

Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy

Julien Bordes, Sébastien Incerti, Erick Mora-ramirez, Jonathan Tranel, Cédric Rossi, Christine Bezombes, Julie Bordenave, Manuel Bardiès, Richard Brown, Marie-claude Bordage

▶ To cite this version:

Julien Bordes, Sébastien Incerti, Erick Mora-ramirez, Jonathan Tranel, Cédric Rossi, et al.. Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioim-munotherapy. Med.Phys., 2020, mp.14370. 10.1002/mp.14370. hal-02981284

HAL Id: hal-02981284 https://hal.science/hal-02981284v1

Submitted on 8 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Monte Carlo dosimetry of a realistic multicellular model of follicular lymphoma in a context of radioimmunotherapy

- 3 Julien Bordes^{a,b*}, Sébastien Incerti^{c,d}, Erick Mora-Ramirez^{a,b,e}, Jonathan Tranel^{a,b}, Cédric Rossi^{a,b,f}, Chris-
- 4 tine Bezombes^{a,b}, Julie Bordenave^{a,b}, Manuel Bardiès^{a,b}, Richard Brown^g, Marie-Claude Bordage^{a,b}
- 5 a CRCT, UMR 1037 INSERM, Université Paul Sabatier F-31037 Toulouse, France
- 6 b UMR 1037, CRCT, Université Toulouse III-Paul Sabatier, F-31037, France
- 7 ^c Université de Bordeaux, CENBG, UMR 5797, F-33170 Gradignan, France
- 8 d CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan, France
- 9 º Universidad de Costa Rica, Escuela de Física, CICANUM, San José, Costa Rica
- 10 ^f CHU Dijon, Hématologie Clinique, Hôpital François Mitterand, 21000 Dijon, France
- 11 BInstitute of Nuclear Medicine, University College London, UK
- 12
- 13 * Corresponding author at:
- 14 Centre de Recherches en Cancérologie de Toulouse
- 15 INSERM UMR 1037 / Université Toulouse III Paul Sabatier
- 16 2 avenue Hubert Curien CS 53717
- 17 31037 TOULOUSE CEDEX 1 FRANCE
- 18
- 19 *E-mail addresses:*
- 20 julien.j.bordes@gmail.com
- 21 <u>incerti@cenbg.in2p3.fr</u>
- 22 <u>erick.mora@ucr.ac.cr</u>
- 23 j.tranel@hotmail.fr

- 24 <u>cedric.rossi@chu-dijon.fr</u>
- 25 <u>christine.bezombes@inserm.fr</u>
- 26 julie.bordenave@inserm.fr
- 27 <u>manuel.bardies@inserm.fr</u>
- 28 <u>richard.brown@ucl.ac.uk</u>
- 29 marie-claude.bordage@inserm.fr
- 30 *Keywords*:
- 31 Small-scale dosimetry, realistic biological data, rituximab, Auger electrons, β particles.
- 32 Abstract:

33 Purpose. Tumors geometry and radiopharmaceutical biodistribution impact the energy deposi-34 tion in targeted radionuclide therapy. However, small-scale dosimetry studies generally consider an ar-35 tificial environment where the tumors are spherical and the radionuclides are homogeneously biodis-36 tributed. To bring realism, we developed a dosimetric methodology based on a three-dimensional in 37 vitro model of follicular lymphoma incubated with rituximab, an anti-CD20 monoclonal antibody used 38 in the treatment of non-Hodgkin lymphomas, which might be combined with a radionuclide. The effects 39 of the realistic geometry and biodistribution on the absorbed dose were highlighted by comparison with 40 literature data. Additionally, to illustrate the possibilities of this methodology, the effect of different ra-41 dionuclides on the absorbed dose distribution delivered to the *in vitro* tumor were compared.

Methods. The starting point was a model named Multicellular Aggregates of Lymphoma Cells
(MALC). Three MALCs of different dimensions and their rituximab biodistribution were considered. Geometry, antibody location and concentration were extracted from selective plane illumination microscopy. Assuming antibody radiolabeling with Auger electron (¹²⁵I and ¹¹¹In) and β⁻ particle emitters
(¹⁷⁷Lu, ¹³¹I and ⁹⁰Y), we simulated energy deposition in MALCs using two Monte Carlo codes: Geant4DNA with "CPA100" physics models for Auger electrons emitters and Geant4 with "Livermore" physics
models for β- particles emitters.

49 *Results.* MALCs had ellipsoid-like shapes with major radii, r, of ~ 0.25 , ~ 0.5 and ~ 1.3 mm. Rituximab was concentrated in the periphery of the MALCs. The absorbed doses delivered by ¹⁷⁷Lu, ¹³¹I and 50 51 ⁹⁰Y in MALCs were compared with literature data for spheres with two types of homogeneous biodistri-52 butions (on the surface or throughout the volume). Compared to the MALCs, the mean absorbed doses 53 delivered in spheres with surface biodistributions were between 18% and 38% lower, while with vol-54 ume biodistribution they were between 15% and 29% higher. Regarding the radionuclides comparison, the relationship between MALC dimensions, rituximab biodistribution and energy released per decay 55 56 impacted the absorbed doses. Despite releasing less energy, ¹²⁵I delivered a greater absorbed dose per decay than ¹¹¹In in the r ~ 0.25 mm MALC ($6.78 \cdot 10^{-2}$ vs. $6.26 \cdot 10^{-2}$ µGy \cdot Bq⁻¹ \cdot s⁻¹). Similarly, the absorbed 57 58 doses per decay in the r ~ 0.5 mm MALC for 177 Lu (2.41 \cdot 10⁻² μ Gy \cdot Bq⁻¹ \cdot s⁻¹) and 131 I (2.46 \cdot 10⁻² μ Gy \cdot Bq⁻¹ · s⁻¹) are higher than for 90 Y (1.98 · 10⁻² μ Gy · Bq⁻¹ · s⁻¹). Furthermore, radionuclides releasing more 59 60 energy per decay delivered absorbed dose more uniformly thorough the MALCs. Finally, when consid-61 ering the radiopharmaceutical effective half-life, due to the biological half-life of rituximab being best 62 matched by the physical half-life of ¹³¹I and ¹⁷⁷Lu compared to ⁹⁰Y, the first two radionuclides delivered higher absorbed dose. 63

Conclusion. In the MALCs considered, β- emitters delivered higher and more uniform absorbed
 dose than Auger electron emitters. When considering radiopharmaceutical half-lives, ¹³¹I and ¹⁷⁷Lu de livered absorbed doses higher than ⁹⁰Y. In view of real irradiation of MALCs, such a work may be useful
 to select suited radionuclides and to help explain the biological effects.

68 1 Introduction

69In targeted radionuclide therapy (TRT), a tumor-seeking agent is combined with an emitter of70short-range radiation, such as Auger electrons (typically inferior to 1 µm in water), α particles (inferior71to 100 µm) and β · particles (in the order of millimeters). The objective of this combination is to deliver72in patients a lethal absorbed dose to tumor cells while minimizing the exposure of healthy tissues. Thus,73the development and the evaluation of TRT requires small-scale dosimetry studies^{1,2}. However, previous74studies have been generally based on simplifying assumptions (*e.g.* ³⁻⁸) owing to the lack of data at the75submillimeter scale regarding the tumor geometry and the radionuclide biodistribution.

76 Firstly, tumors were generally supposed spherical, or, alternatively, ellipsoidal. Absorbed dose 77 in spheres was found to be higher than in the ellipsoids of the same volume⁹, emphasizing the influence 78 of the geometry. Secondly, small-scale dosimetry calculations have regularly assumed a homogeneous 79 radionuclide biodistribution, either at the surface or within the volume of the tumor. In practice, the 80 targeting of a tumor is not homogeneous, partly due to the heterogeneous distribution of the receptors 81 (*i.e.* the antigens). Thus, mathematical models of heterogeneous radionuclide biodistributions within 82 the tumors have been studied¹⁰⁻¹³. As could be expected, these models led to absorbed doses signifi-83 cantly less uniform within the tumor compared to homogeneous biodistributions. Therefore, given the 84 impact of both tumor geometry and radionuclide biodistribution, there are clear calls for the develop-85 ment of small-scale dosimetry based on realistic biological data.

86 In the context of radioimmunotherapy (RIT), a single in vitro cultured carcinoma cell was con-87 sidered in order to reproduce the effect of its realistic geometry and monoclonal antibody biodistribu-88 tion on the dosimetry¹⁴. These biological data were extracted from microscope images. Assuming anti-89 body radiolabeling with iodine-125, the energy deposition in the cell was calculated with Monte Carlo 90 simulations. However, the relevance of this work was limited since tumors targeted in RIT such as non-91 Hodgkin lymphoma (NHL) grow as multicellular three-dimensional structures. Thus, a single cell dosi-92 metric model neglects the absorbed dose delivered by the radiopharmaceutical bound to other cells of 93 the tumor (crossfire effect). Furthermore, studies regarding unlabeled monoclonal antibody treatments 94 highlighted that the biodistribution might be impacted by the tumor size and the extracellular matrix

95 (*i.e.* the assemblage of non-cellular molecules providing structural support for the surrounding cells), 96 limiting the effectiveness of the treatment. Increasing tumor size is regarded as possibly reducing the 97 monoclonal antibody concentration and decreasing survival of a mouse model¹⁵ and patients¹⁶. Further-98 more, the extracellular matrix might hamper the monoclonal antibody penetration¹⁷. To address these 99 questions, a three-dimensional *in vitro* culture system of follicular lymphoma (a NHL subtype) express-100 ing extracellular matrix was designed in a separate project at the Cancer Research Center of Toulouse¹⁸⁻ 101 ²¹. The model was termed multicellular aggregate of lymphoma cells (MALC). The MALCs were incu-102 bated with rituximab. This chimeric monoclonal antibody targeting the membrane-associated CD20 an-103 tigen has been combined with radionuclides for RIT treatments (see clinical review of Read *et al.*²²).

104 To improve the realism and the relevance of the single cell dosimetry, this paper presents a do-105 simetric model based on selective plane illumination microscopy (SPIM) images of three MALCs, of dif-106 ferent size, treated by rituximab. Data were extracted to define the tumor geometry and the radiophar-107 maceutical biodistribution. Rituximab was virtually radiolabeled with two types of electron emitters. 108 The Auger electron emitters iodine-125 (125I) and indium-111 (111In) were studied because they proved 109 their efficiency in destroying lymphoma cells *in vitro* in RIT-related research^{23,24}. β - particle emitters 110 lutetium-177 (¹⁷⁷Lu), iodine-131 (¹³¹I) and yttrium-90 (⁹⁰Y) were also considered. For the RIT treatment 111 of patients with relapsed / refractory NHL, ¹⁷⁷Lu-lilotomab satetraxetan is currently on trial²⁵, while 112 both ¹³¹I-tositumomab (Bexxar) and ⁹⁰Y-ibritumomab tiuxetan (Zevalin) have been used²⁶. In RIT, the 113 dosimetry is highly impacted by the radiopharmaceutical effective half-life, a parameter that would de-114 pend on the rituximab radiolabeling. We studied the energy deposition patterns in MALCs with Monte 115 Carlo modeling of radiation transport. Additionally, the effective half-life was accounted for by using the 116 simulated data and a simple pharmacokinetic model.

As a first step, the relevance of implementing realistic biological data was highlighted by comparing average absorbed doses to literature data. For the following step, to illustrate the possibilities offered by this new dosimetric model, we compared the radionuclides' absorbed fraction, average absorbed dose and absorbed dose volume distribution. As a last step, the influence of the radiopharmaceuticals half-life on the absorbed dose was studied.

122 2 Material and methods

123 2.1 Three-dimensional model of follicular lymphoma

The development of the MALCs as well as the microscopy acquisition were detailed in prior stud ies¹⁸⁻²¹. This section focuses on information relevant to the present work.

126 2.1.1 MALC growth and labeling

127To compare the antibody biodistribution in different tumor volumes, the MALCs, created with128follicular lymphoma cells expressing green fluorescent protein (GFP), were cultured during 2, 5 or 10129days (hereafter referred to as D2, D5 and D10). Then, they were treated by a saturating concentration130of 10 µg/ml of CF555 labeled rituximab²⁷ for a duration of 24 h.

131 2.1.2 SPIM imaging

132 Fluorescence microscopy technologies, such as SPIM detect the light emitted by fluorescent 133 markers²⁸. SPIM was particularly adapted to this study since it allows the observation of whole organ-134 isms or three-dimensional multicellular models over a few millimeters while keeping a low phototoxicity^{29,30}. 24 h after rituximab administration, z-stack of images were acquired. Each image corresponded 135 136 to a slice of the MALC in the x-y plane. For example, Figure 1 displays a central slice of MALCs (a) D2, (b) 137 D5 and (c) D10. Green signal corresponds to GFP 488 nm emission and reveals MALC geometry. The 138 black hollow at the center of MALCs D5 and D10 are due to a lack of follicular lymphoma cells. Red signal 139 from the 561 nm emission of CF555 represents the rituximab biodistribution. To optimize the contrast 140 between follicular lymphoma cells and rituximab, the colors on the images differ from the real colors 141 produced by the fluorescent markers. SPIM images were composed of voxels with (x, y and z) dimen-142 sions of $3.7 \cdot 3.7 \cdot 3.1 \,\mu\text{m}^3$ and were stored into TIFF files.

Figure 1. SPIM images of the central slices of the MALC: (a) D2, (b) D5 and (c) D10. Follicular lymphoma cell nuclei and rituximab appear in green and red, respectively.

143 **2.2 Image processing**

144To extract the data required for the dosimetry of the MALCs, SPIM images were processed with145Fiji³¹ ("Fiji Is Just ImageJ", downloadable from fiji.sc). This program has specific features for the146processing of microscope images of three-dimensional biological samples³² and can read TIFF files. First,147the stacks of images were transferred to Fiji for 3D reconstructions (*e.g.* MALC D5 in Figure 2). Then,148two macros were developed and implemented in Fiji:

The first one treated the green signal in order to extract the MALCs geometry. MALC voxels
were separated from the background by applying an intensity threshold. A clear delineation of the
MALCs boundary allowed a straightforward determination of the threshold value. Since the black hollow
sections of the MALC D5 and D10 were in the center, they were considered as a part of the volume of
interest (VOI). Finally, in view of the definition of the MALC geometry during Monte Carlo simulations,

the macro recorded different information into a ".dat" file; namely, the number of voxels, the voxel dimensions along the three axes, and each voxel coordinate (x, y, z).

156 - The second macro treated the red signal from the rituximab CF555 label. It removed the back-157 ground noise, then recorded the voxel coordinates and intensity into a ".dat" file. During simulations, 158 the source voxels were selected with a probability directly derived from their red signal intensity. It was supposed that the CF555 biodistribution would be identical to the radiopharmaceutical. This assumes 159 160 that the CF555 labeling would neither detach from the antibody nor impact its biodistribution. To the 161 best of our knowledge, no publication addresses these questions. This also assumes that the radiolabel-162 ing would not affect the rituximab biodistribution. This last point is supported by the requirement that, 163 in nuclear medicine, the radiolabeling strategies preserve the biological properties of the proteins³³ such 164 as rituximab.

165

166

Figure 2. 3D reconstruction of MALC D5 from SPIM images. The axes are given in millimeters.

167 2.3 Voxel-based dosimetry

168 2.3.1 General settings

Energy depositions were calculated with the Geant4 Monte Carlo open-source platform³⁴⁻³⁶ since it enables the implementation of voxelized geometries and its physics models are well adapted to energies encountered in TRT. Furthermore, Geant4, being a well-established object-oriented code base, has a high degree of reuse meaning that little code must be written for a new application. The Geant4

173 "microbeam" example served as a basis. It was developed at the Centre d'Études Nucléaires de Bor-174 deaux-Gradignan (CENBG) to simulate the irradiation of individual cells with a microbeam of protons or α particles^{37,38}. In order to suit this example for TRT, we added the possibility of simulating the irra-175 176 diation of a VOI (in this work the MALC) by internalized radiopharmaceuticals. To reconstruct the 177 MALCs, the class *G4PVParameterised* placed the SPIM images voxels $(3.7 \cdot 3.7 \cdot 3.1 \,\mu\text{m}^3)$ according to 178 their coordinates stored in the output file of the first macro (see 2.2). The MALCs were positioned into 179 a sphere of liquid water. This enabled electron backscattering into the MALCs with the consequence of 180 an additional energy deposition. The simulation of the irradiation of each MALC by each radionuclide 181 considered 10⁶ decays. The activity was assumed homogeneously biodistributed within a voxel source. 182 Accordingly, the coordinates of a decay site inside such a voxel were sampled from a uniform distribu-183 tion. The particles were then emitted isotropically. Depending on the type of electron emitter, energy 184 depositions in the MALCs were simulated with different methods that will be presented in the following 185 sections (2.3.2 and 2.3.3).

186 2.3.2 Auger electron emitters

187 ¹²⁵I and ¹¹¹In mean emission spectra of monoenergetic electrons (Auger and internal conversion 188 electrons, Figure 3) and photons (X-rays and γ-rays) were extracted from the publication of the Ameri-189 can Association of Physicists in Medicine³⁹ (AAPM), as it is still a reference for Auger electron emitters (e.g. ^{14,40,41}). Table 1 shows important properties of the decay of ¹²⁵I and ¹¹¹In. Half-lives were extracted 190 191 from the Medical Internal Radiation Dose (MIRD) book⁴². The mean penetration corresponds to the 192 length of the vector connecting the electron emission and stopping points. Hence, this distance is lower 193 than the path length because the latter considers the direction changes of the electrons. Although nu-194 clear medicine dosimetric studies usually report the path length, in the present work the penetration 195 was more relevant for analyzing the results.

Figure 3. Mean electron emission spectra (Auger and internal conversion electrons) of ¹²⁵I and ¹¹¹In from the
 AAPM publication³⁹. For each energy decade, the top x-axis provides the corresponding mean penetration ac cording to Geant4-DNA.

Table 1. Some physical properties of the Auger electron emitters. Half-lives come from MIRD data⁴², spectra data
 were extracted from the AAPM publication³⁹ and mean penetrations were determined with Geant4-DNA.

Auger electron emitter	125	¹¹¹ In
Half-life (day)	59.4	2.8
Mean electron energy released (keV/decay)	19.5	34.7
Electron yield per decay	25.8	14.9
Electron mean energy $E_{e^{-}mean}$ (keV)	0.8	2.3
Penetration at $E_{e^{-}mean}$ (mm)	2.5 · 10 ⁻⁵	1.4 · 10 ⁻⁴
Maximum energy E _{e⁻max} (keV)	34.7	245.0
Penetration at $E_{e^{-}max}$ (mm)	1.5 · 10 ⁻²	4.2 · 10 ⁻¹

203

Auger electrons induce energy deposition clusters localized at the nanometer scale⁴³. Such phenomena can be studied with step-by-step Monte Carlo codes since they give the track structure of the particles down to the nanometer scale. Accordingly, ¹²⁵I and ¹¹¹In emissions were simulated with Geant4-DNA⁴⁴⁻⁴⁷ (geant4-dna.org). "CPA100" physics models ("option 6")^{48,49} were used. They describe ionization, electronic excitation and elastic scattering processes and are applicable from 256 keV down to 11 eV in liquid water. For the simulations of photon interactions (Compton and Rayleigh scatterings as well as photoelectric absorption), Geant4-DNA does not provide any physics models to-date. Thus, Geant4 "Livermore" physics models for photons were selected^{50,51}. During simulations, electrons and photons could produce vacancies in the atomic shells so atomic deexcitation emission was tracked (Auger electron emission, Auger cascade and fluorescence).

215 **2.3.3** β particle emitters

216 AAPM's publication³⁹ only provides data for Auger electron emitters. Therefore, ¹⁷⁷Lu, ¹³¹I and 217 ⁹⁰Y mean emission spectra of β - particles (Figure 4), monoenergetic electrons and photons were ex-218 tracted from the MIRD book⁴². Table 2 presents the main properties of the decay of ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.

219

Figure 4. β⁻ particle emission spectra of ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y from MIRD book⁴². The top x-axis provides the corre sponding Geant4 mean penetration every 500 keV.

222

β^{-} particle emitter	¹⁷⁷ Lu	131]	90 Y
Half-life (day)	6.6	8.0	2.7
Mean electron energy (β- particles + monoenergetic electrons) released (keV/decay)	147.8	191.7	933.2
β - particle mean energy E_{β} - _{mean} (keV)	133.1	181.8	933.0
Penetration at $E_{\beta^{-}mean}$ (mm)	1.6 · 10 ⁻¹	2.6 · 10 ⁻¹	2.9
β· particle maximum energy E _β - _{max} (keV)	497.8	806.9	2280.1
Penetration at $E_{\beta^{-}max}$ (mm)	1.2	2.4	8.4

Table 2. Some physical properties of the β - particle emitters. Half-lives and spectra data come from MIRD book⁴² and mean penetrations were determined with Geant4.

225

Part of the emission of ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y has an energy too high to be modeled with Geant4-DNA
physics models. Thus, simulations of the irradiation with these emitters were accomplished with Geant4
in a condensed history mode, as this provides physics models applicable up to GeV energies. "Livermore"^{52,53} physics models were used to describe particles interactions.

The ionization process was simulated along with bremsstrahlung. This latter slightly increased the stopping power of the electrons / β · particles at these energies, thus marginally reducing their penetration. "Livermore" electron models are defined down to about 10 eV. Nevertheless, in accordance with guidelines, the cut-off was set to 250 eV. Energy production cuts for secondary particles was also fixed at 250 eV. In order to limit the number of electrons crossing a voxel with no energy deposition, step size limit was arbitrary chosen to 0.6 µm, corresponding to less than 1/5 of the voxel dimensions.

- 236 2.4 Dosimetric quantities
- 237 2.4.1 Simulation results

Geant4 simulations generated output files containing the energy deposited in the MALCs voxels.
Firstly, different dosimetric quantities were directly calculated from these data: the absorbed fraction
and the absorbed dose.

241- The absorbed fraction φ represents the fraction of energy released from the source region that242is deposited in the target region. Here, the MALCs represent both the source and the target regions. The243results focused on electron absorbed fractions $φ_{e^-}$ (monoenergetic electrons and eventually β parti-244cles), because photon absorbed fractions are insignificant at this scale:

$$\phi_{e^{-}MALC} = \frac{E_{e^{-}}}{E_{e^{-}0}}$$
(1)

245 Where E_{e^-} is the deposited energy and E_{e^-0} the electron-released energy. The absorbed fraction 246 is frequently reported in nuclear medicine dosimetry studies⁵⁴.

- The energy deposited E_i (in J) in a VOI i (either a whole MALC or a voxel) characterized by a
mass m_i (in kg) was converted to absorbed dose D_i (in Gy):

$$D_i = \frac{E_i}{m_i}$$
(2)

This quantity was then divided by 10⁶ to obtain the mean absorbed dose per decay (or per unit of time-integrated activity, in Bq · s, according to MIRD most recent terminology⁵⁵). First, this quantity was determined for the whole MALCs. However, the absorbed dose was not uniformly delivered within the volume. In order to specify the volume fractions having received either low or high absorbed dose, cumulative dose-volume histograms (cDVH) were plotted. They give the fraction of the volume (*i.e.* the fraction of MALC voxels) in which an absorbed dose greater than or equal to a given value was delivered. These graphs are routinely used in external radiotherapy, but also in some TRT studies^{56,57}.

256 2.4.2 Considering radiopharmaceutical effective half-life

Subsequently, in order to consider the effective half-life of the radiopharmaceutical X-rituximab (X being one of the radionuclides), the MALCs and voxels absorbed doses per unit administered activity (A₀ in Bq) were calculated. In nuclear medicine, this quantity allows the assessment of the absorbed dose delivered to a VOI for a given administered activity. It was calculated as the product of the absorbed doses per decay (see 2.4.1) and the time-integrated activity coefficient ã (also known as the residence time and given in s). The value of ã represents the total number of decays occurring in a MALC per unit administered activity⁵⁵:

$$\tilde{a} = \frac{1}{A_0} \int_{0}^{\infty} A(X - rituximab, t) \cdot dt$$
(3)

Where A(X – rituximab, t) is the time-dependent activity of the radiopharmaceutical in a MALC (in Bq). Assuming that this radiopharmaceutical has an instantaneous uptake in a MALC (*i.e.* instantaneously bound to the MALCs according to the biodistribution extracted from the images) and its elimination is monoexponential:

$$\tilde{a} = \frac{1}{A_0} \int_0^\infty A_0 \cdot e^{-(\ln(2)/T_{eff}(X - rituximab)) \cdot t} \cdot dt$$
(4)

$$\tilde{a} = 1.443 \cdot T_{\text{eff}}(X - \text{rituximab})$$
(5)

268

269 Where $T_{eff}(X - rituximab)$, the effective half-life of the radiopharmaceutical (in s), depends on $T_{phys}(X)$ 270 the physical half-life of the radionuclide X (in s) and on T_{bio} (rituximab) the biological half-life of rituxi-271 mab (in s):

$$T_{\rm eff}(X - {\rm rituximab}) = \frac{T_{\rm phys}(X) \cdot T_{\rm bio}({\rm rituximab})}{T_{\rm phys}(X) + T_{\rm bio}({\rm rituximab})}$$
(6)

272

273 The physical half-lives are well documented (see Table 1 and Table 2), but, rituximab biological 274 half-life in NHL is less-well established. In a clinical study, Scheidhauer et al. evaluated the effective half-275 life of the radiopharmaceutical ¹³¹I-rituximab in NHL⁵⁸. Biodistribution in 14 patients was determined 276 by gamma camera imaging. Our work focused on the 3.4 days mean effective half-life determined by 277 Scheidhauer *et al.* We emphasize, however, that its precision is limited. It is associated to a standard 278 deviation of 1.1 day. Also, Scheidhauer et al. reported a high inter-patient variability, with effective half-279 lives ranging from 1.7 to 5.5 days. The gamma camera imaging introduces further uncertainties on the 280 dosimetry⁵⁹⁻⁶⁰. According to equation (6), the 3.4 days effective half-life corresponds to a rituximab bio-281 logical half-life of 5.8 days. Using this value and the equation (6), the effective half-lives of rituximab radiolabeled with ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu or ⁹⁰Y were deducted. 282

284 3.1 MALC and rituximab biodistribution characteristics

285 Table 3 presents the dimensions of the three MALCs along x-, y-, z- axes and their masses in 286 Geant4 simulations which were used to determine the absorbed doses according to equation (2). The 287 masses were evaluated by multiplying the number of voxels in a MALC by the mass of a voxel filled with 288 liquid water (as simulations were performed in this material). Figure 1 shows that MALCs considered 289 in this study have ellipsoid-like shape. For MALC D2, D5 and D10, major radii are ~0.25 mm, ~0.5 mm 290 and \sim 1.3 mm, respectively. Rituximab is heterogeneously biodistributed inside a shell-like volume at 291 the periphery of the MALCs (Figure 1). Generally, the shell-like volumes are characterized by a thickness 292 and a distance to the surface of the MALCs both of the order of a few hundredths of a millimeter. It was 293 previously demonstrated that the extracellular matrix limits the diffusion of therapeutic agents in tu-294 mors¹⁷. It was also shown that MALCs expressed extracellular matrix proteins²⁰. Accordingly, in an on-295 going MALC-based study, the possibility that the rituximab peripheral location is due to the extracellular 296 matrix is being investigated.

2	n	7
2	9	1

Table 3. Sizes along x-, y- and z-axes of the MALCs D2, D5 and D10.

MALC	Dimensions x · y · z (mm ³)	Mass (mg)
D2	$0.34 \cdot 0.53 \cdot 0.50$	$4.6 \cdot 10^{-2}$
D5	$0.96 \cdot 1.09 \cdot 1.07$	$5.5 \cdot 10^{-1}$
D10	$2.54 \cdot 1.23 \cdot 2.26$	2.8

298 **3.2 Dosimetric quantities per decay**

3.2.1 Comparison with literature data obtained in a simplified model

Figure 5 displays the relative difference (%) of absorbed dose per decay between the reference data of Bardiès and Chatal³ for spheres with either (a) a surface or (b) a volume biodistribution and MALCs calculations (relative difference = $100 \cdot (D_{sphere} - D_{MALC}) / D_{MALC}$). In this previous study, calculations were carried out by an analytical method based on scaled dose-point kernels in spheres with radius ranging from 0.01 to 22 mm. For a valid comparison, the results for a MALC were compared to the results of the sphere having the closest mass. Accordingly, absorbed doses for MALCs D2, D5 and D10 306 were compared to the values for spheres with radius, r, of 0.2 mm, 0.5 mm and 0.9 mm, respectively. Furthermore, only ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y were considered because Bardiès and Chatal focused their study 307 308 on β particle emitters. The peripheral biodistribution of rituximab (discussed in section 3.1) can be seen 309 as an intermediate between the surface and volume biodistributions assumed by Bardiès and Chatal. Hence, this is coherent that the absorbed doses per decay for MALCs lie between the values for these 310 311 two theoretical situations. It is also noticeable that results with these two biodistributions own a similar 312 degree of agreement with results for the MALCs. This indicates that for the purpose of absorbed dose 313 calculations, in these particular cases, the surface and the volume biodistribution are both equally rele-314 vant. Furthermore, non-negligible discrepancies between the theoretical model and realistic data were 315 observed. These results highlight the need to account of realistic biological data.

Figure 5. Relative differences (%) between absorbed dose per decay calculated in spheres of various radii with either a (a) surface or (b) a volume biodistribution³ and MALCs (taken as reference). Comparison spheres *vs.* MALCs are as follow: r = 0.2 mm *vs.* MALC D2 (left), r = 0.5 mm *vs.* MALC D5 (middle) and r = 0.9 mm *vs.* MALC D10 (right).

320

321 **3.2.2** Comparison of the radionuclides

322 For clarity, the results for each radionuclide are reported by ascending order of energy released

- 323 per decay, that is: ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.
- 324 Figure 6 displays, for each radionuclide, the electron absorbed fraction in the MALCs and Table
- 325 4 shows the corresponding numerical values. As MALCs get bigger, the electrons / β particles deposit

326 more energy inside before exiting them, increasing the absorbed fractions. Assuming a homogeneous 327 surface biodistribution of rituximab (which is at first sight the closer approximation of the real biodis-328 tribution as seen on Figure 1), for very large MALCs the absorbed fraction would tend toward 0.5 (semi-329 infinite medium condition). However, for MALC D5 and D10, the values become greater than 0.5 for all 330 radionuclides but ⁹⁰Y (presumably, absorbed fraction of ⁹⁰Y would become greater than 0.5 in bigger 331 MALCs). This can be explained by the rituximab penetration inside the MALCs, enabling the electrons / 332 β particles to systematically deposit energy in the VOI, regardless their trajectories. This point is critical 333 since it further demonstrates the importance of using realistic biological data.

334 335

336 337 Figure 6. Absorbed fractions in MALCs D2, D5 and D10 for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.

Table 4. Absorbed fraction in the MALCs for the five radionuclides.

	Absorbed fraction		
Radionuclide	MALC D2	MALC D5	MALC D10
125]	1.00	1.00	1.00
¹¹¹ In	0.55	0.67	0.74
¹⁷⁷ Lu	0.49	0.62	0.71
131]	0.32	0.46	0.57
90Y	0.04	0.07	0.12

338

339 As radionuclides release more energy per decay, the penetration of the electrons / β - particles 340 increase (see Table 1 and Table 2). Thus, more energy is deposited outside the MALCs, and in turn the 341 absorbed fractions decrease. ¹²⁵I deposits nearly its whole electron energy within the three MALCs. The electrons it emits are unlikely to deposit energy outside the MALCs since their penetrations are limited 342 to $1.5 \cdot 10^{-2}$ mm while the rituximab is mostly located at more than ~3 $\cdot 10^{-2}$ mm from the edge. Note that 343 344 the real values are inferior to 0.998 (rounded to 1.00 for consistency), due to scarce rituximab biodis-345 tribution closer to or at the surface. The absorbed fractions for ¹¹¹In, lying between 0.55 and 0.74, are 346 notably lower than that of 125 I. The reason is that ~80% of the electron energy released per decay of ¹¹¹In is taken away by emissions of at least 145.0 keV, characterized by penetrations above 1.8 · 10⁻¹ mm 347 348 (right-hand side of Figure 3). Due to this property, the absorbed fractions for ¹¹¹In are remarkably close to ¹⁷⁷Lu, as their emissions have similar penetrations. Furthermore, the absorbed fractions for ¹³¹I are 349 higher than for 177 Lu as its penetration are higher (by 1.0 \cdot 10⁻¹ mm at $E_{\beta^-}_{mean}$). Finally, the absorbed 350 351 fractions for ⁹⁰Y, ranging between 0.04 and 0.12, are by far the lowest. Such low values are due to the penetrations of its emissions (up to 8.4 mm) being significantly superior to the size of the MALCs. 352

Figure 7 displays the mean absorbed dose per decay delivered to the MALCs by each radionuclide and Table 5 shows the corresponding numerical values. These results are impacted by the energy released by the radionuclides and the absorbed fractions.

356 357

358

Figure 7. Mean absorbed dose per decay in MALC D2, D5 and D10 for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.

Table 5. Mean absorbed dose per decay in the MALCs for the five radionuclides.

	Mean absorbed dose per decay (µGy · Bq · 1 · s · 1)		
Radionuclide	MALC D2	MALC D5	MALC D10
125	$6.78 \cdot 10^{-2}$	$5.69 \cdot 10^{-3}$	$1.10 \cdot 10^{-3}$
¹¹¹ In	$6.26 \cdot 10^{-2}$	$6.41 \cdot 10^{-3}$	$1.37 \cdot 10^{-3}$
¹⁷⁷ Lu	$2.27 \cdot 10^{-1}$	$2.41 \cdot 10^{-2}$	$5.34 \cdot 10^{-3}$
131	$2.01 \cdot 10^{-1}$	$2.46 \cdot 10^{-2}$	$5.84 \cdot 10^{-3}$
90Y	$1.21 \cdot 10^{-1}$	$1.98 \cdot 10^{-2}$	$6.15 \cdot 10^{-3}$

362 Despite ¹¹¹In (34.7 keV/decay) releasing more energy than ¹²⁵I (19.5 keV/decay), the former de363 livered a lower absorbed dose in MALC D2 due to its lower absorbed fraction. Nevertheless, for MALC
364 D5 and D10, the absorbed fraction for ¹¹¹In increases, leading to greater absorbed doses than for ¹²⁵I.

365 In each MALC, absorbed doses for β -particle emitters are greater than for Auger electron emitters, because they release considerably more energy. For example, absorbed doses for ¹⁷⁷Lu are greater 366 than that of 111 In by a factor ~4. Both have similar absorbed fractions, but 177 Lu (147.8 keV/decay) re-367 368 leases ~4 times more energy. For β - particle emitters, ¹⁷⁷Lu and ¹³¹I (191.7 keV/decay) results are close. 369 Lower energy released by 1^{77} Lu, is compensated by its higher absorbed fractions. Among β particle 370 emitters, 90Y (933.2 keV/decay) emits by far the more energy, yet the absorbed doses delivered are low-371 est in MALCs D2 and D5 due to extremely low absorbed fractions. In MALC D10, however, it delivered 372 the highest absorbed doses because, compared to MALC D2, absorbed fractions were increased by a 373 factor 3.

Figure 8 illustrates, as an example the distributions of the absorbed dose per decay (in μ Gy·Bq⁻¹·S⁻¹) inside the voxels of the slice of MALC D5 shown in Figure 1 (b). Note that 0.01 μ Gy·Bq⁻¹·S⁻¹ corresponds to a mean energy deposited per decay inside a voxel of 2.6 \cdot 10⁻³ eV·Bq⁻¹·S⁻¹. Figure 9 displays the cDVH (in μ Gy·Bq⁻¹·S⁻¹) of MALCs (a) D2, (b) D5 and (c) D10 for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y. Globally, when radionuclides release more energy, the absorbed dose is delivered more uniformly within the MALCs because of the increasing penetration of the emission.

380 Figure 8 (b) highlights the peripheral irradiation of ¹²⁵I, with a pattern very similar to the rituximab biodistribution. However, this radionuclide delivered high absorbed dose as revealed by the less-381 steep gradient of its cDVH. These observations are consistent with ¹²⁵I emitting low energy electrons, 382 383 which deposit most of the energy in a small distance from the decay site. The highly localized absorbed 384 dose delivered by ¹²⁵I was further observed at the cellular level by Arnaud *et al.*¹⁴. Unlike this radionu-385 clide, ¹¹¹In sparsely delivered absorbed dose in the central part of the MALCs (Figure 8 (c)) due to the higher penetrations of its emission. For both Auger electron emitters, the low absorbed dose delivered 386 387 in the central part of the MALCs (or the lack thereof) is linked to the rituximab peripheral biodistribu-388 tion. Nevertheless, the limited penetration of rituximab inside the MALCs can be counterbalanced by a 389 radiolabeling with one of the β - particle emitters.

390 This benefit, illustrated by Figure 8 (d), (e) and (f), was brought by the higher penetration of 391 their emission. It translates to higher cDVH values on the left-hand side (Figure 9). Among β - particle 392 emitters, ⁹⁰Y energy deposition was the most uniform throughout the MALCs. In comparison, ¹⁷⁷Lu and 393 ¹³¹I deposited less energy in the central part but more in the periphery. The improved absorbed dose 394 uniformity of ⁹⁰Y is further expressed by steeper gradients in its cDVH. It is linked to the variation of 395 penetration and stopping power of β - particles with their energy. β - particles emitted by ⁹⁰Y having 396 higher penetrations than for ¹⁷⁷Lu and ¹³¹I, were more likely to reach the center of the MALCs. This dif-397 ference is more pronounced as MALCs get bigger. Compared to ¹⁷⁷Lu and ¹³¹I, emissions of ⁹⁰Y have lower stopping powers (according to NIST database⁶¹, at E_{β^-} equal to E_{β^-} equal to E_{β^-} stopping powers (according to NIST database⁶¹, at E_{β^-} equal to E_{β^-} eq 398 399 thus they deposited less energy close to the decay site.

400 Figure 8. Absorbed dose per decay (μGy·Bq⁻¹·s⁻¹) delivered to the voxel of the slice of MALC D5 shown in Figure 1
 401 (b), for (b) ¹²⁵I, (c) ¹¹¹In, (d) ¹⁷⁷Lu, (e) ¹³¹I and (f) ⁹⁰Y. The corresponding color scale is displayed in (a).

402 Figure 9. cDVH of MALC (a) D2, (b) D5 and (c) D10 per decay for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.

404 **3.3** Absorbed dose per unit administered activity

The influence of the radiolabeled rituximab effective half-life on the absorbed dose is presented.
Table 6 summarizes the effective half-lives for radiolabeling with ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I or ⁹⁰Y as calculated
from equation (6). The differences between the physical half-lives of the radionuclides were decreased
by the introduction of the biological half-life of the rituximab (5.8 days).

Radionuclide X	Effective half-life of X-rituximab (day)
125]	5.3
¹¹¹ In	1.9
¹⁷⁷ Lu	3.1
131]	3.4
90 Y	1.8

Table 6. Effective half-lives of rituximab radiolabeled with one of the five radionuclides in NHL, determined with
 equation (6).

412 For each radionuclide, Figure 10 displays the mean absorbed dose per unit administered activity within the MALCs and Table 7 shows the corresponding numerical values. Regarding Auger electron 413 414 emitters, the effective half-life of ¹²⁵I-rituximab was 2.8 times higher than ¹¹¹In-rituximab. Therefore, 415 despite lower absorbed dose delivered per decay in MALC D5 and D10, ¹²⁵I delivered more absorbed 416 dose per unit administered activity than ¹¹¹In. For β - particle emitters, the effective half-life of ¹⁷⁷Lu-417 rituximab and ¹³¹I-rituximab were 1.7 and 1.9 times greater than that of ⁹⁰Y-rituximab. As a result, ab-418 sorbed dose per unit administered activity for ¹⁷⁷Lu and ¹³¹I were more than 3 times higher in MALC D2 419 and more than 2 times higher in MALC D5 than that of ⁹⁰Y. Furthermore, in MALC D10, despite higher 420 absorbed dose per decay, ⁹⁰Y delivered less absorbed dose per unit administered activity than ¹⁷⁷Lu and 421 ¹³¹I. As discussed by Scheidhauer *et al.*⁵⁸, the relatively long biological half-life of rituximab (5.8 days in NHL) is best matched by ¹³¹I physical half-life (8.0 days) than by ⁹⁰Y short physical half-life (2.7 days). 422 423 ¹⁷⁷Lu physical half-life of 6.6 days is also well adapted to the rituximab biological half-life.

Metric D2 Malc D5 Malc D10

Figure 10. Mean absorbed dose per unit administered activity to MALCs D2, D5 and D10 for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I
 and ⁹⁰Y.

Table 7. Mean absorbed dose per unit administered activity to the MALCs for the five radionuclides.

	Mean absorbed dose per unit administered activity (cGy · Bq-1)		
Radionuclide	MALC D2	MALC D5	MALC D10
125	4.50	$3.78 \cdot 10^{-1}$	$7.27 \cdot 10^{-2}$
¹¹¹ In	1.48	$1.51 \cdot 10^{-1}$	$3.23 \cdot 10^{-2}$
¹⁷⁷ Lu	8.76	$9.33 \cdot 10^{-1}$	$2.06 \cdot 10^{-1}$
131 I	8.45	1.04	$2.46 \cdot 10^{-1}$
90 Y	2.78	$4.56 \cdot 10^{-1}$	$1.42 \cdot 10^{-1}$

429

430Figure 11 illustrates, as an example the isodoses (in cGy·Bq⁻¹) inside the voxels of the slice of431MALC D5 shown by Figure 1 (b). Only the β· particle emitters were represented since the absorbed dose432distribution of Auger electron emitters were very heterogeneous and did not allow for a clear represen-433tation of isodoses. Figure 12 shows the cDVH of MALC (a) D2, (b) D5 and (c) D10 per unit administered434activity for ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y.

When the effective half-life of radiolabeled rituximab increases, the absorbed doses per administered activity increase. As a consequence, the region covered by high absorbed dose is largest for ¹³¹I and smallest for ⁹⁰Y as illustrated by the isodoses (Figure 11). Furthermore, the higher the effective halflife, the greater the shift of the cDVH curves toward higher absorbed doses. Accordingly, in the region of
high absorbed doses, cDVH values of ¹²⁵I become significantly higher than that of ¹¹¹In. In this region,
cDVH values of ¹⁷⁷Lu and ¹³¹I are noticeably higher than those of ⁹⁰Y.

- Figure 11. Isodose distributions in the slice of MALC D5 shown in Figure 1 (b), per unit administered activity of
 (b) ¹⁷⁷Lu, (c) ¹³¹I and (d) ⁹⁰Y (cGy·Bq⁻¹). The corresponding color scale is displayed in (a).
- 443

Figure 12. cDVH per unit administered activity of MALC (a) D2, (b) D5 and (c) D10 for 125 I, 111 In, 177 Lu, 131 I and 90 Y.

446 **3.4 Discussion**

Our methodology allowed the observation of the absorbed dose in an *in vitro* tumor model which
is more realistic than the spherical tumor with uniform biodistribution simplification. It is recognized,
however, that the realism of this work is limited with respect to clinical context. It is therefore essential
to review the degree of relevance of the biological and physical aspects of this work.

The present study focused on three MALCs with dimensions of the order of millimeter. On one hand, such a sample did not reproduce the diversity of tumor geometry and rituximab pharmacokinetics in patients, which are critical for dosimetry. For example, in clinical routine, the size of the diagnosed follicular lymphomas ranges from a few millimeters to several centimeters⁶². Additionally, multiple studies have highlighted the need for dosimetry in smaller follicular lymphomas (down to ~10 µm)⁶³⁻⁶⁵. Our study did not extend to the biggest and the smallest of the follicular lymphomas. It is expected that, with the increasing / decreasing size of the tumor model, radionuclides with higher (*e.g.* ⁹⁰Y) / lower (*e.g.* ¹²⁵I) penetration emissions, would become more favored from a dosimetric perspective. On the other hand, previous studies have highlighted the ability of three-dimensional aggregates to mimic the physiological *in vivo* aspects of tumors, enabling the identification of new targets and drugs⁶⁶⁻⁶⁸. In particular, this tool has long been recognized as very effective to characterize the penetration of antibodies⁶⁹⁻⁷⁰. These previous works give confidence in the clinical relevance of the rituximab peripheral distribution in the MALCs, a key point of the present study.

464 The accurate Monte Carlo tracking of the radionuclide emissions in the MALCs relied largely on 465 the choice of the physics models. Geant4-DNA provides two sets of physics models able to entirely simulate the electron emissions of ¹²⁵I and ¹¹¹In: the default ("option 2") and the CPA100 ("option 6") sets. 466 467 The latter set was selected following two main arguments. Differential cross sections for ionization and 468 cross section for electronic excitation of "option 6" are in better agreement than that of "option 2" with 469 experimental data. Furthermore, for low energy electrons, dose-point kernels generated by "option 2" 470 are considered unrealistic because they are very diffusive⁷¹, while those calculated by "option 6" are less so⁷². Concerning β - particle emitters, "Livermore" were considered more relevant than "PENELOPE-471 2008"73 electron physics models based on two arguments. Firstly, to be in accordance with Geant4-DNA 472 "option 6", the simulations were realized in liquid water. For this material, "Livermore" ionization cross 473 474 sections are in better agreement with experimental data³⁶. Secondly, regarding deexcitation processes, "Livermore" simulates every atomic shell, while "PENELOPE-2008" only takes into account K, L and M 475 476 shells⁷³.

477 Monte Carlo simulations were informed with data from one SPIM acquisition, showing biodis-478 tribution in MALCs after 24 h of incubation. To approximate the time-dependent activity in the MALCs, 479 we used the straightforward assumptions of a radiopharmaceutical instantaneous uptake and monoex-480 ponential elimination. In clinical studies, a more detailed description of the uptake and elimination is provided. Typically, 3 to 4 SPECT or PET acquisitions are performed, the first a few hours and the last 481 482 between a few tenth of hours and nearly 200 h after administration^{25,56,74-75}. Generally, these data are 483 fitted by a mono/biexponential function. The instantaneous uptake does not account for the decays oc-484 curring outside the tumor during the uptake in a clinical context. Hence, the absorbed dose to the tumor

delivered by radionuclides with short half-lives, such as ¹¹¹In and ⁹⁰Y, is overestimated compared to
those with longer half-live. We note, however, that SPECT acquisitions of mice and patients showed early
uptake of rituximab in NHL⁷⁶⁻⁷⁷ (a few hours after administration while ¹¹¹In and ⁹⁰Y physical half-lives
are ~2 days). Regarding the elimination of the rituximab in NHL, no data were found in the literature.
Implementation of more sophisticated pharmacokinetic models in our methodology would be an important next step for a more relevant dosimetry. Ideally, these models should consider rituximab data
in patients' NHL, upon availability.

492 4 Conclusion

We have developed a Monte Carlo dosimetric model based on realistic NHL geometry and rituximab biodistribution. It was employed to describe the absorbed dose that would be delivered at the
microscopic scale by Auger electron emitters (¹²⁵I and ¹¹¹In) and β⁻ particle emitters (¹⁷⁷Lu, ¹³¹I and ⁹⁰Y)
in the context of RIT.

497 A comparison between the mean absorbed dose per decay for realistic geometry and biodistri-498 bution with literature data for a sphere with either a surface or a volume biodistribution demonstrated 499 significant differences. Then, for the five radionuclides, the absorbed fractions, the mean absorbed dose 500 and its associated distribution were compared. This comparison further highlighted the importance of 501 both the realistic MALC geometry and rituximab biodistribution as they often impacted the outcomes.

502 Aside from these two parameters, the decay properties - the electron / β - particle energy re-503 leased per decay and penetration - had an important impact. The uniformity of the absorbed dose deliv-504 ered throughout the MALCs increased for radionuclides releasing more energy per decay (in ascending order: ¹²⁵I, ¹¹¹In, ¹⁷⁷Lu, ¹³¹I and ⁹⁰Y). The mean absorbed dose of β- particle emitters was higher than that 505 506 of Auger electron emitters. ¹⁷⁷Lu and ¹³¹I mean absorbed doses and were higher than ⁹⁰Y in the two 507 smallest MALCs. Furthermore, when considering the radiolabeled rituximab effective half-life, the ab-508 sorbed dose for ¹⁷⁷Lu and ¹³¹I remained close to each other and considerably greater than that of ⁹⁰Y in 509 the three MALCs.

510 The methodology developed may be applied to various situations of TRT. Voxelized images of 511 others tumoral / healthy tissue models and tumor-seeking agents can be considered. It is possible to

- 512 simulate the emission of other radionuclides of interest such as potential theranostic Auger electron
- 513 emitters (*e.g.* copper-64⁷⁴, useful for PET imaging) and β⁻ particle emitters (*e.g.* terbium-161⁷⁸⁻⁷⁹, useful
- 514 for SPECT imaging) or therapeutic α particle emitters (*e.g.* actinium-225⁸⁰⁻⁸¹). To further improve the
- realism of the simulations, future work may integrate the temporal variation of the vector biodistribu-
- tion and the growth of MALC. Such work could be useful in the case of real irradiation experiment to
- 517 select relevant radionuclides and assess biological effects.

518 **5 References**

- Strand SE, Jönsson BA, Ljungberg M, Tennvall J. Radioimmunotherapy dosimetry-a review. *Acta Oncol.* 1993;32(7-8):807-817. doi:10.3109/02841869309096140
- Roeske JC, Aydogan B, Bardiès M, Humm JL. Small-scale dosimetry: challenges and future directions. *Semin Nucl Med.* 2008;38(5):367-383. doi:10.1053/j.semnuclmed.2008.05.003
- 3. Bardiès M, Chatal JF. Absorbed doses for internal radiotherapy from 22 beta-emitting
 radionuclides: beta dosimetry of small spheres. *Phys Med Biol.* 1994;39(6):961-981.
 doi:10.1088/0031-9155/39/6/004
- Falzone N, Fernández-Varea JM, Flux G, Vallis KA. Monte Carlo evaluation of Auger electronemitting theragnostic radionuclides. *J Nucl Med.* 2015;56(9):1441-1446.
 doi:10.2967/jnumed.114.153502
- 5. Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E. Comparison between three 530 promising β-emitting radionuclides, 67 Cu, 47 Sc and 161 Tb, with emphasis on doses delivered to 531 minimal residual disease. *Theranostics*. 2016;6(10):1611-1618. doi:10.7150/thno.15132
- Hindié E, Zanotti-Fregonara P, Quinto MA, Morgat C, Champion C. Dose deposits from ⁹⁰Y, ¹⁷⁷Lu,
 ¹¹¹In, and ¹⁶¹Tb in micrometastases of various sizes: implications for radiopharmaceutical therapy.
 J Nucl Med. 2016;57(5):759-764. doi:10.2967/jnumed.115.170423
- Amato E, Italiano A, Baldari S. An analytical model to calculate absorbed fractions for internal
 dosimetry with alpha, beta and gamma emitters. *Pericol Classe Sci Fis Mat Nat.* 2014;92(1):A1.
 doi:10.1478/AAPP.921A1
- Amato E, Lizio D, Baldari S. Absorbed fractions for electrons in ellipsoidal volumes. *Phys Med Biol.*2011;56(2):357-365. doi:10.1088/0031-9155/56/2/005
- S40
 S41
 S42
 S43
 S44
 S44
 S45
 S45
 S45
 S44
 S44
 S45
 S45
 S45
 S45
 S46
 S46
 S47
 S47
- 543 10. Bao A, Zhao X, Phillips WT, et al. Theoretical study of the influence of a heterogeneous activity
 544 distribution on intratumoral absorbed dose distribution. *Med Phys.* 2005;32(1):200-208.
 545 doi:10.1118/1.1833151
- 546 11. Spaic R, Ilic R, Dragovic M, Petrovic B. Generation of dose-volume histograms using Monte Carlo
 547 simulations on a multicellular model in radionuclide therapy. *Cancer Biother Radio*.
 548 2005;20(3):320-324. doi:10.1089/cbr.2005.20.320

- 549 12. Uusijärvi H, Bernhardt P, Forssell-Aronsson E. Tumour control probability (TCP) for non-uniform
 550 activity distribution in radionuclide therapy. *Phys Med Biol.* 2008;53(16):4369-4381.
 551 doi:10.1088/0031-9155/53/16/010
- Howell RW , Rajon D, Bolch BE. Monte Carlo simulation of irradiation and killing in three dimensional cell-populations with lognormal cellular uptake of radioactivity. *Int J Radiat Biol*.
 2012;88(1-2):115-122. doi:10.3109/09553002.2011.602379
- Arnaud FX, Paillas S, Pouget JP, Incerti S, Bardiès M, Bordage MC. Complex cell geometry and
 sources distribution model for Monte Carlo single cell dosimetry with iodine 125
 radioimmunotherapy. *Nucl Instrum Methods Phys Res B.* 2016;366:227-233.
 doi:10.1016/j.nimb.2015.11.008
- 15. Daydé D, Ternant D, Ohresser M, et al. Tumor burden influences exposure and response to
 rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent
 murine model expressing human CD20. *Blood*. 2009;113(16):3765-3772. doi:10.1182/blood2008-08-175125
- Meignan M, Cottereau AS, Versari A, et al. Baseline metabolic tumor volume predicts outcome in
 high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. *J Clin Oncol.* 2016;34(30):3618-3626. doi:10.1200/JCO.2016.66.9440
- 17. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in
 interstitial transport in solid tumors. *Cancer Res.* 2000;60(9):2497-2503.
- 18. Gravelle P, Jean C, Valleron W, Laurent G, Fournié JJ. Innate predisposition to immune escape in
 follicular lymphoma cells. *Oncoimmunology*. 2012;1(4):555-556. doi:10.4161/onci.19365
- 570 19. Gravelle P, Jean C, Familiades J, et al. Cell growth in aggregates determines gene expression,
 571 proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular
 572 lymphoma. *Am J Pathol.* 2014;184(1):282-295. doi:10.1016/j.ajpath.2013.09.018
- 573 20. Decaup E, Jean C, Laurent C, et al. Anti-tumor activity of obinutuzumab and rituximab in a follicular
 574 lymphoma 3D model. *Blood Cancer J*. 2013;3(8):e131. doi:10.1038/bcj.2013.32
- 575 21. Rossi C, Gravelle P, Decaup E, et al. Boosting γδ T cell-mediated antibody-dependent cellular
 576 cytotoxicity by PD-1 blockade in follicular lymphoma. *Oncoimmunology*. 2019;8(3):1554175.
 577 doi:10.1080/2162402X.2018.1554175
- 22. Read ED, Eu P, Little PJ, Piva TJ. The status of radioimmunotherapy in CD20+ non-Hodgkin's
 lymphoma. *Target Oncol.* 2015;10(1):15-26. doi:10.1007/s11523-014-0324-y
- Griffiths GL, Govindan SV, Sgouros G, Ong GL, Goldenberg DM, Mattes MJ. Cytotoxicity with Auger
 electron-emitting radionuclides delivered by antibodies. *Int J Cancer*. 1999;81(6):985-992.
 doi:10.1002/(SICI)1097-0215(19990611)81:6<985::AID-IJC23>3.0.CO;2-W
- 583 24. Ong GL, Elsamra SE, Goldenberg DM, Mattes MJ. Single-cell cytotoxicity with radiolabeled
 584 antibodies. *Clin Cancer Res.* 2001;7(1):192-201.
- Blakkisrud J, Løndalen A, Martinsen ACT, et al. Tumor-absorbed dose for non-Hodgkin lymphoma
 patients treated with the anti-CD37 antibody radionuclide conjugate ¹⁷⁷Lu-lilotomab satetraxetan.
 J Nucl Med. 2017;58(1):48-54. doi:10.2967/jnumed.116.173922
- 588 26. Goldsmith SJ. Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med.
 589 2010;40(2):122-135. doi:10.1053/j.semnuclmed.2009.11.002
- Bezombes C, Grazide S, Garret C, et al. Rituximab antiproliferative effect in B-lymphoma cells is
 associated with acid-sphingomyelinase activation in raft micodomains. *Blood*. 2004;104(4):1166 1173. doi:10.1182/blood-2004-01-0277

- 593 28. Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental
 594 biology. *Development*. 2009;136(12):1963-1975. doi:10.1242/dev.022426
- Ichikawa T, Nakazato K, Keller PJ, et al. Live imaging and quantitative analysis of gastrulation in
 mouse embryos using light-sheet microscopy and 3D tracking tools. *Nat Protoc.* 2014;9(3):575585. doi:10.1038/nprot.2014.035
- Weber M, Mickoleit M, Huisken J. Multilayer mounting for long-term light sheet microscopy of
 zebrafish. *J Vis Exp.* 2014;(84):e51119. doi:10.3791/51119
- Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open source platform for biological image
 analysis. *Nat Methods*. 2012;9(7):676-682. doi:10.1038/nmeth.2019
- 602 32. Eliceiri KW, Rueden C. Tools for visualizing multidimensional images from living specimens.
 603 *Photochem Photobiol.* 2005;81(5):1116-1122. doi:10.1562/2004-11-22-IR-377
- Sugiura G, Kühn H, Sauter M, Haberkorn U and Mier W. Radiolabeling strategies for tumor-targeting
 proteinaceous drugs. *Molecules*. 2014;19(2):2135-2165. doi:10.3390/molecules19022135
- Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit. *Nucl Instrum Methods Phys Res A.* 2003;506(3). doi:10.2172/799992
- Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications. *IEEE Trans Nuc. Sci* 2006;53(1):270-278. doi:10.1109/TNS.2006.869826
- Allison J, Amako K, Apostolakis J, et al. Recent developments in Geant4. *Nucl Instrum Methods Phys Res A* 2016;835:186-225. doi:10.1016/j.nima.2016.06.125
- 612 37. Incerti S, Seznec H, Simon M, Barberet P, Habchi C, Moretto P. Monte Carlo dosimetry for targeted
 613 irradiation of individual cells using a microbeam facility. *Radiat Prot Dosim.* 2009;133(1):2-11.
- Barberet P, Vianna F, Karamitros M, et al. Monte-Carlo dosimetry on a realistic cell monolayer
 geometry exposed to alpha particles. *Phys Med Biol*. 2012;57(8):2189-2207. doi:10.1088/00319155/57/8/2189
- 617 39. Howell RW. Radiation spectra for Auger electrons emitting radionuclides: Report No. 2 of AAPM
 618 Nuclear Medicine Task Group No 6. *Med Phys.* 1992;19(6) 1371-1383. doi:10.1118/1.596927
- 40. Taborda A, Benabdallah N, Desbrée A. Dosimetry at the sub-cellular scale of Auger-electron emitter
 ^{99m}Tc in a mouse single thyroid follicle. *Appl Radiat Isot.* 2016;108:58-63.
 doi:10.1016/j.apradiso.2015.12.010
- 41. Piroozfar B, Raisali G, Alirezapour B, Mirzaii M. The effect of ¹¹¹In radionuclide distance and Auger
 electron energy on direct induction of DNA double-strand breaks: a Monte Carlo study using
 Geant4 toolkit. *Int J Radiat Biol*. 2018;94(4):385-393. doi:10.1080/09553002.2018.1440329
- 42. Eckerman K, Endo A. *MIRD: Radionuclide data and decay schemes.* Reston, VA: Society for Nuclear
 Medicine; 2008.
- 43. Kassis AI. The amazing world of Auger electrons. *Int J Radiat Biol.* 2004;80(11-12):789-803.
 doi:10.1080/09553000400017663
- 44. Bernal MA, Bordage MC, Brown JMC, et al. Track structure modeling in liquid water: A review of
 the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit. *Phys Med*.
 2015;31(8):861-874. doi:10.1016/j.ejmp.2015.10.087
- 45. Incerti S, Ivanchenko A, Karamitros M, et al. Comparison of GEANT4 very low energy cross section
 models with experimental data in water. *Med Phys.* 2010;37(9):4692-4708.
 doi:10.1118/1.3476457

- 46. Incerti S, Baldacchino G, Bernal M, et al. The Geant4-DNA project. *Int J Model Simul Sci Comput.*2010;1(2):157-178. doi:10.1142/S1793962310000122
- 47. Incerti S, Kyriakou I, Bernal MA, et al. Geant4-DNA example applications for track structure
 simulations in liquid water: a report from the Geant4-DNA Project. *Med Phys.* 2018;45(8):e722e739. doi:10.1002/mp.13048
- 48. Bordage MC, Bordes J, Edel S, et al. Implementation of new physics models for low energy electrons
 in liquid water in Geant4-DNA. *Phys Med.* 201632(12):1833-1840.
 doi:10.1016/j.ejmp.2016.10.006
- 643 49. Bordes J. Low-energy electron transport with alternative physics models within Geant4-DNA code
 644 and radioimmunotherapy applications [dissertation]. Toulouse, France: Toulouse III-Paul Sabatier
 645 University; 2017.
- 646 50. Cullen DE, Hubbell JH, Kissel L, Laboratory LLN. EPDL97: the evaluated photon data library `97
 647 version. *Livermore, CA: Lawrence Livermore National Laboratory.* 1997;Report UCLR--50400 Vol.6648 Rev.(5). doi:10.2172/295438
- 51. Ivanchenko VN, Incerti S, Francis Z, et al. Combination of electromagnetic physics processes for
 microdosimetry in liquid water with the Geant4 Monte Carlo simulation toolkit. *Nucl Instrum Methods Phys Res B*. 2012;273:95-97. doi:10.1016/j.nimb.2011.07.048
- Ferkins ST, Cullen DE, Seltzer SM. Tables and graphs of electron-interaction cross sections from 10
 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1--100. *Livermore, CA: Lawrence Livermore National Laboratory.* 1991;Report UCLR--50400 Vol. 31:21-24.
 doi:10.2172/5691165
- 656 53. Perkins ST, Cullen DE, Chen MH, Rathkopf J, Scofield J, Hubbell JH. Tables and graphs of atomic
 657 subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z= 1-658 100. *Livermore, CA: Lawrence Livermore National Laboratory.* 1991;Report UCLR--50400 Vol. 30.
 659 doi:10.2172/10121422
- 660 54. Loevinger R, Budinger TF, Watson EE. *MIRD primer for absorbed dose calculations*. New York:
 661 Society of Nuclear Medicine; 1988.
- 55. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD Pamphlet No. 21: a generalized schema for
 radiopharmaceutical dosimetry—standardization of nomenclature. *J Nucl Med*. 2009;50(3):477484. doi:10.2967/jnumed.108.056036
- 56. Ljungberg M, Sjögreen-Gleisner K. The accuracy of absorbed dose estimates in tumours determined
 by quantitative SPECT: a Monte Carlo study. *Acta Oncol.* 2011;50(6):981-989.
 doi:10.3109/0284186X.2011.584559
- Marcatili S, Villoing D, Mauxion T, McParland BJ, Bardiès M. Model-based versus specific dosimetry
 in diagnostic context: comparison of three dosimetric approaches. *Med Phys.* 2015;42(3):12881296. doi:10.1118/1.4907957
- 58. Scheidhauer K, Wolf I, Baumgartl HJ, et al. Biodistribution and kinetics of ¹³¹I-labelled anti-CD20
 MAB IDEC-C2B8 (rituximab) in relapsed non-Hodgkin's lymphoma. *Eur J Nucl Med Mol Imaging*.
 2002;29(10):1276-1282. doi:10.1007/s00259-002-0820-7
- 674 59. Gustafsson J, Brolin G, Cox M, Ljungberg M, Johansson L and Sjögreen Gleisner K. Uncertainty
 675 propagation for SPECT/CT-based renal dosimetry in ¹⁷⁷Lu peptide receptor radionuclide therapy.
 676 *Phys Med Biol.* 2015;60(21):8329-8346. doi:10.1088/0031-9155/60/21/8329
- 60. Gear JI, Cox MG, Gustafsson J, et al. EANM pratical guidance on uncertainty analysis for molecular
 radiotherapy absorbed dose calculations. *Eur J Nucl Med Mol Imaging*. 2018;45(13):2456-2474.
 doi:10.1007/s00259-018-4136-7

- 680 61. Berger MJ, Coursey JS, Zucker MA, Chang J. ESTAR, PSTAR, and ASTAR: computer programs for 681 calculating stopping-power and range tables for electrons, protons, and helium ions (version 682 1.2.3). Gaithersburg, MD: NIST. 2005;Technical Report NISTIR 4999. https://www.nist.gov/pml/stopping-power-range-tables-electrons-protons-and-helium-ions. 683 684 Accessed October 9, 2018.
- 685 62. Wilder RB, Jones D, Tucker SL, et al. Long-term results with radiotherapy for stage I-II follicular
 686 lymphomas. *Int J Radiat Oncol Biol Phys.* 2001;51(5):1219-1227. doi:10.1016/s0360687 3016(01)01747-3
- 63. Bousis C, Emfietzoglou D, Hadjidoukas P and Nikjoo H. Monte Carlo single-cell dosimetry of Augerelectron emitting radionuclide. *Phys Med Biol.* 2010;55(9):2555-2572. doi:10.1088/00319155/55/9/009
- 64. Bousis C, Emfietzoglou D and Nikjoo H. Monte Carlo single-cell dosimetry of I-131, I-125 and I-123
 for targeted radioimmunotherapy of B-cell lymphoma. *Int J Radiat Biol.* 2012;88(12):908915. doi:10.3109/09553002.2012.666004
- 694 65. Fourie H, Newman RT and Slabbert JP. Microdosimetry of the Auger electron emitting ¹²³I
 695 radionnuclide using Geant4-DNA simulations. *Phys Med Biol.* 2015;60(8):3333-3346.
 696 doi:10.1088/0031-9155/60/8/3333
- 697 66. Duval K, Grover H, Han LH, et al. Modeling physiological events in 2D vs. 3D cell culture. *Physiology*.
 698 2017;32(4):266-277. doi:10.1152/physiol.00036.2016
- 67. Thoma CR, Zimmermann M, Agarkova I, Kelm JM and Krek W. 3D cell culture systems modeling
 700 tumor growth determinants in cancer target discovery. *Adv Drug Deliv Rev.* 2014;69-70:29-41.
 701 doi:10.1016/j.addr.2014.03.001
- 68. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W and Kunz-Schughart LA.
 Multicellular tumor spheroids: An underestimated tool is catching up again. *J Biotechnol*.
 2010;148(1):3-15. doi:10.1016/j.jbiotec.2010.01.012
- Sutherland R, Buchegger F, Schreyer M, Vacca A and Mach JP. Penetration and binding of
 radiolabeled anti-carcinoembryonic antigen monoclonal antibodies and their antigen binding
 fragments in human colon multicellular tumor spheroids. *Cancer Res.* 1987;47(6):1627-1633.
- 708 70. Minchinton AI, Tannock IF. Drug penetration in solid tumors. *Nat Rev Cancer*. 2006;6(8):583-592.
 709 doi:10.1038/nrc1893
- 710 71. Kyriakou I, Incerti S, Francis Z. Technical Note: Improvements in GEANT4 energy-loss model and
 711 the effect on low-energy electron transport in liquid water. *Med Phys.* 2015;42(7):3870-3876.
 712 doi:10.1118/1.4921613
- 713 72. Bordes J, Incerti S, Lampe N, Bardiès M, Bordage MC. Low-energy electron dose-point kernel
 714 simulations using new physics models implemented in Geant4-DNA. *Nucl Instrum Methods Phys*715 *Res B*. 2017;398:13-20. doi:10.1016/j.nimb.2017.02.044
- 716 73. Salvat F, Fernández-Varea JM, Sempau J. PENELOPE-2008: a code system for Monte Carlo
 717 simulation of electron and photon transport. *Issy-les-Moulineaux, France: OECD-NEA*. 2009;Report
 718 6416. <u>https://www.oecd-nea.org/science/pubs/2009/nea6416-penelope.pdf</u>. Accessed
 719 Decembre 1st, 2019.
- 74. Avila-Rodriguez MA, Rios C, Carrasco-Hernandez J, et al. Biodistribution and radiation dosimetry
 of [⁶⁴Cu]copper dichloride: first-in-human study in healthy volunteers. *EJNMMI Res.* 2017;7(1).
 doi:10.1186/s13550-017-0346-4

- 723 75. Santoro L, Mora-Ramirez E, Trauchessec D, et al. Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [¹⁷⁷Lu-[DOTA0, Tyr3]-octreotate. *EJNMMI Res.*725 2018;8(1):103. doi:10.1186/s13550-018-0459-4
- 726 76. Camacho X, Machado CL, García MF, et al. Technetium-99m- or Cy7-labeled rituximab as an imaging
 727 agent for non-Hodgkin lymphoma. *Oncology*. 2017;92(4):229-242. doi:10.1159/000452419
- 728 77. Stopar TG, Fettich J, Zver S, et al. ^{99m}Tc-labelled rituximab, a new non-Hodgkin's lymphoma imaging
 729 agent: First clinical experience. *Nuc Med Commun.* 2008;29(12):1059-1065.
 730 doi:10.1097/MNM.0b013e3283134d6e
- 731 78. Müller C, van der Meulen NP, Benešová M, Schibli R. Therapeutic radiometals beyond ¹⁷⁷Lu and ⁹⁰Y:
 732 production and application of promising α-particle, β⁻-particle, and Auger electron emitters. *J Nucl Med.* 2017;58(Supplement 2):91S-96S. doi:10.2967/jnumed.116.186825
- 734 79. Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides
 735 for radiotheranostics: current state of development towards clinical application. *Br J Radiol.*736 2018;91(1091):20180074. doi:10.1259/bjr.20180074
- 80. Kratochwil C, Bruchertseifer F, Rathke H, et al. Targeted α-therapy of metastatic castration resistant prostate cancer with ²²⁵Ac-PSMA-617: dosimetry estimate and empiric dose finding. *J Nucl Med.* 2017;58(10):1624-1631. doi:10.2967/jnumed.117.191395
- Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of ²²⁵Ac
 radiopharmaceuticals: TRIUMF perspectives and experiences. *Curr Radiopharm*. 2018;11(3):156172. doi:10.2174/1874471011666180416161908
- 743

744 6 Acknowledgments

- 745 We would like to express our gratitude to Prof. Steve Archibald (PET Research Centre, University
- of Hull) and Dr Jean-Luc Gerner (ESA/ESTEC, retired) for helpful advice. We thank Lise Teyssedre
- 747 (ITAV/CNRS) for fruitful discussion of SPIM imaging.

748 **7** Conflict of interest statement

749 The authors declare that there is no conflict of interest regarding the publication of this article.