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Abstract 

The predictions of two recent and two classical mathematical models are compared with experimentally 
measured three-phase relative permeabilities. Experimentally determined constitutive relationships in two-
phase systems were used as model input parameters to numerically predict relative permeabilities (kr) in 
three-phase systems. Then the estimated results were compared with experimental three-phase 
permeabilities measured along decreasing water saturation/decreasing oil saturation/increasing gas 
saturation (DDI) paths. The results of the individual models to each of the three fluids involved (water, oil, and 
gas) were analyzed in detail. The simulated results showed that the Total Differential (TD) compatible model 
overestimates significantly both the global mobilities as well as the relative phase permeabilities in the three-
phase system. There was improvement in the prediction with the TD compatible model when experimental 
data were used to locally impose the global mobility and fractional water and gas fluxes in the ternary 
diagram. Globally, the best prediction of the measured kr values was obtained with the so-called mechanistic 
model. However, its numerical implementation requires a preliminary calibration of the relative phase 
permeabilities in a three-phase system against experimental data along one DDI path to quantify the required 
six characteristic coefficients. In contrast to the TD compatible model, which by construction does not exhibit 
any numerical instabilities, elliptic zones in the water-oil (NAPL)-gas ternary diagram were identified in the 
mechanistic model. 

Keywords:  
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1. Introduction 

Since the 1950s, the number of sites contaminated by halogenated solvents has increased significantly in 
industrialized countries. Solvents are used in a wide range of industrial processes and in everyday products 
(e.g. paints, oils, varnishes, and dry cleaning liquids) and may be released into the environment in industrial 
effluents or by improper disposal by users. Among all solvents, aliphatic chlorinated solvents (including 
chloromethane, chloroethane, and chloroethene) have been the most frequently encountered group of 
compounds. Therefore, characterization and modeling of the fate of chlorinated solvents in porous aquifers 
has gained significant  attention in recent years to protect groundwater resources (Fried et al., 1979; Cohen 
and Mercer, 1993; Pankow and Cherry, 1996; Jellali et al., 2001; Bohy et al., 2006; Dridi et al., 2009; Cotel et 
al., 2011, Portois et al., 2018; Qian et al., 2020). These liquid compounds are immiscible in water, and because 
they are usually denser than water (except vinyl chloride, chloromethane, and chloroethane), they are called 
dense nonaqueous phase liquids (DNAPL). In the subsurface, chlorinated solvents migrate vertically depending 

on the gravity and capillary forces through the unsaturated zone, where a large vapour plume appears due to 
their high volatility. After rainfall, a vapour lixiviation due to vapour precipitation may occur and dissolved 
chlorinated solvents can reach the groundwater table and contaminate the groundwater (Mendoza and Frind, 
1990; Sleep and Sykes, 1992; Jellali et al., 2003). If the amount of solvents released is large, the DNAPL reaches 
and penetrates the groundwater table due to its high density, dissolves and forms a solute plume. Within the 
aquifer, a certain amount of solvents becomes trapped as blobs or forms pools over low permeability 
geological structures. This constitutes a long-term source of contamination of drinkable groundwater 
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resources, given the low solubilities of the solvents (Schwille, 1988; Brusseau, 1992; Kennedy and Lennox, 
1997; Eberhardt and Grathwohl, 2002, Seyedabbasi et al., 2012).  

Multiphase flow may occur in a porous aquifer in the form of three-phase water-NAPL-gas flow in the 
unsaturated zone and two-phase water-NAPL flow in the saturated zone (Fig. 1). Gravity-driven infiltration of 
NAPLs in soil containing one or more chlorinated solvents leaves behind a zone of residual saturation. This 
process results in a small size NAPL source zone within the porous medium with respect to the characteristic 
dimensions of the aquifer.  

The main difference between the two- and three-phase flow is the formation of NAPL layers sandwiched 
between gas and water (Blunt et al., 1995) and the double displacement where the gas displaces the 
disconnected NAPL ganglia which displaces water (Øren and Pinczewski, 1995). These mechanisms can reduce 
residual NAPL saturation, even in capillary-dominated flow (Helland and Jettestuen, 2016), whereas in two-
phase capillary-dominated flow, isolated ganglia are trapped (Chatzis and Morrow, 1984). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Physico-chemical processes involved in the fate of chlorinated solvents in the subsurface (Côme et al., 2008). 

Numerical simulation of multiphase flow has become a crucial method for solving water-resource 
management and other environmental problems such as CO2 sequestration in saline aquifers and coupled 
geomechanical processes in the subsurface (Helmig et al., 2013; Celia et al., 2015; Benisch et al., 2020). While 
multiphase flow models for water, NAPL, and gas phases were initially adopted in petroleum research for 
reservoir simulation, they were later successfully exploited for hydrosystem monitoring or remediation. 
Pressure and saturation of fluids are the key variables in the analysis of multiphase flow in porous media. 
Furthermore, secondary variables such as relative permeabilities and capillary pressures, which are functions 
of fluid saturations, are needed for the simulation of displacement processes in porous media.  

Forecasting the behavior of chlorinated solvents in aquifers presents at least two difficulties: characterization 
of the source zone (i.e., locating the source zone and evaluating the NAPL volume and composition) and 
modeling of the fate of pollution downstream of the source zone (i.e., how to choose physical models, 
mathematical tools, and numerical methods). Multiphase flow modeling is a major tool for assessing 
groundwater pollution caused by non-aqueous phase liquids (NAPL), such as chlorinated solvents. To quantify 
and characterize groundwater pollution by NAPLs, numerical codes that include multicomponent transport 
equations require a fast and accurate resolution of the primary and secondary variables of three-phase flow.   

The relative permeability of a fluid depends on the wetting properties of the porous medium (van Dijke and 
Sorbie, 2002), but it may also depend on the saturation history, as the pore-scale fluid configurations are 
history-dependent. Relative permeability can be measured either in the laboratory by performing coreflood 
experiments or estimated using empirical correlations. The earliest three-phase relative permeability 
measurements found in the literature date back to the work of Leverett and Lewis (1941), and since then, a 
variety of studies have been conducted to investigate the effects of various parameters, such as saturation 
history, wettability, spreading, and layer drainage, on three-phase relative permeability (Alizadeh and Piri, 
2014a). Nonetheless, experimental measurement of three-phase relative permeabilities is far more complex 
and time-consuming than two-phase relative permeabilities, and thus several correlations and mathematical 
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models have been proposed over the years to predict three-phase relative permeabilities using two-phase 
relative permeability data (e.g., Corey et al., 1956;  Stone, 1970, 1973; Baker, 1988; Delshad and Pope, 1989; 
Blunt et al., 1995; Blunt, 2000; Ranaee et al., 2015; Shahverdi and Sohrabi, 2017). A detailed review of existing 
three-phase relative permeability models is given by Shahverdi and Sohrabi (2017). 

The present study addresses, from both physical and numerical points of view, specific questions related to 
mathematical modeling of three-phase multiphase flow in porous media. As regards the physical aspect, the 
research questions relate directly to the use and implementation of three-phase (water, NAPL, gas) flow codes 
to predict, for example, the formation of a NAPL source zone after infiltration of NAPLs into the subsurface. 
These numerical tools require as input parameters, inter alia, constitutive relationships, such as relative 
permeabilities, which are functions of saturations of different fluids present in the porous medium. In 
connection with the implementation of relative permeabilities in numerical three-phase flow codes, model 
developers and users are faced with a range of basic questions: how is one able to predict the relative 
permeability of the NAPL phase as a function of water and gas saturation levels? Are the relative permeability 

models that have traditionally been developed for NAPLs, such as Stone models (Stone, 1970; Stone, 1973), 
appropriate for representing the governing displacement physics, and if not, what are the shortcomings? 

Regarding the numerical aspect, the questions that arise for modelers are often related to the possible 
instability of numerical models. Relative permeability models for the NAPL phase in three-phase flow systems 
can be the origin of numerical instabilities (Trangenstein, 1989). While conventionally assumed that three-
phase permeability models only generate hyperbolic systems, Bell et al. (1986) using synthetic kr models 
showed that the system of saturation equations is not purely hyperbolic in all respects and may produce 
unstable results for certain saturation values called elliptic regions. Jahanbakhshi et al. (2013) demonstrated 
by linearization that the system is unstable in elliptic regions, i.e., for conjugate complex eigenvalues of the 
Jacobian matrix of the system of two saturation equations using the fractional flow theory of displacement. 

For example, using Stone’s Model I (Stone, 1970), in cases of  flow configurations that do not include gravity 
and capillary effects,  the occurrence of elliptic zones leads to significant oscillations of fluid saturations 
(Schneider, 2015) and exhibits complex wave speeds that result in non-unique solutions (Jackson and Blunt, 
2002).  

In the absence of three-phase experimental data, a new class of Total Differential (TD) interpolations was 
designed to simplify the numerical simulations of compressible three-phase flows by using a global pressure 
formulation (Chavent et al., 2008; Chavent, 2009; Amaziane et al., 2012). This formulation requires that the 
three-phase relative permeabilities and capillary pressures satisfy the so-called Total Differential (TD) condition 

(Chavent, 2009) which guarantees the strict hyperbolicity of the reformulated system (Chavent, 1986). The TD-
interpolation of a collection of three-phase data sets is then realized by constructing two functions over the 

ternary diagram, one global capillary pressure and one global mobility, which satisfy the boundary conditions 
determined by the three given two-phase data sets. 

The resultant relative permeabilities that comply with the condition of Total Differential defined by di Chiara 
Roupert (2009) do not yield elliptic zones and will therefore be used in our comparison of the predictions of 
different mathematical models with experimentally tested three-phase relative permeability results. The TD 
compatible model described by di Chiara Roupert et al. (2010a) will be extended by integrating experimental 
based residual fluid saturations in two-phase systems. To compare the TD compatible model with the 
commonly used three-phase relative permeability models, we included three other models in our study. First, 
the recently developed model for the prediction of three-phase relative permeabilities, the so-called 
mechanistic model proposed by Shahverdi and Sohrabi (2017) will be evaluated. This model presumably takes 
into account the interaction between various fluids as well as fluid saturation distributions using an arithmetic 

averaging relationship between two-phase and three-phase permeabilities. Our numerical study will then be 
completed by applying the classical Parker-Lenhard model (Parker and Lenhard, 1990) that was traditionally 
introduced as one of the first permeability models in three-phase flow and transport numerical simulators to 
describe and predict the fate of contamination by NAPLs in the subsurface, and the historical Stone model I 
(Stone, 1970) commonly implemented in industrial oil reservoir codes will be used to model the oil relative 
permeability in three-phase systems.  
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In our numerical simulations, we used experimentally determined constitutive relationships of two-phase 
systems as input parameters to numerically predict the relative permeabilities in three-phase systems. Then 
we compared the estimated results with experimental three-phase permeabilities measured by Oak  (Oak, 

1990) and Alizadeh (Alizadeh, 2013; Alizadeh and Piri, 2014b) along decreasing water saturation/decreasing oil 
(NAPL) saturation/increasing gas saturation (DDI) paths. The overall objective of the present work was to 
quantify the differences between the measured and the predicted relative permeabilities for water, oil, and 
gas in a three-phase fluid system. The occurrence of elliptic regions is also analyzed for the mechanistic model, 
Parker-Lenhard model, and Stone’s model I in the framework of the classical fractional flow theory of 
displacement. 

Our study is organized as follows. Section 2 outlines the main features of the three-phase relative 
permeability models evaluated. The experimental data employed for the evaluation and comparison of the 
different mathematical models to describe relative permeabilities in three-phase flow systems are concisely 
described in Section 3. Key results of our numerical studies are presented in Section 4. Finally, Section 5 

presents the outcome of our individual model analysis to each of the three fluids involved (water, oil, and gas) 
and discusses the existence and importance of elliptic zones in a water-oil (NAPL)-gas ternary diagram when 
using the mechanistic model. 

 

 

2. Mathematical models 

Here we describe the main features of two recent and two classical models evaluated against experimentally 
measured three-phase permeabilities: 

 Mechanistic model of Shahverdi & Sohrabi (Shahverdi and Sohrabi, 2017) 

 Total Differential compatible model introduced by di Chiara Roupert et al. (2010a, 2010b) – extended by 
integrating experimental based residual fluid saturations in two-phase systems 

 Parker-Lenhard model (Parker and Lenhard, 1990) 
 Stone’s Model I (Stone, 1970)  

The constitutive relationships (capillary pressure-saturation (pc-S) and relative permeability-saturation (kr-S) 
functions) in two-phase systems used in our study are summarized in Appendix A. 

 

2.1 Mechanistic model of Shahverdi & Sohrabi 

To predict three-phase relative permeabilities of oil, water, and gas, the so-called mechanistic model proposed 
by Shahverdi and Sohrabi (2017) takes into account the interactions between the fluids and fluid saturation 

distributions. For this purpose, an arithmetic averaging relationship between two-phase and three-phase 
permeability is used. Six new parameters named characteristic coefficients, Aij, (having a value between zero 
and one) are introduced in their model to express the linear relationship between two-phase and three-phase 
saturations for each of the three fluids present in the system. These coefficients reflect the contribution of 
each fluid in controlling the flow of the other fluids. It should be noted that at least one set of experimental 
three-phase relative permeability data (for one saturation path) is required to tune the characteristic 
coefficients. The estimated characteristic coefficients can then be employed to predict three-phase relative 
permeabilities for any other saturation path. 

In this model, the three-phase relative permeability of the oil phase (kro) is expressed by  

𝑘𝑟𝑜 =
𝑆𝑤𝑜

𝑆𝑤𝑜+𝑆𝑔𝑜
𝑘𝑟𝑜𝑤(𝑆𝑜𝑤) +

𝑆𝑔𝑜

𝑆𝑤𝑜+𝑆𝑔𝑜
𝑘𝑟𝑜𝑔(𝑆𝑜𝑔)   (1) 

where krow is the two-phase oil relative permeability in the oil-water system, krog is the two-phase oil relative 
permeability in the gas-oil system, Sow and Sog are the oil saturation in the two-phase oil-water and gas-oil 
system, and Swo and Sgo represent the water saturation in a two-phase water-oil system and gas saturation in 
the two-phase gas-oil system. The model proposes a linear relationship between two-phase and three-phase 
saturations as follows: 
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𝑆𝑜𝑤 = 𝐴𝑜𝑤𝑆𝑜 ,     (1a) 

𝑆𝑜𝑔 = 𝐴𝑜𝑔𝑆𝑜 ,  (1b) 

𝑆𝑤𝑜 = 𝐴𝑤𝑜𝑆𝑤 ,   (1c) 

𝑆𝑔𝑜 = 𝐴𝑔𝑜𝑆𝑔 ,   (1d) 

where Sw, So, and Sg are the three-phase saturations of water, oil and gas, respectively. 

Similar expressions can be developed for three-phase water relative permeability (krw) and gas relative 
permeability (krg): 

𝑘𝑟𝑤 =
𝑆𝑜𝑤

𝑆𝑜𝑤+𝑆𝑔𝑤
𝑘𝑟𝑤𝑜(𝑆𝑤𝑜) +

𝑆𝑔𝑤

𝑆𝑜𝑤+𝑆𝑔𝑤
𝑘𝑟𝑤𝑔(𝑆𝑤𝑔)   (2) 

where Sgw and Swg are the gas saturation and water saturation in the two-phase gas-water system. The two-
phase saturations are linked to the given three-phase saturations by the following linear relationships: 

𝑆𝑔𝑤 = 𝐴𝑔𝑤𝑆𝑔 ,   (2a) 

𝑆𝑤𝑔 = 𝐴𝑤𝑔𝑆𝑤 .   (2b) 

The gas relative permeability is expressed as: 

𝑘𝑟𝑔 =
𝑆𝑤𝑔

𝑆𝑜𝑔+𝑆𝑤𝑔
𝑘𝑟𝑔𝑤(𝑆𝑔𝑤) +

𝑆𝑜𝑔

𝑆𝑜𝑔+𝑆𝑤𝑔
𝑘𝑟𝑔𝑜(𝑆𝑔𝑜)   (3) 

Eqs. (1), (2) and (3) represent a coupled nonlinear system of equations. In our study, the six two-phase relative 
permeabilities in Eqs. (1), (2) and (3) are expressed using the Mualem-Van Genuchten model (Appendix B). To 
quantify the characteristic coefficients Aij, we used the NLFiT tool of Origin 2019 with the Levenberg-
Marquardt iteration algorithm and user-defined fitting functions with multiple variables.  

 

 

2.2 Total Differential (TD) compatible model  

In a three-phase fluid (water-wet) system, there generally exist two fluid interfaces: oil-water and gas-oil. At 
both interfaces, there is a change in pressure, called capillary pressure, when moving from one fluid to the 
other. Moreover, the individual phase pressures can be singular in the case where the derivative of capillary 
pressure becomes infinite at residual saturations. Hence phase pressures cannot be regular across a two-phase 
interface. The Total Differential condition allows the two gradients of two-phase capillary pressures to be 
rewritten as a single gradient of a mathematical function called the global capillary pressure function Pc

g 
(Chavent and Jaffré, 1986; Chavent, 2009; di Chiara Roupert et al., 2010a). The resulting new pressure variable 

called global pressure p is written as the sum of the pressure of one of the three fluid phases and the global 
capillary pressure  Pc

g . In our modeling approach, we used the gas pressure to define the global pressure. This 
is required when dealing with compressible three-phase flow. Note, the global pressure is smooth compared 
to the individual phase pressures and exhibits a global volumetric flow vector without any capillary gradients. 
This global pressure formalism specifically allows the decoupling of the pressure equation and the two 
saturation equations. The numerical analysis of the problem is thus simplified, and the efficiency of the 
calculation is improved. Note, the global pressure approach in a two and three-phase flow system exists only 
for data of relative permeabilities and capillary pressures that satisfy the Total Differential (TD) condition. The 
TD compatible model introduced by di Chiara Roupert et al. (2010a) uses continuous mathematical functions 
to describe the two-phase relative permeabilities and capillary pressures on the edges of the ternary diagram 
(Fig. 2). In the present study, we integrated experimental based residual fluid saturations in two-phase systems 

to quantify the mobility and global capillary pressure on the three boundaries. The way the integration was 
done is described in Section 4.2.  
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Fig. 2. Illustration of the ternary diagram  and the location of required two-phase data used in the TD 𝕋
compatible model (di Chiara Roupert et al. 2010b). sj, pj denote the saturation and pressure levels of phase j=1 
(water), 2 (oil) and 3 (gas), and Sj, Pj their distribution (function of space and time variables). The ternary 
diagram is denoted by  and its boundary by 𝜕𝕋 𝕋 A three-phase saturation distribution is denoted by S=(S1,S3), . 
and a point of the ternary diagram by s=(s1,s3). 

The input parameters required for the TD compatible model are two-phase relative permeabilities (krj
kl) and 

two-phase capillary pressures (Pc
kl) on the three edges of the ternary diagram (Fig. 2), where j=1, 2 or 3 and k≠l 

=1, 2 or 3. The independent variables are the water saturation (S1) and gas saturation (S3). Two-phase 
constitutive relationships used in the TD compatible model are described in Appendix A.  The required model 
input parameters are obtained by considering primary drainage of a single phase fluid system. Further physical 

properties of the fluids taken into account are equilibrium interfacial tensions in the gas-water system (gw), 
oil-water system (ow), and gas-oil system (go), water, gas, and oil densities and viscosities, molecular weight 
of the gas,  gas constant, temperature, and reference density of gas. 

The data available in the literature on Bentheimer and Berea sandstones were used as input parameters for 
the interpolation module (using finite elements) that was developed by di Chiara Roupert (2009). Then, for 
each rock sample, the three-phase data that are TD-compatible will be determined from a global capillary 
pressure function and a global mobility function, which depend on the saturation and overall global pressure 
level p. Note that the boundary conditions (of the ternary diagram) for the global capillary pressure and global 
mobility must be consistent with the three sets of two-phase data ("step 2" and "step 3” in Table 1) (di Chiara 
Roupert et al., 2010a). Note, in “step 2”, one has to respect the so-called TD-compatibility condition. The three 

sets of two-phase data built up on the edges of the ternary diagram have to satisfy this condition. The global 
capillary pressure calculated independently on the oil/gas and water/gas side must be the same at the gas 
summit. The TD-compatibility condition is a nonlinear constraint on weighted means of the given two-phase 
relative permeability data set. It presents a certain weakness of this model in contrast to its strength of being 
free of elliptic zones in the saturation space. The two-phase data known on the limits of the ternary diagram 
will then be extended to the whole diagram and thus determine the relative permeabilities in a three-phase 
system by respecting the "Total Differential" condition. The numerical construction of the global mobility and 
global capillary pressure will then be performed by finite elements C0 ("step 4" in Table 1) and C1 ("step 5" in 
Table 1) using Laplacian and bi-Laplacian interpolation. 

Relative permeabilities in three-phase systems will then be derived from global mobilities (d) (“step 4”), fluid 
fractional flows (fi) (“step 5”) using the derivatives of the global capillary pressures (pc

g), the capillary pressure 

curves in a water-gas system (pc
12) and gas-oil system (pc

32) with respect to s1 and s3, individual mobilities (di) 
(“step 5”) by  
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𝑘𝑟1(𝑠, 𝑝) =
𝑓1(𝑠,𝑝)

𝑑1
𝑑(𝑠, 𝑝)

𝑘𝑟2(𝑠, 𝑝) =
𝑓2(𝑠,𝑝)

𝑑2
𝑑(𝑠, 𝑝)

𝑘𝑟3(𝑠, 𝑝) =
𝑓3(𝑠,𝑝)

𝑑3(𝑝−𝑃𝑐
𝑔
(𝑠,𝑝)+𝑃𝑐

32(𝑠3))
𝑑(𝑠, 𝑝)

 (4)  

The relative permeabilities (krj) for the three fluid phases (with j: 1 = water, 2 = NAPL, 3 = gas) that will be 
quantified will then be compared with the three-phase experimental data. 

 

Table 1. Partial Differential Equation-Total Differential (PDE-TD) interpolation algorithm for two-phase data (di 
Chiara Roupert et al. 2010a). 

PDE-TD-interpolation algorithm 

Require: p, krk
ij for k=i,j. Pc

12(s1), Pc
32(s3) for all s1,s3 in [0,1], M3, R, T3, 3

0, i 

Ensure: krj(s,p), fj(s,p), 𝜕 𝑃𝑐
𝑔

𝜕𝑝(𝑠, 𝑝)⁄  for all s in   𝕋

step 1: Solve non-linear Ordinary Differential Equations to obtain (Pc
g)data on 𝜕𝕋

step 2: Correct two-phase data for TD Compatibility 

step 3: Compute d on 𝜕𝕋

step 4: Solve harmonic problem 

 
−Δ𝑑 = 0 𝑖𝑛 𝕋

𝑑 = 𝑑𝑑𝑎𝑡𝑎 𝑜𝑛 𝜕 𝕋

step 5: Solve biharmonic problem 

 

{
 
 
 

 
 
 

Δ2𝑃𝑐
𝑔

= 0 𝑖𝑛  

𝑃𝑐
𝑔

= (𝑃𝑐
𝑔
)
𝑑𝑎𝑡𝑎

 

𝕋

𝑜𝑛 𝜕 

𝜕𝑃𝑐
𝑔

𝜕𝑛
= (

𝜕𝑃𝑐
𝑔

𝜕𝑛
)
𝑑𝑎𝑡𝑎

 𝑜𝑛 𝜕 12, 𝜕 23 𝑎𝑛𝑑 𝜕 13 

𝜕𝑃𝑐
𝑔

𝜕𝜏
= (

𝜕𝑃𝑐
𝑔

𝜕𝜏
)
𝑑𝑎𝑡𝑎

𝑜𝑛 𝜕 12, 𝜕 23 𝑎𝑛𝑑 𝜕 13  
 

          ⟹ 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑓𝑗 , 𝑑𝑗 

𝕋

𝕋 𝕋 𝕋

𝕋 𝕋 𝕋

where 𝑛 and 𝜏 are normal and tangential unit vectors on 𝜕                𝕋

step 6: Compute 
𝜕𝑃𝑐

𝑔

𝜕𝑝
(𝑠, 𝑝), 𝑘𝑟𝑖(𝑠, 𝑝)                                           

 

 

 

 

2.3 Parker-Lenhard model 

Based on the Van Genuchten parameter (m) (Appendix A), obtained from the capillary pressure-saturation (pc-
S) relationship in the two-phase gas-water system, and the irreducible wetting fluid saturation (Swi), water, oil, 
and gas relative permeabilities in a three-phase fluid system can be predicted. The water relative permeability 

krw is described by 

𝑘𝑟𝑤 = 𝑆𝑤

1/2
 1 − [1 − 𝑆𝑤

1/𝑚
]
𝑚

}
2

   (5) 

with: 𝑆𝑤 = 
𝑆𝑤−𝑆𝑤𝑖

𝑆𝑚𝑎𝑥−𝑆𝑤𝑖
  ,   
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where Swi is the irreducible saturation of the wetting fluid phase (here water) and Sm is the maximum 
saturation of the wetting fluid phase. During drainage of the porous medium, water is displaced for example 
by gas, the maximum saturation Smax is equal to 1. Note that the maximum saturation of the wetting fluid 

phase Smax is considered to be independent of fluid properties or saturation history. In the present work, we 
focused our attention to monotonic wetting phase drainage from (complete) saturation. 

 

The oil relative permeability kro is expressed as 

𝑘𝑟𝑜 = (𝑆𝑡 − 𝑆𝑤)
1/2

  [1 − 𝑆𝑤

1/𝑚
]
𝑚

− [1 − 𝑆𝑡

1/𝑚
]
𝑚

}
2

   (6) 

where: 𝑆𝑡 = 
𝑆𝑤+𝑆𝑜−𝑆𝑤𝑖

1−𝑆𝑤𝑖
 . 

The gas relative permeability krg is described by  

𝑘𝑟𝑔 = (1 − 𝑆𝑡)
1/2

 {1 − 𝑆𝑡

1/𝑚
}
2𝑚

  (7) 

where: 𝑆𝑡 = 
𝑆𝑤+𝑆𝑜−𝑆𝑤𝑖

1−𝑆𝑤𝑖
 = 

1−𝑆𝑔−𝑆𝑤𝑖

1−𝑆𝑤𝑖
 

 

 

2.4 Stone’s model I  

To quantify the oil relative permeability in a three-phase system, the first model proposed by Stone in 1970 
uses a geometric averaging between the oil relative permeability krog in the two-phase gas-oil system and the 
oil relative permeability krow in the two-phase oil-water system: 

𝑘𝑟𝑜 =
𝑆𝑜
∗

(1−𝑆𝑔
∗)(1−𝑆𝑤

∗ )
𝑘𝑟𝑜𝑔(𝑆𝑔)𝑘𝑟𝑜𝑤(𝑆𝑤)   (8) 

In this equation, 𝑆𝑜
∗, 𝑆𝑔

∗ and 𝑆𝑤
∗  are the normalized oil, gas, and water saturations, respectively, and are defined 

as: 

𝑆𝑜
∗ =

𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑤𝑖−𝑆𝑜𝑟
   ,  (8a) 

𝑆𝑔
∗ =

𝑆𝑔

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  ,  (8b) 

𝑆𝑤
∗ =

𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖−𝑆𝑜𝑟
  ,  (8c) 

where Swi and Sor are irreducible water saturation and residual oil saturation, respectively. 

In our study, two-phase oil relative permeability in the gas-oil system is expressed by the Mualem-Van 
Genuchten (MVG) model  (Mualem, 1976; van Genuchten, 1980): 

𝑘𝑟𝑜𝑔(𝑆𝑔) = √
𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟
[1 − (1 − (

𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟
)
1

𝑚𝑜𝑔⁄
 )𝑚𝑜𝑔]

2

= √
1−𝑆𝑔−𝑆𝑜𝑟

1−𝑆𝑜𝑟
[1 − (1 − (

1−𝑆𝑔−𝑆𝑜𝑟

1−𝑆𝑜𝑟
)
1

𝑚𝑜𝑔⁄
 )𝑚𝑜𝑔]

2

   (8d) 

and two-phase oil relative permeability in the oil-water system is expresses by the modified Mualem-Van 

Genuchten model: 

𝑘𝑟𝑜𝑤(𝑆𝑤) = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√(1 −
𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖
) [1 − (

𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖
)
1

𝑚𝑜𝑤
⁄

]

2𝑚𝑜𝑤

  (8e) 

where krow,max is the maximum relative oil permeability achieved at irreducible water saturation Swi in the oil-
water system. mog and mow correspond to the MVG parameter in a gas-oil system and oil-water system, 
respectively. 
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3. Experimental data 

To evaluate and compare the four mathematical models explained earlier, experimental data generated on two 

different water-wet sandstones were selected from the literature. 

3.1 Data on Bentheimer sandstone 

Alizadeh (2013) performed a series of steady-state flow experiments on water-wet Bentheimer sandstone to 

obtain two-phase and three-phase relative permeabilities. The absolute brine permeability and porosity of the 

core sample whose data were used in our study were 2.66 D and 0.24, respectively (Alizadeh and Piri, 2014b). 

The physical properties of the fluids used in the flow experiments are provided in Table 2.  

Table 2. Fluid properties of experiments on Bentheimer sandstone (Alizadeh, 2013; Alizadeh and Piri, 2014b) 

 Nitrogen-Brine Oil-Brine Nitrogen-Oil 

Interfacial tension [mN/m] 61.714 40.766 20.957 

Fluid phase Gas (Nitrogen) Oil Water (Brine) 

Densities [kg/m3] 62.84 802.13 1138.12 
Dynamic viscosities [cP]  at 
21.1°C, 800 psig 

0.0187 (#) 2.526 1.144 

 (#) Oak, 1990 

The two-phase relative permeabilities obtained during primary drainage in oil-water, gas-water, and gas-oil 

systems are plotted in Fig. 3 and compared to the simulated two-phase relative permeabilities using the MVG 

model. To quantify the input parameter for the MVG model, we used the experimentally determined end-

point wetting-phase saturations and the associated nonwetting-phase relative permeability as known. 

irreducible water saturations (Swi) in the oil-water and gas-water systems, remaining oil saturation (Sor) in the 

gas-oil system, and maximum relative permeability of the nonwetting fluid (krnw,max). The only remaining model 

parameter, MVG parameter m, was then obtained by a nonlinear fit of the theoretical kr-S against the 

experimentally observed permeability curve using the NLFiT tool of Origin 2019 with the Levenberg-Marquardt 

iteration algorithm. 

The capillary pressure-saturation curve measured by Alizadeh (2013) for a gas-water system was analysed 

numerically with the Van Genuchten model (Fig. 3). The optimal calibration of the experimental pc-S data was 

obtained using the fit of the three model parameters: Swi, m, . All fit parameters and characteristics of the 

optimization process are listed in Table C1 (Appendix C). It is worthwhile to mention that the irreducible water 

saturation or residual oil saturation quantified from capillary pressure curves is systematically smaller than 

that observed experimentally in the two-phase flow experiment. From the theoretical point of view, the 

numerical value of parameter m derived from the MVG model should be equal to that of parameter m 

appearing in the Van Genuchten (Pc-S) model. As the aim of our study is to represent as close as possible the 

experimental constitutive relationships, we preferred to keep fitted the parameter m in both relationships. 
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(a) (b) 

  

(c) (d) 

Fig. 3. Measured and simulated two-phase constitutive relationships for Bentheimer sandstone: (a) water-oil 
relative permeability versus water saturation, (b) water-gas relative permeability versus water saturation, (c) 
oil-gas relative permeability versus oil saturation, and (d) water-gas capillary pressure as a function of water 
saturation (Alizadeh, 2013; Alizadeh and Piri, 2014b).   

 

3.2 Data on Berea sandstone 

Oak (1990) performed a series of steady-state flow experiments on water-wet Berea sandstone to obtain two-

phase and three-phase relative permeabilities. The absolute permeability and porosity of the core sample 

whose data were used here were 0.2 D and 0.22. The physical properties of the fluids used in his experiments 

are provided in Table 3.  

The two-phase relative permeabilities obtained in Experiments 2, 8, and 13 were conducted in oil-water, gas-

water and oil-gas systems. The measured and numerically simulated two-phase relationships are presented in 

Fig. 4. The capillary pressure-saturation curves determined in Oak’s experiments in a gas-water, water-oil and 

oil-gas system were analysed numerically with the Van Genuchten model (Fig. 4). All fit parameters and 

characteristics of the optimization process are summarized in Table C2 (Appendix C).  

Table 3. Fluid properties of flow experiments on Berea sandstone (0ak, 1990) 

 Nitrogen-Brine Oil-Brine Nitrogen-Oil 

Interfacial tension [mN/m] 72 53 25 (#) 
Fluid phase Gas (Nitrogen) Oil Water (Brine) 

Densities [kg/m3], at 800 psig 62.84 752 1000 
Dynamic viscosities [cP] at 21 °C 0.0187 1.77 1.06 
 (#) Oak et al. (1990) 
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(a) (b) 

  

(c) (d)         NB: pc-S data digitized from Oak et al. (1990) 

Fig. 4. Measured and simulated two-phase constitutive relationships for Berea sandstone: (a) water-oil 
relative permeability versus water saturation, (b) water-gas relative permeability versus water saturation, (c) 
oil-gas relative permeability versus oil saturation, and (d) water-gas, water-oil, and oil-gas capillary pressure 
curves as functions of wetting-phase saturation (Oak, 1990).   

3.3 Comparison of measured and predicted three-phase kr values 

The saturation path of three decreasing water saturation/decreasing oil saturation/increasing gas saturation 
(DDI) experiments performed on Bentheimer sandstone by Alizadeh and Piri (2014b) and 7 DDI experiments 
performed on Berea sandstone by Oak (1990) are shown in Fig. 5. The experimental two- and three-phase 

relative permeabilities obtained on the Bentheimer and Berea sandstones were used to predict three-phase 
flow in porous media using the four mathematical models described earlier in section 2. 

 

  

(a) (b)  

Fig. 5. Saturation path of DDI experiments conducted on (a) Bentheimer sandstone (Alizadeh and Piri, 
2014b) and (b) on Berea sandstone (Oak, 1990). Arrows indicate the direction of saturation path chosen. 

 

In our numerical study, the model performance was evaluated by quantitative and qualitative methods. In the 
qualitative approach, the response of each model was first visually analyzed by plotting the measured and 
simulated values of relative permeabilities as functions of the saturation of the corresponding fluid phase. To 
quantify the goodness of the prediction of the measured kr values, we used the root mean square error 
(RMSE)  
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑀𝑖 − 𝑃𝑖)2

𝑛
𝑖=1         (9) 

 
the coefficient of residual mass (CRM) 

𝐶𝑅𝑀 =
∑ 𝑀𝑖

𝑛
𝑖=1 −∑ 𝑃𝑖

𝑛
𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

         (10) 

the relative error (RE) defined as 

𝑅𝐸 =
𝑃𝑖−𝑀𝑖

𝑀𝑖
           (11) 

and the maximum relative error (MRE) expressed by 

𝑀𝑅𝐸 =
𝑚𝑎𝑥|𝑃𝑖−𝑀𝑖|𝑖=1

𝑛

𝑚𝑎𝑥𝑀𝑖
         (12) 

where Mi and Pi represent the measured and predicted kr values, and n is the number of experimental data.  

The RMSE is an accuracy index and expresses the average model prediction error in units of the variable of 

interest. It can range from 0 to ∞, is indifferent to the direction of errors, and represents negatively oriented 
scores. The CRM illustrates the tendency of a model to overestimate or underestimate the measurements 
(positive values for CRM indicate that the model underestimates the measurements and negative values for 
CRM indicate a tendency to overestimate). 

To analyze globally the response and goodness of the different models to predict the three-phase relative 
permeabilities of water, oil, and gas, we plotted the simulated kr values against the measured kr values and 
analyzed the scatter plot by linear regression (using OriginLab 2019). The quantified coefficient of 
determination (R-squared) is expressed by: 

𝑅2 =
1

𝑛

∑ [(𝑀𝑖−𝑀̅)(𝑃𝑖−𝑃)̅̅ ̅]
2𝑛

𝑖=1

𝜎𝑀×𝜎𝑃
  , with 𝑀̅ =

1

𝑛
∑ 𝑀𝑖

𝑛
𝑖=1  and 𝑃̅ =

1

𝑛
∑ 𝑃𝑖

𝑛
𝑖=1  , (13) 

where 𝜎𝑀 qnd 𝜎𝑃 are the standard deviation of Mi and Pi, respectively. R-squared is a statistical measure of 
how close the data are to the fitted regression line and demonstrates thus the ratio between the scatter of 
predicted values to the measured values. 

 

4. Results of the numerical modeling  

4.1 Mechanistic model of Shahverdi & Sohrabi  

4.1.1 Implementation of the model 

To test the implementation of the mechanistic model developed by Shahverdi and Sohrabi (2017), we used 
Oak’s Experiment 15 (or named G1 in Shahverdi and Sohrabi (2017)). The six two-phase relative permeabilities 

are expressed by the Mualem-Van Genuchten model (see Appendix B). The used model parameters are 
reported in Table 4. To quantify the characteristic coefficients, Aij, shown in Table 5, we used the NLFiT tool of 
Origin 2019 with the Levenberg-Marquardt iteration algorithm and user-defined fitting functions with multiple 
variables.  

Table 4. Model input parameter used to describe the experimental two-phase relative permeabilities from the 
Oak experiment on Berea sandstone 

Oil-Water system Gas-Water system Gas-Oil system 

mwo mow mwg mgw mog mgo 
0.80594 0.84696 0.91241 1.05023 0.84498 0.81252 

Swi
wo Swi

ow Swi
wg Swi

gw Sor
og Sor

go 

0.264 0.264 0.384 0.384 0.259 0.259 

 krow,max  krgw,max  krgo,max 
 0.892  0.727  0.827 

 

Table 5. Quantified characteristic coefficients Aij  and uncertainty intervals (standard errors) associated with 

model parameter estimates by fitting the three-phase kr of Experiment 15 (R-squared=0.99) 
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Aow Aog Awo Awg Ago Agw 
0.6178 ± 0.051 1 ± 38.569 0.9894 ± 0.029 0.3269 ± 12.579 0.6942 ± 0.042 1 ± 0.109 

The fit of Oak’s experimental data (originating from Experiment 15 on soil sample 6 (which corresponds to  

Experiment G1 named by Shahverdi and Sohrabi (2017)) was achieved in our runs after 420 iterations with a 

Chi-square tolerance value of 1×10-9, giving a fit result with R-squared of 0.99. It is worth noting that the 

uncertainty intervals obtained for the characteristic coefficients Aog and Awg (Table 5) are extremely high 

compared to their numerical values, which were bounded in the fitting procedure between 0 and 1. The 

predicted kr values of Oak’s DDI experiments shown in the following are obtained using the model parameter 

estimates given in Table 5.  We did not yet consider them in our modeling approach to predict the level of 

uncertainty associated with these parameter estimates through i.e. an assessment of the covariance matrix. 

However, the estimated coefficients Aij are quite different from the numerical values published by Shahverdi 

and Sohrabi (2017), who used the Genetic algorithm as described in Shahverdi et al. (2011), in their nonlinear 

fitting procedure for estimation of relative permeability. The relative permeabilities for the corresponding two-

phase systems similar to ours, the way of implementing the two-phase relative permeabilities (in our case by 

using the analytical function of MVG model; in their case spline functions), and the automatic fitting procedure 

itself seem to significantly impact the numerical values of estimated coefficients Aij. The main differences can 

be summarized as follows: In our work, (1) Aog is greater than Aow, hence the oil phase is more dominated by 

the gas phase than the water phase, and (2) the comparison between Ago and Agw indicates that more fraction 

of gas saturation is governed by water. However, as shown in Fig. 6, the detailed comparison of fitted kr values 

against the experimental data indicates that our fitted kr values have RMSEs values that are comparable with 

the tuned kr values found by Shahverdi and Sohrabi (2017). It is certainly not surprising that the estimation of 

these characteristic coefficients does not allow a unique solution. This is related not only to the nature of the 

inverse problem but also to the approach employed to the minimization of a given objective function. 

    

(a) 
Tuned (Shahverdi&Sohrabi,2017) RMSE= 0.0041 CRM= 0.139 

(b) 
Tuned (Shahverdi&Sohrabi,2017) RMSE= 0.0099 CRM= -0.399 

Fitted Exp 15      (MRE=0.438) RMSE= 0.0109 CRM= -0.215 

 Predicted Exp 15 (with coeff. of 
S&S) 

RMSE= 0,0141 CRM=  0,471 

B 

Fitted Exp 15      (MRE=0.188) RMSE= 0.0029 CRM=-0.044 

 

 

(c) 
Tuned (Shahverdi&Sohrabi,2017) RMSE= 0.0191 CRM= -0.010 

Fitted Exp 15   (MRE=0,065) RMSE= 0.0123 CRM=  0.014 
 

 

Fig. 6. Comparison of relative permeabilities measured from Oak’s DDI Experiment 15 (G1) and those 
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obtained from the mechanistic model by fitting the characteristic coefficients Aij:  (a) water relative 
permeability versus water saturation, (b) oil relative permeability versus oil saturation, and (c) gas relative 
permeability versus gas saturation.  

To further explain the observed differences, a profile likehood analysis could be carried out for each given DDI 

path (Ranaee, 2015) in order to investigate for some given upper and lower limits of confidence intervals, if 

the model displays a unique minimum (identifiability case) or, on the contrary, if the case is not structurally 

identifiable. One can therefore make “a priori” choice on the path to be chosen in order to guarantee an 

exploitable fitted model. In our study, we have chosen to use automatic nonlinear minimization of the 

objective function using the NLFiT tool implemented in Origin 2019 with the Levenberg-Marquardt iteration 

algorithm, whereas the coefficients generated by Shahverdi and Sohrabi (2017) were determined with a 

genetic algorithm. To build up the objective function we used a continuous description of data sets using the 

constitutive analytical MVG relationship whereas the genetic algorithm approach implemented by Shaverdi 

and Sohrabi (2017) was based on kr values represented by quadratic B-Spline functions. Note also that the 

quantified coefficient of residual mass (CRM) do not always exhibit similar tendencies: for example, the water 

relative permeability is underestimated by Shahverdi and Sohrabi (2017) and only slightly overestimated in 

our study whereas the estimates of gas relative permeabilities show contrary trend.   

Concerning the prediction of kr -values, globally, our results obtained for Experiments 17 ("G2") and 18 ("G3") 

are similar to those obtained by Shahverdi and Sohrabi. The detailed comparison of predicted kr values (water, 

oil, gas) for Experiments 17 and 18 with those of Shahverdi and Sohrabi (2017) is documented in Appendix D. 

 

4.1.2 Prediction of Oak’s DDI Experiments 16, 19, 20 and 25 

Figs. 7-10 show the predicted three-phase relative permeabilities along the DDI saturation paths of 

Experiment 16, 19, 20 and 25. Not surprisingly, the relative permeabilities predicted for Experiment 16 by the 

mechanistic model clearly represent the measured kr values. Its DDI saturation path is close to that of  

Experiment 15 used in the calibration process of the characteristic coefficients Aij (Fig. 3) and therefore the 

numerical values of CRM and MRE are quite similar. The relative permeabilities predicted in Experiment 19 and 

25 for water and gas also perfectly fits the observed experimental data expressed by low RMSEs and low 

MREs, ranging between 1 and 17%. However, the oil relative permeabilities are strongly overestimated as 

shown by the high negative values of CRM. In the case of Experiment 20, which corresponds to a saturation 

path at irreducible water saturation, the water relative permeability is predicted as very close to zero (Fig. 9). 

Surprisingly, in this case, the predicted oil relative permeabilities as well as the gas relative permeabilities are 

highly underestimating the observed values. The MRE value attains about 64 and 28% for the predicted oil and 

gas permeability, respectively.  

 

   
(a) RMSE=0.01792 ; CRM=-0.304 ; MRE=0.464 (b) RMSE=0.00407 ; CRM=-0.077; MRE=0.008 (c) RMSE= 0.02318 ; CRM=0.113 ; MRE=0.138 

Fig. 7. Relative permeabilities measured from Oak’s DDI Experiment 16 compared to those obtained from the 
mechanistic model:  (a) oil relative permeability versus oil saturation, (b) water relative permeability versus 
water saturation, and (c) gas relative permeability versus gas saturation 
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(a) RMSE=0.01617 ; CRM=-4.489 ; MRE=2.028 (b) RMSE=0.00270 ; CRM=0.033 ; MRE=0.169 (c) RMSE= 0.02386 ; CRM=0.013 ; MRE=0.084 

Fig. 8. Relative permeabilities measured from Oak’s DDI Experiment 19 compared to those obtained from the 
mechanistic model:  (a) oil relative permeability versus oil saturation, (b) water relative permeability versus 
water saturation, and (c) gas relative permeability versus gas saturation. 
 
 

   
(a) RMSE=0.19314 ; CRM=0.494 ; MRE=0.637 (b) RMSE= 7 ×10

-05 
; CRM= undef. ; RE=undef. (c) RMSE= 0.06246; CRM=0.290; MRE=0.280  

Fig. 9. Relative permeabilities measured from Oak’s DDI Experiment 20 compared to those obtained from the 
mechanistic model:  (a) oil relative permeability versus oil saturation, (b) water relative permeability versus 
water saturation, and (c) gas relative permeability versus gas saturation. 
 

   
(a) RMSE=0.01668 ; CRM=-2.996 ; MRE=1.284 (b) RMSE=0.00446 ; CRM=0.0004; MRE=0.136 (c) RMSE= 0.02998 ; CRM=0.030 ; MRE=0.018 

Fig. 10. Relative permeabilities measured from Oak’s DDI Experiment 25 compared to those obtained from 
the mechanistic model:  (a) oil relative permeability versus oil saturation, (b) water relative permeability 
versus water saturation, and (c) gas relative permeability versus gas saturation. 

 

4.1.3 Prediction of Alizadeh’s experiments on Bentheimer sandstone 

The required input parameters used for the description of the experimental two-phase relative permeabilities 

in the mechanistic model (see Appendix B) are summarized in Table 6. To test the influence of the 

characteristic coefficients Aij on the prediction of the three-phase relative permeabilities along the three DDI 

saturation paths, we decided to apply three options: to quantify the coefficients Aij by nonlinear fit we used (1) 

in option A the measured kr values of Experiment A, (2) in option C the experimental results of Experiment C, 

and (3) in option AC both data sets of results. The quantified characteristic coefficients Aij for each of the three 

options are reported in Table 7. It is worth noting that the uncertainty intervals obtained for the characteristic 

coefficient Awg are high compared to their numerical values, which were bounded in the fitting procedure 

between 0 and 1. Especially in modelling option A, the standard error of Awg is extremely high and underlines 

that the model parameter obtained is rather uncertain. The predicted kr values of Alizadeh’s DDI experiments 
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shown in the following are obtained using the model parameter estimates given in Table 7.  We did not yet 

consider them in our modeling approach to predict the level of uncertainty associated with these parameter 

estimates through i.e. an assessment of the covariance matrix. Comparing the resulting coefficients from 

option A with those quantified from option C, unlike the numerical value of Aow, the differences are quite 

significant. Aog, for example, which characterizes the relation between the oil saturation in the two-phase oil-

gas system and oil saturation in the three-phase fluid system, is found to be zero in option A, while in option C 

it takes the maximum value of 1. A similar fact can be stated for coefficient Awg. In option AC, the quantified 

characteristic coefficients are situated between either option A and option C, or closer to the coefficients of 

option C. The latter can be attributed to the fact that the data set of Experiment C contains more values than 

the data set of Experiment A.  

Table 6. Model input parameter to describe the experimental two-phase relative permeabilities 

Oil-Water system Gas-Water system Gas-Oil system 

mwo mow mwg mgw mog mgo 
0.87578 1.0207 0.9718 1.1499 1.0359 1.2618 

Swi
wo Swi

ow Swi
wg Swi

gw Sor
og Sor

go 

0.089 0.089 0.234 0.234 0.207 0.207 

 krow,max  krgw,max  krgo,max 
 0.841  0.475  0.657 
 

Table 7. Quantified characteristic coefficients Aij and uncertainty intervals (standard errors) associated with 

model parameter estimates by fitting the three-phase kr of (1) Experiment A - called option A (R-

Squared=0.86), (2) Experiment C - called option C (R-squared = 0.94) and (3) Experiments A and C – called 

option AC ( R-squared = 0.93). 

Aow Aog Awo Awg Ago Agw 

(1) Option A 
0.9848 ± 0.056 0 ± 0.174 0.9179 ± 0.046 0.0956 ± 3.5×108 1 ± 0.810 0.9054 ± 0.16 

(2) Option C 
1 ± 0.031 1 ± 0.133 0.8050 ± 0.528 1 ± 3.695 0.8574 ± 0.272 1 ± 0.186 

(3) Option AC 
1 ± 0.024 1 ± 0.096 0.9228 ± 0.057 0.506 ± 2.210 0.8891 ± 0.114 1 ± 0.275 

Figs. 11-13 show the fitted and predicted three-phase relative permeabilities along the DDI saturation paths of 

Experiment A, C and D1. To qualify the goodness of each of the numerical simulations, we specified the 

corresponding RMSE, CRM and MRE. The simulated water relative permeabilities of Experiment A and C 

globally overestimates the experimental values. Note that Experiment D1 corresponds to the case where 

water is at irreducible saturation and thus immobile. However, the oil relative and gas relative permeability 

measured in Experiment C and D1 are both underestimated by all three model options.  

The detailed comparison of all predicted/fitted kr values with the measured values show that  the numerical 

results obtained with coefficients of option C and AC are overly closer to the experimental data than those 

quantified with coefficients of option A. One reason for this may be the higher number of data points 

considered during the optimization procedure of the characteristic coefficients Aij, but also the more central 

location of DDI saturation path of Experiment C in the ternary diagram. The use of two experimental data sets 

(option AC) for tuning of the characteristic coefficients, as suggested by Shahverdi and Sohrabi (2017), to 

reduce the degree of uncertainty by employing more measured data of three-phase relative permeabilities, 

slightly improves only the goodness of predicted kr values. Therefore, in the following global analysis we will 

only consider the simulated results obtained with model option C. 
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(a) (b) (c) 

  Fitted Experiment A 

RMSE=0.02067 ; CRM=-0.284 ; MRE=0.318 RMSE=0.01759 ; CRM=-0.352 ; MRE=0.231 RMSE=0.00724 ; CRM=-0.052 ; MRE=0.109 

Predicted Experiment A using coefficients Aij of option C 

RMSE=0.02936 ; CRM=-0.093 ; MRE=0.570 RMSE=0.02211 ; CRM=-0.492 ; MRE=0.200 RMSE=0.00881 ; CRM=-0.124 ; MRE=0.127 

Predicted Experiment A using coefficients Aij of option AC 

RMSE=0.02020 ; CRM=-0.287 ; MRE=0.305 RMSE=0.02294 ; CRM=-0.518 ; MRE=0.203 RMSE=0.00786 ; CRM=-0.085 ; MRE=0.103 

Fig. 11. Relative permeabilities measured from Alizadeh’s DDI Experiment A compared to those fitted and 
predicted (using option C and option AC):  (a) water relative permeability versus water saturation, (b) oil 
relative permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 

 

   
(a) (b) (c) 

  Fitted Experiment C 

RMSE=0.00335 ; CRM=-2.972 ; MRE=3.245 RMSE=0.04111 ; CRM=0.170 ; MRE=0.241 RMSE=0.00979 ; CRM=0.048 ; MRE=0.061 

Predicted Experiment C using coefficients Aij of option A 

RMSE=0.00628 ; CRM=-5.600 ; MRE=6.171 RMSE=0.06675 ; CRM=0.344 ; MRE=0.352 RMSE=0.01584 ; CRM=0.069 ; MRE=0.138 

Predicted Experiment C using coefficients Aij of option AC 

RMSE=0.00638 ; CRM=-5.658 ; MRE=6.322 RMSE=0.04040 ; CRM=0.162 ; MRE=0.237 RMSE=0.01035 ; CRM=0.049 ; MRE=0.066 

Fig. 12. Relative permeabilities measured from Alizadeh’s DDI Experiment C compared to those fitted and 
predicted (using option A and option AC):  (a) water relative permeability versus water saturation, (b) oil 
relative permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 

 

   
(a) (b) (c) 

  Predicted Experiment using coefficients Aij of option A 

RMSE=9.52×10
-07 

; CRM=undef ; MRE=undef RMSE=0.25118 ; CRM=0.5467 ; MRE=0.489 RMSE=0.06373 ; CRM=0.340 ; MRE=0.379 

Predicted Experiment using coefficients Aij of option C 

RMSE=3.62×10
-11 

; CRM=undef ; MRE=undef RMSE=0.11295 ; CRM=0.200 ; MRE=0.269 RMSE=0.06208 ; CRM=0.368 ; MRE=0.327 

Predicted Experiment using coefficients Aij of option AC 

RMSE=1.06×10
-06 

; CRM=undef ; MRE=undef RMSE=0.11195 ; CRM=0.196 ; MRE=0.267 RMSE=0.05835 ; CRM=0.346 ; MRE=0.310 

Fig. 13. Relative permeabilities measured from Alizadeh’s DDI Experiment D1 compared to those predicted 
using option A, C and option AC:  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 
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4.1.4 Global analysis of predicted three-phase relative permeabilities  

For further investigation of the accuracy of the model, the three-phase relative permeabilities predicted by the 

model for each fluid phase are plotted against the measured relative permeabilities obtained for Berea and 

Bentheimer sandstone (Figs. 14-16). Each figure also contains a description of the quantified relative error as a 

function of the measured relative permeability in the three-phase system.  

In the case of Berea sandstone, as shown by the cross-plot (Fig. 14), the water relative permeability is 

reasonably well predicted by the mechanistic model. Globally, it slightly overestimates the measured kr values 

characterized by a relative error of about 0.13±0.53. However, for the Bentheimer sandstone, the predicted 

water relative permeabilities deviate strongly from the experimental measurements. In this case, the scatter of 

the predicted values to the measured values is strongly disordered and cannot be reasonably described by the  

  

  
(a) (b) 

Fig. 14. Cross-plot of the calculated three-phase water relative permeability against the measured three-
phase water relative permeability and the associated relative error as function of measured water relative 
permeability: (a) Berea sandstone, (b) Bentheimer sandstone. 

fitted regression line (R-squared=0.56). Except for a high measured water relative permeability, the 

mechanistic model largely overestimates the experimental data, up to a factor of 7 for low relative 

permeabilities. The average relative error is about 2.2 and the standard deviation of the relative error is 2.15.   

For both sandstones, the cross-plot of calculated oil relative permeability against the measured oil relative 

permeability can be represented by the fitted regression line (Fig. 15), with a R-squared of 0.95 and 0.99. 
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(a) (b) 

Fig. 15. Cross-plot of the calculated three-phase oil relative permeability against the measured three-phase 
oil relative permeability and the associated relative error as function of measured oil relative permeability: 
(a) Berea sandstone, (b) Bentheimer sandstone. 

The cross-plot for the three-phase oil relative permeability is characterized by two regions. For measured oil 

relative permeability below 0.1, the predicted permeabilities are significantly higher than those observed, 

attaining kr values 10 times or more. For measured oil relative permeabilities higher than 0.1, the oil relative 

permeabilities predicted by the mechanistic model are about  60 and 25% lower than the measured kr values 

in the case of Berea sandstone and Bentheimer sandstone, respectively. However, the average relative errors 

were quantified to 3.25 (±4.75) for Berea sandstone and 1.27 (±2.78) for Bentheimer sandstone, respectively. 

The obtained global overestimate of measured oil relative permeabilities is clearly attributed to the weight of 

the large number of experimental data with oil relative permeabilities lower than 0.1.    

Analyzing the fitted regression line of the cross-plot shown in Fig. 16, one could again conclude that the 

predicted gas relative permeabilities underestimated the measured data of the Berea sandstone and 

Bentheimer sandstone by about 10 and 30%, respectively; but the average relative error of about 1.69 (±6.71) 

quantified for the experimental data of Berea sandstone does not give the same conclusion.  Apparently, the 

mechanistic model overestimates the low relative permeabilities measured in the experiment, even by factor 

of 10 and more. The large number of data close to the origin does not strongly influence the slope of the 

regression line but have a strong impact on the average relative error.  In the case of Bentheimer sandstone, 

the maximum relative errors observed for the predicted gas relative permeability do not exceed 1.5 for the 

extremely low gas relative permeabilities measured in the experiment. 
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(a) (b) 

Fig. 16. Cross-plot of the calculated three-phase gas relative permeability against the measured three-phase 
gas relative permeability and the associated relative error as function of measured gas relative permeability: 
(a) Berea sandstone, (b) Bentheimer sandstone. 

 

 

4.2 Total Differential (TD) compatible model 

4.2.1 Prediction of global mobilities  

The TD compatible model introduced by di Chiara Roupert et al. (2010a, 2010b) quantifies in the first major 

step the global mobilities in the ternary diagram by numerical resolution of the Laplace equation. Note that on 

the three edges of the ternary diagram, the global mobilities are prescribed using the known individual phase 

mobilities in the two-phase systems. In the TD compatible model, the global mobility at saturation level 

s (s1,s3) and global pressure p are defined as follows: 

𝑑(𝑠) = 𝑘𝑟1(𝑠)𝑑1 + 𝑘𝑟2(𝑠)𝑑2+𝑘𝑟3(𝑠)𝑑3 ,   (14) 

where dj and krj denote the mobility and relative permeability of phase j=1 (water), 2 (oil) and 3 (gas). Water 

and oil are supposed to be incompressible fluids, while the dynamic viscosities of the fluid phases (j) are 

supposed to be constant and independent of the pressure level. Variation of gas density (3) with  gas pressure 

(p3) is taken into account in the computation of gas mobility. The phase mobilities are expressed by: 

𝑑1 =
1

𝜇1

𝑑2 =
1

𝜇2

𝑑3 =
1

𝜇3

𝜌3(𝑝3)

𝜌3
°  ≡

1

𝜇3
𝐵3

   ,    (15) 

Where 𝜌3
°  is the gas density at reference pressure and B3 is the volume factor. 

In our study, we extended the original TD compatible model by integrating experimentally based residual 

saturations of the wetting fluid into two-phase systems. To numerically integrate the relative permeabilities of 

the non-wetting fluids into the three edges required for complete computation of the global mobilities on the 

edges, we linearly extrapolated the kr values between the experimentally quantified maximum relative 
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permeability of the non-wetting fluid (krnw,max) and 1. An illustrative example of the modifications is shown in 

Fig. 17 for the oil-gas edge of Bentheimer sandstone. 

In the following, we first discuss the application of the TD compatible model to the Bentheimer sandstone, 

then use the experimental data available for the Berea sandstone to test the prediction of global mobilities 

using the TD compatible model.  

  

4.2.1.1 Bentheimer sandstone 

Based on the model input parameter outlined in Appendix C1 and the fluid properties and experimental 

conditions of the DDI flow tests performed on Bentheimer sandstone (see section 3.2), the two-phase relative 

permeabilities and global mobilities on the three sides of the ternary diagram were quantified as shown in Fig. 

17. To parameterize the required capillary pressure curves in a water-oil and oil-gas system, we used both the 

model parameters of the water retention curve in the water-gas system described in Appendix C1 and the 

scaling factors ij for the fluid system oil/water and gas/oil based on the measured interfacial tensions (fluid 

couples gas/water, oil/water and gas/oil) (see Table 2).  To model the global mobilities on the ternary diagram, 

we used a spatial discretization of 0.01 saturation intervals. The simulated global mobilities are shown in Fig. 

17 in form of iso-values ranging from 144 to 53650 mskg-1. 

  
(a) (b) 

 

 
(c) (d) 

Fig. 17. Two-phase relative permeabilities and global mobilities applied to the water-oil (a), oil-
gas (b) and water-gas (c) edge of the ternary diagram and global mobilities (d) quantified for the 
Bentheimer sandstone.  

To compare the simulated global mobilities with the experimental data of the three DDI flow Experiments (A, 

C, and D1), we first extracted from our numerical results the global mobilities for the corresponding 

experimental saturations (S1, S2 and S3). The experimental phase mobilities were then determined from Eq. 15 

using the dynamic viscosities (Table 2). The variation of the volume factor B3 with gas pressure could be 

considered negligible. Nevertheless, we can infer from the resolution of the global capillary pressure on the 
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ternary diagram that the difference in gas pressure (p3) compared to the reference gas pressure of 55.157 atm 

is very small. The minimum gas pressure (water summit) was approximately 55.161 atm, while  the maximum 

gas pressure (gas summit) was approximately 55.205 atm. Thus, the resulting volume factor of the gas B3 (Eq. 

15) varied between 0.99999 and 1.00082.  

Fig. 18 shows the comparison of global mobilities predicted by the model and those experimentally 

determined from DDI Experiments A, C and D1. Apart from DDI Experiment D1, the simulated global mobilities 

strongly overestimate the experimental data. The relative error in DDI Experiment A is highest, with an 

approximate value of 8.26±9.16 (in Experiment C, RE=2.35±1.91). Its maximum relative error of 24 is observed 

for a gas saturation of 0.11. When approaching the gas summit, at Sg = 0.57, the relative error decreases to 1.2. 

Model predictions, however, are reasonably good in the area where water is under irreducible saturation. (DDI 

Experiment D1). The TD compatible model just slightly overestimates the experimental global mobilities. In 

this case, the relative error does not significantly decrease with increasing gas saturation and is quantified to 

be approximately 0.34±0.18. 

 

 

 

   

(a) (b) (c) 

Fig. 18. Global mobilities predicted for the Bentheimer sandstone  and compared to the 
experimental data of DDI Experiments A (a), C (b) and D1 (c)  

 

4.2.1.2 Berea sandstone 

Based on the model input parameter outlined in Appendix C.2 and the fluid properties and experimental 

conditions of the DDI flow tests performed on Berea sandstone (see section 3.2), the two-phase relative 

permeabilities and global mobilities on the three sides of the ternary diagram were quantified as shown in Fig. 

19.  To model the global mobilities on the ternary diagram, we used a spatial discretization of 0.01 saturation 

intervals. To parameterize the required capillary pressure curves for the water-oil and oil-gas system, we used 

the model parameters of the capillary pressure curve measured in the water-oil system. As the irreducible 

water saturation (Swi) obtained in the two-phase flow experiments was higher than that obtained from the 

capillary pressure curve, we used the fit parameters obtained when Swi was set to 0.26. We derived the scaling 

factor go required for the fluid system gas/oil from the ratio of parameters  quantified in the water-oil and 

oil-gas system which was about 1.67.  

The simulated global mobilities are shown in Fig. 19 in form of iso-values ranging from 144 to 57112 mskg-1. 

The maximum global mobilities determined at the gas summit are about 7% higher than those quantified for 

the Bentheimer sandstone. This is due to the maximum capillary pressures measured for Berea sandstone at 

irreducible wetting fluid saturation, which are approximately 10 times higher than those of Bentheimer 

sandstone. For the same reference pressure of 55.157 atm applied on the rock samples, the maximum gas 

pressures is achieved at the gas summit to 58.908 atm whereas at the water and oil summits the 
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corresponding gas pressures were calculated by the TD compatible model to about 55.157 and 55.329 atm, 

respectively. Thus the compressibility of the gas phase results in a volume factor B3 whose maximum value at 

the gas summit is about 1.068. However, for gas saturations below 0.6, the quantified volume factor B3 was 

below 1.003. The maximum gas saturation achieved in Oak's DDI experiment is below 60%, and its effect on 

the computation of experimental global mobilities (see Eq. 15) can be ignored. 

  
(a) (b) 

 

 
(c) (d) 

Fig. 19. Two-phase relative permeabilities and global mobilities applied to the water-oil (a), oil-
gas (b) and water-gas (c) edge of the ternary diagram and global mobilities (d) quantified for the 
Berea sandstone.  

After extracting the global mobilities corresponding to the experimental data of the seven DDI flow 

experiments, the numerical results were compared with the experimentally determined global mobilities (Fig. 

20). The same general trend was observed for Bentheimer sandstone: the predictions overestimate the 

observations, and with increasing gas saturations, the differences become acceptable.  For low gas saturations, 

up to 30 or 35%, the simulated global mobilities strongly overestimate the experimental data by a factor of 2 

and more. For example, in the case of DDI Experiment 15, the maximum relative error was quantified to about 

8.3 for a measured gas saturation of about 13%, whereas for a gas saturation of 59% the relative error 

decreased to about 0.3.  The highest average relative error was quantified for the prediction of global 

mobilities of Experiment 25 (RE=24.07±31.89). 
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(a) (b) 

  
(c) (d) 

Fig. 20. Global mobilities predicted for the Berea sandstone and those obtained 
from the experimental data of DDI Experiments 15 and 16 (a), 17 and 18 (b), 19 and 
20 (c)  and 25 (d)  
 

4.2.2 Prediction of global mobilities using local experimental data 

In both test cases, the predicted global mobility overestimates the actual physical values. To obtain values 

close to the experimental global mobilities, we partially "constrained" the model of three-phase 

permeabilities, respecting the condition of Total Differential with regard to measurements. Therefore, we 

implemented the possibility of imposing locally, inside the ternary diagram, global mobilities derived from 

experimental data in the interpolation by finite elements C0. The use of other two-dimensional interpolation 

models of global mobilities between the numerical values given at the edges of the ternary diagram, such as 

the Lagrange interpolation polynomials, was not considered as a very promising improvement over the current 

interpolation method, since the predictions are well above the experimental data. 

In order to constrain our interpolation method, we used one third of the experimental data available for the 

Bentheimer and Berea sandstone DDI experiments to measure local global mobility uniformly distributed 

within the ternary diagram. The resulting “improved” global mobilities will then be used, based on Equation 4, 

to predict the three-phase relative permeabilities (water, oil, gas) for Bentheimer sandstone and Berea 

sandstone (Section 4.2.3). 
 

4.2.2.1 Bentheimer sandstone 

The improved global mobilities obtained for Experiments A, C and D1 are shown in Fig. 18. Using locally 

prescribed mobilities derived from 13 measuring points, the relative errors of the simulated mobilities 
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obtained for Experiment A, C and D1 are significantly reduced but still overestimate the experimental data. In 

the case of Experiment A and C, the relative error is now approximately 2.30±3.67 and 0.49±0.58, respectively, 

whereas the relative error for the predicted mobilities of Experiment D1 becomes very low (RE=0.07±0.09). 

Note that Experiment D1 corresponds to a saturation path where water is at irreducible saturation, and thus 

parallel to the gas-oil edge of the ternary diagram. 

 

4.2.2.2 Berea sandstone 

The improved global mobilities obtained for Experiments 16, 17 and 18 are shown in Fig. 20. Using locally 

prescribed mobilities derived from 34 measuring points, the relative errors of the simulated mobilities 

obtained for Experiments 15-20 and 25 are reduced but still largely overestimate the experimental data. For 

example in the case of Experiment 16, the relative error is now approximately 0.12 ±0.30 instead of 2.74±2.67 

whereas the average relative error for the predicted mobilities of Experiment 20 is also reduced from 

RE=1.94±2.39 to RE=0.15±0.32.  Note that the highest average relative error of simulated global mobilities is 

still observed in Experiment 25, which is however significantly reduced by a factor of approximately 16 

(RE=1.49±3.90).  

 

4.2.3 Prediction of relative permeabilities in a three-phase system 

The numerical construction of the global capillary pressure 𝑃𝑐
𝑔

 is performed by finite elements C1 ("step 5" 
described in Table 1) using bi-Laplacian interpolation of the global capillary pressure prescribed on edges ij of 
the ternary diagram; where tangential and normal derivatives of 𝑃𝑐

𝑔
 are, respectively fixed as Dirichlet and 

Neuman boundary conditions (Appendix E). To quantify the global capillary pressure on the ternary diagram, 

we used a spatial discretization of 0.01 saturation intervals. 

 

Based on the TD compatibility condition introduced by Chavent (2009), two inequalities have to be respected 

(di Chiara Roupert et al., 2010): 

𝛽13(𝑡) − (𝑃𝑐
12(1 − 𝑡) − 𝑃𝑐

12(0) ≤ 𝛽23(𝑡) ≤ 𝛽13(𝑡)    (𝑎)

𝛽13(𝑡) − 𝑃𝑐
32(𝑡) ≤ 𝛽12(𝑡) ≤ 𝛽13(𝑡)       (𝑏)

      (16) 

where 𝛽𝑖𝑗 is the global capillary pressure on edges ij of the ternary diagram, 𝑃𝑐
12 and 𝑃𝑐

32 are the capillary 

pressure in a two phase water-oil and gas-oil system, respectively, and t is the saturation parameter varying 

between zero and one. 

The water fractional flow (f1) and gas fractional flow (f3) are obtained from the derivatives of the global 

capillary pressure function (pc
g) and the derivatives of capillary functions 𝑃𝑐

12 and 𝑃𝑐
32 (di Chiara Roupert et al., 

2010a): 

𝑓1(𝑠, 𝑝) =
𝜕𝑃𝑐

𝑔

𝜕𝑠1
(𝑠, 𝑝) ∙ (

𝑑𝑃𝑐
12(𝑠1)

𝑑𝑠1
)
−1

𝑓3(𝑠, 𝑝) =
𝜕𝑃𝑐

𝑔

𝜕𝑠3
(𝑠, 𝑝) ∙ (

𝑑𝑃𝑐
32(𝑠3)

𝑑𝑠3
)
−1     (17) 

The oil fractional flow (f2) is then quantified using the expression: 

𝑓2(𝑠, 𝑝) = 1 − 𝑓1(𝑠, 𝑝) − 𝑓3(𝑠, 𝑝) .    (18) 

Using the phase mobilities (dj), global mobility (d) and fluid fractional flows (fj), calculated for a given water 

saturation (s1) and gas saturation (s3), the relative permeabilities to water, oil and gas are then derived from 

Equation 4. 

 

4.2.3.1 Bentheimer sandstone 

The analyses of the two inequalities described by Equation 16 are presented in Appendix E. Both conditions 

are evaluated as functions of t and shown in form of a comparison of three curves (Fig. E2, Appendix E). While 
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condition (b) is respected for all saturation parameters t, condition (a) is only satisfied for t≤0.78. For t values 

higher than 0.78, 23(t) is higher than 13(t). Note that the irreducible water saturation (Swir) in the two-phase 

water-gas system was quantified to 0.22. Here, the TD compatible model is not applicable for gas saturations 

higher than (1-Swir). We therefore modified the numerical approach originally introduced by di Chiara Roupert 

et al. (2010a). Instead of solving the biharmonic problem over the entire ternary diagram, in our computation, 

we omitted the immobile water zone near the gas summit. Along this new border, the limit value of 13 

(t=0.78) on each node of the mesh is fixed as known Dirichlet boundary value of the global capillary pressure 

and its corresponding normal derivative belonging to the border.  The biharmonic problem of step 5 (Table 1) 

is solved using HCT finite elements at the given experimental global pressure level of p=55.16 atm 

(corresponding to 800 psig). In our simulations, we used small saturation intervals of 0.005 to produce a 

sufficiently smooth map of the global capillary pressure function Pc
g and its two derivatives with respect to s1 

and s3 (Equation 17). Once the three maps are calculated, the water and gas fractional flows (f1 and f3) are 

then derived using Equation 17. Fig. 21 shows the results of two numerical studies performed: (a) the so-called 

“predicted” distribution of the global capillary pressure and the derived fractional flows of water and gas, (b) 

the corresponding “simulated” distributions when using 13 local experiments based on water and gas 

fractional flows. The 13 local points selected are the same points as in the previous global mobilities studies. 

While on the three edges of the ternary diagram and their neighborhood, the water and gas fractional flows 

reflect the prescribed physical values of the two-phase systems. In the ternary diagram, however, they appear 

as zones of unphysical values. When approaching the water summit, the water fractional flows exceeds locally 

the maximum value of 1 and, simultaneously, the gas fractional flow is below 0. A similar effect, but more 

pronounced in form of an elongated bump is observed for the distribution of the gas fractional flow when 

approaching the gas summit: the gas fractional flows largely exceed the physical upper limit of 1, while the 

water gas fractional flow become locally negative.    

It is worth noting here that the distribution of Pc
g is not significantly modified when using locally prescribed 

water and gas fractional flows. Observing closely, Pc
g differs only locally, in the neighborhood of the 13 “fitting” 

points, at maximum by about 35 Pa and is thus not visible in the chosen colormap of Pc
g. However, the maps of 

f1 and f3 are locally adjusted to the physical conditions of the DDI experiments, which is visible in Fig. 21b. This 

helped to locally reduce the height of the “bump of f3”. Therefore, and to be consistent with the improvement 

achieved in the case of global mobilities, the numerical results obtained with modeling approach (b) were 

further considered. 

The relative permeabilities to water, oil, and gas are then obtained from the TD compatible model using 

Equation 4. Fig. 22 shows the comparison of relative permeabilities measured from Experiment C with those 

predicted by the TD compatible model. The detailed comparison of predicted kr values (water, oil, gas) for 

Experiments A and D1 with those experimentally measured is documented in Appendix E (Figs. E3 and E4). 

In view of the fact that f2 is derived from f1 and f3 according to equation 18, it is not surprising that the 

majority of the predicted relative permeabilities of oil is not physical. The high positive value of CRM also 

indicates that the TD compatible model largely underestimates the measurements.  As the water and gas 

fractional flows predicted for DDI Experiment C are mostly positive, we can use both global mobilities and 

fractional flows, to compare the measured water relative permeabilities and gas relative permeabilities with 

those predicted. The predicted water relative permeabilities largely overestimate the measured values. In 

addition, in the case of Experiment C, the tendency of decreasing water relative permeabilities with increasing 

water saturation is not consistent with the laws of physics. However, in the case of Experiment A (Fig. E3), the 

predicted “positive” water relative permeability increases with water saturation. The prediction of gas relative 

permeabilities is rather acceptable with the TD compatible model. As shown in Figs. 22, E3 and E4, the 

predicted gas relative permeabilities increase with gas saturation but still overestimate the experimentally 

measured values by a factor of approximately 1.5 to 2. 
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Global capillary pressure Water fractional flow Gas fractional flow 

(a) 

 
  

(b) 

   

Fig. 21. Bentheimer sandstone: Global capillary pressure, water fractional flux, gas fractional flux predicted 
(a) and simulated (b) using 13 experimentally derived fractional flow of water and gas.   

  

   

(a) RMSE= 0.1227; CRM=-289.09 (b) RMSE=3.1687; CRM=38.29 (c) RMSE=0.0329; CRM=-0.85 

Fig. 22. Relative permeabilities measured from Alizadeh’s DDI Experiment C compared to those predicted by 
the TD compatible model:  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 

 

4.2.3.2 Berea sandstone 

The analyses of the two inequalities described by Equation 16 are presented in Appendix E. Both conditions 

are evaluated as functions of t and shown in form of a comparison of three curves (Fig. E.5). While condition 

(b) is respected for all saturation parameters t, condition (a) is only satisfied for t≤0.62. For t values higher than 

0.62, 23(t) is higher than 13(t). Note that the irreducible water saturation (Swir) in the two-phase water-gas 

system was quantified to 0.38. Here, the TD compatible model is not applicable for gas saturations higher than 

(1-Swir). We then applied the same choices for this inner boundary (close to the gas summit) and solved the 

biharmonic problem of step 5 (Table 1) as described in section 4.2.3.1. 
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Fig. 23 illustrates the results of calculated distribution of the global capillary pressure and the derived 

fractional flows of water and gas, using 34 local experiment based water and gas fractional flows. The chosen 

34 local points are the same as in the previous global mobilities studies. 

 Global capillary pressure Water fractional flow Gas fractional flow 

 
  

Fig. 23. Berea sandstone: Calculated global capillary pressure, water fractional flux, gas fractional flux using 
34 experimentally derived fractional flow of water and gas.   

 

Here the global capillary pressures prescribed along the three edges of the ternary diagram vary 

between -20000 and 15000 Pa due to the high capillarity of Berea sandstone. Compared to Bentheimer 

sandstone, the difference between the minimum and maximum value of Pc
g is approximately ten times higher 

than in the previous study. In contrast to Fig. 21, the obtained distribution shows a strong local decrease of Pc
g, 

funnel shaped, in the middle of the ternary diagram. This results in high negative values of gas fractional flow. 

In addition, as already observed for the Bentheimer sandstone, an elongated bump along the water-gas side 

appears when approaching the gas summit. The calculated distribution of water fractional flow is smoother 

than in the case of Bentheimer sandstone. However, the physical upper limit of 1 is exceeded (with a 

maximum value of 1.7) in regions along the water-gas side and close to the water summit.  

Since the quantified gas fractional flows are significantly below or above the physical limits of 0 and 1, 

respectively, a further interpretation of the gas fraction in terms of gas relative permeabilities is not possible. 

Therefore, as in the case of Bentheimer sandstone, the relative oil permeabilities in the three-phase system is 

not likely to be determined. The only possible interpretation is therefore limited to the quantification of 

relative water permeabilities (using Equation 4) as the water fractions determined represent physical values, 

except for a small area in the diagram. 

The calculated water relative permeabilities are compared with the experimental data of DDI Experiments 15 

(Fig. 24) and Experiments 18 (Fig. 25). The detailed comparison of predicted water relative permeabilities for 

Experiments 16, 17, 19 and 25 with those experimentally measured is documented in Appendix E (Figs. E6 and 

E7).  

Generally, the measured water relative permeabilities are largely overestimated by the TD compatible model. 

The majority of the predicted values clearly exceed the physical upper limit of 1, which is mainly due to the 

water fractional flow determined, some of which are two orders of magnitude higher than the experimental 

fractional water flows. This is clearly shown, for example, in the case of DDI experiment 15 (Fig. 24). In this 

case, the physical upper limit of the water fractional flow of 1 is not exceeded, but the water relative 

permeability clearly exceeds the maximum value of 1. For example, at a water saturation of 0.32, the water 

fractional flow is about 0.182, which highly overestimates the experimental value (f1=0), and the calculated 

ratio of global mobility to water mobility (d/d1) is about 27. The product of f1 and (d/d1) then gives the high, 

physically unrealistic numerical value of 4.92 for water relative permeability. As shown in Fig. 25, the predicted 

ratios of global mobility to the water mobility are relatively close to the experimentally determined ratios.  

In the case of Experiment 18 the predicted water relative permeabilities are obviously below 1, but in addition, 

as in the other DDI experiments, the experimentally determined water relative permeabilities are clearly 
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exceeded (Fig. 25). The residual mass coefficient (CRM) calculated here is -439, which clearly demonstrates the 

overestimation of the measured values. It should be noted that the global mobilities estimated are rather 

similar to the measured values. 

(a) (a) 

  
(b) (b) 

  
(c) (c) 

  
RMSE= 0,574; CRM=-129.54 RMSE= 0.059; CRM=-493.09 

Fig. 24. Fractional water flows (a), ratios of global 
mobility to water mobility (b) and water relative 
permeabilities (c) measured from Oak’s DDI 
Experiment 15 compared to those predicted by the 
TD compatible model. 

Fig. 25. Fractional water flows (a), ratios of global 
mobility to water mobility (b) and water relative 
permeabilities (c) measured from Oak’s DDI 
Experiments 18 compared to those predicted by the 
TD compatible model. 

 

4.3 Parker-Lenhard model 

4.3.1 Application to Bentheimer sandstone 
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Table 8 summarizes the model input parameter used for the application of the Parker-Lenhard model to the 

Bentheimer sandstone. They were obtained by nonlinear fit of the Van Genuchten (1980) model to Alizadeh’s 

capillary pressure curve measured for soil sample B in a water-gas system (R-Squared (COD)=0.986) or by 

nonlinear fit of the Mualem-Van Genuchten model to Alizadeh’s experimental water relative  permeability-

water saturation curve  (R-Squared=0.994) (see Appendix F.1). Note, in the latter case, m was the only fit 

parameter as the irreducible water saturation Swi was fixed and taken equal to the experimentally determined 

value.  

Table 8. Model input parameter used for the prediction of DDI experiments performed on Bentheimer 

sandstone (Alizadeh, 2013). 

Approach using Run Swi [-] m [-]  [Pa-1] 

Pc-Sw Option Pc-S 0.111 0.810 1.96×10-4 

krw-Sw Option kr-S 0.234 0.972 - 

Fig. 26 shows the comparison of relative permeabilities measured from Experiment C with those predicted by 

the Parker-Lenhard model for both modeling options.  The detailed comparison of predicted kr values (water, 

oil, gas) for Experiments A and D1 with those measured by Alizadeh (2013) is documented in Appendix F.  

Globally, the relative permeabilities to water, oil and gas, predicted with both modeling options overestimate 

the measured kr values (Fig. 26, Annexe F (Figs. F2 and F3)). The best prediction of the water relative 

permeability is achieved with option kr-S which results in lowest RMSE values and smallest negative 

coefficients of residual mass (CRM). Note that in the case of Experiment D1, which is conducted at irreducible 

water saturation, both modeling options satisfactorily predict the measured water relative permeabilities. The 

oil relative permeabilities predicted by modeling option Pc-S still overestimate the experimental data but are 

generally closer to the measured kr values than modeling option kr-S. Surprisingly, the measured gas relative 

permeabilities are strongly overestimated by both modeling options. As shown in Figs. 26, F.2 and F.3, the 

predicted relative permeabilities to gas are rather close to each other and overvalue the experimentally 

quantified permeabilities, also for Experiment D1, by a factor of 2 to 3. This is even surprising as the oil relative 

permeability for Experiment D1 is satisfactorily predicted by both modeling options.  

   
(a) Option kr-S : RMSE= 0.000516; 

CRM=-1.051 
(b) Option kr-S : RMSE=0.04132;  

CRM=-0,849 
(c) Option kr-S : RMSE=0.074049; 

CRM=-2.553 
Option Pc-S : RMSE= 0.00113515;  
CRM=-4.887  

Option Pc-S : RMSE= 0.018387;  
CRM=-0.321 

Option Pc-S : RMSE=0,064833;  
CRM=-2.440 

Fig. 26. Relative permeabilities measured from Alizadeh’s DDI Experiment C compared to those predicted 
(using option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 

 

4.3.2 Application to Berea Sandstone 

Table 9 summarizes the model input parameter used for the application of the Parker-Lenhard model to the 

Berea sandstone. They were obtained by nonlinear fit of the Van Genuchten (1980) model to Oak’s capillary 

pressure curve measured for soil sample 6 in a water-gas system (R-Square (COD)=0.995) or by nonlinear fit of 
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the Mualem-Van Genuchten model to Oak’s experimental water relative permeability-water saturation curve  

(R-Square=0.972) (see Appendix F.2). Note, in the latter case, m was the only fit parameter as the irreducible 

water saturation Swi was fixed and taken equal to the experimentally determined value.  

 

Table 9. Model input parameter used for the prediction of DDI experiments performed on Berea sandstone 

(Oak, 1990). 

Approach using Run Swi [-] m [-]  [Pa-1] 

Pc-Sw Option Pc-S 0.147 0.324 8.05×10-5 

krw-Sw Option kr-S 0.384 0.912 - 
 

The numerical results obtained for the Berea sandstone are shown in Fig. 27 and in Appendix F2. Globally, 

using modeling option kr-S, the relative permeabilities for water, oil and gas are overestimated by both 

modeling options. Modeling option Pc-S underestimates the measured water relative permeabilities, and 

except for Experiments 19 and 25, also the oil relative permeability; whereas the gas relative permeability is 

globally overestimated.  The water and gas relative permeabilities predicted by modeling option kr-S are closer 

to the measured kr values than with modeling option Pc-S as underlined by the RMSE values. However, the oil 

relative permeabilites are better predicted with modeling option Pc-S than with modeling option krw.  As 

shown in Fig. 27, in the case of Experiment 15, modeling option Pc-S strongly overestimates the measured gas 

relative permeability whereas the oil relative permeability is underestimated by the modeling approach. In the 

latter case, here a better prediction with lower RMSE is obtained than with modeling option kr-S. The 

quantified coefficient of residual mass (CRM) also indicates that the measured values are only slightly 

underestimated whereas a strong overestimation is observed with option kr-S. The detailed comparison of 

predicted kr values (water, oil, gas) for Experiments 16-20, 25 with those measured by Oak (1990) is 

documented in Appendix F. 

   
(a) Option kr-S : RMSE= 0.001495; 

CRM=-0.322 
(b) Option kr-S : RMSE=0.017291; 

CRM=-3.073 
(c) Option kr-S : RMSE=0.058371; 

CRM=-1.156 
Option Pc-S : RMSE= 0.004477;  
CRM=0.957 

Option Pc-S : RMSE= 0.004031;  
CRM=0.497 

Option Pc-S : RMSE=0.087431;  
CRM=-2.266 

Fig. 27. Relative permeabilities measured from Oak’s DDI Experiment 15 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. 

4.3.3 Global analysis of predicted three-phase relative permeabilities  

For further investigation of the accuracy of the model, the three-phase relative permeabilities predicted by the 

model for each fluid phase are plotted against the measured relative permeabilities obtained for Berea and 

Bentheimer sandstone (Figs. 28-30). Each figure also contains a description of the quantified relative error as a 

function of the measured relative permeability in the three-phase system.  

In the case of Berea sandstone, as shown by the cross-plot (Fig. 28), the water relative permeability is 

reasonably well predicted by model option kr-S. Globally, it slightly overestimates the measured kr values 

characterized by a relative error of about 0.13± 0.72. It is worthwhile to note that for relative permeabilities 
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higher than 0.04, the predicted values closely approaches the measured relative permeabilities. However, 

model option Pc-S strongly underestimates the measured water relative permeabilities (RE=-0.96±0.02) for the 

whole set of experimental data. In the case of Bentheimer sandstone, model option kr-S also seems as the 

better option to predict the measured water relative permeabilities. Here, both options overestimate the 

experimental data (RE=0.85±1.85 (kr-S), RE=4.72±3.86 (Pc-S)). The deviation from the 1:1 line is high for 

measured water relative permeabilities lower than 0.01; in the case of modeling option Pc-S the maximum 

relative error achieves values higher than 15.    

  

  
(a) (b) 

Fig. 28. Cross-plot of the calculated three-phase water relative permeability against the measured three-
phase water relative permeability and the associated relative error as function of measured water relative 
permeability: (a) Berea sandstone, (b) Bentheimer sandstone. 

The oil relative permeabilities predicted for the Berea sandstone (Fig. 29) show the same general trend as 

observed for the water relative permeabilities: modeling option kr-S overestimates and modeling option Pc-S 

underestimates the measured relative oil permeabilities. However, here, modeling option kr-S strongly 

overestimates the experimental data characterized by a large spreading around a high mean relative error 

(RE=12.59±15.65) whereas modeling option Pc-S seems to be the best option for predicting the experimental 

data (RE=-0.16±0.90) even if the deviation from the 1:1 line increases with increasing measured oil relative 

permeabilities. In the case of Bentheimer sandstone, both modeling options again overestimate the measured 

oil relative permeabilities (RE=7.01±15.66 (kr-S), RE=3.80±7.59 (Pc-S)). It is worth noting here that the 

deviation of predicted oil relative permeabilities from the experimental data is also high for very low oil 

relative permeabilities (<0.01). They attain maximum relative errors of up to 80 and 40 for modeling option kr-

S and modeling option Pc-S, respectively. Globally, the best results are obtained with modeling option Pc-S. It 

satisfactorily predicts the experimental data, as shown by the small deviations from the 1:1 line, when the 

measured relative permeabilities exceed 0.05. 

Using the Parker-Lenhard model, the gas relative permeabilities predicted for Berea sandstone and 

Bentheimer sandstone strongly overestimate the measured gas relative permeabilities (Fig. 30). The relative 

errors of the prediction are quantified to 5.64±17.16 (kr-S) and 38.75±128.63 (Pc-S) for Berea sandstone, and 

3.16±3.29 (kr-S) and 4.41±5.41 (Pc-S) for Bentheimer sandstone, respectively. As already mentioned before, 

the maximum relative errors appear for very low relative permeabilities (<0.01). In the case of Berea 
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sandstone, the maximum relative errors attain values of 1000 (option kr-S) and 100 (option Pc-S) whereas for 

Bentheimer sandstone achieve values of about 26 (option kr-S) and 14 (option Pc-S). Even for higher relative 

permeabilities measured for both sandstones, the predicted gas relative permeabilities overestimate globally 

the experimental data at least by a factor of 2.   

  

  
(a) (b) 

Fig. 29. Cross-plot of the calculated three-phase oil relative permeability against the measured three-phase 
oil relative permeability and the associated relative error as function of measured oil relative permeability: 
(a) Berea sandstone, (b) Bentheimer sandstone. 
 

 

 

 

  
(a) (b) 

Fig. 30. Cross-plot of the calculated three-phase gas relative permeability against the measured three-phase 
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gas relative permeability and the associated relative error as function of measured gas relative permeability: 
(a) Berea sandstone, (b) Bentheimer sandstone. 

 

 

4.4 Stone’s Model I  

The numerical simulations performed with Stone’s model I concern only the oil relative permeability in a 

three-phase system. Table 10 summarizes the model input parameter used for the application of Stone’s 

model I to the Bentheimer sandstone and Berea sandstone. They were obtained by nonlinear fit of the 

Mualem-Van Genuchten model  (Van Genuchten, 1980) to the experimental two-phase (gas-oil, oil-water) 

relative permeability-saturation curves measured for Bentheimer sandstone (Alizadeh, 2013) and Berea 

sandstone (Oak, 1990) (see Appendices C.1 and C.2).  

Table 10. Model input parameter used for the prediction of DDI experiments performed on Bentheimer 

sandstone (Alizadeh, 2013) and Berea sandstone (Oak, 1990). 

 Gas-Oil system Oil-Water system

Rock sample Sor [-] mog [-] Swi [-] mow [-] krow,max [-] 

Bentheimer sandstone 0.207 1.036 0.089 1.021 0.841 

Berea sandstone 0.259 0.845 0.264 0.847 0.892 

 

4.4.1 Application to Bentheimer sandstone 

Fig. 31 shows the comparison of predicted oil relative permeability versus oil saturation with those measured 

in DDI Experiments A, C and D1 (Alizadeh, 2013). Here, the average model prediction errors are acceptable: 

the RMSE values vary between 0.0108 (Experiment A) to 0.0218 (Experiment C). Surprisingly, the oil relative 

permeabilities measured in Experiments C and D1 are reasonably well predicted by Stone’s model I.  

   
(a) RMSE= 0.0108; CRM=-0.685 (b) RMSE=0.0132;  CRM=0.018 (c)  RMSE= 0.0218; CRM= 0.103 

Fig. 31. Oil relative permeabilities versus oil saturation measured on Bentheimer sandstone compared to 
those predicted by Stone’s model I: (a) Experiment A, (b) Experiment C, and (c) Experiment D1. 

Here, the coefficients of residual mass (CRM) range between -0.685 and 0.103. In the case of Experiment A, 

Stone’s model overestimates globally the measured oil relative permeability, by up to a factor of 4 to 8 at oil 

saturations close to the residual oil saturation.   

 

4.4.2 Application to Berea sandstone 

Fig. 32 shows the comparison of predicted oil relative permeability versus oil saturation with those measured 

in DDI Experiments 15-20, and 25 (Oak, 1990). The agreement of the predicted relative oil permeabilities with 

the measurement results is relatively good for Experiments 15, 16, 17, and 20. Larger deviations are observed 

especially in Experiments 19 and 25. The reason for the strong underestimation of the measured oil 

permeabilities (CRM=1) is that the Stone 1 model sets the relative permeabilities for all oil saturations smaller 

than the residual saturations (Sor=0.259) to zero. 
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  (b) RMSE= 0,0028;  CRM= -0.011  (a) RMSE= 0.0033; CRM= 0.474 

  
(c)  RMSE= 0.0025; CRM=  0.228 (d) RMSE= 0.0195; CRM= -1.232 

   

(e) RMSE= 0.0013;  CRM= 1.000 (f)  RMSE= 0.0104; CRM= -0.116 (g) RMSE=0.0017; CRM=1.0 

Fig. 32. Oil relative permeabilities versus oil saturation measured on Berea sandstone compared to those 
predicted by Stone’s model I:  Experiments 15 (a), 16 (b), 17 (c), 18 (d), 19 (e), 20 (f) and 25 (g). 

 

4.4.3 Cross-plot of oil relative permeabilities predicted by Stone’s model I against the experimental three-

phase kr values measured on Berea and Bentheimer sandstone 

For further investigation of the accuracy of Stone’s model I, the three-phase oil relative permeability predicted 

by the model is plotted against the experimental oil relative permeability measured for Berea and Bentheimer 

sandstone (Fig. 33). The figure also contains a description of the quantified relative error as a function of the 

measured oil relative permeability in the three-phase system.  
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(a) (b) 

Fig. 33. Cross-plot of the calculated three-phase oil relative permeability against the measured three-phase 
oil relative permeability and the associated relative error as function of measured oil relative permeability: 
(a) Berea sandstone, (b) Bentheimer sandstone. 

In the case of Berea sandstone, as shown by the cross-plot (Fig. 33), the oil relative permeability is reasonably 

well predicted by Stone’s model 1. Globally, it slightly underestimates the measured kr values characterized by 

a relative error of about -0.31±1.07. The highest relative errors are observed for very low oil relative 

permeabilities, attaining a maximum relative error of about 4 at a measured relative permeability of 0.01. It is 

worthwhile to note that for relative permeabilities higher than 0.3, the predicted values closely approaches 

the measured relative permeabilities. Here, the scatterplot of predicted kr values against the measured data 

can be described by a linear regression (R-squared=0.966) whose slope is close to one.  

The oil relative permeabilities predicted for Bentheimer sandstone show a different behavior than Berea 

sandstone: here, the simulation based on Stone’s model I significantly overestimates the measured relative oil 

permeabilities with a high average relative error and an associated large variance (RE=1.74± 2.68). Just as the 

Berea sandstone, the maximum relative errors appear at low values of measured oil relative permeability. 

However, for higher values of experimental relative permeability, for example above 0.2, the predicted oil 

relative permeabilities systematically underestimate the measured values by about 25% and are well described 

by the fitted straight line of linear regression (R-squared = 0.987). 

 

 

 

5. Discussion  

5.1 Global analysis of predicted three-phase relative permeabilities 

For further evaluation of the accuracy of the 4 different models used to predict three-phase relative 

permeabilities measured in DDI experiments conducted on Bentheimer and Berea sandstones, the relative 

errors (RE) identified in the previous section are summarized in Table 11 individually for each fluid phase.  In 

the following, the main results presented in Table 11 will be discussed with respect to each of the three phase 

relative permeabilities.   
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Table 11. Overview on the determined relative errors (RE) and uncertainty intervals (standard 
errors) of the mathematical models used for the prediction of the relative permeabilities in the 
3-phase fluid system 

  
Mechanistic 
model 

TD 
compatible 
model 

Parker-Lenhard 
model 

Stone’s 
Model I 

Water 
relative 
permeability 

Berea 
sandstone 

0.13±0.53 762±1774 
kr-S 0.13±0.72 

 
Pc-S -0.96±0.02 

Bentheimer 
sandstone 

2.20±2.15 2102±6664 
kr-S 0.85±1.85 

Pc-S 4.72±3.86 

Oil relative 
permeability 

Berea 
sandstone 

3.25±4.75 
not 
quantifiable 

kr-S 12.95±15.65 
-0.31±1.07 

Pc-S -0.16±0.90 

Bentheimer 
sandstone 

1.27±2.78 
not 
quantifiable 

kr-S 7.01±15.66 
1.74±2.68 

Pc-S 3.80±7.59 

Gas relative 
permeability 

Berea 
sandstone 

1.69±6.71 
not 
quantifiable 

kr-S 5.64±17.16 

 
Pc-S 38.75±128.63 

Bentheimer 
sandstone 

0.21±0.53 1.39±2.97 
kr-S 3.16±3.29 

Pc-S 4.41±5.41 

 

5.1.1 Three-phase water relative permeability 

In the case of Berea sandstone, the water relative permeability is reasonably well predicted by the mechanistic 

model. Globally, it slightly overestimates the measured kr values. Nonetheless, for the Bentheimer sandstone, 

the predicted water relative permeabilities varies significantly from the experimental measurements. Except 

for a high measured water relative permeability, the mechanistic model largely overestimates the 

experimental data, up to a factor of 7 for low relative permeabilities. The average relative error is about 2.2 

and the standard deviation of the relative error is 2.15.   

The TD compatible model provided quantifiable results on water relative permeabilities. The water relative 

permeabilities measured on both Bentheimer sandstone and Berea sandstone are highly overestimated by the 

TD compatible model, with the corresponding relative errors being very large.   

Using the Parker-Lenhard model, the water relative permeability measured for the Berea sandstone was 

reasonably well predicted by model option kr-S. Globally, it slightly overestimates the measured kr values. It 

should be noted that for relative permeabilities higher than 0.04, the predicted values closely approaches the 

measured relative permeabilities. However, model option Pc-S strongly underestimates the measured water 

relative permeabilities for the entire set of experimental data. In the case of Bentheimer sandstone, model 

option kr-S also seems the better option to predict the measured water relative permeabilities. In this case, 

both options overestimate the experimental data. In the case of modeling option Pc-S, the maximum relative 

error achieves values higher than 15.    

 

5.1.2 Three-phase oil relative permeability 

Using the mechanistic model, the predicted oil relative permeabilities are partially acceptable. For measured 

oil relative permeability below 0.1, the predicted permeabilities are significantly higher than those observed, 

attaining kr values 10 times or more. For measured oil relative permeabilities higher than 0.1, the oil relative 

permeabilities predicted by the mechanistic model are about  60 and 25% lower than the measured kr values 
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in the case of Berea sandstone and Bentheimer sandstone, respectively. However, the relative errors were 

quantified to 3.25±4.75 for Berea sandstone and 1.27±2.78 for Bentheimer sandstone, respectively. The 

obtained global overestimate of measured oil relative permeabilities is clearly attributed to the weight of the 

large number of experimental data with oil relative permeabilities lower than 0.1. 

The oil relative permeabilities predicted for the Berea sandstone using the Parker-Lenhard model show similar 

trend as those for the water relative permeabilities: modeling option kr-S overestimates and modeling option 

Pc-S underestimates the measured relative oil permeabilities. However, here, modeling option kr-S strongly 

overestimates the experimental data characterized by a large spreading around a high mean relative error 

whereas modeling option Pc-S seems as the best option for predicting the experimental data. In the case of 

Bentheimer sandstone, both modeling options again overestimate the measured oil relative permeabilities. It 

should be noted here that the deviation of predicted oil relative permeabilities from the experimental data is 

also high for very low oil relative permeabilities (<0.01). They attain maximum relative errors of up to 80 and 

40 for modeling option kr-S and modeling option Pc-S, respectively. Globally, the best results are obtained with 

modeling option Pc-S. 

It was shown that in the case of Berea sandstone, the oil relative permeability is reasonably well predicted by 

Stone’s model 1. Globally, it slightly underestimates the measured kr values. The highest relative errors are 

observed for very low oil relative permeabilities, attaining a maximum relative error of about 4 at a measured 

relative permeability of 0.01. The oil relative permeabilities predicted for Bentheimer sandstone show a 

different behavior than Berea sandstone: here, the simulation based on Stone’s model I significantly 

overestimates the measured relative oil permeabilities with a high average relative error and an associated 

large variance. Just as the Berea sandstone, the maximum relative errors appear at low values of measured oil 

relative permeability. 

 

5.1.3 Three-phase gas relative permeability 

Using the mechanistic model, the predicted gas relative permeabilities underestimated the measured data of 

the Berea sandstone and Bentheimer sandstone by about 10 and 30%, respectively; but the average relative 

error of about 1.69±6.71 quantified for the experimental data of Berea sandstone does not provide the same 

conclusion.  Apparently, the mechanistic model overestimates the low relative permeabilities measured in the 

experiment, even by factor of 10 and more.  In the case of Bentheimer sandstone, the measured gas relative 

permeabilities are well represented by the model predictions. The maximum relative errors do not exceed 1.5 

for the extremely low gas relative permeabilities measured in the experiment. 

The TD compatible model provided only reliable predictions for the Bentheimer sandstone. The difficulties 

described in section 4.2, the very high capillarity of Berea sandstone, poses problems in the interpolation of 

the global capillary pressure and its derivatives with respect to water saturation (s1) and gas saturation (s3).   

Using the Parker-Lenhard model, the gas relative permeabilities predicted for Berea sandstone and 

Bentheimer sandstone strongly overestimate the measured gas relative permeabilities. The maximum relative 

errors are observed for very low relative permeabilities (<0.01). In the case of Berea sandstone, the maximum 

relative errors attain values of 1000 (option kr-S) and 100 (option Pc-S) whereas for Bentheimer sandstone 

values of about 26 (option kr-S) and 14 (option Pc-S) are achieved. Even for higher relative permeabilities 

measured for both sandstones, the predicted gas relative permeabilities overestimate the experimental data 

globally by at least a factor of 2. 

 

5.2 Existence of elliptic zones in the ternary diagram 

The existence and importance of elliptic zones in a water-oil (NAPL)-gas ternary diagram when using the 
mechanistic model will be discussed. In Appendices G.4 and G.5, the results obtained with the Parker-Lenhard 
model and Stone’s model I are presented. The percentage of saturation space covered by elliptic regions 
quantified for the three models are summarized in Table 12. It should be noted that the three fluid saturations 
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in the ternary diagram range from 0 to 1; few authors used effective saturations in their studies (e.g. Jackson 
and Blunt, 2002).  

The starting point is the mass conservation equation for an incompressible, immiscible three-phase flow  
which can be written in terms of two saturation equations for water (𝛼 =1) and gas phases (𝛼 =3) (Eq. (G2), 
Appendix G). In the case of zero capillary pressure, the dimensionless system of saturation equations can be 
linearized in terms of two saturation gradients involving a Jacobian matrix  𝐽 as follows: 

𝜕𝑡𝐷𝑆1,3 + 𝐽𝛻𝑧𝐷
𝑆1,3 = 0 with 𝐽 = (

𝜕𝑓1

𝜕𝑠1

𝜕𝑓1

𝜕𝑠3
𝜕𝑓3

𝜕𝑠1

𝜕𝑓3

𝜕𝑠3

) ,    (19) 

where  𝑧𝐷 and 𝑡𝐷 are the dimensionless distance and time (Appendix G), 𝑓1 and 𝑓3 are fractional flow functions 

of water and gaz, respectively, defined as:     

𝑓1 =
𝜆1

𝜆𝑡
(1 − 𝒩𝐺((𝜌𝐷 − 1)𝑘𝑟2 + 𝜌𝐷

𝜇2

𝜇3
𝑘𝑟3)),    (20) 

𝑓3 =
𝜆3

𝜆𝑡
(1 + 𝒩𝐺(𝜌𝐷

𝜇2

𝜇1
𝑘𝑟1 + 𝑘𝑟2)),       (21) 

with the gravity number 𝒩𝐺 =
𝐾(𝜌2−𝜌3)𝑔

𝜇2𝑣𝑡𝑜𝑡
, 𝜌𝐷 =

𝜌1−𝜌3

𝜌2−𝜌3
 is the density ratio, 𝜆𝛼 is the phase mobility and 𝜆𝑡  is the 

total mobility defined as  𝜆𝑡 = ∑ 𝑘𝑟𝛼𝛼 /𝜇𝛼. 

Eigenvalues  𝑢𝐷
± of the Jacobian matrix 𝐽 can then be expressed as follows:   

𝑢𝐷
± =

1

2
[
𝜕𝑓1

𝜕𝑠1
+

𝜕𝑓3

𝜕𝑠3
± √(

𝜕𝑓1

𝜕𝑠1
−

𝜕𝑓3

𝜕𝑠3
)
2

+ 4
𝜕𝑓1

𝜕𝑠3

𝜕𝑓3

𝜕𝑠1
]    (22) 

The corresponding partial derivatives of fractional flow functions  𝑓1 and 𝑓3 are detailed in Appendix G. To 

compute elliptic regions that provide numerical instabilities, we analyzed the sign of the square root argument 

of Eq. (22). Within the ternary diagram, a large set of fluid saturations was studied in order to display complex 

eigenvalues that correspond to a negative square root argument. To validate our search algorithm of negative 

square root arguments of Eq. (22), we first used the model of Bell and compared the identified elliptic zones 

with those quantified by Jahanbakhshi et al. (2013) (Appendix G.3). Furthermore, the influence of gravity and 

total velocities on the extent of elliptic zones are synthetically discussed in Appendix G.   

  

5.2.1 Bentheimer sandstone 

The fluid properties of experiments conducted on Bentheimer sandstone (Table 2), the intrinsic permeability 

of the rock 𝐾 = 2.63 × 10−12 m2, and the quantified characteristic coefficients Aij (summarized in Table 7) of 

the three modeling options (A, C, and AC) were used to study the possible existence of elliptic zones in the 

ternary diagram. In a first modeling step, gravity effects were neglected. The results obtained for options A, C 

and AC are shown on the left side of Fig. 34. In all three modeling options, there is a very small elliptic zone on 

the water-oil side with a percentage area of less than 1%. The double dependency on water and gas 

saturation, as in Stone's model, has often been pointed as proof for the existence of an elliptic zone modulo 

with certain constraints on viscosities (Trangenstein, 1989; Jackson and Blunt, 2002). Here, the elliptic region, 

however, is a narrow zone located near the water-oil edge with gas saturations below 5%, while the oil 

saturations range between 50% and 80%. 

To study the influence of gravity on the extent and distribution of elliptic zones in the ternary diagram, we 

used a series of total velocities, which are in the range of total velocities applied in Alizadeh’s DDI experiments. 

In all modeling options, when the total velocity is equal to 1.5×10-4 ms-1, the area of the elliptic zone 

represents less than 1% of the total area of the ternary diagram. However, the further decrease of the total 

velocity significantly alters the area and form of the elliptic zone. For example, in modeling option C the elliptic 

zones are significantly larger with almost 30% of the total surface for a velocity that is ten times lower. Note 

that all three models are characterized by the occurrence of elliptic regions, where the directions associated 

with the eigenvectors coincide. For a velocity that is one hundred times lower, the elliptic zone will again 
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become  smaller and occupy only 10% of the total area of the ternary diagram (Table 12). Modeling option C 

seems to generate larger elliptic zones located near the water-gas side than options A and AC, particularly 

when water saturation is greater than 50%. 

In modeling option A, the elliptic zone appearing for a total velocity of 1.5×10-5 ms-1 is nearly the same as in 

modeling option AC; it represents about 20% of the total surface of the ternary diagram. Just as option C, with 

decreasing total velocity the elliptic zones are smaller;  for a velocity that is ten times lower, the occupied 

surface attains about 15% of the total surface. It should be noted that the use of the mechanistic model leads 

to a plurality of elliptical zones, which was not the case when using Bell’s model (Fig. G2, Appendix G) or was 

not observed in the Jackson and Blunt (2002) experiments on a pore-scale model manufactured with a bundle 

of cylindrical capillary tube. The number of elliptic zones, between two and three, is a function of the total 

velocities and is located in very different sectors of the ternary diagram. Note that in the case of very low total 

velocities (corresponding to high gravity numbers of 5) a large fraction is found in the region of irreducible 

water saturation. 

 

without gravity with gravity at different total velocities 

Option A Option A 

    

Option C Option C 

    

Option AC Option AC 

    

Fig. 34. Bentheimer sandstone: influence of gravity and total velocity on the extent of elliptic regions in the 
ternary diagram. 𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation.  
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Table 12: Percentage area of elliptical zones in the ternary diagram quantified for the mechanistic model, 

Parker-Lenhard model, and Stone’s model I: (a) Bentheimer sandstone, (b) Berea sandstone. 

(a) Bentheimer sandstone 

Model Option 
Without  

gravity 

With gravity, at different total velocities vtot 

1.5×10-4 ms-1 1.5×10-5 ms-1 1.5×10-6 ms-1 

Mechanistic model 

A 0.81 0.77 20.14 14.96 

C 0.76 0.72 30.22 11.95 

AC 1.04 0.98 21.47 10.60 

Parker-Lenhard 
Model 

Pc-S 1.37 1.54 22.73 8.46 

kr-S 1.58 1.88 24.35 8.89 

Stone’s model I  1.38 22.63 10.76 31.50 

(b) Berea sandstone 

Model Option 
Without  

gravity 

With gravity, at different total velocities vtot 

1.5×10-5 ms-1 1.5×10-6 ms-1 1.5×10-7 ms-1 

Mechanistic model  0.05 16.28 20.10 10.89 

Parker-Lenhard 
Model 

Pc-S 0.00 0.81 0.41 0.00 

kr-S 2.68 10.90 15.19 10.89 

Stone’s model I  0 1.22 43.44 31.50 

 

 

5.2.2 Berea sandstone  

A second study on the existence of elliptic zones was conducted with the mechanistic model using the 

experimental data of the Berea sandstone (Table 3) and the intrinsic permeability of the rock 𝐾 = 1.97 ×

10−13 m2. The quantified characteristic coefficients Aij summarized in Table 5 were used to study the possible 

existence of elliptic zones in the ternary diagram. 

The results of the study are presented in Fig. 35 with the reference case without gravity. In the absence of 

gravity, elliptic zones are almost nonexistent compared to the zones identified for the Bentheimer sandstone 

(Fig. 34). Significant elliptic regions appear only for total velocities lower than 2×10-5 ms-1. By decreasing the 

total velocity, the percentage area of saturation space covered by elliptic regions progressively increases up to 

about 42% at a total velocity of 5×10-6 ms-1.  A further decrease in total velocities will lead to a continuous 

reduction in the percentage area occupied by the elliptic regions which becomes stable around 10% for total 

velocities between 1.5×10-7 and 1.5×10-8 ms-1 (Fig. 34). Table 12 summarizes the percentage area covered by 

elliptic regions for total velocities of 1.5×10-5, 1.5×10-6 and 1.5×10-7 ms-1, which are in the range of total 

velocities applied in Oak’s DDI experiments. It is worth noting that for gravity numbers lower than 0.5, the 

elliptic region is located at the water summit and forms a single patch. Increasing the gravity number will lead 

to an increase in the elliptic region accompanied by a separation of the single patch in two or more sub-areas. 

Up to a gravity number of about 1.11 (corresponding to a total velocity of about 9×10-6 ms-1), the saturation 

space covered by elliptic zones is mainly located in the ternary diagram where water is mobile. The main part 

of the elliptic region is situated above the gravity number 3.3 in an irreducible water zone. 
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without gravity with gravity at different total velocities 

    

with gravity at different total velocities 

    

    

Fig. 35. Berea sandstone: influence of gravity and total velocity on the extent of elliptic regions in the ternary 
diagram.  𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation. 

   

 

6. Conclusions and future work 

In this study, two recent and two classical models were evaluated against experimentally measured three-

phase permeabilities. Experimental data generated on two different water-wet sandstones were selected from 

the literature to evaluate and compare the four mathematical models. Experimentally determined constitutive 

relationships in two-phase systems were used as input parameters to numerically predict relative 

permeabilities (kr) in three-phase systems, and then the estimated results were compared with experimental 

three-phase permeabilities measured along decreasing water saturation/decreasing oil saturation/increasing 

gas saturation (DDI) paths. 

Which models yield results that best match flow experiments? 

Globally, the best prediction of the measured kr values was obtained with the mechanistic model of Shahverdi 

and Sohrabi (2017). However, its implementation requires a preliminary calibration of the relative phase 

permeabilities in a three-phase system against experimental data along one DDI path to quantify the required 

six characteristic coefficients.  
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Our study showed that the Parker-Lenhard model provides very different predicted kr values that are strongly 

dependent on the method used to determine the Van Genuchten parameter (m). Globally, the oil relative 

permeabilities predicted for the Berea sandstone using the Parker-Lenhard model shows the same general 

trend as observed for the water relative permeabilities: modeling option kr-S overestimates and modeling 

option Pc-S underestimates the measured relative oil permeabilities. Furthermore, using the Parker-Lenhard 

model, the gas relative permeabilities predicted for Berea sandstone and Bentheimer sandstone are 

significantly higher than the measured gas relative permeabilities. 

In the case of Berea sandstone, the oil relative permeability is reasonably well predicted by Stone’s model I. 

Nevertheless, the oil relative permeability expected for Bentheimer sandstone indicates a different behavior 

than Berea sandstone. In this case, the simulation based on Stone’s model I significantly overestimates the 

measured relative oil permeabilities with a high average relative error and an associated large variance. Just as 

the Berea sandstone, the maximum relative errors appear at low values of measured oil relative permeability. 

For the first time, the TD compatible model has been applied to detailed experimental three-phase data. Our 

study showed that the global mobilities predicted by C0 finite element interpolation significantly overestimate 

the experimentally quantified global mobilities. Prediction improved when experimental data were used to 

locally impose the global mobility. Our numerical study also revealed weaknesses in the TD compatible model. 

The main issue is the fulfillment of the required condition of fractional flows of water, oil and gas predicted by 

the PDE-TD interpolation algorithm, which should be bounded by the physical limits of 0 and 1 everywhere in 

the ternary diagram. This condition was respected in the case of negligible residual wetting phase saturation, 

low capillary porous medium and smooth variations of associated capillary pressure gradients, as shown in the 

study of di Chiara et al. (2010). In our case, however, it appears that the very high capillarity of both the 

Bentheimer and Berea sandstones contributes to numerically interpolated water and gas fractional flows in 

the ternary diagram that locally fall below the physical lower limit of 0 and exceed its upper limit of 1. This in 

turn leads to negative oil fractional flow and thus results in unphysical oil relative permeabilities. 

 

What input data do the models require, and how burdensome are these requirements? 

The least request of input data is required when using the Parker-Lenhard model and Stone’s model I. The 

Parker-Lenhard model requires only Van Genuchten parameter m and the irreducible wetting fluid saturation 

to model the three-phase relative permeabilities of water, oil and gas. To quantify the oil relative permeability 

in a three-phase fluid system, Stone’s model I uses as input data, the oil relative permeabilities in the two-

phase gas-oil and oil-water systems, the irreducible water saturation, and residual oil saturation. 

The use of the mechanistic model to predict three-phase relative permeabilities requires not only three two-

phase relative permeabilities but also six coefficients that presumably take into account the interaction 

between various fluids, as well as fluid saturation distributions. It should be noted that at least one set of 

experimental three-phase relative permeability data (for one saturation path) for all three fluids is required to 

tune these characteristic coefficients. To reduce the degree of uncertainty, Shahverdi and Sohrabi (2017) 

suggested employing more measured data of three-phase relative permeabilities for calibration of the six 

characteristic coefficients. In the case of Bentheimer sandstone, using two experimental data sets instead of 

one for tuning the characteristic coefficients, only slightly improved the predicted kr values. The use of 

different input data sets also revealed the absence of a unique solution for the calibration of these six 

characteristic coefficients. This resulted in different qualities in the subsequent prediction of the relative 

permeabilities. 

To predict three-phase relative permeabilities using the TD compatible model, the user requires more input 

data than the other three models. It requires detailed information of the dynamic viscosities of the three fluid 

phases, the variation of gas density as a function of the gas pressure, as well as the two-phase relative 

permeabilities and capillary pressures known on the edges of the ternary diagram. Since capillary pressure 
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curves are not always available for all two-phase fluid pairs involved in flow experiments, at least the water 

retention curve measured in the water-gas system is required. The scaling approach (Parker et al, 1987) based 

on the interfacial tensions of the two-phase gas/water, gas/oil and oil/water systems may be used to 

parameterize the required capillary pressure curves in a water-oil and oil-gas system. 

 

What are the models’ computational requirements, both in deriving  three-phase relative permeability 

functions and in using them in a flow simulator? 

The most computational effort to assess three-phase relative permeabilities is required for the TD compatible 

model.  The predicted three-phase relative permeabilities and global capillary pressures satisfy a so-called 

Total Differential (TD) compatibility-condition which guarantees strict hyperbolicity of the reformulated system 

(Chavent and Jaffré, 1986). Boundary conditions for global capillary pressure and global mobility are required 

such that the corresponding three-phase data are consistent with a given set of three two-phase data. The 

numerical construction of global capillary pressure and global mobility functions by C1 and C0 finite element is 

performed using bi-Laplacian and Laplacian interpolation. The TD-compatibility condition required for the two-

phase data sets prescribed on the three edges of the ternary diagram is a nonlinear constraint on weighted 

means of the given two-phase relative permeability data set. This presents a certain weakness of this model in 

contrast to its strength of being free of elliptic zones in the saturation space. It should be emphasized that the 

three-phase data obtained with the TD compatible model allow the three-phase compressible global 

volumetric flow equation to be rewritten in a more suitable fractional form: the gradient-of-capillary-pressure 

coupling terms are eliminated from the formula for the global volumetric flow (Chavent, 2009). This may lead 

to a more efficient computing time compared to traditional pressure-saturation models. 

The mechanistic model uses an arithmetic averaging relationship between two-phase and three-phase 

permeabilities. Here, the user must first tune the six characteristic coefficients using for example a commercial 

tool. Once quantified, the estimated characteristic coefficients can then be easily implemented in any flow 

simulator to model three-phase relative permeabilities for any other saturation path. 

The least numerical effort to build up three-phase relative permeabilities is required for the Parker-Lenhard 

model and Stone’s model I. In both cases, the mathematical functions using the two-phase relative 

permeabilities of water and gas as input data can be directly implemented in flow simulators, which is already 

the case for commercial flow simulators (e.g. MOFAT (US EPA,1991), Eclipse (Schlumberger, 2015)) for 

simulation of three-phase flow. It is noteworthy here that numerical issues may occur with Stone’s model I 

when normalized water and gas saturations achieve high values close to the physical upper limit of 1. 

Which models admit elliptic regions in saturation space? 

To assess the presence of potential elliptic zones, in our study we tested the mechanistic model, the Parker-

Lenhard model and Stone’s model I in the case of Bentheimer and Berea sandstones. All three models admit 

elliptic zones. Gravitational effect causes multiple elliptic zones that depend on the total flux applied to the 

rock samples. The percentage area of elliptical zones in the ternary diagram quantified for Stone’s model I was 

the highest and supports the results previously reported in the literature. Our numerical results showed that 

the Parker-Lenhard model produces a higher percentage area of elliptic zones than the mechanistic model.  

Note that in our study we neglected the capillarity of the porous media, which may dim the extent of potential 

elliptic zones. As complete datasets on capillary pressure-saturation curves are available for both sandstones, 

it could be interesting to implement the effect of capillarity in the evaluation of elliptic zones under the given 

experimental conditions.  

In the case of the TD compatible model, our study revealed that the interpolation of the global capillary 

pressure and its derivatives exposes unphysical fractional phase flows; the Total Differential compatible 
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approach will not be verified everywhere within the ternary diagram. This could also be an indication of 

existing elliptic regions.  

 

To build up a more robust TD compatible modeling approach and to obtain reliable physical values of 

predicted fractional flows in the 3-phase ternary diagram, further research steps are needed:     

(i) To overcome the problem of overestimated global mobilities, a more promising solution could be used to 

solve the Poisson’s equation instead of the Laplace equation. Since the Poisson’s equation is the 

inhomogeneous equivalent form of Laplace’s equation, the associated spatially variable source function 

could be quantified by an inverse modeling approach using a limited number of pilot points (on experiment 

based global mobilities),  uniformly distributed in the ternary diagram. A non-linear least square method 

may be used to minimize the objective function of the inverse problem.   

(ii) A similar inverse modeling approach could be used to improve the interpolation of the global capillary 

pressure (Pc
g) and its spatial derivatives on the ternary diagram. Step 5 of the PDE-TD-interpolation 

algorithm (Table 1) could be replaced by solving the inhomogeneous biharmonic equation. Here, the pilot 

points could include the experiment based fractional water and gas flows, and therefore reprocessed into 

spatial derivatives of Pc
g with respect to s1 and s3 using Equation 17.  

In our study, measurements of three-phase relative permeabilities along DDI paths were compared with those 

predicted from four mathematical models. An open question is still the goodness of predicted relative 

permeabilities when increasing both the water and oil flux and decreasing the gas flux. This may also be part 

of further research work. 

In addition, while not yet considered in this work, it would be interesting to assess the relative skills of the 

models tested, as described by e.g. Ranaee et al. (2016) using model identification criteria. This could be a way 

to take into account the complexity of a given model, at least in terms of the number of parameters involved 

and possibly also considering the level of uncertainty associated with parameter estimates (through the 

estimation of the covariance matrix). As an additional benefit, the use of these criteria yield the probability 

(posterior probability, conditional on the number of available data) associated with a given model, eventually 

leading to a multi-model framework. Further studies could also focus on the parameter identification as shown 

in the work of Ranaee et al. (2017). 
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APPENDICES 
 
Appendix A.  Two-phase constitutive relationships used in the study 
 
A.1 Capillary pressure curves in two-phase systems: water-oil and oil-gas 
The Van Genuchten (1980) model uses a simple analytical expression to describe the capillary pressure curves. 
In a two-phase water-gas system, the capillary pressure pcgw (Pa) as function of the effective saturation of the 
wetting fluid phase (water) is described by  

𝑝𝑐𝑔𝑤 =
1

𝛼
[𝑆𝑤𝑒

−
1

𝑚 − 1]

1−𝑚

,  with 𝑚 = 1 −
1

𝑛
 (A1) 

where  (Pa-1) and n (-) are empirical parameters. Parameter n controls the “curvature” of the pc-S function; 

quantifies the “ level ” of the plateau of the capillary pressure. 
The effective saturation Swe of the wetting fluid phase is defined by : 

𝑆𝑤𝑒 =
𝑆𝑤 − 𝑆𝑤𝑖

𝑆𝑚𝑎𝑥 − 𝑆𝑤𝑖
 (A2) 

where Swi is the irreducible saturation of the wetting fluid phase (here water) and Sm is the maximum 
saturation of the wetting fluid phase. During drainage of the porous medium, water is displaced for example 
by gas (or by a NAPL), the maximum saturation Smax is equal to 1. 
On the other hand, when gas (or a NAPL) is displaced by water, in the case of imbibition, Sm is limited to values 
lower than 1 because the non wetting fluid phase will remain in the porous medium at residual saturation 
Snwr. The maximum water saturation is therefore complementary to the residual saturation of the non wetting 
fluid phase : Sm=1-Sgr ; Sm=1-Sor. 
In three-phase systems, for the interfaces oil/water and gas/oil, the capillary pressures pcow and pcgo are 
generally calculated from relation (A1) by applying a scaling approach based on the interfacial tensions of the 
two-phase system gas/water, gas/oil and oil/water (Parker et al, 1987): 

𝑝𝑐𝑜𝑤(𝑆𝑤𝑒) =
1

𝛽𝑜𝑤
𝑝𝑐𝑔𝑤(𝑆𝑤𝑒)   ,  (A3) 

where water is the wetting fluid phase 

𝑝𝑐𝑔𝑜(𝑆𝑤𝑒) =
1

𝛽𝑔𝑜
𝑝𝑐𝑔𝑤(𝑆𝑤𝑒)  ,     (A4) 

where oil is the wetting fluid phase. 

𝛽𝑜𝑤 = 𝜎𝑔𝑤
0 𝜎𝑜𝑤⁄  and  𝛽𝑔𝑜 = 𝜎𝑔𝑤

0 𝜎𝑔𝑜⁄ are the scaling factors for the fluid system oil/water and gas/oil; 𝜎𝑔𝑤
0 , 𝜎𝑜𝑤  

and 𝜎𝑔𝑜 are the interfacial tension of fluid couples gas/water, oil/water and gas/oil. 

 

A.2 Relative permeabilities in two-phase systems: water-gas, water-oil and oil-gas 

In a two-phase water/gas system, using a modified Mualem-Van Genuchten (MVG) approach with a maximum 
value of the nonwetting fluid phase (here gas), the relative permeabilities are defined as: 

𝑘𝑟𝑤 = √𝑆𝑤𝑒 [1 − (1 − 𝑆𝑤𝑒

1
𝑚𝑤𝑔⁄

)𝑚𝑤𝑔]

2

 

 (A5) 

𝑘𝑟𝑔 = 𝑘𝑟𝑔𝑤,𝑚𝑎𝑥√1 − 𝑆𝑤𝑒 [1 − 𝑆𝑤𝑒

1
𝑚𝑔𝑤⁄

]

2𝑚𝑔𝑤

 

where krgw,max is the maximum relative gas permeability achieved at irreducible water saturation Swi in the 
gas/water system. mwg and mgw correspond to the MVG parameter for water and gas, respectively. 

 

In a two-phase water/oil system, the relative permeabilities are then written as follows : 
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𝑘𝑟𝑤 = √𝑆𝑤𝑒 [1 − (1 − 𝑆𝑤𝑒

1
𝑚𝑤𝑜⁄

)𝑚𝑤𝑜]
2

 

(A6) 

𝑘𝑟𝑜𝑤 = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√1 − 𝑆𝑤𝑒 [1 − 𝑆𝑤𝑒

1
𝑚𝑜𝑤⁄

]
2𝑚𝑜𝑤

 

where krow,max is the maximum relative oil permeability achieved at irreducible water saturation Swi in the 
water/oil system. mwo and mow correspond to the MVG parameter for water and gas, respectively. 

 

 

In a two-phase oil/gas system, the corresponding relative permeabilities can be expressed by 

𝑘𝑟𝑔 = 𝑘𝑟𝑔𝑜,𝑚𝑎𝑥√1 − 𝑆𝑜𝑒 [1 − 𝑆𝑜𝑒

1
𝑚𝑔𝑜⁄

]

2𝑚𝑔𝑜

 

(A7) 

𝑘𝑟𝑜𝑔 = √𝑆𝑜𝑒 [1 − (1 − 𝑆𝑜𝑒

1
𝑚𝑜𝑔⁄

)𝑚𝑜𝑔]

2

 

where krgo,max is the maximum relative gas permeability achieved at residual oil saturation in the oil/gas system 
Sor. mog and mgo correspond to the MVG parameter for oil and gas, respectively. Here 

oeS is the effective oil 

saturation defined by 

𝑆𝑜𝑒 =
𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟
     (A8) 

and 
oS  is the oil saturation. 
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Appendix B. Implementation of the mechanistic model of Shahverdi and Sohrabi (2017) 

The three-phase relative permeabilities of the mechanistic model of Shahverdi and Sohrabi (2017) form a 

coupled nonlinear system of Eqs. (1) to (3) called Eqs. (B1) to (B3). We describe how the six two-phase relative 

permeabilities that appear in Eqs. (B1), (B2) and (B3), are expressed when using the Mualem-Van Genuchten 

model. 

B.1 Three-phase relative permeability of the oil phase (kro)  

The three-phase relative permeability of the oil phase is expressed by 

𝑘𝑟𝑜 =
𝑆𝑤𝑜

𝑆𝑤𝑜+𝑆𝑔𝑜
𝑘𝑟𝑜𝑤(𝑆𝑜𝑤) +

𝑆𝑔𝑜

𝑆𝑤𝑜+𝑆𝑔𝑜
𝑘𝑟𝑜𝑔(𝑆𝑜𝑔)   (B1) 

where : 

𝑆𝑜𝑤 = 𝐴𝑜𝑤𝑆𝑜    (𝐵2𝑎);   𝑆𝑜𝑔 = 𝐴𝑜𝑔𝑆𝑜 (𝐵2𝑏) ; 𝑆𝑤𝑜 = 𝐴𝑤𝑜𝑆𝑤    (𝐵2𝑐),    𝑆𝑔𝑜 = 𝐴𝑔𝑜𝑆𝑔 (𝐵2𝑑) 

and becomes 

𝑘𝑟𝑜 =
𝐴𝑤𝑜𝑆𝑤

𝐴𝑤𝑜𝑆𝑤+𝐴𝑔𝑜𝑆𝑔
𝑘𝑟𝑜𝑤(𝐴𝑜𝑤𝑆𝑜) +

𝐴𝑔𝑜𝑆𝑔

𝐴𝑤𝑜𝑆𝑤+𝐴𝑔𝑜𝑆𝑔
𝑘𝑟𝑜𝑔(𝐴𝑜𝑔𝑆𝑜)  (B3) 

Using the two-phase relative permeability of oil in a water-oil system, expressed by the (“modified”) Mualem-

Van Genuchten model: 

𝑘𝑟𝑜𝑤 = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√(1 − 𝑆𝑤𝑒)[1 − 𝑆𝑤𝑒
1/𝑚𝑜𝑤]

2𝑚𝑜𝑤
= 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√[1 − (

𝑆𝑤
𝑜𝑤−𝑆𝑤𝑖

𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )] [1 − (

𝑆𝑤
𝑜𝑤−𝑆𝑤𝑖

𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )1/𝑚𝑜𝑤]

2𝑚𝑜𝑤

 (B4) 

Since krow has to be picked up at the representative two-phase saturation Sow, using expression (B2a), Equation 

B4 can then be expressed as function of the oil saturation (So) in the three-phase system as follows: 

𝑘𝑟𝑜𝑤 = 𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√[1 − (
1−𝐴𝑜𝑤𝑆𝑜−𝑆𝑤𝑖

𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )] [1 − (

1−𝐴𝑜𝑤𝑆𝑜−𝑆𝑤𝑖
𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )1/𝑚𝑜𝑤]

2𝑚𝑜𝑤

(B5) 

Using the two-phase relative permeability of oil in an oil-gas system, expressed by the Mualem-Van Genuchten 

model: 

𝑘𝑟𝑜𝑔 = √𝑆𝑜𝑒 [1 − (1 − 𝑆𝑜𝑒

1/𝑚𝑜𝑔)𝑚𝑜𝑔]
2

= √[(
𝑆𝑜
𝑜𝑔

−𝑆𝑜𝑟
𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )] [1 − (1 − (

𝑆𝑜
𝑜𝑔

−𝑆𝑜𝑟
𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )1/𝑚𝑜𝑔)𝑚𝑜𝑔]

2

  (B6) 

Since krog has to be picked up at the representative two-phase saturation Sog, using expression (B2b), Eq. (B6) 

can then be expressed as function of the oil saturation (So) in the three-phase system as follows: 

𝑘𝑟𝑜𝑔 = √[(
𝐴𝑜𝑔𝑆𝑜−𝑆𝑜𝑟

𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )] [1 − (1 − (

𝐴𝑜𝑔𝑆𝑜−𝑆𝑜𝑟
𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )1/𝑚𝑜𝑔)𝑚𝑜𝑔]

2

 (B7) 

Finally, inserting Eqs. (B5) and (B7) in Eq. (B3), one obtains the final expression of the relative oil permeability 

in the three-phase system: 

𝑘𝑟𝑜 =

𝐴𝑤𝑜𝑆𝑤

𝐴𝑤𝑜𝑆𝑤+𝐴𝑔𝑜𝑆𝑔
𝑘𝑟𝑜𝑤,𝑚𝑎𝑥√[1 − (

1−𝐴𝑜𝑤𝑆𝑜−𝑆𝑤𝑖
𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )] [1 − (

1−𝐴𝑜𝑤𝑆𝑜−𝑆𝑤𝑖
𝑜𝑤

1−𝑆𝑤𝑖
𝑜𝑤 )1/𝑚𝑜𝑤]

2𝑚𝑜𝑤

+

𝐴𝑔𝑜𝑆𝑔

𝐴𝑤𝑜𝑆𝑤+𝐴𝑔𝑜𝑆𝑔
√[(

𝐴𝑜𝑔𝑆𝑜−𝑆𝑜𝑟
𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )] [1 − (1 − (

𝐴𝑜𝑔𝑆𝑜−𝑆𝑜𝑟
𝑜𝑔

1−𝑆𝑜𝑟
𝑜𝑔 )1/𝑚𝑜𝑔)𝑚𝑜𝑔]

2

                     (B8) 

 

Note that in Eq. (B8), one has to be respect the following constraints: 

1 − 𝐴𝑜𝑤𝑆𝑜 − 𝑆𝑤𝑖
𝑜𝑤 ≥ 0 ;  𝐴𝑜𝑔𝑆𝑜 − 𝑆𝑜𝑟

𝑜𝑔
≥ 0 

 

 

B.2 Three-phase relative permeability of the water phase (krw)  

The three-phase relative permeability of the water phase is expressed by 
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𝑘𝑟𝑤 =
𝑆𝑜𝑤

𝑆𝑜𝑤+𝑆𝑔𝑤
𝑘𝑟𝑤𝑜(𝑆𝑤𝑜) +

𝑆𝑔𝑤

𝑆𝑜𝑤+𝑆𝑔𝑤
𝑘𝑟𝑤𝑔(𝑆𝑤𝑔)   (B9) 

where : 

𝑆𝑔𝑤 = 𝐴𝑔𝑤𝑆𝑔    (𝐵9𝑎);   𝑆𝑤𝑔 = 𝐴𝑤𝑔𝑆𝑤 (𝐵9𝑏) 

and becomes 

𝑘𝑟𝑤 =
𝐴𝑜𝑤𝑆𝑜

𝐴𝑜𝑤𝑆𝑜+𝐴𝑔𝑤𝑆𝑔
𝑘𝑟𝑤𝑜(𝐴𝑤𝑜𝑆𝑤) +

𝐴𝑔𝑤𝑆𝑔

𝐴𝑜𝑤𝑆𝑜+𝐴𝑔𝑤𝑆𝑔
𝑘𝑟𝑤𝑔(𝐴𝑤𝑔𝑆𝑤)  (B10) 

Using the two-phase relative permeability of water in a water-oil system, expressed by the Mualem-Van 

Genuchten model: 

𝑘𝑟𝑤𝑜 = √𝑆𝑤𝑒[1 − (1 − 𝑆𝑤𝑒
1/𝑚𝑤𝑜)𝑚𝑤𝑜]

2
= √[(

𝑆𝑤
𝑤𝑜−𝑆𝑤𝑖

𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜 )] [1 − (1 − (

𝑆𝑤
𝑤𝑜−𝑆𝑤𝑖

𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜  )1/𝑚𝑤𝑜)𝑚𝑤𝑜]

2

  (B11) 

Since krwo has to be picked up at the representative two-phase saturation Swo, using expression (B2c), Eq. (B11) 

can then be expressed as function of the water saturation (Sw) in the three-phase system as follows: 

𝑘𝑟𝑤𝑜 = √[(
𝐴𝑤𝑜𝑆𝑤−𝑆𝑤𝑖

𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜 )] [1 − (1 − (

𝐴𝑤𝑜𝑆𝑤−𝑆𝑤𝑖
𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜  )1/𝑚𝑤𝑜)𝑚𝑤𝑜]

2

 (B12) 

 

Using the two-phase relative permeability of water in a water-gas system, expressed by the Mualem-Van 

Genuchten model: 

𝑘𝑟𝑤𝑔 = √𝑆𝑤𝑒 [1 − (1 − 𝑆𝑤𝑒

1/𝑚𝑤𝑔)𝑚𝑤𝑔]
2

= √[(
𝑆𝑤
𝑤𝑔

−𝑆
𝑤𝑖
𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔 )] [1 − (1 − (

𝑆𝑤
𝑤𝑔

−𝑆𝑤𝑖
𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔  )1/𝑚𝑤𝑔)𝑚𝑤𝑔]

2

  (B13) 

Since krwg has to be picked up at the representative two-phase saturation Swg, using expression (B9b), Equation 

B13 can then be expressed as function of the water saturation (Sw) in the three-phase system as follows: 

𝑘𝑟𝑤𝑔 = √[(
𝐴𝑤𝑔𝑆𝑤−𝑆

𝑤𝑖
𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔 )] [1 − (1 − (

𝐴𝑤𝑔𝑆𝑤−𝑆𝑤𝑖
𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔  )1/𝑚𝑤𝑔)𝑚𝑤𝑔]

2

 (B14) 

Finally, inserting Eqs. (B12) and (B14) in Eq. (B10), one obtains the final expression of the relative water 

permeability in the three-phase system: 

𝑘𝑟𝑤 =

𝐴𝑜𝑤𝑆𝑜

𝐴𝑜𝑤𝑆𝑜+𝐴𝑔𝑤𝑆𝑔
√[(

𝐴𝑤𝑜𝑆𝑤−𝑆𝑤𝑖
𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜 )] [1 − (1 − (

𝐴𝑤𝑜𝑆𝑤−𝑆𝑤𝑖
𝑤𝑜

1−𝑆𝑤𝑖
𝑤𝑜  )1/𝑚𝑤𝑜)𝑚𝑤𝑜]

2

+
𝐴𝑔𝑤𝑆𝑔

𝐴𝑜𝑤𝑆𝑜+𝐴𝑔𝑤𝑆𝑔
√[(

𝐴𝑤𝑔𝑆𝑤−𝑆
𝑤𝑖
𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔 )] [1 −

(1 − (
𝐴𝑤𝑔𝑆𝑤−𝑆𝑤𝑖

𝑤𝑔

1−𝑆
𝑤𝑖
𝑤𝑔  )1/𝑚𝑤𝑔)𝑚𝑤𝑔]

2

 (B15) 

 

Note that in Eq. (B15), one has to be respect the following constraints: 

𝐴𝑤𝑜𝑆𝑤 − 𝑆𝑤𝑖
𝑤𝑜 ≥ 0 ;  𝐴𝑤𝑔𝑆𝑤 − 𝑆𝑤𝑖

𝑤𝑔
≥ 0 

 

B.3 Three-phase relative permeability of the gas phase (krg)  

The three-phase relative permeability of the gas phase is expressed by 

𝑘𝑟𝑔 =
𝑆𝑤𝑔

𝑆𝑜𝑔+𝑆𝑤𝑔
𝑘𝑟𝑔𝑤(𝑆𝑔𝑤) +

𝑆𝑜𝑔

𝑆𝑜𝑔+𝑆𝑤𝑔
𝑘𝑟𝑔𝑜(𝑆𝑔𝑜)     (B16) 

and takes the following form: 

𝑘𝑟𝑔 =
𝐴𝑤𝑔𝑆𝑤

𝐴𝑜𝑔𝑆𝑜+𝐴𝑤𝑔𝑆𝑤
𝑘𝑟𝑔𝑤(𝑆𝑔𝑤) +

𝐴𝑜𝑔𝑆𝑜

𝐴𝑜𝑔𝑆𝑜+𝐴𝑤𝑔𝑆𝑤
𝑘𝑟𝑔𝑜(𝑆𝑔𝑜)  (B17) 
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Using the two-phase relative permeability of gas in a water-gas system, expressed by the (“modified”) 

Mualem-Van Genuchten model: 

𝑘𝑟𝑔𝑤 = 𝑘𝑟𝑔𝑤,𝑚𝑎𝑥√(1 − 𝑆𝑤𝑒) [1 − 𝑆𝑤𝑒

1/𝑚𝑔𝑤]
2𝑚𝑔𝑤

= 𝑘𝑟𝑔𝑤,𝑚𝑎𝑥√[1 − (
𝑆𝑤
𝑔𝑤

−𝑆
𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )] [1 − (

𝑆𝑤
𝑔𝑤

−𝑆𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )1/𝑚𝑔𝑤]

2𝑚𝑔𝑤

 

(B18) 

Since krgw has to be picked up at the representative two-phase saturation Sgw, using expression (B9a), Eq. (B18) 

can then be expressed as function of the gas saturation (Sg) in the three-phase system as follows: 

𝑘𝑟𝑔𝑤 = 𝑘𝑟𝑔𝑤,𝑚𝑎𝑥√[1 − (
1−𝐴𝑔𝑤𝑆𝑔−𝑆

𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )] [1 − (

1−𝐴𝑔𝑤𝑆𝑔−𝑆𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )1/𝑚𝑔𝑤]

2𝑚𝑔𝑤

(B19) 

Using the two-phase relative permeability of gas in an oil-gas system, expressed by the (“modified”) Mualem-

Van Genuchten model: 

𝑘𝑟𝑔𝑜 = 𝑘𝑟𝑔𝑜,𝑚𝑎𝑥√(1 − 𝑆𝑜𝑒) [1 − 𝑆𝑜𝑒

1/𝑚𝑔𝑜]
2𝑚𝑔𝑜

= 𝑘𝑟𝑔𝑜,𝑚𝑎𝑥√[1 − (
𝑆𝑜
𝑔𝑜

−𝑆𝑜𝑟
𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )] [1 − (

𝑆𝑜
𝑔𝑜

−𝑆𝑜𝑟
𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )1/𝑚𝑔𝑜]

2𝑚𝑔𝑜

 (B20) 

Since krgo has to be picked up at the representative two-phase saturation Sgo, using expression (B2d), Eq. (B20) 

can then be expressed as function of the gas saturation (Sg) in the three-phase system as follows: 

𝑘𝑟𝑔𝑜 = 𝑘𝑟𝑔𝑜,𝑚𝑎𝑥√[1 − (
1−𝐴𝑔𝑜𝑆𝑔−𝑆𝑜𝑟

𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )] [1 − (

1−𝐴𝑔𝑜𝑆𝑔−𝑆𝑜𝑟
𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )1/𝑚𝑔𝑜]

2𝑚𝑔𝑜

(B21) 

 

Finally, inserting Eqs. (B19) and (B21) in Eq. (B17), one obtains the final expression of the relative gas 

permeability in the three-phase system: 

𝑘𝑟𝑔 =

𝐴𝑤𝑔𝑆𝑤

𝐴𝑜𝑔𝑆𝑜+𝐴𝑤𝑔𝑆𝑤
𝑘𝑟𝑔𝑤,𝑚𝑎𝑥√[1 − (

1−𝐴𝑔𝑤𝑆𝑔−𝑆
𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )] [1 − (

1−𝐴𝑔𝑤𝑆𝑔−𝑆𝑤𝑖
𝑔𝑤

1−𝑆
𝑤𝑖
𝑔𝑤 )1/𝑚𝑔𝑤]

2𝑚𝑔𝑤

+

𝐴𝑜𝑔𝑆𝑜

𝐴𝑜𝑔𝑆𝑜+𝐴𝑤𝑔𝑆𝑤
𝑘𝑟𝑔𝑜,𝑚𝑎𝑥√[1 − (

1−𝐴𝑔𝑜𝑆𝑔−𝑆𝑜𝑟
𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )] [1 − (

1−𝐴𝑔𝑜𝑆𝑔−𝑆𝑜𝑟
𝑔𝑜

1−𝑆𝑜𝑟
𝑔𝑜 )1/𝑚𝑔𝑜]

2𝑚𝑔𝑜

  (B22) 

 

Note that in Eq. (B22), one has to be respect the following constraints: 

1 − 𝐴𝑔𝑤𝑆𝑔 − 𝑆𝑤𝑖
𝑔𝑤

≥ 0 ;  1 − 𝐴𝑔𝑜𝑆𝑔 − 𝑆𝑜𝑟
𝑔𝑜

≥ 0 
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Appendix C. Quantified MVG parameters of the experimental two-phase constitutive relationships  

Table C1 and Table C2 summarize the Mualem-Van Genuchten (MVG) parameters quantified for the 

Bentheimer sandstone and Berea sandstone. The numerical values obtained by a nonlinear fit of the 

theoretical Pc-S and kr-S curves (Appendix A) against the experimentally observed curves using the NLFiT tool 

of Origin 2019 with the Levenberg-Marquardt iteration algorithm.  

The tables specify uncertainty intervals (standard errors) associated with model parameter estimates. R-

squared values are indicated as statistical measure when suitable to underline how close the experimental 

data are to the fitted curve.  

Table C1. Bentheimer sandstone  

Two-phase relative permeability curve   

Water-Oil system     

Swi [-] 0.089 R-squared     

mwo [-] 0.876±0.013 0.9925     

mow [-] 1.021±0.011 0.9939     

krow,max [-] 0.841   Two-phase capillary pressure curve 

Water-Gas system  Water-Gas system 

Swi [-] 0.234 R-squared    R-squared 

mwg [-] 0.972±0.019 0.9941  Swi [-] 0.111±0.003 

0.986 mgw [-] 1.150±0.014 0.9981  m [-] 0.810±0.015 

krgw,max [-] 0.475    [Pa-1] 1.96×10-4±1.02×10-5 

Oil-Gas system     

Sor [-] 0.207 R-squared     

mog [-] 1.036±0.014 0.9971     

mgo [-] 1.262±0.020 0.9954     

krgo,max [-] 0.657      

 

Table C2. Berea sandstone 

Two-phase relative permeability curve  Two-phase capillary pressure curve 

Water-Oil system  Water-Oil system R-squared 

Swi [-] 0.264 R-squared  Swi [-] 0.100±0.106 

0.9831 mwo [-] 0.806±0.014 0.9926  m [-] 0.299±0.119 

mow [-] 0.847±0.013 0.9909   [Pa-1] 2.56×10-4±2.82×10-5 

krow,max [-] 0.892   Fixed 
Swi=0.264 

m=0.538±0.263 

8.01×10-5±2.1×10-4 
 

Water-Gas system   

Swi [-] 0.384 R-squared  Water-Gas system R-squared 

mwg [-] 0.912±0.030 0.9718  Swi [-] 0.147±0.083 

0.9949 mgw [-] 1.050±0.009 0.9965  m [-] 0.324±0.085 

krgw,max [-] 0.727    [Pa-1] 8.05×10-5±3.94×10-5 

Oil-Gas system    

Sor [-] 0.259 R-squared  Oil-Gas system R-squared 

mog [-] 0.845±0.022 0.9738  Sor [-] 0.149±0.044 

0.9876 mgo [-] 0.813±0.009 0.9969  m [-] 0.392±0.090 

krgo,max [-] 0.827    [Pa-1] 1.29×10-4±8.07×10-5 

    Fixed 
Swi=0.259 

m=0,491±0,504 

1.33×10-4±7.0×10-4 
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Appendix D. Comparison of predicted kr values (water, oil, gas) for Oak’s DDI Experiments 17 and 18 with the 
findings of Shahverdi and Sohrabi (2017) 
 
Figs. D1 – D3 and Figs. D4 –D6 present the detailed comparison of relative permeabilities for water, oil and gas 
of Oak’s DDI experiments 17 and 18 using the mechanistic model. Here we compare our numerical results 
obtained with those referenced in Shahverdi and Sohrabi (2017).  
To quantify the goodness of the prediction of the measured kr values, the root mean square error (RMSE) and 
the coefficient of residual mass (CRM) are indicated. 
 

  
Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0103 CRM= -0.454 Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0106 CRM= 0.0187 

Predicted Exp 17 RMSE= 0.0079 CRM= 0.097 Predicted Exp 18 RMSE= 0.0144 CRM= -0.164 

Fig. D1. Comparison of three-phase oil relative 
permeability as function of oil saturation measured 
from Oak’s DDI Experiment 17 (G2) and that 
predicted with the mechanistic model. 

Fig. D4. Comparison of three-phase oil relative 
permeability as function of oil saturation measured 
from Oak’s DDI Experiment 18 (G3) and that 
predicted with the mechanistic model. 

 
 
 

  
Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0004 CRM= -1.280 Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0004 CRM= -1.314 

Predicted Exp 17 RMSE= 0.0031 CRM= -0.808 Predicted Exp 18 RMSE= 0.0007 CRM= -1.646 

Fig. D2. Comparison of three-phase water relative 
permeability as function of water saturation 
measured from Oak’s DDI Experiment 17 (G2) and 
that predicted with the mechanistic model. 

Fig. D5. Comparison of three-phase water relative 
permeability as function of water saturation 
measured from Oak’s DDI Experiment 18 (G3) and 
that predicted with the mechanistic model. 
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Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0249 CRM= -0.049 Predicted (Shahverdi&Sohrabi,2017) RMSE= 0.0323 CRM= 0.389 

Predicted Exp 17 RMSE= 0.0230 CRM=  0.043 Predicted Exp 18 RMSE= 0.0778 CRM= 0.346 

Fig. D3. Comparison of three-phase gas relative 
permeability as function of gas saturation measured 
from Oak’s DDI Experiment 17 (G2) and that predicted 
with the mechanistic model. 

Fig. D6. Comparison of three-phase gas relative 
permeability as function of gas saturation 
measured from Oak’s DDI Experiment 18 (G3) and 
that predicted with the mechanistic model. 
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Appendix E. Boundary conditions and numerical results of the TD compatible model 

E.1 Boundary conditions: tangential and normal derivatives of global capillary pressure 𝑃𝑐
𝑔

  

Let 𝜏 and 𝑛⃗⃗ be the tangential and normal unit vectors on 𝜕  (Fig. E1) defined by: 𝕋

{
  
 

  
 𝜏12⃗⃗ ⃗⃗ ⃗⃗ = 𝑖1⃗⃗ ⃗    ;   𝑛12⃗⃗ ⃗⃗ ⃗⃗⃗ =

√3

3
(𝑖1⃗⃗ ⃗ − 2𝑖3⃗⃗⃗ ⃗) 𝑜𝑛 𝜕 12 (𝑤𝑎𝑡𝑒𝑟 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) ,

𝜏13⃗⃗ ⃗⃗ ⃗⃗ = 𝑖3⃗⃗⃗ ⃗ −  𝑖1⃗⃗ ⃗    ;  𝑛13⃗⃗ ⃗⃗ ⃗⃗⃗ =
√3

3
(𝑖1⃗⃗ ⃗ + 𝑖3⃗⃗⃗ ⃗)  𝑜𝑛 𝜕 13 (𝑤𝑎𝑡𝑒𝑟 − 𝑔𝑎𝑠 𝑒𝑑𝑔𝑒),

𝜏32⃗⃗ ⃗⃗ ⃗⃗ = 𝑖3⃗⃗⃗ ⃗    ; 𝑛32⃗⃗ ⃗⃗ ⃗⃗⃗ =
√3

3
(𝑖3⃗⃗⃗ ⃗ − 2𝑖1⃗⃗ ⃗)  𝑜𝑛 𝜕 13 (𝑔𝑎𝑠 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) ,

          
          
           

         (E1) 

𝕋

𝕋

𝕋

where 𝑖1⃗⃗ ⃗and 𝑖3⃗⃗⃗ ⃗ are the unit vectors of the (Os1,Os3) system of non-orthogonal axis. 

 

Fig. E1. Definition of tangential and normal unit vectors on 𝜕𝕋  Note that .

the summit of oil (S2=1) is chosen as the origin of the orthogonal (Ox,Oy) 
and non-orthogonal (Os1, Os3) system. 

The global capillary pressure 𝑃𝑐
𝑔

 being function of s1 and s3, the tangential and normal derivatives of 𝑃𝑐
𝑔

 on 𝜕 , 𝕋
𝜕𝑃𝑐

𝑔

𝜕𝜏
  and  

𝜕𝑃𝑐
𝑔

𝜕𝑛
 , are then given by : 

{
 
 
 

 
 
 

𝜕𝑃𝑐
𝑔

𝜕𝜏
=

𝜕𝑃𝑐
𝑔

𝜕𝑠1
   ;

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3
 (

𝜕𝑃𝑐
𝑔

𝜕𝑠1
− 2

𝜕𝑃𝑐
𝑔

𝜕𝑠3
) 𝑜𝑛 𝜕 12 (𝑤𝑎𝑡𝑒𝑟 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) ,

𝜕𝑃𝑐
𝑔

𝜕𝜏
=

𝜕𝑃𝑐
𝑔

𝜕𝑠3
−

𝜕𝑃𝑐
𝑔

𝜕𝑠1
   ;  

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3
 (

𝜕𝑃𝑐
𝑔

𝜕𝑠1
+

𝜕𝑃𝑐
𝑔

𝜕𝑠3
)  𝑜𝑛 𝜕 13 (𝑤𝑎𝑡𝑒𝑟 − 𝑔𝑎𝑠 𝑒𝑑𝑔𝑒),

𝜕𝑃𝑐
𝑔

𝜕𝜏
=

𝜕𝑃𝑐
𝑔

𝜕𝑠3
 ;  

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3
 (

𝜕𝑃𝑐
𝑔

𝜕𝑠3
− 2

𝜕𝑃𝑐
𝑔

𝜕𝑠1
)  𝑜𝑛 𝜕 13 (𝑔𝑎𝑠 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) ,

          
          
           

         (E2) 

𝕋

𝕋

𝕋

 

In order to perform C1 finite element interpolation in the orthogonal (Ox,Oy) system, the non-orthogonal 

vectors 𝑖1⃗⃗ ⃗ and 𝑖3⃗⃗⃗ ⃗ must be projected on the unit vectors of the (Ox,Oy) system, 𝑖 and 𝑗, as follows: 

{
𝑖1⃗⃗ ⃗ = 𝑖  

𝑖3⃗⃗⃗ ⃗ =
1

2
𝑖 +  

√3

2
𝑗 

                           (E3) 
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We can then re-write the tangential derivatives of 𝑃𝑐
𝑔

 in terms of x and y derivatives and the normal 

derivatives of 𝑃𝑐
𝑔

  as follows: 

{
 
 

 
 

𝜕𝑃𝑐
𝑔

𝜕𝑥
=

𝜕𝑃𝑐
𝑔

𝜕𝑠1
   ;

𝜕𝑃𝑐
𝑔

𝜕𝑦
= 0   ;

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3

𝜕𝑃𝑐
𝑔

𝜕𝑠1
𝑜𝑛 𝜕 12 (𝑤𝑎𝑡𝑒𝑟 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) ,

𝜕𝑃𝑐
𝑔

𝜕𝑥
=

1

2

𝜕𝑃𝑐
𝑔

𝜕𝑠3
−

𝜕𝑃𝑐
𝑔

𝜕𝑠1
 ;

𝜕𝑃𝑐
𝑔

𝜕𝑦
=

√3

2

𝜕𝑃𝑐
𝑔

𝜕𝑠3
 ;

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3
 (

𝜕𝑃𝑐
𝑔

𝜕𝑠1
+

𝜕𝑃𝑐
𝑔

𝜕𝑠3
) 𝑜𝑛 𝜕 13 (𝑤𝑎𝑡𝑒𝑟 − 𝑔𝑎𝑠 𝑒𝑑𝑔𝑒),

𝜕𝑃𝑐
𝑔

𝜕𝑥
=

1

2

𝜕𝑃𝑐
𝑔

𝜕𝑠3
 ;

𝜕𝑃𝑐
𝑔

𝜕𝑦
=

√3

2

𝜕𝑃𝑐
𝑔

𝜕𝑠3

𝜕𝑃𝑐
𝑔

𝜕𝑛
=

√3

3

𝜕𝑃𝑐
𝑔

𝜕𝑠3
𝑜𝑛 𝜕 13 (𝑔𝑎𝑠 − 𝑜𝑖𝑙 𝑒𝑑𝑔𝑒) .

        (E4) 

𝕋

𝕋

𝕋

Note that the normal derivatives in Eq. (E4) are slightly modified with regard to Eq. (E2) as 
𝜕𝑃𝑐

𝑔

𝜕𝑠1
= 0 and 

𝜕𝑃𝑐
𝑔

𝜕𝑠3
= 0 on the gas-oil and the water-oil edge, respectively.  After C1 finite interpolation of 𝑃𝑐

𝑔
on the whole 

ternary diagram, the numerical solutions in terms of x- and y- derivatives of 𝑃𝑐
𝑔

are projected along (𝑖1⃗⃗ ⃗ , 𝑖3⃗⃗⃗ ⃗ ) to 

compute the corresponding derivatives such as: 

{

𝜕𝑃𝑐
𝑔

𝜕𝑠1
=

𝜕𝑃𝑐
𝑔

𝜕𝑥
−

√3

3

𝜕𝑃𝑐
𝑔

𝜕𝑦
 

𝜕𝑃𝑐
𝑔

𝜕𝑠3
=

2√3

3

𝜕𝑃𝑐
𝑔

𝜕𝑦

    ,                       (E5) 

which are then used for computation of the water fractional flow (f1) and gas fractional flow (f3) as described 

in Eq. (17).  
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E.2 Results of the TD compatible model 

E.2.1 Bentheimer sandstone 

 

Type (a) of inequalities 

 

Type (b) of inequalities 

Fig. E2. Verification of the TD compatible condition expressed by Eq. (16) in the case of Bentheimer 
sandstone.  
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(a) RMSE=0.0961 ; CRM=-0.78 (b) RMSE=3.9749; CRM=206.75 (c) RMSE= 0.0375; CRM=-1.55 

Fig. E3. Relative permeabilities measured from Alizadeh’s DDI Experiment A compared to those predicted 
with the TD compatible model:  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 

 

   

(a) RMSE= 0.0174 ; CRM= - (b) RMSE= 4.471; CRM=14.15 (c) RMSE=0.0322; CRM=-0.48 

Fig. E4. Relative permeabilities measured from Alizadeh’s DDI Experiment D1 compared to those predicted 
with the TD compatible model:  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 
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E.2.2 Berea sandstone 

 

Type (a) of inequalities 

 

Type (b) of inequalities 

Fig. E5. Verification of the TD compatible condition expressed by Eq. (16) in the case of Berea 
sandstone.  

 

  

 RMSE=0.388; CRM=-67.52 RMSE=0.562; CRM=-551.09 

Fig. E6. Water relative permeabilities measured from Oak’s DDI Experiments 16 and 17 compared to those 
predicted with the TD compatible model. The goodness of the prediction of the measured kr values is 
indicated by the root mean square error (RMSE) and the coefficient of residual mass (CRM) 

 



63 
 

  

 RMSE=1.124; CRM=-152.30 RMSE=1.013; CRM=-83.74 

Fig. E7. Water relative permeabilities measured from Oak’s DDI Experiments 19 and 25 compared to those 
predicted with the TD compatible model. The goodness of the prediction of the measured kr values is 
indicated by the root mean square error (RMSE) and the coefficient of residual mass (CRM). 
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Appendix F. Parker-Lenhard model applied to Bentheimer sandstone (Alizadeh’s DDI Experiments A and D1) 
and Berea sandstone (Oak’s DDI Experiments 16-20 and 25) 
 

F.1 Bentheimer sandstone 
 
F.1.1 Input parameters determined for modeling options Pc-S and kr-S   
 

  

(a)  

Option Pc-S;  Calibrated model parameters (R-squared= 0.986): 

Swi=0.111±0.003; m=0.810±0.015; =1.96×10
-4

±1.02×10
-5

 Pa
-1

 

(b) 

Option kr-S ; Swi=0.234 (fixed) 

Calibrated model parameter R-squared=0.994): m=0.972±0.019 

Fig. F1. Measured and fitted two-phase constitutive relationships from the Alizadeh experiment on 
Bentheimer sandstone (Alizadeh and Piri, 2014b): (a) capillary pressure (in water-gas system) as function of 
water saturation, and (b) water-gas relative permeability versus water saturation. 

 
F.1.2 Comparison of predicted kr values (water, oil, gas) with those measured in DDI Experiments A and D1 
 

   

(a) Option kr-S : RMSE= 0.008187 ; 
CRM=-0.475 

(b) Option kr-S : RMSE= 0.031406 ; 
CRM=-2.957 

(c) Option kr-S : RMSE= 0.061391; 
CRM=-3.461 

Option Pc-S : RMSE= 0.008882;  

CRM=-0.536 

Option Pc-S : RMSE= 0.023534;  

CRM=-2.043 

Option Pc-S : RMSE=0.061387;  

CRM=-3.660 

Fig. F2. Relative permeabilities measured from Alizadeh’s DDI Experiment A compared to those predicted 
(using option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 
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(a) Option kr-S : RMSE= 0;  

 

(b) Option kr-S : RMSE=0.010435; 
CRM=-0.116 

(c) Option kr-S : RMSE=0.048802; 
CRM=-1.389 

Option Pc-S : RMSE= 3.1685E-14;   Option Pc-S : RMSE= 0.015410; 

CRM=0.083 

Option Pc-S : RMSE=0.041904;  

CRM=-1.279 

Fig. F3. Relative permeabilities measured from Alizadeh’s DDI Experiment D1 compared to those predicted 
(using option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 

 
F.2 Berea sandstone 
 
F.2.1 Input parameters determined for modeling options Pc-S and kr-S 
 

  

(a)  

Option Pc-S;  Calibrated model parameters (R-squared= 0.995): 

Swi=0.147±0.083; m=0.324±0.085; =8.05×10
-5

±3.94×10
-5

 Pa
-1 

(b) 

Option kr-S ; Swi=0.384 (fixed) 

Calibrated model parameter R-squared=0.972): m=0.912±0.03 

Fig. F4. Measured and simulated two-phase constitutive relationships from Oak’s experiment on Berea 
sandstone: (a) capillary pressure (in water-gas system) as function of water saturation, and (b) water-gas 
relative permeability versus water saturation 
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F.2.2 Comparison of predicted kr values (water, oil, gas) with those measured in DDI Experiments 16-20 and 25 
 

   

(a) Option kr-S : RMSE= 0.001502; 
CRM=-0.238 

(b) Option kr-S : RMSE=0.023208; 
CRM=-3.473 

(c) Option kr-S : RMSE=0.049039; 
CRM=-1.042 

Option Pc-S : RMSE=0.005484; 

CRM=0.959 

Option Pc-S : RMSE=0.003651;  

CRM=0.336 

Option Pc-S : RMSE=0.085323; 

 CRM=-2.473 

Fig. F5. Relative permeabilities measured from Oak’s DDI Experiment 16 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 

 

   

(a) Option kr-S : RMSE=0.000559; 

CRM=-0.300 

(b) Option kr-S : RMSE=0.022128; 
CRM=-2.061 

(c) Option kr-S : RMSE=0.074934; 
CRM=-1.103 

Option Pc-S : RMSE=0.001043; 

CRM=0.952 

Option Pc-S : RMSE=0.010788; 

CRM=0.765 

Option Pc-S : RMSE=0.113529; 

CRM=-2.076 

Fig. F6. Relative permeabilities measured from Oak’s DDI Experiment 17 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 
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(a) Option kr-S : RMSE=8.43E-05; 
CRM=0.970 

(b) Option kr-S : RMSE=0.043684;  

CRM=-2.484 

(c) Option kr-S : RMSE=0.053159; 
CRM=-0.635 

Option Pc-S : RMSE=8.37E-05;  

CRM=0.960 

Option Pc-S : RMSE=0.015502;  

CRM=0.840 

Option Pc-S : RMSE=0.120104;  

CRM=-1.767 

Fig. F7. Relative permeabilities measured from Oak’s DDI Experiment 18 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 

 

   

(a) Option kr-S : RMSE= 0.003131; 
CRM=-0.520 

(b) Option kr-S : RMSE=0.016810; 

CRM=-16.682 

(c) Option kr-S : RMSE=0.062688; 
CRM=-1.050 

Option Pc-S : RMSE=0.005702;  

CRM=0.947 

Option Pc-S : RMSE=0.001476;  

CRM=-1.131 

Option Pc-S : RMSE=0.092081;  

CRM=-1.913 

Fig. F8. Relative permeabilities measured from Oak’s DDI Experiment 19 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 
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(a) Option kr-S : RMSE= 0 (b) Option kr-S : RMSE=0.029328; 
CRM=-0.509 

(c) Option kr-S : RMSE=0.037443; 
CRM=-0.663 

Option Pc-S : RMSE=2.95E-07  Option Pc-S : RMSE=0.048195;  

CRM=0.665 

Option Pc-S : RMSE=0.058860;  

CRM=-1.562 

Fig. F9. Relative permeabilities measured from Oak’s DDI Experiment 20 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 

 

   

(a) Option kr-S : RMSE=0.005394; 
CRM=-0.732 

(b) Option kr-S : RMSE=0.015422; 
CRM=-12.024 

(c) Option kr-S : RMSE=0.036230; 
CRM=-1.383 

Option Pc-S : RMSE=0.007509; 

CRM=0.933 

Option Pc-S : RMSE=0.001209;  

CRM=-0.821 

Option Pc-S : RMSE=0.077116;  

CRM=-3.816 

Fig. F10. Relative permeabilities measured from Oak’s DDI Experiment 25 compared to those predicted (using 
option kr-S and option Pc-S):  (a) water relative permeability versus water saturation, (b) oil relative 
permeability versus oil saturation, and (c) gas relative permeability versus gas saturation. The goodness of 
the prediction of the measured kr values is indicated by the root mean square error (RMSE) and the 
coefficient of residual mass (CRM). 
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Appendix G. Study of the occurrence of elliptic zones 

G.1 Basic equations 
The three-phase flow of immiscible phases is describe using the Darcy-Muskat law for the velocity of phase 𝛼: 

𝑣𝛼 = −
𝐾𝑘𝑟𝛼

𝜇𝛼
(𝛻𝑃𝛼 − 𝜌𝛼𝒈) (G1) 

where  𝐾 is the absolute permeability [L2], 𝑃𝛼 is the pressure of the phase 𝛼 [MLT−2], 𝜌𝛼  is the density 

[ML−3], 𝜇 is the dynamic viscosity [MLT−1], 𝒈  [L.T−2]is the gravity vector and 𝑘𝑟𝛼 is the relative permeability 

[-]. 
 
Conservation equations for an incompressible, immiscible three-phase flow can be written in terms of two 
saturation equations for water (𝛼 =1) and gas phases (𝛼 =3): 
 

𝜕𝑡𝐷𝑆𝛼 + 𝜕𝑧𝐷
𝑓𝛼 = 0 with 𝛼 = 1,3,   (G2) 

 
where 𝑆𝛼 is the saturation of phase 𝛼, 𝑓𝛼 is the fractional flow of phase 𝛼, 𝑧𝐷 and 𝑡𝐷 are the dimensionless 
distance and time, respectively such as: 

 𝑧𝐷 = 𝑧/𝐿 𝑎𝑛𝑑 𝑡𝐷 = ∫
𝑣𝑡𝑜𝑡

𝜙𝐿

𝑡

0

𝑑𝑡 (G3) 

where 𝑧 is the depth [L], 𝐿 the total length of the system [L], 𝜙 is the porosity [-] and  𝑣𝑡𝑜𝑡 = 𝑣1 + 𝑣2 + 𝑣3 is 

the total volumetric flow rate of all three phases [LT−1]. 

 

G.2 Linearized fractional flow equations for saturation 

In the case of zero capillary pressure, the dimensionless system of saturation yields fractional flow functions of 

water and gaz, 𝑓1, 𝑓3, respectively:     

𝑓1 =
𝜆1

𝜆𝑡
(1 − 𝒩𝐺((𝜌𝐷 − 1)𝑘𝑟2 + 𝜌𝐷

𝜇2

𝜇3
𝑘𝑟3)),     (G4) 

𝑓3 =
𝜆3

𝜆𝑡
(1 + 𝒩𝐺(𝜌𝐷

𝜇2

𝜇1
𝑘𝑟1 + 𝑘𝑟2)),        (G5) 

 with the gravity number 𝒩𝐺 =
𝐾(𝜌2−𝜌3)𝑔

𝜇2𝑣𝑡𝑜𝑡
, 𝜌𝐷 =

𝜌1−𝜌3

𝜌2−𝜌3
 is the density ratio, 𝜆𝛼  [M

-1L-1T] is the phase mobility 

and 𝜆𝑡 [M
-1L-1T] is the total mobility defined as  

𝜆𝑡 = ∑ 𝑘𝑟𝛼𝛼 /𝜇𝛼. 

The dimensionless system is linearized in terms of two saturation gradients involving a Jacobian matrix  𝐽 as 

follows: 

𝜕𝑡𝐷𝑆1,3 + 𝐽𝛻𝑧𝐷
𝑆1,3 = 0 with 𝐽 = (

𝜕𝑓1

𝜕𝑠1

𝜕𝑓1

𝜕𝑠3
𝜕𝑓3

𝜕𝑠1

𝜕𝑓3

𝜕𝑠3

).     (G6) 

From a numerical point of view, solutions of the following Riemann problem at t𝐷 = 0 : 

𝑧𝐷 ≤ 0 (𝑆1 = 𝑆1
𝐿 ;  𝑆3 = 𝑆3

𝐿) 

𝑧𝐷 > 0 (𝑆1 = 𝑆1
𝑅 ;  𝑆3 = 𝑆3

𝑅)           (G7) 

depend on a dimensionless wave velocity  𝑢𝐷 =
𝑧𝐷

𝑡𝐷
 yielding rarefaction and sock patterns which are the 

eigenvalues  𝑢𝐷
± of the Jacobian matrix  𝐽 : 

       

𝑢𝐷
± =

1

2
[
𝜕𝑓1

𝜕𝑠1
+

𝜕𝑓3

𝜕𝑠3
± √(

𝜕𝑓1

𝜕𝑠1
−

𝜕𝑓3

𝜕𝑠3
)
2

+ 4
𝜕𝑓1

𝜕𝑠3

𝜕𝑓3

𝜕𝑠1
]   (G8) 

with the corresponding partial derivatives of fractional flow functions  𝑓1: 
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𝜕𝑓1
𝜕𝑠1,3

=
1

𝜇1𝜇2𝜇3𝜆𝑡
2𝑣𝑡𝑜𝑡

(−
𝜕𝜆𝑡

𝜕𝑠1,3
(𝜇2𝜇3𝑘𝑟1𝑣𝑡𝑜𝑡 + 𝑔𝐾[𝜇2𝑘𝑟1𝑘𝑟3(𝜌3 − 𝜌1) + 𝜇3𝑘𝑟1𝑘𝑟2(𝜌2 − 𝜌1)]) 

+
𝜕𝑘𝑟1

𝜕𝑠1,3
(𝜇2𝜇3𝜆𝑡𝑣𝑡𝑜𝑡 + 𝑔𝐾[𝜇2𝑘𝑟3𝜆𝑡(𝜌3 − 𝜌1) + 𝜇3𝑘𝑟2𝜆𝑡(𝜌2 − 𝜌1)]) 

+
𝜕𝑘𝑟2

𝜕𝑠1,3
𝑔𝐾[𝜇3𝑘𝑟1𝜆𝑡(𝜌2 − 𝜌1)] +

𝜕𝑘𝑟3

𝜕𝑠1,3
𝑔𝐾[𝜇2𝑘𝑟1𝜆𝑡(𝜌3 − 𝜌1)]) 

(G9) 

and 
3f : 

𝜕𝑓3
𝜕𝑠1,3

=
1

𝜇1𝜇2𝜇3𝜆𝑡
2𝑣𝑡𝑜𝑡

(−
𝜕𝜆𝑡

𝜕𝑠1,3
(𝜇1𝜇2𝑘𝑟3𝑣𝑡𝑜𝑡 + 𝑔𝐾[𝜇1𝑘𝑟2𝑘𝑟3(𝜌2 − 𝜌3) + 𝜇2𝑘𝑟1𝑘𝑟3(𝜌1 − 𝜌3)]) 

+
𝜕𝑘𝑟3

𝜕𝑠1,3
(𝜇1𝜇2𝜆𝑡𝑣𝑡𝑜𝑡 + 𝑔𝐾[𝜇1𝑘𝑟2𝜆𝑡(𝜌2 − 𝜌3) + 𝜇2𝑘𝑟1𝜆𝑡(𝜌1 − 𝜌3)]) 

+
𝜕𝑘𝑟2
𝜕𝑠1,3

𝑔𝐾[𝜇1𝑘𝑟3𝜆𝑡(𝜌2 − 𝜌3)] +
𝜕𝑘𝑟1

𝜕𝑠1,3
𝑔𝐾[𝜇2𝑘𝑟3𝜆𝑡(𝜌1 − 𝜌3)]) 

             (G10) 

where 
𝜕𝜆𝑡

𝜕𝑠1,3
= ∑

1

𝜇𝛼𝛼

𝜕𝑘𝑟𝛼

𝜕𝑠1,3
   . 

When the eigenvalues  𝑢𝐷
± are real and distinct, the system (G6) is hyperbolic. In this case, there are two real 

eigenvectors 𝑣𝐷
±⃗⃗⃗⃗⃗⃗ (𝑣𝐷,1

± , 𝑣𝐷,3
± ) that correspond to the direction of admissible changes in fluid saturation and 

identify so-called fast and slow rarefaction curves. The components of the eigenvectors are expressed as 

𝑣𝐷,1
± = 𝑑𝑆1 =

𝜕𝑓1
𝜕𝑆3

   ;  𝑣𝐷,3
± = 𝑑𝑆3 = 𝑢𝐷

± −
𝜕𝑓1
𝜕𝑆1

   (G11) 

The fast rarefaction characterized by the eigenvector 𝑣𝐷
+⃗⃗⃗⃗⃗⃗  represents situations in which gas or/and water 

saturations increase in three-phase systems (Jackson and Blunt, 2002). 

When Eq. (G8) gives a real wave velocity, some values of saturations called umbilic point (Jackson and Blunt, 

2002) give the same value: 𝑢𝐷
± = 𝑢𝐷

+ = 𝑢𝐷
−. The resulting system is therefore non-strictly hyperbolic and very 

sensitive to the initial condition (Isaacson et al., 1990). The square root in Eq. (G8) is then always positive. In 

the elliptic region, wherein  𝑢𝐷
± are complex and conjugates, a linearized analysis shows that the system is 

unstable (e.g., Jahanbakhsi et al. (2013), Bell et al. (1986)). In the presence of capillarity, the diffusive term 

becomes dominant at high frequencies. However, at low frequencies, the diffusive term would not be 

sufficient to remove instabilities. 

It has been shown that inside the elliptic region, equilibrium formulation yields unstable and oscillatory 

solutions. When the initial and injected state for saturation is inside the elliptic region, the solution exhibits 

oscillatory behavior, growing in magnitude showing that the system is unstable (Trangenstein, 1989). A non-

equilibrium approach was developed (Jahanbakhsi et al., 2013) using relaxation strategies (Barenblatt's model) 

which leads to high order terms involving cross derivatives. When both, 𝑆𝐿 and  𝑆𝑅 are outside the elliptic 

region, the solution is stable and the existence of the elliptic zone does not affect the results. When initial and 

injected states are on the opposite sides of the elliptic region, solutions are oscillatory and not completely 

stabilized. 

 
G.3 Test of implemented algorithm to identify elliptic zones : the study case of Bell 

In order to investigate three-phase relative permeability behavior on ternary diagram , a first set of functions 𝕋
is used from Bell (1986): 

𝑘𝑟1(𝑠1) = 1.09𝑠1
1.516687 − 0.09𝑠1

4.51668 
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𝑘𝑟2(𝑠1, 𝑠3) =
1 − 𝑠1 − 𝑠3

(1 − 𝑠1)(1 − 𝑠3)
𝑘𝑟12(𝑠1)𝑘𝑟23(𝑠3) 

𝑘𝑟3(𝑠3) = 0.525𝑠3
1.02 + 0.475𝑠3

3.62     (G12) 
To quantify the three-phase oil relative permeability (kr2), the two-phase relative permeability functions 
𝑘𝑟12 and 𝑘𝑟23 from the water/oil and oil/gas side are expressed by  : 

𝑘𝑟12(𝑠1) = 1.95(1 − 𝑠1)
8.28 − 0.95(1 − 𝑠1)

11.284 
𝑘𝑟23(𝑠3) = 1.19(1 − 𝑠3)

2.006 − 0.19(1 − 𝑠3)
2.024  (G13) 

Bell’s model is a synthetic set of relative permeabilities known to maximize the elliptic region on . Water 𝕋

viscosity is 𝜇1=0.8 cP, gas viscosity is 𝜇3=0.05 cP and three different oil viscosities are investigated from 0.1 cP 

to 5 cP without gravity effect (Fig. G1).  

(a) Jahanbakhshi et al. (2013) (b) Our study 

  

  

  

Fig. G1. Comparison of elliptic zones without gravity using Bell’s model and 3 different oil viscosities 
documented by Jahanbakhshi et al. (2013) and quantified with the search algorithm used in our study. 
Elliptic regions are depicted as the black areas. The results of our study show the percentage of saturation 
space covered by elliptic regions, the distribution of eigenvectors associated with fast rarefaction waves 
(blue arrows) and the curves in the hyperbolic part are solution paths corresponding to the eigenvalues uD

+ 
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(grey lines). 

 

When reducing the oil viscosity from 5 cP to 0.1 cP, the elliptic region produces a larger instability area. The 

largest zone for 𝜇2=0.1 cP almost occupies  15% of the whole ternary surface, parallelly oriented to the gas-oil 

side compared to 7% obtained for 𝜇2 = 1 cP. The lower the oil viscosity is the larger the extent of the elliptic 

area. 

When including gravity, another elliptic region appears whose extent strongly depend on the absolute value of 

total velocity.  Fig. G2 shows the influence of gravity associated with different orders of magnitude of total 

velocity, varying from 10−2 ms-1 to 10−7 ms-1. As reference is used here the case without gravity and a fixed oil 

viscosity fixed of 1 cp. When the total velocity is 10−2 ms-1, the elliptic zone decreases slightly while its area 

remains close to 7% of the total ternary surface. The further decrease of the total velocity results in a 

significant decrease of the elliptic area to about 2% of the total ternary surface and a displacement of the 

elliptic zone towards the oil vertex. Overly, the decrease of total velocity has a stabilizing and antagonistic 

effect in contrast to the oil viscosity. However, both parameters appear in the denominator of the gravity 

number 𝒩𝐺  (Eqs. (G4) and (G5)).  

 

without gravity with gravity at different total velocities 

    

Fig. G2. Extent of elliptic zones with Bell’s synthetic model using an oil viscosity of 1 cp: study case without 

gravity (left) and with gravity effect and different total velocities (right). 𝒩𝐺  is the dimensionless gravity 

number. Elliptic regions are depicted as the black areas. The results of our study show the percentage of 

saturation space covered by elliptic regions, the distribution of eigenvectors associated with fast rarefaction 

waves (blue arrows) and the curves in the hyperbolic part are solution paths corresponding to the eigenvalues 

uD
+ (grey lines). 

 

G.4 Parker-Lenhard model: quantification of elliptic regions 
The occurrence of elliptic regions was assessed for the Parker-Lenhard model in the same way as described for 
the mechanistic model. The numerical results obtained for the Bentheimer sandstone and Berea sandstone 
are described below.  
 
G.4.1 Bentheimer sandstone 
The study on the occurrence of elliptic regions was conducted with the Parker-Lenhard model using the 
experimental data of the Bentheimer sandstone (Table 2), the intrinsic permeability of the rock 𝐾 = 2.63 ×
10−12 m2 and the model input parameter of modeling options Pc-S and kr-S (Table 9). The numerical results 
obtained are shown in Fig. G3. 
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without gravity with gravity at different total velocities 

Option Pc-S Option Pc-S 

    

Option kr-S Option kr-S 

    

Fig. G3. Bentheimer sandstone: influence of gravity and total velocity on the extent of elliptic regions in the 
ternary diagram. 𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation.  

 
G.4.2 Berea sandstone 

The study on the occurrence of elliptic regions was conducted with the Parker-Lenhard model using the 

experimental data of the Berea sandstone (Table 3), the intrinsic permeability of the rock 𝐾 = 1.97 × 10−13 

m2 and the model input parameter of modeling options Pc-S and kr-S (Table 9). The numerical results obtained 

are shown in Fig. G4.  
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without gravity with gravity at different total velocities 

Option Pc-S Option Pc-S 

    

Option kr-S Option kr-S 

    

Fig. G4. Berea sandstone: influence of gravity and total velocity on the extent of elliptic regions in the ternary 
diagram. 𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation.  

 
G.5 Stone’s model I: quantification of elliptic zones 
The occurrence of elliptic regions was assessed for the Stone’s model I in the same way as described for the 
mechanistic model. The numerical results obtained for the Bentheimer sandstone and Berea sandstone are 
presented below. To study the existence of possible elliptic regions, we required a relative permeability model 
for water and gas in the water-oil-gas saturation space. We therefore used the water relative permeability and 
gas relative permeability expression described by the Lenhard-Parker model (Eqs. (5) and (7)). The Van 
Genuchten parameter m and the irreducible water saturation in a water-gas system Swi was adopted from 
modeling option Pc-S (Table 9).  
 
G.5.1 Bentheimer sandstone 
The study on the occurrence of elliptic regions was conducted with Stone’s model I using the experimental 
data of the Bentheimer sandstone (Table 2), the intrinsic permeability of the rock 𝐾 = 2.63 × 10−12 m2, and  
the model input parameter used for the prediction of DDI experiments performed on Bentheimer sandstone 
(Table 10). 
The numerical results obtained are shown in Fig. G5. 
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without gravity with gravity at different total velocities 

    

Fig. G5. Bentheimer sandstone: influence of gravity and total velocity on the extent of elliptic regions in the 
ternary diagram. 𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation.  

 
 
G.5.2 Berea sandstone 

The study on the occurrence of elliptic regions was conducted with Stone’s model I using the experimental 

data of the Berea sandstone (Table 3), the intrinsic permeability of the rock 𝐾 = 1.97 × 10−13 m2 and the 

model input parameter used for the prediction of DDI experiments performed on Berea sandstone (Table 10). 

The numerical results obtained are shown in Fig. G6.  

without gravity with gravity at different total velocities 

    

Fig. G6. Berea sandstone: influence of gravity and total velocity on the extent of elliptic regions in the ternary 
diagram. 𝒩𝐺  is the dimensionless gravity number. The results show the percentage of saturation space 
covered by elliptic regions and the distribution of eigenvectors associated with fast rarefaction waves (blue 
arrows). Elliptic regions are depicted as the black areas. The dotted blue lines indicate the limits of irreducible 
water saturation.  

 
 
 




