Zn/σZn

B+
e (σ−1(x+ v), σ−1Q).

(28)

Proposition 2.3. We have

Ψ+
` (A,P,Q, v) = (−1)nsgn(detσ)

∑
r

Pr(σ)

(r + 1)!`r
D+

` (σ, 1 + r, v,Q).

2.3 A refined cocycle

Define D` as in (28) with B+ replaced with B. Define Ψ` as in Proposition 2.3, with D+
`

replaced by D`:

Ψ`(A,P,Q, v) := (−1)nsgn(detσ)
∑

r

Pr(σ)

(r + 1)!`r
D`(σ, 1 + r,Q, v). (29)

Then Ψ+
` is recovered from Ψ` by projection onto the +1 eigenspace of the action of multi-

plication by −1 on Q:

Ψ+
` (A,P,Q, v) =

1

2
(Ψ`(A,P,Q, v) + Ψ`(A,P,−Q, v)).

In [CDG], we show that the result of Proposition 2.1 holds still for Ψ`:

13



Proposition 2.4. The function Ψ` is a homogeneous (n− 1)-cocycle on Γ` valued in MQ:

Ψ` ∈ Zn−1(Γ`,MQ).

Remark 2.5. The Γ`-invariance of Ψ` (i.e. that Ψ` is a homogeneous cochain) is easy to
check directly from the definition. However, the alternating property of Ψ` (i.e. that Ψ` is
a cocycle) is mysterious using our explicit definition. In [CDG], we show that for P = 1,
the function Ψ` is equal to a cocycle defined using Shintani’s method; the case for general P
then follows from Theorem 4.2 below.

2.4 Decomposition of the Dedekind Sum

Consider the following Z[1
`
][Γ]-submodule of MQ:

M` = {φ ∈MQ : φ(P,Q, v) ∈ 1
m
Z[1

`
] when P ∈ Z[1

`
][X1, . . . , Xn]

is homogeneous and P (v + (1
`
Z⊕ Zn−1)) ⊂ Z[1

`
]}.

(30)

In (30), the constant m denotes the number of linear forms defining the element Q ∈ Q, as
in Section 1.1. In the remainder of this section, we prove Theorem 4, which states that the
smoothed cocycle Ψ` takes values in M`.

Remark 2.6. The cocycle Ψ` was introduced in Section 2.3 because it takes values in M`.
The smoothed Sczech Ψ+

` takes values in 1
2
M`. Furthermore, we prove in [CDG] that the

cocycle Ψ` may be paired with an appropriate cycle involving Q ∈ Q with m = 1 to yield
the special values of zeta functions, thereby leading to a proof of Theorem 1 (see Section 3).
Sczech’s formulas relating Ψ to zeta values involves a Q with m = n = [F : Q]. This leads to
a slightly weaker version of Theorem 1, where the zeta values are shown to lie in 1

2n
Z[1/`].

In view of the definition (29), our first step in proving the integrality of Ψ` is to decompose
D`(σ, e, v,Q) into a sum of terms that individually share an analogous integrality property.
To this end, fix a linear map L ∈ Hom(Zn,F`), and assume that its values on the standard
basis of Zn are all nonzero. For a tuple e = (e1, . . . , en) of positive integers, x ∈ Rn, and
z ∈ F` define

BL,z
e (x,Q) = Be(x,Q)− `1−n+e

∑
y∈F n

`
L(y)=z

Be

(
x+ y

`
,Q

)
, (31)

where the summation runs over all y ∈ Fn
` such that L(y) = z. Note that BL,z

e depends on
x mod `Zn rather than mod Zn, since the summation over y is restricted. It satisfies the
following distribution relation for integers N relatively prime to `:

BL,Nz
e (x,Q) = N e−n

∑
k∈(`Z/`NZ)n

BL,z
e

(
x+ k

N
,Q

)
. (32)

As in the previous section, consider A ∈ Γn
` and σ = σ(1) the square matrix consisting of

the first columns of the matrices in the tuple A. Recall σ` = π``
−1σ. For y ∈ Zn/`Zn, define

L(y) = 〈R, y〉 (mod `), where R denotes the first row of σ. Our desired decomposition is:
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Lemma 2.7. Let {x = (x1, . . . , xn)} ⊂ Zn denote a set of representatives for Zn/σ`Z
n. We

have
D`(σ, e, v,Q) =

∑
x

BL,−x1
e (σ−1

` (x+ π`v), σ
−1Q). (33)

Remark 2.8. One easily checks that the summand in (33) is independent of the choice of
representative x ∈ Zn for each class in Zn/σ`Z

n.

Proof. The map (x, y) 7→ z = π−1
` x+ `−1σy induces a bijection between Zn/σ`Z

n × Zn/`Zn

and π−1
` Zn/σZn. Furthermore, under this bijection

L(y) ≡ −x1 (mod `) ⇐⇒ z ∈ Zn.

The result follows immediately from the definitions (28) and (31).

From (29) and Lemma 2.7, we obtain:

Proposition 2.9. We have

Ψ`(A,P,Q, v) = ±
∑

r

Pr(σ)

(r + 1)!`r

∑
x∈Zn/σ`Zn

BL,−x1

1+r (σ−1
` (x+ π`v), σ

−1Q),

where the ± sign is given by (−1)nsgn(detσ).

In the next two subsections, we show that the individual terms in (33) are integral when
e = 1, thereby proving the integrality property for Ψ` when P = 1. The integrality of Ψ` in
general will follow by bootstrapping from this base case.

2.5 A cyclotomic Dedekind sum

The following “cyclotomic Dedekind sum” attached to a real number x will play an important
role in our computations:

Bexp
1 (x, r) =

∑̀
m=1

e
(rm
`

)
B1

(
x+m

`

)
(34)

for any x ∈ R and r ∈ F×
` .

Lemma 2.10. The value of the cyclotomic Dedekind sum is given by

Bexp
1 (x, r) =

e(−r[x]
`

)

e( r
`
)− 1

+
δx
2

e
(
−rx
`

)
, (35)

where δx = 1 if x ∈ Z and is 0 otherwise.
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Proof. Translating m by the integer [x] gives m′ = m+ [x], which runs over the same set of
classes mod `. This yields

Bexp
1 (x, r) =

∑
m′ mod `

e

(
r(m′ − [x])

`

)
B1

(
m′ + {x}

`

)
,

where 0 ≤ {x} < 1 is the fractional part of x. Choosing representatives m′ between 0 and
`− 1 gives

B1

(
m′ + {x}

`

)
=
m′ + {x}

`
− 1

2

unless m′ = {x} = 0, in which case the −1/2 term does not occur. Therefore

Bexp
1 (x, r) = e

(
−r[x]
`

) `−1∑
m′=0

m′

`
e

(
rm′

`

)
+
δx
2

e

(
−rx
`

)
, (36)

since the terms coming from {x} and 1
2

each vanish in the sum over m′. The value of the
sum in (36) can be obtained by evaluating at z = r the derivative of

1

2πi

`−1∑
m′=0

e

(
m′z

`

)
=

1

2πi
· e(z)− 1

e(z/`)− 1
.

The lemma follows.

2.6 The case e = 1

The goal of this section is to bound the denominators of the individual terms in (33) when
e = 1.

Proposition 2.11. Let x ∈ Qn. The quantity BL,z
1 (x,Q) lies in 1

m
Z[1/`], and lies in 1

m
Z if

` > n+ 1.

Proof. This proof follows the argument of [Das, §6.1]. We begin by relaxing the restricted
summation. Since the map

y 7→ 1

`

`−1∑
k=0

e

(
kL(y)

`

)
is the characteristic function of the kernel of L, we obtain

BL,z
e (x,Q) = −`e−n

`−1∑
k=1

∑
y∈Fn

`

e

(
k(L(y)− z)

`

)
Be

(
x+ y

`
,Q

)
. (37)

Note that the term k = 0 cancels the leading term of BL,z
e using the distribution relation for

Be.
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Let aj be the value of the linear form L on the j-th term of the standard basis of Zn. We
specialize to e = 1 and consider the case where no component of x is an integer (so there is
no dependence on Q). The sum (37) then decomposes as

−
`−1∑
k=1

e

(
−kz
`

) ∑̀
y1=1

. . .
∑̀
yn=1

n∏
j=1

e

(
kajyj

`

)
B1

(
xj + yj

`

)
.

Since each aj is non-zero by assumption, we can repeatedly use Lemma 2.10 to obtain

BL,z
1 (x,Q) = −

`−1∑
k=1

e(−kz
`

)

(
n∏

j=1

e(−kaj [xj ]

`
)

e(
kaj

`
)− 1

)

= − TrQ(ζ`)/Q

(
e(−z−L([x])

`
)∏n

j=1(e(
aj

`
)− 1)

)
. (38)

For any primitive `-th root of unity ζ`, the element ζ` − 1 is supported at ` and has `-adic
valuation 1/(`− 1). Therefore, the expression (38) lies in Z[1

`
] and has denominator at most

`
n

`−1 . The lemma is proven in the case where no component xj is integral.
For the general case, let J0 = {j : xj ∈ Z}. An argument as above yields the following

value for BL,z
1 (x,Q):

− 1

m2#J0

m∑
i=1

∑
J⊂J0

TrQ(ζ`)/Q

(
e(−z−L([x])

`
)∏

j 6∈J0
(e(

aj

`
)− 1)

∏
j∈J0−J

e(
aj

`
) + 1

e(
aj

`
)− 1

∏
j∈J

signQij

)
. (39)

As in (38), the sum in (39) lies in Z[1/`] and in fact lies in Z if ` > n + 1. It only remains
to eliminate the factor 1/2#J0 . When summed over all J ⊂ J0, the argument of the trace in
(39) is equal to a constant depending on J0 (but not J) times

∑
J⊂J0

( ∏
j∈J0−J

e(
aj

`
) + 1

e(
aj

`
)− 1

∏
j∈J

signQij

)
=
∏
j∈J0

(
e(

aj

`
) + 1

e(
aj

`
)− 1

+ signQij

)
(40)

= 2#J0

∏
j∈J0

(
αij

e(
aj

`
)− 1

)
, (41)

where αij = e(aj/`) or αij = 1 in the cases signQij = 1 or signQij = −1, respectively. The
factor 2#J0 in (41) cancels that in (39).

2.7 Proof of Theorem 4

We are now ready to complete the proof of Theorem 4 from the introduction, which states
that the rational number Ψ`(A,P,Q, v) lies in Z[1/`] when (9) is satisfied. We do this by
showing that it lies in Zp for each prime p 6= `.
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Proposition 2.12. Let x ∈ Qn and let p 6= ` be a prime number. Let r be an n-tuple of
nonnegative integers. There exists an integer ε depending only on r, ` and the denominator
of x, such that for all positive integers M we have the following congruence between rational
numbers:

pM ·rN(r + 1)−1BL,z
1+r

(
x

pM
, Q

)
≡ BL,z

1

(
x

pM
, Q

)
Nxr mod pM−εZp. (42)

Remark 2.13. Here Nxr is shorthand for
∏n

j=1 x
rj

j . If it happens that both rj and xj are

zero, the corresponding term x
rj

j is understood to equal 1.

Before proving Proposition 2.12, we show how it enables the proof of Theorem 4.

Proof of Theorem 4. We recall Proposition 2.9:

Ψ`(A,P,Q, v) = ±
∑

r

Pr(σ)

r!`r
N(r + 1)−1

∑
x∈Zn/σ`Zn

BL,−x1
1+r (σ−1

` (x+ π`v), σ
−1Q). (43)

For each x in the sum above we let y = σ−1
` (x+ π`v) and note that y has the property

1
`
σ(y) ∈ v + 1

`
Z⊕ Zn−1. (44)

Fix a prime p 6= `. For each y we let ε be as in Proposition 2.12 and fix a positive integer
M ≥ ε. Applying the distribution relation (32) we replace the term BL,−x1

1+r (y, σ−1Q) in (43)
with

pM ·r
∑

k∈(`Z/`pMZ)n

BL,z
1+r

(
y + k

pM
, σ−1Q

)
, (45)

where z ≡ −p−Mx1 (mod `). By Proposition 2.12 and the choice of M , the quantity in (45)
multiplied by N(r + 1)−1 is congruent modulo Zp to∑

k∈(`Z/`pMZ)n

BL,z
1

(
y + k

pM
, σ−1Q

)
N(y + k)r

Plugging this expression into (43), we note that each coefficient Pr(σ)
r!

lies in Zp, and hence
Ψ`(A,P,Q, v) is congruent modulo Zp to

±
∑

x

∑
k∈(`Z/`pMZ)n

BL,z
1

(
y + k

pM
, σ−1Q

)∑
r

Pr(σ)

r!
N

(
y + k

`

)r

. (46)

By the definition (12), the sum over r in (46) is equal to P (σ(y + k)/`), which by (44) and
the given property

P (v + (1
`
Z⊕ Zn−1)) ⊂ Z[1

`
]

lies in Z[1
`
]. Therefore, by Proposition 2.11, each term in (46) lies in Zp, and the theorem is

proven.
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Proof of Proposition 2.12. As in the classical Kubota–Leopoldt construction of p-adic L-
functions over Q, the proof relies on the fact that the Bernoulli polynomial bk(x) begins

bk(x) = xk − k

2
xk−1 + · · · . (47)

We recall equation (37) for BL,z
1+r:

BL,z
1+r(x,Q) = −`r

`−1∑
k=1

∑
y∈Fn

`

e

(
k(L(y)− z)

`

)
B1+r

(
x+ y

`
,Q

)
. (48)

At the expense of altering z, we may translate x by an element of pMZn and assume that
x/pM belongs to [0, 1)n. Furthermore, for each class in Fn

` we choose the representative
y ∈ Zn with 0 ≤ yj ≤ `− 1. Let J0 = {j | xj = 0 and rj = 0}. For j 6∈ J0, (47) yields

pMrjB1+rj

(
xj

pM + yj

`

)
≡ p−M

(xj

`

)1+rj

+ (1 + rj)
(xj

`

)rj

(
yj

`
− 1

2

)
mod pM−εjZp,

where εj depends only on rj, ` and the power of p in the denominator of xj. Let aj ∈ F`

denote the value of L on the jth standard basis vector of Zn, and multiply the previous
congruence by e(

kajyj

`
). Summing over all 0 ≤ yj ≤ `− 1, the leading term of the right side

vanishes and we obtain

pMrj

∑
yj∈F`

e

(
kajyj

`

)
B1+rj

(
xj

pM + yj

`

)
≡

(1 + rj)
(xj

`

)rj ∑
yj∈F`

e

(
kajyj

`

)
B1

(
xj

pM + yj

`

)
mod pM−εjZp[ζ`].

(49)

Take the product of these congruences over all j 6∈ J0 and multiply by

−
e(−kz

`
)

m

m∑
i=1

(∏
j∈J0

signQij

2

)
.

In view of (48), summing over k = 1, . . . , ` − 1 gives the desired result (after dividing by
N(1 + r) and increasing ε accordingly).

3 Integrality of smoothed zeta functions

Let F be a totally real field of degree n. In this section we combine the Z[1/`]-integrality
property of Ψ` proved in Theorem 4 with a suitable generalization of Sczech’s formula (8)
to prove Theorem 1, recalled below. Let a and f be coprime integral ideals of F . Let c be
an integral ideal of F with norm ` such that (c, f) = 1.

19



Theorem 1. The smoothed zeta function

ζf,c(a, s) = ζf(ac, s)− Nc1−sζf(a, s)

assumes values in Z[1/`] at nonpositive integers s.

Proof. Fix a basis {w1, . . . , wn} for a−1f such that {1
`
w1, w2, . . . , wn} is a basis for a−1c−1f.

Let {ε1, . . . , εn−1} denote a basis of the group of totally positive units of F congruent to 1
modulo f. Let A1, . . . , An−1 be the matrices representing multiplication by the εi on a−1f in
terms of the basis w = (w1, . . . , wn), i.e. such that

wεi = wAi i = 1, . . . , n.

The matrices Ai lie in Γ`, since left multiplication by these matrices preserves the lattice of
column vectors 1

`
Z ⊕ Zn−1 ∼= a−1c−1f (where the isomorphism is given by dot product with

w).
Let P ∈ Z[1

`
][X1, . . . , Xn] denote the homogeneous polynomial of degree n given up to a

scalar by the norm:

P (X1, . . . , Xn) = N(ac)N(w1X1 + · · ·+ wnXn). (50)

Let Q̃ = (Q1, . . . , Qn) be the n-tuple of linear forms given by

Qi = τi(w
∗
1)X1 + · · ·+ τi(w

∗
n)Xn, (51)

where {w∗
1, . . . , w

∗
n} is the dual basis with respect to the trace form on F (i.e. Tr(wiw

∗
j ) = δij),

and the τi denote the embeddings F ↪→ R. Define the column vector

v = (Tr(w∗
1), . . . ,Tr(w∗

n)), (52)

so that
1 = v1w1 + v2w2 + · · ·+ vnwn.

Dot product with (w1, . . . , wn) provides a bijection

v + 1
`
Z⊕ Zn−1 ↔ 1 + a−1c−1f, (53)

so P and v satisfy the key property

P (v + 1
`
Z⊕ Zn−1) ⊂ Z[1

`
] (54)

of Theorem 4.
The matrices {Ai} give rise to a homogeneous (n− 1)-chain in the standard way, which

we write using the bar notation:

[A1 | . . . | An−1] = (1, A1, A1A2, . . . , A1A2 · · ·An−1) ∈ Γn
` .
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We symmetrize this chain by defining

A(A1, . . . , An−1) :=
∑

π∈Sn−1

sgn(π)[Aπ(1) | · · · | Aπ(n−1)] ∈ Z[Γn
` ]. (55)

Let
A = ρ · A(A1, . . . , An−1). (56)

Here ρ = ±1 is a sign defined as follows: let τ1, . . . , τn denote the real embeddings of F , and
consider the square matrices

W = (τi(wj))
n
i,j=1 and R = (log τi(εj))

n−1
i,j=1.

Then ρ = (−1)n−1 sign(detW ) sign(detR).
For integers k ≥ 0, Sczech’s formula ([Sc2, Corollary p. 595]) reads

ζf(a,−k) = `−kΨ(A,P k, Q̃, v), (57)

where the `-power term arises from the extra factor of Nc = ` in the definition of P . Applying
this formula again with a replaced by ac gives

ζf(ac,−k) = Ψ(A′, (P ′)k, Q̃′, v′), (58)

where
A′ = π`Aπ

−1
` , P ′ = π−1

` P, Q̃′ = π`Q̃, and v′ = π`v

as in Section 2.
Combining (57) and (58), we find

ζf,c(a,−k) = ζf(ac,−k)− `1+kζf(a,−k).
= Ψ(A′, (P ′)k, Q̃′, v′)− `Ψ(A,P k, Q̃, v)

= Ψ+
` (A,P k, Q̃, v). (59)

The result ζf,c(a,−k) ∈ 1
2n

Z[1/`] now follows from Theorem 4.
The denominator 2n may be removed by invoking the following result proven in [CDG],

which states that (59) still holds with Ψ+
` replaced by Ψ`, and with Q̃ replaced by any one

of the n individual linear forms defining it:

Theorem 3.1. Let the notation be as above, and let Q(X1, . . . , Xn) =
∑n

i=1 τ(w
∗
i )Xi for a

real embedding τ : F ↪→ R. Then

ζf,c(a,−k) = Ψ`(A,P
k, Q, v).

Now ζf,c(a,−k) ∈ Z[1/`] follows from Theorem 4.

Remark 3.2. Note that

ζf,bc(a, s) = ζf,c(ab, s) + Nc1−sζf,b(a, s),

so we obtain more generally that ζf,c(a,−k) ∈ Z[1/Nc] for nonnegative integers k when c is a
product of ideals with prime norm. Deligne–Ribet show that this result holds for arbitrary
integral ideals c. Extending our methods to obtain this general result seems difficult, since
the fact that the level ` of our modular group Γ` is squarefree appears at face value to be
essential in the argument of Proposition 2.11.
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4 p-adic measures and p-adic zeta functions

In this section we interpret the cocycle Ψ` in terms of p-adic measures and use this perspective
to prove Theorem 2 of the Introduction on the existence of p-adic zeta functions.

4.1 p-adic measures associated to Ψ`

Let X = Zn
p , and let

Γ`,p := Γ0(`Z[1/p]) = Γ` ∩GL2(Z[1/p]).

Given A ∈ Γn
`,p, Q ∈ Q, and v ∈ Qn, we define a Z[1/`]-valued measure µ` = µ`(A,Q, v)

on
Xv := v + X ⊂ Qn

p

as follows. Let σ denote the matrix whose columns are the first columns of the matrices in
the tuple A. If det(σ) = 0, then µ` is the 0 measure. Suppose now that det(σ) 6= 0.

A vector a ∈ Zn and a nonnegative integer r give rise to the compact open subset

a+ prX ⊂ X.

These sets form a basis of compact open subsets of X, and hence their translates by v form
a basis of compact open subsets of Xv. We define µ` by applying Ψ` with the constant
polynomial P = 1:

µ`(A,Q, v)(v + a+ prX) = Ψ`

(
A, 1, Q,

v + a

pr

)
∈ 1

m
Z[1

`
] ⊂ 1

m
Zp. (60)

It is easily checked that this assignment is well-defined, and that the distribution relation
for Ψ` yields a corresponding distribution relation for µ`.

Let Mp denote the space of functions that assigns to each (Q, v) ∈ Q × V a Cp-valued
measure α(Q, v) on Xv such that α(Q, pv)(pU) = α(Q, v)(U) for all U ⊂ Xv. The space Mp

naturally has the structure of a Γ-module given by

(γα)(Q, v)(U) := α(AQ,Av)(AU),

where A = λγ is chosen such that λ is a power of p and A ∈Mn(Z).

Proposition 4.1. The function µ` : Γn
`,p−→Mp is a homogenous (n− 1)-cocycle.

Proposition 4.1 follows directly from the fact that Ψ` is a cocycle. The following theorem
shows that the cocycle Ψ` can be recovered from the cocycle of measures µ`; in other words,
the cocycle Ψ` specialized to P = 1 determines its value on all P ∈ P .

Theorem 4.2. For any P (x) ∈ P we have

Ψ`(A,P,Q, v) =

∫
Xv

P (x) dµ`(A,Q, v)(x). (61)
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Proof. It suffices to prove the result when P is homogeneous of degree d. We follow closely
the proof of Theorem 4 given in Section 2.7. It was shown there (see (46)) that there exists an
integer ε such that for each positive integer M ≥ ε, the quantity Ψ`(A,P,Q, v) is congruent
to

±
∑

x

∑
k∈(`Z/`pMZ)n

BL,−p−Mx1
1

(
y + k

pM
, σ−1Q

)
P

(
σ(y + k)

`

)
(62)

modulo pM−εZp. Here σ again denotes the matrix of first columns of A, and x sums
over representatives in Zn for Zn/σ`Z

n. Meanwhile, y = σ−1
` x + σ−1`v. The ± sign is

(−1)n sign(detσ). The expression (62) is simplified with a change of variables. First replace
the variable k by arbitrary representatives j for Zn/pMZn (not necessarily divisible by `)

such that j ≡ k (mod pM); the expression BL,−p−Mx1
1

(
y+k
pM , σ−1Q

)
is seen from the defini-

tions to equal B
L,−p−M (x1+L(j))
1

(
y+j
pM , σ−1Q

)
. Then let u = x + σ`(j); the expression (62) is

congruent modulo pM to:

±
∑

u∈Zn/pMσ`Zn

BL,−p−Mu1
1

(
σ−1

` (u) + σ−1`v

pM
, σ−1Q

)
P (π−1

` u+ v). (63)

Let us meanwhile evaluate the Riemann sums approximating the integral on the right
side of (61). There is a δ depending on the powers of p in the denominator of P (v) such that
for M large we have∫

Xv

P (x) dµ`(x) ≡
∑

j∈Zn/pMZn

P (v + j)µ`(j + pMX) (mod pM−δZp)

=
∑

j∈Zn/pMZn

P (v + j)D`

(
σ, 1, Q,

v + j

pM

)
(64)

As j runs over (Z/pMZ)n, let k run over representatives for (Z/pMZ)n such that k ≡ π`j
(mod pM). An argument similar to the proof of Lemma 2.7 shows that

D`

(
σ, 1, Q,

v + j

pM

)
=

∑
z∈Zn/σ`Zn

BL,−z1−p−Mk
1

(
σ−1

` (z) +
σ−1

` (k) + σ−1`v

pM
, σ−1Q

)
.

Substituting this equation into (64) and using the change of variables u = pMz + k gives
exactly the expression in (63). The values are therefore congruent modulo pM−max{ε,δ}, so
taking the limit as M−→∞ gives the desired result.

The following more general result may be proved using the same technique.

Theorem 4.3. For any P ∈ P, a ∈ Zn, and M ∈Mn(Z) ∩ Γ`,p, we have∫
v+a+M(X)

P (x)dµ`(A,Q, v) = sgn(det(M)) ·Ψ`(M
−1A,M tP,M−1Q,M−1(v + a)).
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4.2 p-adic zeta functions

We now return to the setting of a totally real field F . Let p be a rational prime. Let a be
an integral ideal of F and let c be an ideal of norm ` such that (ac, f) = 1. We will use the
p-adic measures defined above to construct the p-adic zeta function ζf,c,p(a, s) of Theorem 2,
which we recall below.

Theorem 2. There exists a unique Zp-valued analytic function ζf,c,p(a, s) of the p-adic vari-
able s ∈ W such that

ζf,c,p(a,−k) = ζ∗f,c(a,−k) (65)

for all nonnegative integers k.

Proof. First we note that it suffices to consider the case where f is divisible by all primes of
F above p. Indeed, if we let g denote the least common multiple of f and the primes above
p, then we can define the p-adic zeta functions attached to f from the ones attached to g as
follows:

ζf,c,p(a, s) =
∑
b∼fa

ζg,c,p(b, s).

Here the sum ranges over representatives b for the narrow ideal class group Gg whose images
in Gf are equivalent to a. The analogous equation for the classical partial zeta functions ζ∗

follows from the fact that the sum defining ζ∗ ranges over ideals relatively prime to p.
Therefore, suppose that f is divisible by all primes of F above p. Then ζ∗f,c = ζf,c. Let

P,Q, v, and A be as in Section 3, and let µ` = µ`(A,Q, v) as above. As we saw in (53)–(54),
for any x ∈ Zn the quantity P (v + x) is the norm of an integral ideal of F relatively prime
to f. Since f is divisible by all the primes above p, this quantity is an integer relatively prime
to p. By the continuity of P , we find that

P (v + x) ∈ Z×
p for all x ∈ X,

i.e. P (Xv) ⊂ Z×
p . We may therefore define a p-adic analytic function on W :

ζf,c,p(a, s) :=

∫
Xv

P (x)−s dµ`(A,Q, v). (66)

Here we have followed the usual convention of writing x−s for s(x)−1 when x ∈ Z×
p , s ∈ W .

For a nonnegative integer k, equation (59) and Theorem 4.2 yield

ζf,c(a,−k) = Ψ`(A,P
k, Q, v)

=

∫
Xv

P (x)k dµ`(A,Q, v). (67)

Equation (67) gives the desired interpolation property (65).

With our applications to Gross’s Conjecture 1 in mind, it is useful to have a formula such
as (66) for the p-adic zeta-function when f is not necessarily divisible by the primes above p.
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Write f = f0f1, where f0 is the prime-to-p part of f and f1 is divisible only by primes above p.
Let fp denote the product of the primes dividing p that do not divide f. Fix an integral ideal
a relatively prime to p. An elementary calculation following directly from the definitions
shows that for s ∈ C,

ζ∗f,c(a, s) =
∑
b|fp

µ(b)Nb−sζf,c(ab−1, s), (68)

where µ(b) = ±1 is determined by the parity of the number of prime factors of b. For
integers s ≤ 0, we will express each term of (68) as an integral with respect to the measure
µ` in such a way that the sum can be interpolated p-adically.

Define the variables A,P,Q, v as in Section 3 using the ideals a and f0. In particular,
{wi} is a Z-basis of a−1f0. Dot product with w = (w1, . . . , wn) gives a bijection between the
spaces Xv = X and Op =

∏
p|pOp. Using this bijection we view µ`(A,Q, v) as a measure on

Op. For each prime ideal p | p, define Op,f := 1 + fOp, and write

Op,f := 1 + fOp =
∏
p|p

Op,f.

Let b denote an integral ideal of F with p-power norm such that (b, f) = 1 (so b is a product
of prime ideals dividing fp). Define

Op,b,f := bOp ∩ Op,f =
∏
p|b

bOp ×
∏

p|p, p-b

Op,f.

Write

O∗
p,f := O∗

p ∩ Op,f, O∗
p,f :=

∏
p|p

O∗
p,f, O∗

p,b,f :=
∏
p|p

bO∗
p ∩ Op,f.

The following formula generalizes (66) to the current setting, where f is not necessarily
divisible by all primes above p.

Proposition 4.4. We have

ζf,c,p(a, s) = (Nac)−s

∫
O∗

p,f

(Nx)−s dµ`(A,Q, v). (69)

More generally, with b as above we have

ζf,c,p(ab−1, s) = (Nac)−s

∫
O∗

p,b,f

(Nx)−s
p dµ`(A,Q, v), (70)

where xp := x/pordp(x) is the unit part of x ∈ Q×
p .

Proof. We first express the zeta value ζf,c(ab−1,−k) for a nonnegative integer k as an integral
over the space Op,b,f. Fix an integral ideal q relatively prime to fp whose image in Gf is the
inverse class of b. Therefore bq = (π) for a totally positive π ≡ 1 (mod f).
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Fix a Z-basis u = (u1, . . . , un) for a−1bf such that (1
`
u1, u2, . . . , un) is a basis for a−1c−1bf.

Let M be the matrix such that wM = u. It is clear that M ∈ Mn(Z), and that | detM | =
Nbf1 is a power of p. Furthermore, it is clear that M ∈ Γ`,p, so M satisfies the conditions of
Theorem 4.3. For simplicity let us choose the basis u such that detM > 0.

Next, let R note the matrix representing multiplication by π with respect to the basis
w, i.e. such that wπ = wR. Note that R commutes with the matrices Ai in the definition of
the chain A. Now a−1q−1f = π−1(a−1bf) has basis π−1u = wR−1M . If we use this basis to
define the variables Aaq, Paq, Qaq, vaq as in Section 3 using the ideals aq and f, then we find

Aaq = M−1AM,

Paq = Nb−1 · (M tP ),

Qaq ∼M−1Q,

vaq ≡M−1(v + a) (mod Zn),

where a ∈ Zn is chosen so that w · a = π − 1 ∈ a−1f0. Here Qaq ∼ M−1Q means that the
corresponding tuples of linear forms are equal up to up to scaling the linear forms by positive
reals (which does not affect the value of the cocycle Ψ`).

For any nonnegative integer k, we therefore find

ζf,c(aq,−k) = Ψ`(Aaq, P
k
aq, Qaq, vaq)

= Nb−kΨ`(M
−1AM, (M tP )k,M−1Q,M−1(v + a))

= Nb−kΨ`(M
−1A, (M tP )k,M−1Q,M−1(v + a)) (71)

= Nb−k

∫
v+a+M(X)

P (x)k dµ`(A,Q, v) (72)

= (Nacb−1)k

∫
Op,b,f

(Nx)k dµ`(A,Q, v). (73)

Equation (71) follows from [Sc, Lemma 4]. Equation (72) follows from Theorem 4.3. In
equation (73) we have identified v + a + M(X) with Op,b,f via dot product with w. From
(68) and (73) and an inclusion-exclusion argument, it follows that

ζ∗f,c(a,−k) = (Nac)k

∫
O∗

p,f

(Nx)k dµ`(A,Q, v).

This proves (69) by interpolation, and (70) holds similarly.

5 Order of Vanishing at s = 0

5.1 p-adic L-functions

As in the introduction, let χ : Gal(F/F ) → Q
∗

be a totally odd finite order character with
conductor f. The p-adic L-function Lc,p(χω, s) : Zp −→ C∗

p is given by

Lc,p(χω, s) =
∑
a∈Gf

χ(ac)ζf,c,p(a, 〈·〉s).
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Let p1, . . . , prχ denote the primes above p such that χ(pi) = 1. (In particular each pi - f.)
The goal of the rest of the paper is to prove Theorem 3, which states that

L(k)
c,p (χω, 0) = 0 for k < rχ.

In the sequel, we write simply r for rχ. Let Gp,χ ⊂ Gf denote the subgroup generated by the
images of p1, . . . , pr. Let ei denote the order of pi in Gf, and write pei

i = (πi) for a totally
positive πi ≡ 1 (mod f). Let

e =

(
r∏
i

ei

)
/#Gp,χ ∈ Z.

We then have

Lc,p(χω, s) =
∑

a∈Gf/Gp,χ

χ(ac)
∑

b∈Gp,χ

ζf,c,p(ab−1, s)

=
1

e

∑
a∈Gf/Gp,χ

χ(ac)
∑

b|
Qr

i=1 p
ei−1
i

ζf,c,p(ab−1, s)

=
1

e

∑
a∈Gf/Gp,χ

χ(ac)〈Nac〉−s

∫
O

〈Nx〉−sdµ`(Aa, Qa, va), (74)

where

O =
r∏

i=1

(Opi
− πiOpi

)×
∏

p|p, p6=pi

O∗
p,f.

Equation (74) follows from Proposition 4.4. (As usual, the representative ideals a are chosen
relatively prime to fp.)

In order to prove Theorem 3, it therefore suffices to show that the integral in (74) has
order of vanishing at least r, i.e. that∫

O

(logp Nx)kdµ`(A,Q, v) = 0 for 0 ≤ k < r. (75)

5.2 Spiess’ Theorems and the proof of Theorem 3

In this section, we explain how the cocycle of measures µ` can be combined with Spiess’s
cohomological formalism for p-adic L-functions to deduce (75), and thereby prove Theorem 3.
All of the definitions, results, and proofs in this section are due to Spiess [Sp1].

Denote by E ⊂ O∗
F the group of totally positive units of F congruent to 1 modulo f.

Denote by T the subgroup of F ∗ generated by the πi, for i = 1, . . . , r. Denote by U ∼= E×T
the subgroup of F ∗ generated by E and T .

Write Fp =
∏

p|p Fp for the completion of F at p. Let Cc(Fp) denote the Cp-algebra of

Cp-valued continuous functions on Fp with compact support, and similarly for Cc(Fp), for
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p | p. Write S = {p1, . . . , pr}, and for each p ∈ S define C[
c(Fp) to be the subspace of Cc(Fp)

consisting of those functions that are constant in a neighborhood of 0. Finally, define

C[
c(Fp) :=

⊗
p∈S

C[
c(Fp)⊗

⊗
p|p, p6∈S

C(O∗
p) ⊂ Cc(Fp).

In other words, C[
c(Fp) consists of functions on Fp that can be written as finite Cp-linear

combinations of products
∏

p|p fp, with fp ∈ C[
c(Fp) for p ∈ S and fp ∈ C(O∗

p) for p | p,
p 6∈ S. Note that, for instance, 1O · (logp Nx)k ∈ C[

c(Fp), since for a tuple x = (xp) ∈ Fp with
xp ∈ Op, xp 6= 0, we have

logp Nx =
∑

p

`p(x), where `p(x) := logp NFp/Qpxp. (76)

Note that U acts on C[
c(Fp) by (u · f)(x) := f(x/u). The cocycle µ` along with the ideal

a allow for the definition of a homogeneous cocycle

κa ∈ Zn−1(U,C[
c(Fp)

∨)

as follows. Given ε1, . . . , εn ∈ U , let Ai ∈ Γ`,p denote the matrix for multiplication by εi with
respect to the basis {wi} of a−1f0, and define

κa(ε1, . . . , εn)(f) =

∫
Fp

f(x)dµ`(A1, . . . , An)(Qa, va).

As in the previous section, we have identified Qn
p with Fp via dot product with (w1, . . . , wn),

and thereby view µ` as a compactly supported measure on Fp. The cocycle κa yields a class
[κa] ∈ Hn−1(U,C[

c(Fp)
∨).

Meanwhile, for each nonnegative integer k we define a class [Lk] ∈ Hn−1(U,C
[
c(Fp)) as

follows. Let ε1, . . . , εn−1 denote a basis of E, and define

Lk := A(ε1, . . . , εn−1)⊗ 1O · (logp Nx)k ∈ Zn−1(U,C
[
c(Fp)),

where A is defined as in (55). Tracing through these notations, it is clear that the left side
of (75) is given by ∫

O

(logp Nx)kdµ`(A,Q, v) = ±〈[κa], [Lk]〉, (77)

where the pairing on the right is the usual cap product

Hn−1(U,C[
c(Fp)

∨)×Hn−1(U,C
[
c(Fp)) −→ Cp

(and the ± is given by the sign ρ appearing in the definition (56) of A). In view of the
discussion of Section 5.1 (in particular (75)) and (77), Theorem 3 is reduced to proving that

[Lk] = 0 in Hn−1(U,C
[
c(Fp)) for k < r. (78)

The proof of (78) is broken into two steps. Let I denote the augmentation ideal of the
group ring Cp[T ].
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Theorem 5.1 (Spiess, [Sp1]). The natural map Hn−1(U,C
[
c(Fp))−→Hn−1(E,C

[
c(Fp)/I) is

an isomorphism.

Theorem 5.2 (Spiess, [Sp1]). For k < r, we have

1O · (logp Nx)k ∈ I · C[
c(Fp),

and in particular the image of [Lk] in Hn−1(E,C
[
c(Fp)/I) vanishes.

Theorems 5.1 and 5.2 combine to yield (78), which in turn combined with (77) and (74)
yields the proof of Theorem 3. For completeness, we recall Spiess’s proofs of these results.

Lemma 5.3. The space C[
c(Fp) is a free Cp[T ]-module.

Proof. We show by induction on r that

C[
c(FS) :=

⊗
p∈S

C[
c(Fp)

is a free T -module. To this end, fix p = pr ∈ S and write π = πr, S
′ = {p1, . . . , pr−1},

and T ′ = 〈πi〉r−1
i=1 , so T = T ′ × 〈π〉. Our inductive hypothesis is that C[

c(FS′) is free as a
Cp[T

′]-module.
The space Cc(F

∗
p ) of compactly supported continuous functions on F ∗

p can be identified

with the subspace of C[
c(Fp) consisting of those functions that vanish on a neighborhood of

0. Write C0
c (Fp) for the space of compactly supported locally constant functions on Fp, so

in particular C[
c(Fp) is generated by its subspaces Cc(F

∗
p ) and C0

c (Fp), and we have

C[
c(Fp)/C

0
c (Fp) ∼= Cc(F

∗
p )/C0

c (F ∗
p ).

We therefore obtain an exact sequence

0 −→ C[
c(FS′)⊗ C0

c (Fp) −→ C[
c(FS) −→ C[

c(FS′)⊗ Cc(F
∗
p )/C0

c (F ∗
p ) −→ 0. (79)

It suffices to prove that the first and third terms of the sequence are free Cp[T ]-modules.
Since Fp := Op − πOp is a fundamental domain for the action of π on F ∗

p , we have

C0
c (Fp) = C0

c (F ∗
p )⊕Cp1Op = (Ind〈π〉C0(Fp))⊕Cp1Op (80)

as Cp[T
′]-modules. Choose a T ′-stable decomposition C0(Fp) = V ⊕ Cp1Fp (for instance,

we may take V ⊂ C0(Fp) to be the subspace of functions that have integral against Haar
measure on Op equal to 0). Using 1Fp = (1− π)1Op , one sees from (80) that

C0
c (Fp) = Ind〈π〉(V ⊕ 1Op)

as Cp[T ]-modules. Lemma 5.4 below then implies that C[
c(FS′) ⊗ C0

c (Fp) is a free Cp[T ]-
module.

Similarly,
Cc(F

∗
p )/C0

c (F ∗
p ) ∼= Ind〈π〉(C(Fp)/C

0(Fp))

as a Cp[T ]-module, and hence the third term of (79) is a free Cp[T ]-module by Lemma 5.4.
We conclude that C[

c(FS) is a free Cp[T ]-module, and hence C[
c(Fp) is as well.
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Lemma 5.4. Let G1 and G2 be groups, G = G1 × G2, and let K be a field. Let M1,M2

two K[G]-modules such that M2
∼= IndG2 N2 as a K[G]-module for some G1-module N2, and

M1
∼= IndG1 N1 as K[G1]-modules for some K-vector space N1. Then M1 ⊗K M2 is a free

K[G]-module.

Proof. One verifies that M1 ⊗K M2
∼= IndG(N1 ⊗K Res G1

1 N2).

Lemma 5.3 immediately yields:

Proof of Theorem 5.1. Since C[
c(Fp) is a free Cp[T ]-module, it has homological dimension 1,

and the Hochschild–Serre spectral sequence

E2
p,q = Hp(E,Hq(T,C

[
c(Fp))) =⇒ Hp+q(U,C

[
c(Fp))

degenerates at E2. Therefore the maps En −→ E2
n,0 are isomorphisms as desired.

We now move on to:

Proof of Theorem 5.2. As above we write S = {p1, . . . , pr}. For any subset R ⊂ S, let

OR :=
∏
pi∈R

(Opi
− πiOpi

)×
∏

pi∈S−R

Opi
×

∏
p|p, p6∈S

O∗
p,f,

so in particular OS = O.
From (76) it follows that (logp Nx)k can be expanded as a sum of monomials of the form

`(x)n :=
∏
p|p

`p(x)
np ,

where n = (np)p|p is a tuple of nonnegative integers such that |n| :=
∑

p np = k. We will
prove by induction on |n| that if R ⊂ S is a subset such that np = 0 for all p ∈ S − R and
|R| > |n|, then

1OR
· `(x)n ∈ I · C[

c(Fp).

The desired result will then follow from the case R = S, |n| = k.
For the base case, |n| = 0, we choose pi ∈ R (which is possible since |R| > 0), let

R′ = R− {pi}, and note
1OR

= (1− πi) · 1OR′ . (81)

The inductive step is similar, using the linearity of the functions `p. Given R ⊂ S such
that np = 0 for all p ∈ S −R and |R| > |n|, we may choose a pi ∈ R such that npi

= 0. Let
R′ = R− {pi}. Then:

(1− πi)`(x)
n =

∏
p|p

`p(x)
np −

∏
p|p

(`p(x)− `p(πi))
np

=
∑

n′,|n′|<|n|

an′`(x)
n′ (82)
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for some coefficients an′ (where n′p = 0 for all p ∈ S −R′ if an′ 6= 0). Using the formula

((1− π)f) · g = (1− π)(f · g)− f · ((1− π)g) + ((1− π)f) · ((1− π)g)

applied with f = 1OR′ , g = `(x)n, and π = πi, equations (81) and (82) combine to give

1OR
· `(x)n =((1− πi)1OR′ ) · `(x)n

≡− 1OR′ ·
∑
n′

an′`(x)
n′ + 1OR

·
∑
n′

an′`(x)
n′ (mod I · C[

c(Fp)).

Each of the terms 1OR′ · `(x)n′ and 1OR
· `(x)n′ lies in I ·C[

c(Fp) by the inductive hypothesis,
yielding 1OR

· `(x)n ∈ I · C[
c(Fp) as desired.
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Groupe d’étude d’analyse ultramétrique (5ème année 1977/78), exposé no. 16, 23 pp.
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