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pact of the Portevin-Le Chatelier (PLC) effect on plasticity and fracture ahead of a severe notch i

IC field measurements for C-Mn steel. The PLC effect causes an intermittent activity of highly

bands. This first high temperature investigation of the effect of a notch on the PLC localization

y reproduced numerically in terms of strain localization in 3D FE simulations. This thereby valida

he McCormick-type model under these complex conditions. It is found that, when the PLC effect

temperature (175 ◦C), a flat to slant crack transition is observed. In contrast, at room temperatu

s bands are active, the crack remains mostly flat, i.e. normal to the loading direction of the SENT

viour may be related to the early loss of symmetry and intermittency of the plastic zone that is f

affecting the initial Lüders bands at elevated temperature. During the slant fracture at high tem

he fracture energy is absorbed compared to flat fracture at room temperature. The McCormick-ty

s predict slant strain rate bands through the sample thickness, that are consistent with the slant

levated temperature. Accordingly, no slant bands are found for simulations outside the PLC doma

ts and simulations show PLC strain localization bands that are flip-flopping up and down duri

n. By combining the McCormick-type model with a Rousselier porous plasticity model, the flat fr

at room temperature and the associated macroscopic curve are reproduced successfully, but the t

temperature is overestimated.

C-Mn steel, Single edge notch tension, High temperature DIC, Portevin-Le Chatelier effect, Str

n, Slant fracture
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uction

rtevin-Le Chatelier (PLC) effect has been widely observed in various industrial alloys over a certa

atures and strain rates. It is usually revealed by the stress serrations (or ‘jerky flow’) and a

e localization bands of plastic strain rate at the macroscopic scale. The localized bands leave t

of material sheets during material forming (Grabner et al., 2019). A precise characterization of

omain would be useful for eliminating these manufacturing defects. In addition, the degradation o

l properties has been considered to be related to strain ageing and the PLC effects, such as loss of t

ity (Chakravartty et al., 1983; Amar and Pineau, 1985; Gomiero et al., 1992; Kim et al., 2004; Wa

e PLC effect is due to dynamic strain ageing (DSA) which is attributed, at the microscopic scal

pinning of mobile dislocations by the diffusion of solute atoms (Cottrell and Bilby, 1949), thou

s, such as pseudo PLC mechanism (Brechet and Estrin, 1996) and precipitate shearing (Chmel

y also be responsible. Different diffusion mechanisms have been proposed for different material

to Cottrell and Bilby (1949), both interstitial and substitutional atoms can diffuse in the volu

to form a cloud of atoms (Cottrell atmosphere) around the dislocations. The strain ageing resu

s being dragged along by the continuous movement of dislocations. van den Beukel (1975) later re

atoms do not have sufficient mobility to follow moving dislocations. The motion of mobile disloc

ttent process, and the solute atoms diffuse to mobile dislocations temporarily arrested by obstacle

Jo
ur

na
l P

re
-p

ro
of
2



forest dislocations. In addition to the basic bulk diffusion mechanism, Mulford and Kocks (1979) suggested that a

simultaneo ms from

the forest l. (2006)

introduced e. These45

findings su ls, 2020).

The physi toms. In

contrast, i sion may

not be the nisms in

different m50

Strain b et al.,

1987; Clau ; Böhlke
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usly running pipe diffusion should be considered which denotes the enhanced line diffusion of ato

dislocations to the mobile dislocations during the waiting time of mobile dislocations. Curtin et a

the “cross-core” theory which indicates an earlier local rapid diffusion inside the dislocation cor

ggest that the exponent of the solute concentration function needs to be revised (Epperly and Sil

cal justifications for the cross-core theory were based on the Al-Mg system with substitutional a

nterstitial atoms can diffuse more freely in the bulk. The vacancy or dislocation line assisted diffu

dominating mechanism in an interstitial system. Detailed justifications of the diffusion mecha

aterial systems may help to build more sophisticated and accurate models.

ageing phenomena are ubiquitous in engineering alloys. For aluminium alloys like Al-Mg (Chiha

sen et al., 2004; Ait-Amokhtar et al., 2006; Halim et al., 2007) and Al-Cu (Ranc and Wagner, 2005

9), the PLC effect usually occurs at room temperature. For ferritic C-Mn steels (Wang et al., 20

6), it is observed at around 200 ◦C. It has also been reported in Nickel based superalloys aroun

d Chaturvedi, 1991; Rao et al., 1995; Fournier et al., 2001; Cai et al., 2017), and around 600 ◦C fo

ralloys (Chaboche et al., 2013; Mazière and Pujol d’Andrebo, 2015) as well as in Titanium alloy

asad and Varma, 2008; Marchenko et al., 2016).

the wide application of imaging techniques, such as digital image correlation (DIC) and digit

phy (DIT), the identification of the PLC effect was usually based on the serrations observed on th

es of uni-axial tensile tests. However, this method can cause ambiguities as it is sometimes hard to

serrations from the measurement noise. Localization bands can occur with nearly invisible serrati

). It is particularly important for the calibration of models to predict the critical strain of the onse

zière and Dierke, 2012). Non-contact field measurement methods reveal more details about the P

accuracy (Besnard et al., 2006). In the literature, Al-Mg alloys are the most popular alloys for t

effect because they exhibit intensive serrations at room temperature. The occurrence of the PLC

erature makes the experimental set-up less demanding. The band properties like width, propagatio

ain/strain rate and their spatio-temporal evolution during smooth tensile testing have been investiga

ny works (Tong et al., 2005; Ait-Amokhtar et al., 2006; Halim et al., 2007; Zdunek et al., 2008; C

; Zavattieri et al., 2009; de Codes et al., 2011; Cheng et al., 2015; Klusemann et al., 2015; Cai et

et al., 2017). PLC bands have also been characterised by DIC in Al-Cu alloys via tensile tests

re (Jiang et al., 2005; Zhang et al., 2005). DIC measurements of PLC effects in tension at high tem

been performed recently for Nickel based alloys by Swaminathan et al. (2015); Cai et al. (2017).

. (2016) observed the PLC effect in C-Mn steel tensile specimen at 200 ◦C with DIT.

eal structures possess complex geometrical features such as holes and edges for design purposes

in defects and flaws such as fatigue cracks. In the presence of a notch, the highly inhomogeneo

akes these sites more sensitive to the PLC effect. Even in uni-axial tensile tests, the localizati

found to nucleate at the edge of the curved transition zone to the grip section due to strain

n et al., 2015). In the literature on PLC measurements, less attention has been paid to other ge

th tensile ones (Graff et al., 2004). Coër et al. (2013) studied the Lüders and PLC bands during sim
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nder biaxial conditions compared to uniaxial conditions (Min et al., 2015). Concerning the compac

imens, only the Lüders bands have been observed by Belotteau et al. (2009); Wang et al. (2012);

-Tuckey (2010) at room temperature. However, many standard fracture toughness tests require

such as CT, SENT and SENB (single edge notched bending). A measurement of the band form

s other than smooth tensile ones could be useful for validating numerical results as the interaction

ffect and ductile tearing is unknown at present. As reported by Hickey and Ravi-Chandar (20

lastic strain localized zones that precede fracture were observed and resulted in different fractu

lloy with two different heat treatments. Recent observations by in-situ synchrotron X-ray lamin

ted slant intermittent localization bands at early loading stages ahead of the notch of 2xxx alloy

(Morgeneyer et al., 2014, 2016; Buljac et al., 2016, 2018). The damage events were found at

ading following the traces of localization bands. The bands measured by DIC may provide new in

ing fracture events. To the best of our knowledge, the present work is the first contribution that s

ization behaviour at notch tip measured at high temperature with DIC.

on the DSA theory, theoretical constitutive laws have been developed in order to model the PLC

ological model that uses the negative strain rate sensitivity (nSRS) to explain the serrations was

g (1972) and Kubin and Estrin (1985) which is able to reproduce the main features of PLC effec

and localization (Benallal et al., 2006). Another macroscopic model (McCormick, 1988; Mesarov

l., 2001) is based on a time varying state variable namely the ageing time ta which controls the m

ion of solute atoms at dislocations. This model originates from the physical DSA mechanisms at

ions and has been validated by field measurement techniques (Benallal et al., 2008; Klusemann et a

version has been implemented in the finite element code Zset (Graff et al., 2004, 2005, 2008; Mazi`

et al., 2017). In the present work, the McCormick approach will be used in the simulations bas

lity to describe localization bands in an accurate and efficient manner.

of the current work is to investigate the kinematic and mechanical characteristics of PLC bands

k initiation and during crack propagation in order to better understand the effect of PLC on fract

terial has been tested at room temperature and low temperature (from -150 ◦C to 0 ◦C) by Mar

agner et al. (2006) and Huang et al. (2015) reported that the minimum nSRS and elongation were

0 ◦C for A42 steel. The temperature for characterizing the PLC effect is chosen to be 175 ◦C which

ain.

per is organised as follows. The results of mechanical tests and DIC measurements at room tem

are presented in section 2. A comparison of the spatio-temporal behaviour of localization bands

ratures is drawn. In section 3, the formulation of the McCormick type model including the iden

is given. 3D finite element simulations are conducted in an attempt to reproduce the experiment

section 4, a discussion will be given on the experimental and numerical results especially on the

ure modes observed at two temperatures.Jo
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steel and specimen geometry

vestigated C-Mn steel (A42) is used for the secondary loop of pressurized water reactors (PWR)

2). The tubes made of this material are subjected to internal pressure ranging from 70 to 80

res from 0 ◦C up to 280 ◦C. The chemical composition of A42 steel can be found in Table 1.

Table 1: Chemical composition (wt%) of the A42 steel used for the current study.

N Al Si P S V Cr Mn Ni Cu Nb Mo Sn

15 0.004 0.019 0.19 0.034 0.021 < 0.002 0.034 0.73 0.05 0.041 < 0.002 0.006 0.003

erstitial atoms such as carbon and nitrogen interact with mobile dislocations which play an impor

in ageing mechanism. Carbon is involved during the manufacturing process. The content of alumi

low to avoid the formation of aluminium nitrides (AlN), so that freely diffusing nitrogen remai

lattice which also makes this steel sensitive to dynamic strain ageing.

NT specimens were prepared with a wire electrical discharge machine. The specimens contain round

m radius. The geometry is illustrated in Fig. 1a. This sample geometry is chosen to assess the infl

ffect on ductile tearing in a case where the entire ligament undergoes plastic deformation at the b

. These specimens were cut from a seamless pipe obtained by a circular rolling process with the lon

long the transverse direction (T). The microstructure is composed of ferrite and pearlite. The ferr

in the LS and TS plane with a size around 22-31 µm (Marais et al., 2012).

(a)

Specimen

Camera 1

Camera 2

Window

Fan 
Heater 

Lighting source

Thermal couple

Environmental chamber

175°C

Load

Load

(b)

) Geometry of the SENT specimen used in the present work (mm). The section clamped inside the grip is 30 m

ashed lines. (b) DIC setup for high temperature test. The labels A, B, C and D are explained in Table 2.Jo
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2.2. Mechanical tests for SENT specimens
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echanical behaviour of this material, especially the Lüders effect, has been investigated by Mar

er simple tension from -150 ◦C to 20 ◦C. The Lüders effect were observed over the whole tem

heir tensile stress-strain curves. A similar C-Mn steel (TU48C) has been investigated by Belottea

et al. (2012) in the temperature range between 20 ◦C and 350 ◦C. The TU48C has been found to

o the PLC effect between 150 ◦C and 300 ◦C. The current A42 steel is similar to TU48C, but it has

content. For this amount of aluminium, more nitrogen atoms are trapped as aluminium nitrid

alloy probably less sensitive to DSA. Huang et al. (2015) showed a minimum SRS at around 200 ◦

their A42 steel contains higher Al than the received material tested which is supposed to be more s

e reason for choosing 175 ◦C to explore the possible PLC effect. The present study consists in co

nical behaviour, especially the localization bands around the notch area of these SENT specime

tive domain and in the non-sensitive domain. Tests were carried out using a 100 kN MTS machi

nt control. In order to perform high temperature tests and monitor the localization evolution, th

as combined with an environmental chamber and a DIC system (see Fig. 1b). A thermocouple wa

the surface of the tested specimens for temperature control. Images were acquired through the

he four test conditions are summarised in Table 2. In this table, the existence of PLC effect and

ciated with each specimen is also mentioned.

riation of the normalised force, defined by F/S0 (F: force; S0: initial notch plane section) as a fu

ead displacement is plotted in Fig. 2. Fig. 2a gives a comparison of the force-displacement curves

temperature with the same loading rate 0.01 mm/s. Serrations can be observed on the 175 ◦C cur

LC sensitive domain. It can also be noticed that the ductility of the material is reduced by 40 %

to its room temperature value. Similar phenomena were observed for the tests with a loading rate

addition, the stress levels at these two loading rates are similar. The blue point marks the moment

observed at the surface.

Table 2: Summary of experimental conditions and main experimental observations.

Loading rate (mm/s) T (◦C) PLC (Yes/No) Fracture mode

Specimen A 0.01 20 No Flat

Specimen B 0.01 175 Yes Slant

Specimen C 0.002 20 No Flat

Specimen D 0.002 175 Yes Slant

sted SENT specimen has a larger front surface-thickness ratio compared to a standard specimen

ese specimens are designed for observing the PLC effect with DIC measurements during crack prop

ct modes of crack can be observed in ductile plates: flat mode and flat-to-slant mode (Xue and W

t to slant crack transition can typically be observed in ductile thin sheet materials. The crack

larly to the loading direction from the notch and then turns to 45 ◦ with respect to the loading
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Figure 2: Th omparison

of the two t .
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ad-displacement curve and fracture energy Ut divided into the crack initiation energy Ui and the crack propagat

ck propagation. We distinguish the crack initiation energy Ui from the crack propagation ener

ig. 3. The total fracture energy is therefore Ut = Ui+Up (see also Dalloz (2007); Buirette et al.

four tests were performed with the same specimen geometry, the fracture energy could be cons

or for comparing the toughness. Fig. 3 shows the fracture energy for specimens tested under

. The fracture energy at room temperature is much higher than that at 175 ◦C with a factor rang

In contrast, the energy partition is similar at both temperatures.

temperature DIC setup

DIC measurement, a stereo-DIC system using two Manta G-419B cameras (2048×2048 pixels ea

Xenoplan 2.8/50 M30.5 lenses was synchronised with the tensile machine. LED light sources we

middle line between the two cameras. The most important issue for a successful high temperat

ent is to obtain a contrast pattern resistant to temperature change. A coating of high temperature

◦C) black paint was sprayed onto the specimen which forms a uniform background colour layer

A random white speckle pattern was then sprayed onto the black surface. For the specimens tested

re, ordinary white paint was used as the background colour layer. Black speckle was then sprayed

ce. The accuracy of DIC measurement of strain fields can be reduced by convection air flow that c

in the refractive index at elevated temperatures. The measurement noise of strain along the loa

amined before testing by analysing images taken from undeformed specimens that is similar to M

he standard deviation of measurement noise (εyy) was 0.000294 at 175 ◦C compared to 0.000089

re. To obtain a reliable measurement, the incremental strain carried inside a localization band s

n the measurement noise. A sufficient time interval was chosen between the reference and the d

Section 2.4). As shown in Figure 4-7, the maximum strain scale is fixed at 0.003 which is 10 tim

easurement noise. The real strain increment used for calculating the strain rate inside a localizat

igher than the measured noise. As shown in Fig. 9(a), when ε̇yy reaches 0.0012 s−1 for specime

ement is 0.024 (the time interval between the reference and the current image is 20 s) which is 2
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larger than the measurement noise. Similarly, as shown in Fig. 9(b) for specimen B, when ε̇yy reaches 0.0020 s−1 the

strain incr185

Calibra pixel for

these four acing) is

8 pixels. T re details

about the fps (one

image ever g rate of190

0.002 mm/ orrelated

Solutions) rrelation.

The strain the grid

of data po ontrolled

by the “st ximation195

(polynomi term εyy

used in the s parallel

to the T d

2.4. Local

PLC b d Estrin,200

1984). Th rom the

DIC measu he strain

rate locali ges with

a constant e smaller

the time in ise could205

be a probl

The tim To make

a direct co ing to 22

different s fixed at

0.003 whic sponding210

incrementa

For the two force

drops at N on bands

reaching th indicated

in No.5. T perature215

(Marais et

For the gated to

the grip a d to two

propagatin d around

the notch was very220

Journal Pre-proof
ement is 0.04 which is 136 times larger than the measured noise.

tion was made at room temperature. Using the calibration target, the spatial resolution is 77.6 µm/

tests. A subset size of 25×25 pixels is used for correlation. The calculation step size (grid point sp

hese settings are within the optimal range of configurations in VIC-3D (Correlated Solutions). Mo

DIC technique can be found in (Sutton, 2008). The image acquisition rate during loading was 2.5

y 0.4 seconds) for the two tests with loading rates of 0.01 mm/s and 1.0 fps for those with a loadin

s. The heterogeneous strain on the surface of the tested specimens was calculated using VIC-3D (C

. The Green–Lagrange strain measurement was computed from the displacement field found by co

calculation in VIC-3D is similar to the FEM algorithm. The input for the strain calculation is

ints. A local mesh of planar triangles is created by connecting these points. The element size is c

ep size” in the software. The displacement inside a triangular element is obtained by linear appro

al fit). The obtained displacement gradient is used for computing the Green–Lagrange strain. The

following is the second component of the Green-Lagrange strain tensor. The loading direction y i

irection in Fig. 1.

ization band morphology

ands form as a consequence of the strain rate softening phenomenon (Graff et al., 2008; Kubin an

ese bands can be observed by plotting the plastic strain rate variable ṗ in the FEM simulations. F

rement, the total strain is estimated by comparison of the reference and current images. To show t

zation bands, an incremental correlation strategy was performed by correlating two successive ima

time interval ∆t. The strain rate ε̇ can approximately be calculated as ∆ε/∆t. Theoretically, th

terval, the closer the strain rate will be to the instantaneous value. However, the measurement no

em with small time intervals as the signal-to-noise ratio would be degraded.

e increment was chosen to be ∆t =4 s for the two tests with a loading rate of v = 0.01 mm/s.

mparison between the tests at 20 ◦C and 175 ◦C, the incremental strain fields (∆εyy) correspond

tages for each case are displayed in Fig. 4 and 5 respectively. The maximum scale of ∆εyy is

h indicates a strain rate ε̇yy = 0.003/4 s−1 = 0.00075 s−1. With the marked numbers, the corre

l strain pattern could be associated with the force-time curve.

test at 20 ◦C (Fig. 4), the propagation bands were only observed before stage No.11. There are

o.6 and 9 on the force-time curve. These two force drops are related to the propagating localizati

e grips. In addition, the angle of the propagating bands to the loading direction is around 54◦ as

hese propagating localization bands are interpreted as Lüders bands, as expected at room tem

al., 2012).

test at 175 ◦C (Fig. 5), the localization bands also initiated around the notch area then propa

rea (see Fig. 5). The two force plateaux (stage No.6 and 8) on the force-time curve correspon

g localization bands. After stage No.8 at 175 ◦C, the localization events were mostly concentrate

flipping up and down. No more propagation bands were observed. In contrast, the plastic zone
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stable at 20 ◦C after stage No.11. No significant flipping behaviour could be seen. In addition, the visible cracks at

the surface

Anothe ment for

correlation a strain

rate ε̇ = 0 1 mm/s.225

The increm

For the ds to the

end of a fo (see Fig.

4), there i arriving

simultaneo No.11.230

At 175 our than

in the test . Similar

flipping be

2.5. Spatio

To bet terns are235

used for d (Chmeĺık

et al., 200 specimen

in order to Fig. 8a).
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one side tr area, the
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rate inside he strain

rate inside he strain255

rate inside he strain

rate level aximum
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were observed around stage No.14 at 20 ◦C and around stage No.12 at 175 ◦C.

r comparative group contains two tests each with a loading rate v=0.002 mm/s. The time incre

is ∆t = 20 s for these two tests. The maximum scale is also chosen to be 0.003 which indicates

.003/20 = 0.000 15 s−1 that is 5 times smaller than the previous tests at a loading rate of v = 0.0

ental strain patterns corresponding to different stages are shown in Fig. 6 and 7.

test at 20 ◦C (Fig. 6), the propagative bands were annihilated after stage No.9 which correspon

rce drop on the force-time curve. Comparing with the homologous test with a higher loading rate

s only one significant force drop on the curve. This is certainly due to the two propagating bands

usly at the grip. Similarly, the plastic zone is very stable during the crack propagation after stage

◦C (Fig. 7), even the main propagating bands (from No.8 to No.10) showed more flipping behavi

at v=0.01 mm/s. These two bands seem to compete with each other by alternating up and down

haviour of localization bands can also be noticed during crack propagation.

-temporal kinematics of localization bands

ter illustrate the evolution of localization bands (Lüders and PLC), so-called spatio-temporal pat

escribing the location of bands at different stages of experiments as practised by many authors

2; Benallal et al., 2008; Mazière et al., 2010). A line (Ymid) was positioned in the centre of the

measure the incremental strain evolution along this line over the whole deformation process (see

-temporal patterns of these 4 tests are shown in Fig. 8 together with the corresponding force-tim

contour is a measure of the strain rate ε̇yy = ∆εyy/∆t. It can be seen that the bands propagated

ly different velocities. At the beginning, the Lüders bands initiated at the notch tip (see Fig. 4b 1-

ue to the higher concentration of deformation around the notch, the bands propagate to the two g

apped by the notch area which reduced the propagation velocity. Once escaped from the notch

erates. Thus, it is possible to observe two different slopes for the bands in the spatio-temporal patte

the free propagating bands is 3-4 times higher than the bands around the notch. The acceleration

n is also associated with the nearly constant force plateau (No.6-8) on the force time curve. After

e propagating bands disappeared. At 20 ◦C, no more bands could be observed after the propagatio

nds. See section 4.2 for a detailed discussion of the difference between Lüders and PLC bands. A

ands continuously initiate around the notch tip. In addition, at 175 ◦C, the nucleation of localizati

ssociated with force drops. The flipping behaviour of localization bands during crack propagation a

n Fig. 5 and 7, is also confirmed.

w a quantitative comparison, the evolution of the maximum strain rate along a line Ymid (see F

in Fig. 9. At 20 ◦C, the first force drop yields strong localization bands around the notch. Then t

the bands becomes weaker until reaching the force plateau. During the free propagation phase, t

localization bands is higher than the one in the bands trapped at the notch tip area. At 175 ◦C, t

localization bands did not decrease too much due to the simultaneously occurring PLC effect. T

inside a band at 175 ◦C is significantly higher than that at room temperature. The measured m
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Figure 4: St 10−4s−1)

measured by ds to that

on the curve
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Figure 5: S in rate of

7.5 × 10−4s− shot in (b)

corresponds
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Figure 6: S train rate

1.5 × 10−4 s
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Figure 7: S in rate of

1.5 × 10−4 s
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(b) Specimen A: 20°C; v=0.01 mm/s. (c) Specimen B: 175°C; v=0.01 mm/s.

(d) Specimen C: 20°C; v=0.002 mm/s. (e) Specimen D: 175°C; v=0.002 mm/s.

id positioned 
le of specimens 
ading direction

ch at Y=0

8: Spatio-temporal patterns of the four tests measured along line Ymid. The notch position is at Y = 0 as shown i

profiles at 175 ◦C show many peaks due to many intense PLC serrations. A direct comparison of t

ingle band is given below in section 3.3.

ain fields in a region of interest (ROI) at the maximum force for specimen A and at the same disp

) for specimen B are presented in Fig. 10a and b. With the same strain scale, the plastic zone of “b

ing crack initiation at 20 ◦C is less concentrated than that at 175 ◦C. The angle between the two

stic zone is smaller at 175 ◦C than 20 ◦C. It can also be seen that the plastic deformation at

d by the passage of previous localization bands which left behind a flame-like plastic zone. Fig. 1

measurement of the strain evolution along a line closer to the notch. A similar approach can be

et al., 2009). The line is perpendicular to the crack propagation direction at 4 mm from the notch

ccumulated strain along this line from the initial state until the crack reaches this area (then the co

o paint cracking). Different evolutions at 175 ◦C and at 20 ◦C are observed. At 175 ◦C, the evo

ss symmetrical. The lower part of the plastic zone (left peak) becomes dominant after reaching εyy

the two peaks keep growing until εyy =0.165 followed by a more important plastic zone in the cen

e two “wings”. This phenomenon has also been found in the tests with a loading rate of v=0.00

ble explanation for the loss of symmetry of plastic zone evolution at 175 ◦C would be the key for e

racture at 175 ◦C.

rresponding position on the global force-displacement curve denoting the onset of non symmetr
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(a) Specimen A: 20 ◦C; v = 0.01 mm/s. (b) Specimen B: 175 ◦C; v = 0.01 mm/s.

(c) Specimen C: 20 ◦C; v = 0.002 mm/s. (d) Specimen D: 175 ◦C; v = 0.002 mm/s.

Figure 9: Maximum strain rate (ε̇yy) along the line Ymid in Fig. 8a.

rked in the zoom view of Fig. 10. For 175 ◦C, this point appears before the visible crack prop

at 20 ◦C, this point appeared almost at the same time as crack propagation. Considering that th

t 4 mm to the notch tip, the loss of symmetry at the actual notch tip occurred even earlier. Th

ed propagated along the dominant lower wing (in the current image) of plastic zone at 175 ◦C. At 2

agated following the middle plane of the “butterfly” shape plastic zone. Fig. 11 shows the strain

ck path at these two different temperatures. It can be noticed that the strain increase at 175 ◦C

atures which is due to the propagation of localization bands. The localization event happened mu
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Figure 11: S peratures.

3. Finite

3.1. Const

In the stitutive

equations model is

presented l. (2009).

The secon Observer

invariant s or T∼ and

the Euleri material

point:

where D∼ a in rate is

then decom

(1)
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train evolution on the crack path for specimens A and B tested at the same loading rate (0.01 mm/s) and different tem

element simulations of SENT tests

itutive equations of the strain ageing model

current section, in order to simulate the characteristics of the bands observed via DIC, the con

proposed by Graff et al. (2008) and Mazière et al. (2010) have been retained. The constitutive

within the finite strain framework using the concept of local objective frames following Besson et a

d and fourth order tensors are defined by a single tilde �∼ and a double tilde �
≈

respectively.

tress and strain rate measures σ∼ and ε̇∼ are defined by the transformation of the Cauchy stress tens

an strain rate tensor D∼ into the corotational frame characterized by the rotation Q
∼

(x ,t) at each





σ∼ = Q
∼
.T∼ .Q∼

T

ε̇∼ = Q
∼
.D∼ .Q∼

T

Q
∼

such as Q̇
∼

T
.Q
∼

= Ω∼ (corotational)

nd Ω∼ respectively are the symmetric and skew-symmetric parts of the velocity gradient. The stra

posed into elastic and plastic parts:

ε̇∼ = ε̇∼
e + ε̇∼

p, σ∼ = C
≈

: ε∼
e
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where C
≈

is the Hooke tensor of elasticity. The plastic flow is described by the normality rule

(2)

where p is

(3)

where the

(4)

(5)

The ageing

(6)

where P1 i acterizes285

the time o he strain

increment

To des A model

with dama 87, 2001;

Rousselier

(7)

where f is f = fg.

Rousselier Quilici,

2015):

(8)

D1 is a ma m), and

represents .001.

3.2. Ident290

The id e spatio-

temporal p

The pa g (2011)

since the T ardening

parameter eters at295

20 ◦C are i using the

Levenberg ions and

those of th ing FEM
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ε̇∼
p = ṗn∼ , n∼ =

∂F

∂σ∼
,

the cumulative plastic strain and the yield function, F , is taken in the form

F (σ∼ , ta) = σeq(σ∼)−R(p)−Ra(ta),

isotropic hardening term R(p) is

R(p) = Hp+Q((1− e−bp),

ṗ = ε̇0 sinh

(
max(0, F )

σ0

)
.

hardening term Ra(ta) reads

Ra(ta) = P1

[
1− e−( ta

t0
)n
]
, t0(p) =

(
1

P2pα

)1/n

, ṫa = 1− ta
w
ṗ,

s the maximum stress drop magnitude from a fully pinned state to a fully unpinned state; t0 char

f diffusion process; n = 0.66 which corresponds to bulk diffusion mechanisms; w characterizes t

associated with unpinning events.

cribe the mechanical response up to fracture, an attempt has been made to couple the current DS

ge induced by void growth. The yield function 3 is replaced by the following form (Rousselier, 19

et al., 2017)

F =
σeq

1− f + s1D1f exp

[
σm

s1(1− f)

]
−R(p)−Ra(ta)

the void fraction. In the current section, only the void growth fg has been considered so that

’s model gives a void growth rate almost identical to Rice and Tracey’s formula (Rousselier and

ḟ = ḟg = ṗ(1− f)D1f exp

(
σm

s1(1− f)

)
.

terial independent constant, fixed here at D1 = 2 here. Parameter s1 is chosen to be 275 MPa ( 2
3R

the resistance of the metal matrix to void damage. The initial void volume fraction is chosen as 0

ification of material parameters

entification procedure is based on tensile tests. Figure 12a shows the specimen geometry and th

atterns measured by DIC.

rameters related to the ageing term Ra, such as P1, P2, n, w, α were based on the values given in Wan

U48C steel studied by Wang (2011) which is very similar to the current A42 steel. The other h

s at 175 ◦C are also taken from the function proposed by Wang (2011). The hardening param

dentified from the experimental tensile curves of our material (A42). An optimisation procedure

-Marquardt algorithm is used to minimize the deviation between data from material point simulat

e smoothed experimental stress-strain curves of tensile tests. This strategy avoids time-consum
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simulations on full dimension specimens. The complete constitutive model parameters used for the current section are

presented300

Fig. 12 10−3 s−1.
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12b. The rimental

tensile cur It can be305

noted that

0

100

200

300

400

500

0

St
re

ss
 (M

Pa
)

 0.18

Figure 12: ( rates. (c)

experimenta

3.3. 3D F

Fig. 1 ent with

quadratic he upper

Journal Pre-proof
in Table 3.

b shows the uni-axial tensile curve at room temperature with applied strain rate 10−2 s−1 and

perature, there is no PLC effect. The tensile curves do not exhibit a negative strain-rate sensitiv

ld peak and plateau can be observed. The simulation result at 10−2 s−1 on a 2D mesh is also plotte

simulated curve is in good agreement (<6%) with the experimental one. Fig. 12c gives the expe

ve at 175 ◦C and 10−3 s−1. The simulated curve for the same condition is added for comparison.

the material at 175 ◦C exhibits both Lüders and PLC phenomena.

(a) Tensile specimen and the spatio-temporal patterns at 20 ◦C and 175 ◦C at a strain rate Ė =10−3 s−1.
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b) Experimental and simulated stress-strain curves of the tensile test carried out at room temperature for two strain

l and simulated tensile curves at 175 ◦C and strain rate 10−3 s−1.

EM simulations with strain ageing model

3 shows the 3D mesh used in the current section, which contains 6184 elements (C3D20R elem

interpolation and a reduced number of integration points) and 29499 nodes in total. A piece of t
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Table 3: Parameters used at 20 ◦C and 175 ◦C for C-Mn steel A42.

half specim hickness.310

Outside th riaxiality

at mid-thi

1.6

As the /s, only

the compa Fig. 14a

presents th rimental315

curves are the FEM
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20 ◦C

E(GPa) v P1(MPa) n w P2(s−n) α

210 0.3 94 0.66 2× 10−4 0.01 0.26

R0(MPa) Q(MPa) b H(MPa) ε̇0(s−1) σ0(MPa) ta0(s)

200 256 20 360 9.16× 10−4 4.11 5× 106

175 ◦C

E(GPa) v P1(MPa) n w P2(s−n) α

199.83 0.3 84.84 0.66 2× 10−4 0.46 0.19

R0(MPa) Q(MPa) b H(MPa) ε̇0(s−1) σ0(MPa) ta0(s)

178.86 273.5 29.6 360 9.45× 10−4 4.50 104

en is shown. In the refined area, there are 8 elements (0.625× 0.625× 0.625 mm3) through the t

is region, coarse meshes are used to save computation time. The evolution of the calculated stress t

ckness of the notch tip area of the current SENT specimen is also shown in Figure 13.
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Figure 13: 3D mesh with refined area around the notch and stress triaxiality calculated at notch tip.

tests at a loading rate of 0.002 mm/s generally showed similar results with those at 0.01 mm

rison between experimental and numerical results with loading rate 0.01 mm/s is presented here.

e 3D simulation curves of SENT specimen at 20 ◦C with a loading rate of v = 0.01 mm/s. The expe

superimposed with numerical ones. It can be seen that the initial yield peak is overestimated by
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simulation. The stress drop reproduced by the simulation occurs earlier than in the experiment. The simulated
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before fracture is consistent with the experimental curve. Without the damage mechanism, th

e model is not able to describe the descending part of the global stress-displacement curve. Void

very early stage at the notch tip. Therefore, the stress-displacement curves produced by the stra

pled with damage are also presented in Fig. 14. The prediction has been improved significantly

ulation results of the test at 175 ◦C with v = 0.01 mm/s are presented in Fig. 14b. The huge duc

is not well predicted with the same damage parameters.

-temporal patterns and localization bands from FE simulations

atio-temporal patterns of FE simulations with a loading rate of v=0.01 mm/s are plotted in Fig. 1

s are carried out only with the strain ageing model without damage. There are considerable sim

hese numerical patterns and those measured by DIC (see Fig. 8). The evolution of localizatio

by FE simulation at 20 ◦C is almost identical to the experiment. The effect of notch area for slow

agation is correctly predicted. Two different velocity slopes can be seen in the spatio-temporal pat

eratures. In addition, the two propagating localization bands propagate symmetrically and arrive a

e same time which is not always the case in the experiments. At 175 ◦C, the flipping behaviour of loc

ng propagation is also properly reproduced by the model. However, the localization bands around t

annihilation of propagating bands) show more propagative behaviour in the simulation. In the exp

ds are more intermittent without propagation. Fig. 15d gives the band velocities measured from th

atterns of DIC and simulations. The velocities of two types of propagating bands at 175 ◦C are

with DIC measurement. The velocity of free propagating bands at 20 ◦C is slightly underestimate

shows the band morphology produced by FE simulations with a loading rate of v = 0.01 mm/s.

ropagating bands are obtained. These two bands propagate to both ends of the specimen simultane

t t=117 s, the angle of the propagating band is 51.25◦ which is very close to the DIC measurement p

The plastic zone around the notch is very stable after the annihilation of these initial bands. At 17

e as well as the alternating behaviour are captured correctly. Although the strain rate localizati

kness plane cannot be observed directly by DIC measurement, the current numerical simulation

nformation to be obtained in the thickness direction. The strain rate localization behaviour in the

own in Fig. 16(a) and (b) at each time stage of the corresponding front view. Multiple slant st

n bands can be observed frequently for the simulation at 175 ◦C. In contrast, no slant bands were

at room temperature except for the very early band nucleation stage. The slanted localization ban

cursor of a slant fracture as mentioned in Table 2. This issue will be discussed in section 4.3.

pare with Fig. 9, Fig. 17 shows the evolution of maximum strain rate along the line Ymid produc

s. The strain rate in the band of first stress drop is higher than the following bands which is consis

urement. However, the amplitude is overestimated compared with experiments. When the bands

without the influence of the notch tip area, associated with a stress plateau, the strain rate in band

ak level. The strain rate in bands at 175 ◦C is higher than at 20 ◦C. At 175 ◦C the maximum strain

se to a lower level after the first stress drop, which is due to the continuously propagating PLC ba
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Figure 14: Stress-displacement curves of FE simulation for the two tests at a loading rate of 0.01 mm/s.Jo
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(a) 20 ◦C; v = 0.01 mm/s. (b) 175 ◦C; v = 0.01 mm/s.
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(d)

patio-temporal patterns obtained from FE simulations to be compared with the experimental results in Fig. 8a

presentations of the band evolution in a spatio-temporal pattern and the comparison of velocities of Lüders band p

DIC and simulations at v = 0.01 mm/s (d).

sion

nematics and mechanical properties of localization bands due to strain ageing were studied by

ent simulations in this work. The DIC measurements revealed, for the first time, the kinematic

nd the notch tip of C-Mn steel SENT specimen at high temperature. The room temperature exp

nstrated the characteristics of Lüders effect that differ from ordinary smooth tensile specimens

the DIC and simulation results obtained in the previous sections are compared with those in the li

lobal stress-displacement curve

ders effect in tensile tests is characterised by an upper yield stress at elastic-plastic transition point

s plateau with lower constant stress level. In the current SENT tests, a stress drop can still be

ut it occurred later than the elastic-plastic transition point (see Fig. 4). Unlike the tensile test,
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d the notch undergoes severe plastic deformation. The Lüders bands initiate in this region earlier

cimen which results in a nonlinearity on the global stress-displacement curve without visible str

deformed area, the initially pinned dislocations are not able to break away from the Cottrell atm

lts in an increase of global stress. When the front of Lüders band reaches the whole width of the s

op becomes visible on the global stress curve. Appendix A gives a comparison between the si

hout Lüders effect and those involving the Lüders effect. The range of Lüders effect on the glob

ified by these simulations. In addition, to avoid measurement uncertainty, the possible effect of out

nt during the experiments is also demonstrated on the global curve by simulations (see Appendix

t on the global stress due to Lüders effect has also been observed by Han et al. (2011) in Q345 stee

re. The DIC measurement presented in the current work confirms the assumption about the Lüd

around a notch tip discussed by Han et al. (2011). In the work of Han et al. (2011), due to a lac

ent, the author did not provide any information about the spatio-temporal evolution of Lüders ba

◦C, it is more difficult to identify the Lüders stress drop due to the superposition of PLC serrations

re, the serrations started right after the elastic-plastic transition point. The PLC serrations did no

of global stress curve.

ge drop of ductility and toughness at 175 ◦C is observed for both tested loading rates (0.01 mm/s a

ich proved the reproducibility of this result. The factor around 2 of toughness drop at 175 ◦C is c

esults reported by Wang et al. (2012). The simulations using the DSA model only work well for d

ing before fracture. The descending part of simulated curves is not in agreement with experimen

he lack of a proper damage mechanism. With the addition of void growth, better results are ob

e descending part of experimental curves at 20 ◦C. Actually, the damage mechanism starts to influ

ve before attaining the maximum force. The pre-matured fracture at 175 ◦C is not reproduced u

age parameters for both temperatures. This is a limitation of the damage model which will requi

e sophisticated damage modelling combining the Rousselier damage model, polycrystalline plastic

riterion has been applied recently to model slant fracture in CT specimens by Rousselier et al. (2

field

oth tensile specimens, Lüders bands initiate at the edge of the curved transition zone with the gri

cimen and propagate through the gauge length of the sample. Three types of bands have been c

ed in simple tension under constant applied strain rate and temperature such as the continuous

e A bands, intermittent type B bands and randomly nucleated type C bands (Ait-Amokhtar et a

nce of stress concentration areas on the band behaviour was less reported compared to tensile test

ders band morphology in double notched tensile specimens was studied by Graff et al. (2004); Be

3); Xiao et al. (2016). In this specimen type, Lüders bands initiate from the ends of specimens

in tensile tests. For large notches, Lüders bands initiate from the notch tip. These bands p

t the whole length of the specimen. The Lüders band morphology in compact tension (CT) spec

ed by Wenman and Chard-Tuckey (2010) with DIC measurement and 3D finite element simulati
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LC band features in double notch tensile specimens have been investigated by Nogueira De C

011) using digital infrared thermography and DIC. Bands were observed to be trapped in the v

al cross section for double notched specimen. As the tested material did not show any Lüders e

mation could be given regarding Lüders band propagation. In contrast, simulations showed that PL

sionally escape from the minimum section area in double notched specimen (Benallal et al., 2008).

hology in CT specimens was predicted by Belotteau et al. (2009) with the McCormick type DS

esh, and by Rousselier et al. (2017) with 3D mesh, though an experimental validation is still lack

ack tensile specimen, the PLC bands are found to remain within the notch area as Lüders bands (

and Benallal, 2011).

SENT specimen studied in this work, the band kinematics displays different features. We clar

of simultaneously occurring Lüders and PLC effects. With DIC measurement, the different sce

agation at two temperatures can be summarised as:

: Lüders band initiation around notch tip → Continuous band propagation with one side trapp

h area → Accelerated continuous free propagation → No PLC bands.

C: Lüders and PLC band initiation around notch tip→ Intermittent band propagation with one side

e notch area → Accelerated intermittent free propagation → PLC bands flip-flopped around the n

specimens (see Wenman and Chard-Tuckey (2010)), the Lüders bands can propagate throughout t

he specimen in SENT specimens. They propagate only once and were observed at both 20 ◦C an

is caused by the unpinning of initially arrested dislocations which will not be pinned again in the

c strain ageing. In contrast, the PLC bands only occur in the notch area at 175 ◦C. These PL

occur because of the dynamic strain ageing mechanism. We can confirm these observations from

d by simulations in Fig. 15.

ress concentrator has a strong influence on the Lüders band propagation (see Fig. 8). It slows d

n velocity for these bands with one side trapped in the notch area. The numerical results capture t

and propagation as shown in Fig. 15. The velocities at two stages of band propagation are repro

simulations, in good agreement with DIC measurement.

rain rate in propagating bands is higher than that in the bands with one side trapped in the no

explain the stress plateau at the end of the Lüders effect. When the bands propagate with on

area, the deformation is still concentrated in the notch tip area. The dislocations in the less defor

ly unpinned which results in an increasing global stress. When the bands started to propagate wit

f the notch tip, deformation is concentrated in the moving band front which results in a stress pla

p-flop behaviour of PLC band around the notch tip observed in the current work is to some

with that reported in double U-notched specimen by Nogueira De Codes and Benallal (2011).

ce of the PLC effect on the Lüders band which results in an intermittent propagation has not been

ese scenarios are reproduced successfully with finite element simulations, though the simulated PL

re propagative feature rather than intermittency.
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4.3. Flat and slant fracture mode and fracture mechanisms
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wn in Fig. 18, another interesting finding in the current work is that two different modes of fra

t 20 ◦C and 175 ◦C. At 20 ◦C, the crack remains flat, i.e. normal to the loading direction, until

contrast, at 175 ◦C, a flat to slant transition is observed. This remarkable feature has also been

ensile bars made of TU48C by Wang et al. (2011). The reduction of section thickness, i.e. ne

at 20 ◦C. The slant fracture is certainly related to the early loss of symmetry in the plastic zone

e importantly, in the simulations shown in Fig. 16, slant strain rate bands through the sample

ted when PLC is active. No such bands are found for simulations at room temperature. The sla

temperature may be precursor of the slant fracture and one slant shear band through the thickn

hanced by PLC bands. Then the damage would develop in this slanted localization band and re

. A similar damage mechanism due to early localization has been reported by Morgeneyer et al.

CT specimen using laminography combined with digital volume correlation. The flip-flop fracture

en and Törnqvist (2004) could also be related to the PLC effect considering that the 5083 alumini

o be sensitive to the PLC effect.

lyse further the local damage mechanisms, fractography is presented in the appendix Append

crometre sized dimples can be seen for flat fracture at room temperature and for slant fracture at

re. The damage mechanism seems classically ductile in both cases. This is why a porous plasticity

e current work in conjunction with the McCormick-type model. Only the flat failure at room tem

roduced achieving fracture energies close to the experiments. However, the absorbed energy at

re is overpredicted which indicates that a modelling ingredient is still missing in our model for this c

work by the current authors Rousselier et al. (2017), slant fracture was achieved thanks to the

iterion applied on the slip system scale. This was motivated by shear fracture features on the

n by fractography for the studied aluminium alloy. These features were not found for the C-

s not comply therefore with the use this model. In addition, it is likely that slant fracture woul

or the room temperature simulation if the Coulomb fracture model was used at the slip system scale

res. In other words, the open challenge is not only to reproduce slant fracture alone (It was done b

neyer et al. (2016); Rousselier et al. (2017)), but to reproduce all of its characteristics: flat fracture

re, slant fracture at elevated temperature in addition to the right fracture energies, localization kin

anical damage features found by fractography. The present work provides the first steps in this

strating the complex and asymmetric plastic strain rate patterns and trends toward slant locali

sions

work, the impact of the Portevin-Le Chatelier effect on plasticity and fracture ahead of a severe

d by DIC field measurements at elevated temperature and captured numerically using Mc Cormick

tions. SENT specimens made of C-Mn steel are tested at room temperature and at elevated tem

he main results are summarized below:
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plane at 3.75 mm 
to the notch tip

(a) 20 ◦C; v = 0.01 mm/s.

ugh-thickness 
e at 3.75 mm 
e notch tip

(b) 175 ◦C; v = 0.01 mm/s.

ocalization bands predicted by FE simulations with loading rate v = 0.01 mm/s on the surface and in the through

room temperature and b)175 ◦C .

Jo
ur

na
l P

re
-p

ro
of
38



Fi .

Journal Pre-proof
(a) 20 ◦C; v = 0.01 mm/s.

(b) 175 ◦C; v = 0.01 mm/s.

gure 17: Maximum strain rate evolution along the centre line Y. To compare with DIC results in Fig. 9(a) and (b)Jo
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Figure 18: F triangular

flat transitio ading rate

0.002 mm/s

Journal Pre-proof
racture surfaces of specimens tested at 175 ◦C and 20 ◦C for loading rate 0.01 mm/s. A typical slant fracture with a

n zone is observed at 175 ◦C, while flat fracture is found at 20 ◦C. The same fracture surfaces are found for the lo

at corresponding temperatures which are not shown here.
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Appendix A. Appendix 1: Simulations of non-symmetric conditions during SENT tearing test790
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Journal Pre-proof
ll 3D simulations performed here shed light on the information needed to determine the range o

uch a specimen geometry. Fig. A.19 gives a comparison between the simulation results withou

involving Lüders effect by adjusting ta0. The Lüders phenomenon only affects a limited portio

in curve and always ends with a stress plateau (or stress drop). This effect has not been mentione

1) although a small stress plateau is visible on their global stress curve. The simulations also rep

eak, however the shape is too sharp compared with experiments (see Fig. A.19). This discrepan

slight out of plane displacement during the experiments. The objective of this appendix is to in

f perturbations of boundary conditions on the shape of the macroscopic curve. Three possible pert

simulated during the test, see respectively Sections Appendix A.2, Appendix A.3, Appendix A.4

and A.22. The mode III loading turns out to have a significant influence on the shape of Lüders

more realistic overall curve, see Section Appendix A.4.

plitude of PLC serrations in the current simulations is less than experimental results. This is d

he current simulations did not take into account the influence of the testing machine stiffness on

shown in (Wang et al., 2012), incorporating machine stiffness into the model gives a more realistic a

rations.

A.1. Lüders plateau controlled by initial ageing time ta0

the Lüders effect is studied numerically in order to determine its influence on the overall harden

ect in the current SENT specimen is not characterized by a well-defined stress plateau in contra

s. Fig. A.19 compares the result by artificially deactivating the Lüders effect (ta0 =0 s) with that

ect. With the Lüders effect (ta0 6=0 s), an over hardening is observed after the yield point follow

eau. The influence of initial ageing time on the over hardening by Lüders effect is presented in F

nitial ageing time results in a larger range of Lüders effect on the stress-displacement curve.

mulation result confirms the characteristics of Lüders effect in such a specimen geometry. In the

s, ta0 is set to be 104 s for 175 ◦C and 5× 106 s for 20 ◦C. These values are obtained by compar

imental curves in the current work.

A.2. The effect of torsion due to grip misalignment

t-of-plane displacement can be checked by DIC. Fig. A.20 shows the torsion movement after cl

ery slight torsion induced z-direction displacement around 30 µm and could be found to be du

ent.

uence of this out-of-plane movement has been investigated numerically. An initial relative rotation o

to the upper and lower surfaces (see Fig. A.20). The simulated out-of-plane displacement comp

initial rotation is close to DIC measurements. A comparison of the stress-displacement curves of pu

nd that with a slight torsion is presented in Fig. A.20. Only a slight change of the Lüders yieldJo
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Figure A.19: Comparison of the FEM simulation results with and without Lüders effect for SENT tests.

: Influence of torsion due to grip misalignment: (a) Out-of-plane rotation measured by DIC; (b) Corresponding

nditions; (c) uz displacement field after torsion by FEM simulation; (d) Comparison of stress-displacement curves

d with additional torsion.
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Appendix A.3. The effect of non-symmetrical loading825
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ing to experimental measurements, the length of the section clamped inside the grip could vary fro

hen mounting specimens. We tested the influence of this non-symmetrical loading by eliminating

s on the top (∼3.5 mm shorter on the upper side). Fig. A.21 gives the simulated stress-displaceme

ed negligible influence of non-symmetrical loading.
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Figure A.21: FEM simulation of non-symmetrical loading.

A.4. The effect of mode III loading

r numerical test is carried out by applying mode III loading. A perturbation displacement of 0

the specimen for simulating a typical misalignment of loading fixtures. Fig. A.22 shows the sc

ry conditions and the stress-displacement curve. It can be seen that this mode of loading has a s

n the initial yield peak. The shape of mode III loading curve is more realistic than that of pur
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Figure A.22: FEM simulation of mode III loading.
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Appendix A.5. SEM fractographs at 20 ◦C and 175 ◦C

The fra DSM982

scanning e 0 ◦C and
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Figure m/s.

Journal Pre-proof
ctography studies at the microscopic level are carried out on these SENT specimens using a ZEISS

lectron microscope (SEM). Fig. A.23 compares the SEM fracto graphs of the specimens tested at 2

herical dimples can be observed in both cases. A very slight shearing effect can be noticed in th

he specimen tested at 175 ◦C.
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flat slant
Load

Load

Load

Load
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A.23: Comparison of the SEM fractography of specimens tested at 20 ◦C and 175 ◦C with a loading rate of 0.01 m
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The impact of Portevin - Le Chatelier (PLC) efect on tearing was assessed 

Strain

Early

Toug

3D sim
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 rate feld measurements at room and elevated temperature were carried out 

 strain asymmetry, intermitency and fip-fopping strain was found in the PLC domain 

hness was half when the PLC efect was actve at high temperature for C-Mn steel

ulatons accountng for dynamic strain ageing captured the strain distriuutons
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