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Expansion of error thresholds for the Moran model

Maxime Berger ∗
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Abstract

We propose new definitions for the error threshold of a population
evolving through mutation and selection. We compute the correction
term due to the finiteness of the population by estimating the lifetime of
master sequences. Our technique consists in bounding from above and
below the number of master sequences in the Moran model, by birth
and death chains. The expectation of this lifetime is then computed
with the help of explicit formulas which are in turn expanded with
Laplace method. The first term after ln σ/` is computed, it depends
on the chosen criterion.
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1 Introduction

1.1 Context

Evolution is a macroscopic phenomenon that relies on two microscopic forces:
mutation and selection. Of course the phenomenon is very complex and
other factors (drift, migration,· · · ) play key roles in evolution, see for ex-
ample [9]. However, we are going to focus here on mutation and selection
only, this paradigm has long been studied in mathematical biology, going
back to Haldane, Fisher and Wright in the 20s, see [2] for a review of the
subject. In the 70s, Manfred Eigen [7] derived a special case of the mutation-
selection model, discussed in [5], choosing a mutation term adapted to the
evolution of macromolecules. Under his scheme, individuals are defined by
long chains of zeroes and ones coding for their genome, and mutations act
independently on each bit during reproduction events. Among them, only
one genotype ( 0 · · · 0 for example ) has a fitness different from 1: the master
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sequence. He studied the repartition of the population after a long time and
proved the existence of a phase transition. If the parameter governing the
mutation rate is above a certain error threshold q∗, the population becomes
completely random and all the genetic information is lost, if it is below q∗, a
positive concentration of the population retains the fittest genotype. Let `
be the length of the genome of the macromolecules, and q the probability
for mutation per site, so that the product `q represents the average num-
ber of mutations for each reproduction event. Eigen computed the error
threshold q∗ in a model with an infinite number of macromolecules, in an
asymptotic regime where

`→∞ , q → 0 ,

and he obtained
q∗∼ ln σ

`
,

where σ > 1 stands for the fitness of the master sequence, all the other
sequences having fitness 1. This fitness landscape is known as the sharp-
peak landscape, it is commonly used in population genetics, mainly because
computations are easier, but it is also a plausible framework: in real life,
most mutations do not modify the fitness, see [2], section 4.2. The present
work is also done within this framework.

The error threshold q∗ is obtained from looking at a central quantity in the
model: the average proportion of master sequences in the population. This
proportion r0 is equivalent in the asymptotic regime to

r0∼
σ(1− q)` − 1

σ − 1 .

This quantity is sufficient to obtain the error threshold of ln σ/`, indeed,
if q is asymptotically greater than q∗, then r0 goes to zero, otherwise r0 is
strictly positive.

1.2 Motivation and the model

However, real populations are not infinite and it is necessary to study models
with a finite population. Of course, for finite parameters of the model, error
thresholds are not well defined, and it is only in asymptotic regimes that
we can see a critical value. Beside the article of Nowak and Schuster, that
we will discuss later, there exists works that tried to describe the correction
term in the expansion of the error threshold due to the finite population
size [1], [3] but they mainly rely on computer simulations. Our goal in
this text is to give theoretical formulas for this correction term. We study
the Moran model [13], introduced in the 50s, which has been shown to
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converge to Eigen’s model by Dalmau [6] with an argument of Kurtz [12].
This model is very classical and referenced in many textbooks such as [10].
This convergence allows us to derive results on the quasispecies model by
working within the population genetics framework. As Wilke argued in [19],
this is a sensible strategy and it is supported by numerous simulations.
Understanding the scaling with the size of the population in the quasispecies
model is a key to many applications like optimizing the performance of
genetic algorithms [16] or finding ways to eradicate a population of viruses
by increasing their mutation rate [18]. Let us first describe the model.

We consider a population of m individuals whose genetic material is coded
with a string of ` characters chosen in {0, · · · , κ−1}. All of the κ` genotypes
have fitness equal to 1 except one sequence, say 0 · · · 0, which has fitness
equal to σ, with σ > 1. The sequence 0 · · · 0 is called the master sequence.
In this model, the time t is discrete, at time t = 0, the population starts
with one master sequence, the other m−1 individuals are randomly chosen.
At time n + 1, one individual is chosen from generation n to be a parent,
but master sequences have a selective advantage: they are σ times more
likely chosen, thus they have better chances to leave more offspring, all the
other sequences being equally likely to be chosen. The chosen individual is
replicated, yet the replication process is error prone, due to mutations, each
bit of its genome is changed independently with probability q into one of the
other κ− 1 letters. The generation n+ 1 is formed with the new individual
and all the individuals from generation n, except one chosen uniformly at
random, which is removed. In particular, the size of the population stays
constant equal to m. This process is repeated indefinitely.

In a proper asymptotic regime, the Moran model, like the Eigen model,
presents a phase transition separating a regime of chaos from a regime
where master sequences occupy a non negligible proportion of the popu-
lation. However, the mathematical definition of the critical parameter is
delicate and several choices are possible. Let us look more closely at the
dynamics.

We define Nt as the number of master sequences in the population. The
population starts with one master sequence, selection plays its part and
helps keeping master sequences in the population. This phase is called the
quasispecies phase, the master sequences occupy a significant proportion
of the population, along with a cloud of mutants consisting of individuals
that are genetically close to the master sequence. At some point, due to
random fluctuations, master sequences disappear, we define this moment as
the persistence time τ0:

τ0 = inf
{
t ∈ N

∣∣∣Nt = 0
}
.

At time t = τ0, the population enters a new phase: the neutral phase. New
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genotypes are discovered without changing the global fitness, and selection
plays no role. This phase lasts for a certain number of generations that we
call the discovery time:

τ∗ = inf
{
t ≥ τ0

∣∣∣Nt 6= 0
}
.

At some point, a random mutation will discover a master sequence and
the story will repeat. At time τ∗, we have Nτ∗ = 1 and we enter a new
quasispecies phase, the model is thus τ0 +τ∗-periodic. What will complicate
things is that the process (Nt) is not a Markov chain, since the complete
repartition of the population is needed in order to compute its transition
probabilities. This dynamics admits the same critical point q∗ = ln σ/`,
indeed, in the quasispecies phase, the average proportion of master sequences
is also equivalent to r0, for the same expression of r0,

r0 = σ(1− q)` − 1
σ − 1 .

The parameter for mutation q has a great impact on this dynamics. In-
creasing the mutation rate reduces the stability of the quasispecies phase
because offspring of master sequences are then less likely to be master se-
quences, however the stability of the neutral phase is barely changed. The
comparison between the stability of both phases will yield different criteria
for error thresholds.

1.3 Main results

Our main goal here is to estimate the expectation of the time τ0. This
quantity is interesting in itself as the last sentence of [8] states: estimates
on the lifetime of the metastable quasispecies is crucial to understand the
Eigen model.

We work with a joint convergence of the parameters in the following asymp-
totic regime:

m→∞ , `→∞ , q → 0 . (1)

We place ourselves in the critical parameter limit

`q → ln σ . (2)

We are interested in the critical exponents when r0 → 0 with r0 > 0. This
quantity is equivalent, in the asymptotic regime, to the average proportion
of master sequences in the quasispecies phase. The speed at which r0 goes to
zero is directly related to the term after ln σ/` in the asymptotic expansion
of q∗.
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The estimation on the expectation of the persistence time is stated in The-
orem 1, it requires very few hypothesis on the asymptotic behaviour of the
parameters `, m and q, contrary to the discussion that follows, which deals
with the definition of the error threshold.

Theorem 1. In the asymptotic regime (1) with condition (2), the persistence
time admits the expansion

E
(
τ0
)

= exp
(
σ − 1

2 mr0
2 +O

(
(1 +mq) lnm+mr0

3 + mq2

σ − 2 + r0

))
,

where
r0 = σ(1− q)` − 1

σ − 1 .

The proof of this theorem will consist in performing the computations for
two simpler models: one underestimating the number of master sequences,
and another one overestimating it.

In the next section, we will see that the asymptotic expansion of the error
threshold depends largely on the choice of the relative sizes of the param-
eters ` and m. However, our upper and lower bounds differ by terms of
order mq, our results are thus much more precise if we place ourselves in a
regime where

m

`
→ 0 ,

which is what we assume for the following section. We hope to be able to
relax this condition in future works. This condition also helps to relate r0
to q, using the limited development of ln(1− q), we obtain

(σ − 1)r0 = (ln σ − `q)− ln σ
2 q + o

(
(ln σ − `q) + q

)
.

Therefore,
(σ − 1)2mr2

0 = m(ln σ − `q)2 + o(1) .

Under this hypotheses and under the assumption that σ 6= 2, the expectation
of the persistence time expands as

E
(
τ0
)

= P (m) exp
(
m(`q − ln σ)2

2(σ − 1)

)
, (3)

where P (m) is a polynomial in m.
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2 Error thresholds

The problem of defining adequately the error threshold is delicate, as dis-
cussed by [2]. We are going to see three ways of defining an error threshold.
The first consists in comparing the duration of the two phases. A critical
point of the model is reached when both phases last approximatively for the
same number of generations. Afterwards, we will consider critical points
that take only the quasispecies phase into account. The second one, dis-
cussed in section 2.1, consists in controlling the persistence time. The third
one is the same that Nowak and Schuster derived in their article [15], it
consists in looking at the stationary measure of the proportion of master
sequences. It is defined as the point for which the quasispecies phase stops
being stable, we discuss it in section 2.3.

2.1 Critical point on the dynamics

The quasispecies phase is quite stable for small q, and the persistence time
grows as an exponential in m. However, there exists a critical point q∗ for
which the growth of the expectation of the persistence time is only polyno-
mial. From the expansion of the persistence time given in formula (3), if q∗
admits the asymptotic development

q∗ = ln σ
`
− C

mα`β
,

then, the persistence time will be of order

E
(
τ0
)

= P (m) exp
(

C2

2(σ − 1) m
1−2α `2(1−β)

)
.

Therefore, this time grows slower than a polynomial as soon as α ≥ 1/2
and β ≥ 1. This leads to the critical parameter

q∗ = ln σ
`
− C

`
√
m
.

2.2 Critical point on the equilibrium

This criterion will rely upon the ratio of the expectation of the two times.
If the ratio E(τ∗)/E(τ0) goes to zero, then the quasispecies phase will last
much longer than the neutral phase, thus, if we look at the equilibrium, we
will only see the quasispecies phase. On the contrary, if the ratio goes to
infinity, we will only see the neutral phase. If the ratio converges to some
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constant, we find ourselves in the critical case, we will not discuss it here, it
would require the rest of the development of the expectation of both times.

This point is hardly seen on the dynamics of the process but rather on the
equilibrium, section 2.2 will be dedicated to this critical point. For this value
to have a meaning, the population needs to alternate many times form the
quasispecies phase to the neutral phase, and conversely. Under conditions 1,
it has been proved in [4], chapter 10.5, that the expectation of the time τ∗
can be estimated by κ`, which is the size of the entire sequence space. More
precisely, we have the following asymptotic:

lim 1
`

lnE(τ∗) = ln κ .

Heuristically, the number of possible chain in the population is the time
needed by one individual to find the master sequence. Actually, the fact
that there are m individuals does not help to significantly reduce it. By
comparing this time with the time of theorem 1, we end up with a criterion
for a critical parameter, which is the point at which both times are of the
same order.

For the two times to be of the same order, it is then necessary that(
`q − ln σ

)2 = 2(σ − 1)` ln κ
m

,

which leads to the following critical point

q∗ = ln σ
`
−
√

2(σ − 1) ln κ√
`m

. (4)

2.3 Critical point on the stationary measure

This critical point appears when we look at the stationary measure of the
proportion of master sequences. When there are no mutation, two states are
absorbing, a state with no master sequences, and a state with only master
sequences. When the parameter for mutation is increased, a maximum is
always present at point 0, due to the duration of the neutral phase. The
stationary measure looks like the following graph

0 10
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When q is increased even more, the maximum corresponding to the quasis-
pecies phase gets smaller, it is of order r0. Between these two maxima is a
minimum, located at point 1/mr0, as the next figure shows. This claim is
stated in section 3.1.

0 10

r0

1
mr0

There exists a value for the parameter q such that the maximum and the
minimum coalesce.

0 10

The critical point q is such that mr0
2 tends to 1. Since

mr2
0 ∼

m
(

ln σ − `q
)2

(σ − 1)2 ,

it leads to the critical development

q∗ = ln σ
`
− σ − 1
`
√
m
.

2.4 Comparison of the three criteria

All of the three critical developments have the same power of m in the term
after ln σ/`, namely 1/

√
m, however the exponent of ` differs. Two of the

previous development have the same asymptotic with the term 1/`
√
m, what

these two points have in common is the fact that are defined only through
the quasispecies phase. In many applications, as soon as master sequences
are lost, the population dies because the time needed to find them back is
too long. For example, if a population of viruses looses the master sequence,
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the immune system will eradicate the viruses. In genetic algorithm, loosing
the master sequence means more computations to get it back. For these
kind of applications, a development in

q∗ = ln σ
`
− C

`
√
m
,

seems to be relevant.

The other development is smaller, its definition requires that both phases
constantly alternate so that the population is close to its equilibrium. This
critical parameter seems relevant if the environment is no threat to the
population without master sequences.

These asymptotics have been obtained in a regime where the size of the
population is much greater than the length of the genome, we hope to be
able to generalize this in future work. However, at this point, it is not
obvious to decide which criterion is more relevant.

3 The birth and death process

We follow the strategy of [15] to simplify the original process, namely, we
classify the individuals in only two types. The first type T0 gathers all the
master sequences, all other sequences are put in the second type T1, often
called "the error tail". Let us write Mij for the probability for an individual
of type Ti to give birth to an individual of type Tj , for i, j ∈ {0, 1}. Some of
these probabilities can be computed immediately, for example, M00 is the
probability that a master sequence gives birth to a master sequence, not a
single bit must be changed, soM00 = (1−q)`, and of course,M01 = 1−M00.
However, the probability for an individual of type T1 to give birth to a master
sequence depends on the number of bits in its genome that are different
from 0. This probability is thus out of reach if we don’t assume anything
on the repartition of the population in the different Hamming classes. It is
for this quantity that Nowak and Schuster assumed a uniform distribution
of all genotypes, taking

M10 =
∑̀
k=1

(`
k

)
κ` − 1q

k(1− q)`−k = 1− (1− q)`

κ` − 4 .

In the quasispecies phase, master sequences are present in the population,
and the other individuals constitute what Eigen called the cloud of mutants.
Actually, individuals that are not master sequences are genetically close to
master sequences. According to Eigen, mutations from T1 to T0 play a minor
role in the quasispecies phase, but they still contribute to its stability. In
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this phase, the hypothesis of Nowak and Schuster on M10 is quite strong
because it underestimates largely the probability that a non-master sequence
individual gives birth to a master sequence. They make this probability
of order 1/κ`, according to our work in progress, it would seem to be of
order r0q.

In this text, we will not make any assumption, we are going to bound the
probability M10 from below and above. This will give us two processes that
will lead to the same estimation for the first terms of the expectation of the
persistence time.

• Since we study a regime where there are few mutations (q → 0), it is easier
to get master sequences if individuals of type T1 need only one mutation
to become a master sequence. Under this scheme, the number of master
sequences will be greater than in the original process and we will thus obtain
a longer persistence time. So we use the inequality

M10 ≤
q

κ− 1(1− q)`−1 ≤ q .

• On the contrary, if individuals of type T1 can never become master se-
quences, master sequences will extinct faster: M10 > 0.

The two cases will be coded by the function f , in the sequel, replacing f with
the identity function will give formulas for the upper bound, taking f = 0
will give formulas for the lower bound.

Under the previous assumptions, in the simplified processes, the number Nt,
which we defined as the number of master sequences, evolves according to
a birth and death process on the state space {0, · · · ,m}. Let us give names
to its transition probabilities. For k between 0 and m− 1, we denote by δk
the probability that Nt jumps from k to k + 1:

∀t ∈ N ∀k ∈ {0, · · · ,m− 1} δk = P
(
Nt+1 = k + 1

∣∣∣Nt = k
)
.

For the number Nt to increase by 1, the offspring must be a master sequence
and replace an individual of type T1.

δk =
(
1− k

m

)( σ k
m

σ k
m + 1− k

m

M00 +
1− k

m

σ k
m + 1− k

m

M10

)
.

Factorizing the expression, we obtain

δk =
(
1− k

m

)((1− k
m

)
f(q) + σM00

k
m

σ k
m + 1− k

m

)
.

Since the term containing the function f stands for the upper bound, we
can replace it with anything greater, formulas will be simpler if we remove
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the square. We will continue with

δk =
(
1− k

m

)f(q) + σM00
k
m

σ k
m + 1− k

m

. (5)

For k between 1 and m, we denote by γk the probability that Nt jumps
from k to k − 1:

∀t ∈ N ∀k ∈ {1, · · · ,m} γk = P
(
Nt+1 = k − 1

∣∣∣Nt = k
)
,

For the number Nt to decrease by 1, the offspring must not be a master
sequence and replace a master sequence, which happens with probability

γk = k

m

(
σ k
m

σ k
m + 1− k

m

M01 +
1− k

m

σ k
m + 1− k

m

M00

)
.

For the probability γk, we have

γk = k

m

σ k
m

(
1−M00

)
+
(
1− k

m

)(
1− f(q)

)
σ k
m + 1− k

m

.

For this probability too, we can simplify further formulas by taking a smaller
probability

γk = k

m

1− f(q) + Lq
k
m

σ k
m + 1− k

m

, (6)

where we set Lq to be
Lq = σ − 1− σM00 . (7)

For such birth and death processes, there exists an explicit formula for the
invariant measure of the process. We set π0 = 1 and

∀i ∈ {1, · · · ,m} πi = δ1 · · · δi
γ1 · · · γi

. (8)

In order to derive a criterion for the critical point, Nowak and Schuster
considered the invariant measure, let us first discuss their result.

3.1 The variations of the stationary measure

In [15], Nowak and Schuster looked for a critical parameter in some modified
version of the Moran model. In their framework, time is continuous and they
work with the infinitesimal generator of the transition probabilities, which
correspond to

δk =
(
1− k

m

)(
f(q) + σM00

k

m

)
,
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and
γk = k

m

(
1− f(q) + Lq

k

m

)
.

They were interested in the variations of the stationary measure of the pro-
portion of master sequences. As we saw in formula (8),

πk = πk−1
δk−1
γk

.

In order to know if πk is increasing or decreasing, we need to know which of
the two probabilities δk−1 or γk is bigger. Nowak and Schuster thus studied
the function ζ, with

ζ
( k
m

)
= δk−1 − γk .

The zeroes of function ζ lead to the extrema of the stationary measure. If ζ
is positive, then the measure increases, and it decreases when ζ is negative.
In their continuous time model, the function ζ is a quadratic polynomial in
the variable (1−q)`, which can be explicitly solved, as we show in section 2.3.
It yields two zeroes, one of order 1/mr0, the other of order r0, therefore the
two roots coalesce when mr0

2 is bounded.

We also conducted the analog computations in our discrete time model, they
lead to a third degree polynomial, that we were able to solve following [14].
We found the same asymptotic for the roots of the function ζ, along with a
negative one at point −1/(σ − 1).

3.2 A formula for the persistence time

For this kind of processes, there also exists explicit formulas for the expecta-
tion of the time needed to reach the state 0 starting from 1, which is exactly
the persistence time τ0. The formula is stated in the next Lemma and can
be found in classical textbooks, for example [11].

Lemma 2. The expectation of the persistence time τ0 started from N0 = 1
is given by

E
(
τ0
)

=
m−1∑
i=1

1
δi
πi + πm−1

γm
.

The last term in this expression will be treated as a remainder term.

To estimate the sum, we will start by working on ln(δk/γk), we will then
focus on ln πi that we will estimate by Riemann sums and a clever compar-
ison with an integral. We will finally add up the quantities exp(ln πi)/δi,
and implement Laplace’s method to estimate the persistence time.
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3.3 Computation of ln δk/γk

In order to compute the ratio δk
γk
, let us first factorise the expressions of the

two transition probabilities (5) and (6).

δk =
(
1− k

m

) f(q) + σM11
k
m

σ k
m + 1− k

m

,

and
γk = k

m

1− f(q) + Lq
k
m

σ k
m + 1− k

m

,

Notice that
Lq = σ − 2−

(
σM00 − 1

)
,

since we placed ourselves in a regime whereM00 tends toward 1/σ, we deduce
that

−1 + σ

2 < Lq < σ − 2 .

So that in the case σ 6= 2, Lq goes to σ− 2 and is thus not zero if q is small
enough. In the case σ = 2, we always have Lq < 0. In both cases, Lq 6= 0.

We also define the two affine functions ψ and φ by

ψ(x) = f(q) + σM00x , (9)

and
φ(x) = 1− f(q) + Lqx . (10)

Notice that ψ and φ are strictly positive and not constant.

With these notations, the ratio δk/γk can be rewritten as

δk
γk

=
1− k

m
k
m

ψ
(
k
m

)
φ
(
k
m

) .
Our goal is now to estimate πi. Sums are easier to work with than products,
so we start by looking for an estimate of

ln δk
γk

= ln
(1− k

m
k
m

)
+ lnψ

( k
m

)
− lnφ

( k
m

)
. (11)

Let i be an integer in {1, · · · ,m−1}, summing identity (11) between 1 and i
gives

ln πi =
i∑

k=1
ln δk
γk

=
i∑

k=1
ln
(

1− k
m

k
m

)
+

i∑
k=1

ln ψ
( k
m

)
−

i∑
k=1

ln φ
( k
m

)
.
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The first term can be written in a simpler form:

i∑
k=1

ln
(1− k

m
k
m

)
= ln

( 1
i!

i∏
k=1

(m− k)
)

= ln
(
m

i

)
+ ln

(
1− i

m

)
,

we thus obtain

ln πi = ln
(
m

i

)
+ ln

(
1− i

m

)
+

i∑
k=1

ln ψ
( k
m

)
−

i∑
k=1

ln φ
( k
m

)
. (12)

Our goal is to estimate these quantities in the asymptotic regime (1). We
will use a tricky comparison between a series and an integral to estimate the
binomial coefficient and classical Taylor formulas to develop the sums.

3.4 Estimation of the binomial coefficient

We now focus on the estimation of the binomial coefficient ln
(m
i

)
. Let τ(x)

stand for

τ(x) = −m(1− x) ln(1− x)−mx ln x− 1
2 ln

(
mx(1− x)

)
.

This quantity approximates very well our binomial coefficient.

Lemma 3. For all i ∈ {1, · · · ,m− 1}, we have∣∣∣∣ ln
(
i

m

)
− τ

( i
m

)∣∣∣∣ ≤ 2 .

Proof. he proof relies on a tricky comparison between a series and an integral
derived by Robbins [17]. It yields the following inequalities,

∀n ≥ 1 1
12n+ 1 < lnn!− n lnn+ n− 1

2 ln(2πn) < 1
12n .

We use this inequality three times with i, m and m− i instead of n and we
obtain an approximation for ln

( i
m

)
along with an error bound. The difference

between ln
( i
m

)
and τ(i) can then be bounded by, for every i ∈ {1, · · · ,m−1} ,

1
12m+ 1 −

1
12i −

1
12(m− i)

≤ ln
(
i

m

)
− τ

( i
m

)
+ 1

2 ln(2π) ≤

1
12m −

1
12i+ 1 −

1
12(m− i) + 1 .
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Therefore, we have the uniform bound:

∀i ∈ {1, · · · ,m− 1}
∣∣∣∣ ln

(
i

m

)
− τ

( i
m

)∣∣∣∣ ≤ 1
6 + 1

2 ln(2π) ≤ 2 .

3.5 Expansion of the Riemann sums

Let us now consider both the Riemann sum
∑

lnψ and
∑

lnφ, our first goal
is to write them as integrals. Because of the very small value of ψ(0), we
will need another formula that stays far from 0.

Lemma 4. For every i ∈ {1, · · · ,m}, we have, for the function φ

i∑
k=1

lnφ
( k
m

)
= m

∫ i
m

0
lnφ(s) ds+R ,

with R uniformly bounded by 4σ2.

And for the function ψ,

i∑
k=1

lnψ
( k
m

)
= m

∫ i
m

1/m
lnψ(s) ds+ 1

2

(
lnψ

( i
m

)
+ lnψ

( 1
m

))
+R ,

with R bounded by 1.

The proofs of both these Lemmas consist in the manipulation of Taylor-
Lagrange formulas, delayed in section 7.1, we now apply the general Lemmas
to our peculiar case.

Proof. We apply Lemma 8 to the function lnφ. Let us set

h(x) = lnφ(x) = ln
(
1− f(q) + Lqx

)
.

The second derivative of h is

h′′(x) =
−L2

q(
1− f(q) + Lqx

)2 .

Since |h′′| is either increasing or decreasing according to the sign of Lq, we
have

|h′′(x)| ≤ |h′′(0)|+ |h′′(1)| ≤
L2
q

1− f(q) +
L2
q

1− f(q) + Lq
≤ 4σ2 .
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In the end, Lemma 8 applied to the function lnφ gives
i∑

k=1
lnφ

( k
m

)
= m

∫ i
m

0
lnφ(s) ds+R , (13)

where the quantity R is uniformly bounded by constants.

We will treat in a similar way the function lnψ, which we also call h,

h(x) = lnψ(x) = ln
(
f(q) + σM00x

)
.

However, because of the very small value of ψ(0), the remainder term is
more difficult to control here and a uniform bound will not be enough. The
second derivative of the function h is

h′′(x) =
−
(
σM00

)2(
f(q) + σM00x

)2 .

We will apply Lemma 9 to the function h, for this, we bound the function h′′
on each sub-interval

[
k−1
m , km

]
. Since the function |h′′| is decreasing, then

sup
[ k−1

m
, k

m
]
|h′′| ≤

(
σM00

)2(
f(q) + σM00

k−1
m

)2 .

Taking the first term out of the sum of the remainder, shifting the indices,
and adding the last term we obtain

|R| ≤
(
σM00

)2(
mf(q) + σM00

)2 + 1
m2

m∑
k=2

(
σM00

)2(
f(q) + σM00

k
m

)2 . (14)

We compare this second sum with an integral, the summed function is pos-
itive and decreasing, therefore,

m∑
k=2

(
σM00

)2(
f(q) + σM00

k
m

)2 ≤ m
∫ 1

1
m

(
σM00

)2(
f(q) + σM00s

)2 ds .

A change of variables gives
m∑
k=2

(
σM00

)2(
f(q) + σM00

k
m

)2 ≤ m
∫ f(q)+σM00

f(q)+σM00
1
m

σM00
u2 du .

We calculate the integral and we obtain
m∑
k=2

(
σM00

)2(
f(q) + σM00

k
m

)2 ≤
mσM00

f(q) + σM00
1
m

− mσM00
f(q) + σM00

≤ m2σM00
mf(q) + σM00

,
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where we removed the last negative term. We finally get, according to
Lemma 9,

i∑
k=1

lnψ
( k
m

)
= m

∫ i/m

1/m
lnψ(s) ds+ 1

2

(
lnψ

( i
m

)
+ lnψ

( 1
m

))
+R . (15)

where
|R| ≤ σM00

mf(q) + σM00
≤ 1 .

3.6 Computation of the sums

We now compute the integrals appearing in the Lemma (8), the functions ψ
and φ are in fact affine functions, in order to simplify the formulas, let us
introduce the following notation, for any affine function f , we will write

Λf(x) = f(x)
f ′

ln f(x) .

so that the function ln f is the derivative of Λf(x)−x. Notice that Λφ always
exists because φ′ = Lq is never 0. We have, according to the expressions (9)
and (10) of the functions ψ and φ,∫ x

0
lnφ(s) ds = Λφ(x)− x− Λφ(0) ,

and ∫ x

1/m
lnψ(s) ds = Λψ(x)− x− Λψ

( 1
m

)
+ 1
m
.

Replacing the integral in formula (13) by the previous one gives

i∑
k=1

lnφ
( k
m

)
= mΛφ

( i
m

)
− i−mΛφ(0) +R , (16)

where R is uniformly bounded by a constant. In a similar way, Formula (15)
becomes

i∑
k=1

lnψ
( k
m

)
= mΛψ

( i
m

)
− i−mΛψ

( 1
m

)
+ 1

2 lnψ
( i
m

)
+ 1

2 lnψ
( 1
m

)
+R , (17)

where R is uniformly bounded by constant terms.
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4 First estimation of the persistence time

We can now deal with the expectation of the persistence time, recall that
Lemma 2 gave

E
(
τ0
)

=
m−1∑
i=1

1
δi

exp
(

ln πi
)

+ πm−1
γm

. (18)

Our goal now is to gather the different parts from formulas (12), (16), (17)
and Lemma 3 of this expression into new notations. The gathering is quite
tricky but it is crucial to discriminating the main terms from remainder
terms. First, we gather the constant terms

K = exp
(
mΛφ(0)−mΛψ

( 1
m

)
+ 1

2 lnψ
( 1
m

)
+ mf(q)

Lq

)
. (19)

Then, we gather the main terms, those that will be prominent in the sum,
the following terms will be factors of m.

F (x) = −(1− x) ln(1− x) + x ln
(
σM00

)
−
( 1
Lq

+ x
)

ln
(
1 + Lqx

)
, (20)

the first term comes from the binomial coefficient, the second term from Λψ(x)
and the last was extracted from Λφ(x). Then all the other terms, that we
will be able to bound uniformly

G(x) = m

(
Λψ(x)− x ln

(
σM00

))
−mx ln x− 1

2 ln
(
mx(1− x)

)
− 1

2 lnψ(x)−m
(

Λφ(x)−
( 1
Lq

+ x
)

ln
(
1 + Lqx

)
+ f(q)

Lq

)
, (21)

where the division by δi is counted in the −1
2 lnψ.

With these notations, formula (18) reduces to

E
(
τ0
)

= K
m−1∑
i=1

exp
(
mF

( i
m

)
+G

( i
m

)
+R

)
+ T, (22)

where R is bounded by some constant and T is a remainder term

T = K

γm
exp

(
mF

(
1− 1

m

)
+G

(
1− 1

m

)
+ lnψ

(
1− 1

m

)
− lnm+R

)
.

The function F in the sum (22) is multiplied by m, which tends towards
infinity. If we can bound the function G uniformly over the interval [ 1

m , 1−
1
m ], the indices around the maximum of the function F will govern the
asymptotic behavior of the sum.
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4.1 The remainder term: Function G

The goal of this section is to prove the following Lemma which uniformly
bounds the function G. We will use this upper bound several times in the
sequel.

Lemma 5. In the asymptotic regime (1), with condition (2), we have

sup
[ 1

m
,m−1

m
]
|G(x)| ≤ C

(
1 +mf(q)

)
lnm+ f(q)2

Lq
, (23)

for some constant C.

Of course, in the case σ 6= 2, Lq does not tend to 0 so the last term is smaller
than the first, but in the case σ = 2, where Lq goes to 0, it is not sure yet
which one is bigger.

Proof. Let us study the terms that appear in the expression (21) of the
function G. Let x belong to the interval [ 1

m , 1 −
1
m ]. Replacing ψ with its

expression leads to

m

(
Λψ(x)− x ln

(
σM00

))
−mx ln x =

mf(q)
σM00

ln
(
f(q) + σM00x

)
+mx ln

(
1 + f(q)

σM00x

)
.

Let us then bound these two terms:

• For the first we have, since σM00 > 1 and x > 1/m,∣∣∣∣mf(q)
σM00

ln
(
f(q) + σM00x

)∣∣∣∣ ≤ mf(q) lnm.

• And for the second,∣∣∣∣mx ln
(

1 + f(q)
σM00x

)∣∣∣∣ ≤ mf(q) .

• Since the function x 7→ x(1−x) is always smaller than 1/4, then the third
term of function G can be controlled by∣∣∣∣−1

2 ln
(
mx(1− x)

)∣∣∣∣ ≤ lnm.

• Since the function ψ is increasing and smaller than 1,∣∣∣− 1
2 lnψ(x)

∣∣∣ ≤ ∣∣∣12 lnψ
( 1
m

)∣∣∣ ≤ lnm.
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• Finally,

Λφ(x)−
( 1
Lq

+ x
)

ln
(
1 + Lqx

)
=

− f(q)
Lq

lnφ(x) +
( 1
Lq

+ x
)

ln
(
1− f(q)

1 + Lqx

)
. (24)

For the first of these two terms,

| lnφ| ≤ | lnφ(0)|+ | lnφ(1)| ≤ f(q)
2 +

∣∣∣ ln (1− f(q) + Lq
)∣∣∣ .

In order to bound the second term, we consider two cases,

If Lq is positive, then Lq does not tend towards 0, so we have∣∣∣ ln (1− f(q) + Lq
)∣∣∣ ≤ Lq − f(q) .

If Lq is negative, we use the inequality − ln(1− u) ≤ u/2 which holds if u is
positive, it yields ∣∣∣ ln (1− f(q) + Lq

)∣∣∣ ≤ f(q)− Lq
2 .

In both cases, we have that∣∣∣∣− f(q)
Lq

lnφ(x)
∣∣∣∣ ≤ f(q)2

|Lq|
+ f(q) .

The second term of expression (24), added to f(q)/Lq has negative numer-
ator (

1 + Lqx
)

ln
(
1− f(q)

1 + Lqx

)
+ f(q) ≤ 0 .

The inequality − ln(1− x) ≤ x+ x2 holds if x ≤ 1/2, it yields∣∣∣∣( 1
Lq

+ x
)

ln
(
1− f(q)

1 + Lqx

)
+ f(q)

Lq

∣∣∣∣ ≤ σf(q)2

|Lq|
.

Therefore,∣∣∣∣∣Λφ(x)−
( 1
Lq

+ x
)

ln
(
1 + Lqx

)
+ f(q)

Lq

∣∣∣∣∣ ≤ σf(q)2

|Lq|
+ f(q) .

Putting together the previous upper bounds, we get for every x in the in-
terval [ 1

m , 1−
1
m ],

∣∣G(x)
∣∣ ≤ C(1 +mf(q)

)
lnm+ C

mf(q)2

|Lq|
,

for some constant C.
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4.2 The main term: Function F

We are now looking for the maximum of F on [0, 1].

Lemma 6. The function F reaches a unique maximum at point

r0 = σM00 − 1
σ − 1 .

Besides, the quantity F (r0) is equal to

F (r0) = ϕ
(
M00

)
.

where the function ϕ is defined as

ϕ(x) =
σ(1− x) ln σ(1−x)

σ−1 + ln(σx)
1− σ(1− x) . (25)

Proof. The function F defined in expression (20) admits for first derivative

F ′(x) = ln(1− x) + ln
(
σ(1− q)`

)
− ln

(
1 + Lqx

)
,

and for second derivative

F ′′(x) = − 1
1− x −

Lq
1 + Lqx

.

We have, since 1− x < 1 + Lqx

F ′′(x) = − 1
1− x −

Lq
1 + Lqx

≤ − 1 + Lq
1 + Lqx

. (26)

If Lq > 0, F ′′ increases so F ′′ ≤ F ′′(1) ≤ −1.

If Lq > 0, F ′′ decreases so

F ′′ ≤ F ′′(0) ≤ −(1 + Lq) ≤ −
σ

2 .

In both cases, F ′′ is strictly smaller than −1/2, the function F is therefore
concave, its critical point satisfies the following equation:

ln(1− x) + ln
(
σM00

)
− ln

(
1 + Lqx

)
= 0 . (27)

Therefore, we find r0 as the critical point for the function F .

r0 = σM00 − 1
σ − 1 .
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The quantity 1 + Lqr0 will appear often in the sequel, the equation (27)
provides the following expression for this quantity:

1 + Lqr0 = σM00(1− r0) . (28)

We will replace the term F (i/m) in the sum (22) by its Taylor development
around r0, so we need to compute F (r0).

F (r0) = −(1− r0) ln(1− r0) + r0 ln
(
σM00

)
−
( 1
Lq

+ r0
)

ln (1 + Lqr0) .

Equation (28) gives( 1
Lq

+ r0
)

ln (1 + Lqr0) =
( 1
Lq

+ r0
)

ln
(
σM00(1− r0)

)
.

Splitting the logarithmic term, we obtain

F (r0) = −1 + Lq
Lq

ln(1− r0)− 1
Lq

ln
(
σM00

)
.

Replacing Lq with its expression (7) finally gives

F (r0) =
σ(1−M00) ln σ(1−M00)

σ−1 + ln
(
σM00

)
1− σ

(
1−M00

) .

5 Implementation of Laplace’s method

We now introduce a notation for the sum (22): we set

Sm =
m−1∑
i=1

exp
(
mF

( i
m

)
+G

( i
m

))
. (29)

This section is dedicated to the proof of the following Lemma

Lemma 7. The sum Sm is equivalent to

Sm = emF
(
r0
)
e
O

(
sup[ 1

m , m−1
m ] |G|

)
.

Proof. The main contributions in the sum will arise from terms whose indices
lie around mr0, therefore, we will first estimate the sum truncated on a
certain neighborhood of mr0. We choose

δ = m2/3, (30)
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and we set [i−, i+] to be the interval on which we will sum, where

i− = max
(
bmr0 − δc, 0

)
+ 1 ,

i+ = bmr0 + δc .

Since i− ≥ 1 and r0 < 1/2 asymptotically, since r0 goes to 0, the inter-
val [i−, i+] is strictly included in [1,m− 1]. Our goal is now to estimate the
sum

Sm(δ) =
i+∑
i= i−

exp
(
mF

( i
m

)
+G

( i
m

))
. (31)

Recalling that r0 is the maximum of the function F , the truncated sum is
related to the expression (29) through the inequalities

Sm(δ) ≤ Sm ≤ Sm(δ) +m exp
(
mF (r0) + sup

[ 1
m
,m−1

m
]
|G|
)
.

We thus obtain, according to the inequality (23),

Sm = Sm(δ) + exp
(
mF (r0) +O( sup

[ 1
m
,m−1

m
]
|G|)

)
. (32)

The Taylor-Lagrange formula at order 2 for F allows us to estimate the
expression (31) of Sm(δ):

Sm(δ) =
i+∑
i= i−

exp
(
m

(
F (r0) +

( i
m
− r0

)2F ′′ (ηi)
2

)
+G

(
i

m

))
, (33)

where ηi, i− ≤ i ≤ i+ is a real number between i−/m and i+/m .

We will not need the precise value of F ′′(r0), we will only need to know
that F ′′ is strictly smaller than a−1/2, as we shown with the expression (26).
The function G will once more be uniformly bounded with Lemma 23. With
this development, estimating the sum Sm(δ) reduces to estimating Tm(δ),
where

Tm(δ) =
i+∑
i=i−

exp
(
m
( i
m
− r0

)2F ′′ (ηi)
2

)
. (34)

From the expression (33), we have

Sm(δ) = exp
(
mF (r0)

)
Tm(δ) exp

(
O( sup

[ 1
m
,m−1

m
]
|G|)

)
, (35)

We will only need a rough approximation on Tm(δ). Since F ′′(r0) is negative,
we first notice that

Tm(δ) ≤ m.
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In order to bound from below Tm(δ), we need a lower bound on F ′′(ηi),
actually, we consider two cases.

If Lq is positive, then

F ′′(ηi) ≥ F ′′(0) ≥ −2σ .

If Lq is negative, then

F ′′(ηi) ≥ F ′′
( i+
m

)
≥ F ′′

(1
2
)
≥ −6 .

In both cases, F ′′(ηi) is greater than −2(σ + 3). We can also bound the
sum Tm(δ) from below by one of its terms: for example, the term of index 1+
bmr0c

Tm(δ) ≥ exp
(
− (σ + 3)m

(1 + bmr0c
m

− r0
)2)

.

However, we have that

mr0 − 1 ≤ bmr0c ≤ mr0 ,

so
Tm(δ) ≥ exp

(σ + 3
m

)
,

and this bound goes to 1.

Therefore, we have for m large enough

1
2 ≤ Tm(δ) ≤ m.

With the formula (35), we rewrite the sum (31) as

Sm(δ) = exp
(
mF (r0)

)
R5 e

O(sup[ 1
m , m−1

m ] |G|) , (36)

where
1
2 ≤ R5 ≤ m.

With the estimation (32), we finally obtain

Sm = emF
(
r0
)
e
O

(
sup[ 1

m , m−1
m ] |G|

)
,

and we are done.
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6 Back to the persistence time

The expectation of the persistence time is

E
(
τ0
)

= KSm e
R + T , (37)

where, R is bounded by some constant and T is

T =
Kψ

(
1− 1

m

)
γm

exp
(
mF

(
1− 1

m

)
+G

(
1− 1

m

)
− lnm+R

)
.

Since γm tends towards a finite constant and so does ψ(1− 1
m), the remain-

der T is at most of the same order as the main term.

We have then

E
(
τ0
)

= K exp
(
mF (r0) +O

(
sup

[ 1
m
,m−1

m
]
|G|
))

. (38)

We now develop this expression, remember that expression (19) ofK yielded

K = exp
((mf(q)

σM00
+ 1

2
)(

lnm− ln
(
σM11 +mf(q)

))

+m
1− f(q)
Lq

ln (1− f(q)) + mf(q)
Lq

)
.

Some terms in K are of order smaller than (1 + mf(q)) lnm, we include
them in the remainder term, and we get according to definition (25),

E
(
τ0
)

= exp
(
mϕ

(
M00

)
+O

((
1 +mf(q)

)
lnm+ mf(q)2

Lq

))
.

with

ϕ(x) =
σ
(
1− x) ln σ(1−x)

σ−1 + ln(σx)
1− σ(1− x) .

Let us now estimate the asymptotic of function ϕ when the argument tends
towards 1/σ.

Its asymptotic will be given by the first non-zero derivative of ϕ at point 1/σ.
In order to expand ϕ around 1/σ, we write

ϕ(x) = ϕ

((
x− 1

σ

)
+ 1
σ

)
,
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and we use the expression (25) of ϕ to get

ϕ(x) =

(
σ − (σx− 1)− 1

)
ln σ−(σx−1)−1

σ−1 + ln
(
(σx− 1) + 1

)
1− σ(1− x) .

We develop the expression in powers of σx− 1 and we get

ϕ(x) =
−(σx− 1) +

(
σ − 1− 1

2(σ − 1)
)(

σx−1
σ−1

)2
+O

(
(σx− 1)3

)
1− σ(1− x)

+
σx− 1− 1

2(σx− 1)2 +O
(
(σx− 1)3

)
1− σ(1− x) .

This shows that the function ϕ and its derivative vanish at 1/σ and

ϕ′′
( 1
σ

)
= 2σ2σ − 1− 1

2(σ − 1)− 1
2(σ − 1)2

(σ − 1)2(1− σ + 1) = σ2 (σ − 1)(2− σ)
(σ − 1)2(2− σ) = σ2

σ − 1 .

Therefore, we have

mϕ
(
(1− q)`

)
= m

(
(1− q)` − 1/σ

)2 σ2

2(σ − 1) +O
(
m
(
σ(1− q)` − 1

)3)
.

Writing this expression with the help of the variable r0 and replacing the
first term with the estimates above, we obtain

mϕ
(
(1− q)`

)
= mr0

2σ − 1
2 +O(mr0

3) .

7 Appendixes

7.1 Riemann Lemmas

Lemma 8. For any function f of class C2 on [0, 1] and for every i ∈
{1, · · · ,m}, we have

i∑
k=1

f
( k
m

)
= m

∫ i
m

0
f(s) ds+ 1

2

(
f
( i
m

)
− f(0)

)
+R ,

with R bounded by
R ≤ 1

m
sup
[0,1]
|f ′′| .

Because of the very small value of ψ(0), we will need another formula that
stays far from 0.
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Lemma 9. For any function f of class C2 on [0, 1] and for every i ∈
{1, · · · ,m}, we have

i∑
k=1

f
( k
m

)
= m

∫ i
m

1/m
f(s) ds+ 1

2

(
f
( i
m

)
+ f

( 1
m

))
+R ,

with R bounded by

R ≤ 1
m2

m∑
k=2

sup
[ k−1

m
, k

m
]
|f ′′| .

For any function f of class C2 on [0, 1] and for k ∈ {1, · · · ,m}, the Taylor-
Lagrange formula applied to f between the points s ∈ [k−1

m , km ] and k
m gives

∃ηks ∈
]
s,
k

m

[
f(s) = f

( k
m

)
+
(
s− k

m

)
f ′
( k
m

)
+
(
s− k

m

)2 f ′′(ηks )
2 .

Integrating this equality between the points k−1
m and k

m gives

∫ k
m

k−1
m

f(s) ds = 1
m
f
( k
m

)
− 1

2m2 f
′
( k
m

)
+
∫ k

m

k−1
m

(
s− k

m

)2 f ′′(ηks )
2 ds . (39)

The last term will be negligible, we call it R2:

R2(k) =
∫ k

m

k−1
m

(
s− k

m

)2 f ′′(ηks )
2 ds . (40)

We sum the expression (39) for k varying from 1 to i and we get
∫ i

m

0
f(s) ds = 1

m

i∑
k=1

f
( k
m

)
− 1

2m2

i∑
k=1

f ′
( k
m

)
+

i∑
k=1

R2(k) . (41)

Similarly, we apply the Taylor-Lagrange formula at order 1 to f ′, we inte-
grate and we sum to obtain∫ i

m

0
f ′(s) ds = 1

m

i∑
k=1

f ′
( k
m

)
+

i∑
k=1

∫ k
m

k−1
m

(
s− k

m

)
f ′′(ζks ) ds , (42)

for some ζks between s and k
m . We set

R1(k) =
∫ k

m

k−1
m

(
s− k

m

)
f ′′(ζks ) ds .

We combine the two formulas (41) and (42) and we obtain

i∑
k=1

f
( k
m

)
= m

∫ i
m

0
f(s) ds+ 1

2

∫ i
m

0
f ′(s) ds− 1

2

i∑
k=1

R1(k)−m
i∑

k=1
R2(k) .
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To control the remainder terms, we uniformly bound the second derivative
of the function f : ∣∣∣R1(k)

∣∣∣ ≤ 1
2m2 sup

[ k−1
m

, k
m

]
|f ′′| ,

and for R2(k) from expression (40),∣∣∣R1(k)
∣∣∣ ≤ 1

6m3 sup
[ k−1

m
, k

m
]
|f ′′| .

Finally, the total remainder term is bounded by∣∣∣∣ i∑
k=1

R1(k) +m
i∑
k=

R2(k)
∣∣∣∣ ≤ 1

m2

m∑
k=1

sup
[ k−1

m
, k

m
]
|f ′′| .

Since f is a primitive of f ′, we get the Lemma 9. For any function f of
class C2 on [0, 1] and for every i ∈ {1, · · · ,m}, we have

i∑
k=1

f
( k
m

)
= m

∫ i
m

0
f(s) ds+ 1

2

(
f
( i
m

)
− f(0)

)
+R ,

with R bounded by
R ≤ 1

m
sup

[ k−1
m

, k
m

]
|f ′′| .

If we choose to bound uniformly the function |f ′′|, we get the Lemma 4

7.2 Solving the cubic

Let us study the function ζ where

ζ
( k
m

)
= δk−1 − γk .

For the probabilities of our model, the denominators add some complica-
tions. Under the same denominators that we didn’t write, we have

ζ(x) =
(
(σ − 1)x+ 1

)(
1− x+ 1

m

)(
f(q) + σM00(x− 1

m
)
)

−
(
(σ − 1)(x− 1

m
) + 1

)
x
(
1− f(q) + Lqx

)
.

We factorise what we can and find that

ζ(x) =
(
(σ − 1)x+ 1

)(
− (σ − 1)x2 +

(
− 1 + σM00

(
1 + 2

m

))
x

+
(
1 + 1

m

)(
f(q)− σM00

m

))
+ σ − 1

m
x
(
1− f(q) + Lqx

)
.
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After developing, we finally obtain

ζ(x) = −(σ − 1)2x3 + (σ − 1)
(
− 1 + (σ − 1)r0 + σ

m
+R2

)
x2

+
(
(σ − 1)r0 + 2

m
+ (σ − 1)f(q) +R1

)
x+ f(q)− 1

m
+R0 ,

where
R2 = (σ − 1)r0

m
,

R1 = r0
m
− r0 + 1

m2 ,

and
R0 = −r0

m
+ 1
m

(
f(q)− σM00

m

)
.

Now that we have the equation, we follow the strategy and notations of [14].
First, we compute the center of symmetry N of the polynomial. If P =
ax3 + bx2 + cx+ d, the general expression is xN = −b/3a, here we have

xN = 1
3
(
− 1
σ − 1 + r0 + σ

m(σ − 1)
)

+ o
(
r0 + 1

m

)
. (43)

We will need the image of that point yN = P (xN )

yN = P (xN ) = 2
33
b3

a2 −
bc

3a + d .

Let us compute each terms independently

2
33
b3

a2 = 2
33(σ − 1)

(
− 1 + 3(σ − 1)r0 + 3σ

m
− 3(σ − 1)2r2

0 + o
(
r2

0 + 1
m

))
,

and
bc

3a = r0
3 −

σ − 1
3 r2

0 + 2
3m(σ − 1) + f(q)

3 + o(r2
0 + 1

m
+ q) .

After factorising, we obtain

yN = − 2
33(σ − 1)

(
1 + 3(σ − 1)

2 r0 + 37σ − 3
2

1
m
− 32(σ − 1)f(q)

− 3(σ − 1)2

2 r0
2 + o

(
r2

0 + 1
m

+ q
))
.

Another interesting quantity we will need is δ, with

δ2 = b2 − 3ac
9a2 .

Let us take both terms separately, we have

b2

9a2 = x2
N = 1

9
( 1

(σ − 1)2 − 2 r0
σ − 1 −

2σ
m(σ − 1)2 + r2

0

)
,
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and
−3ac

9a2 = − c

3a = 1
3(σ − 1)

(
r0 + 2

m(σ − 1) + f(q)
)
.

Therefore,

δ2 = 1
32(σ − 1)2

(
1 + (σ − 1)r0 + −2σ + 6

m

+ 3(σ − 1)f(q) + (σ − 1)2r2
0 + o

(
r2

0 + 1
m

+ q
))
.

Thus, δ expands as

δ = 1
3(σ − 1)

(
1 + σ − 1

2 r0 + −σ + 3
m

+ 3(σ − 1)
2 f(q) + 3(σ − 1)2

8 r2
0 + o

(
r2

0 + 1
m

+ q
))
.

We will also need h = 2aδ3, we deduce h

h = − 2
33(σ − 1)

(
1 + 3

2(σ − 1)r0 + −3σ + 9
m

+ 9(σ − 1)
2 f(q) + 15(σ − 1)2

8 r2
0 + o

(
r2

0 + 1
m

+ q
))
.

If yN > h, the equation admits 3 real roots. From these quantities, we
define θ with the equation cos(3θ) = −yN

h ,

cos(3θ) = −1− yN − h
h

.

where
yN − h = − 1

m
+ f(q) + (σ − 1)

4 r2
0 + o

(
r2

0 + 1
m

+ q
)
,

this difference already tells us how many roots the polynomial have. Ifmr2
0 >

1, then yN−h is positive which implies y2
N < h2, so there are 3 distinct roots.

In the other case, there is only one only one root. Let us place ourselves in
the former case and compute the roots. We have that,

cos(3θ) = −1 + 33(σ − 1)
2

(
− 1
m

+ f(q) + (σ − 1)
4 r2

0 + o
(
r2

0 + 1
m

+ q
))
.

Since cos(3θ) is close to −1, the parameter θ must be close to π, let us
set θ = π

3 + u which leads to

cos(3θ) = −1 + 32u2

2 ,

it means that
u =

√
3(σ − 1)

2 r0 −
√

3
mr0

+
√

3f(q)
r0

.
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We now have everything we need to express the solutions, the first is α =
xN + 2δ cos θ. First, let us develop

cos θ = 1
2 −
√

3
2 u .

The product 2δ cos θ is equivalent to

2δ cos θ = δ
(
1−
√

3u+O(u2)
)

= 1
3(σ − 1) −

r0
3 + 1−mf(q)

(σ − 1)mr0
.

Therefore
α = 1−mf(q)

(σ − 1)mr0
.

The second is β = xN + 2δ cos(θ + 2π
3 ), the development for the cosine is

then
cos

(
θ + 2π

3
)

= 1
2 +
√

3
2 u .

In that case, the product 2δ cos(θ + 4π
3 ) is equivalent to

2δ cos θ = δ
(
1 +
√

3u+O(u2)
)

= 1
3(σ − 1) + 2r0

3 −
1−mf(q)
(σ − 1)mr0

,

thus
β = r0 −

1−mf(q)
(σ − 1)mr0

.

The third root is γ = xN + 2δ cos(θ + 2π
3 ), for which we have

cos
(
θ + 2π

3
)

= −1 + u2

2 ,

hence
γ = − 1

σ − 1 .
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