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Abstract

We develop the ‘duality approach’, that has been extensively studied for classical models
of transport, for quantum systems in contact with a thermal ‘Lindbladian’ bath. The
method provides (a) a mapping of the original model to a simpler one, containing only a
few particles and (b) shows that any dynamic process of this kind with generic baths may
be mapped onto one with equilibrium baths. We exemplify this through the study of a
particular model: the quantum symmetric exclusion process introduced in [1]. As in the
classical case, the whole construction becomes intelligible by considering the dynamical
symmetries of the problem.
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1 Introduction

A central role in non-equilibrium statistical mechanics of classical systems is played by stochas-
tic processes. For instance, in the study of mass transport associated to a non-equilibrium
steady state with non-zero current, a pivotal role has been played by the simple symmetric ex-
clusion process (SSEP), that has been the subject of intensive investigations since its introduc-
tion. In the study of this process emerge properties that are believed to be universal signatures
of a non-equilibrium stationary states, such as long-range correlations (in turn the source of
non-local large deviation functionals for the density). Similarly, non-gaussian fluctuations are
observed in the asymmetric version of the process (related to the Kardar-Parisi-Zhang univer-
sality class). In both settings several tools from the theory of Markov processes have been
used. We shall focus here on one such a tool, which is known in the probabilistic literature as
duality.

Dual processes were introduced in the realm of interacting particle systems at the early
days of the field by Spitzer and Liggett [2, 3]. For instance, the symmetric exclusion process
on the lattice turns out to be self-dual, and this property has been heavily used and fundamental
to develop the ergodic theory of exclusion process in infinite volume. In the non-equilibrium
set-up, dual processes are also useful to study the stationary measure, which is necessarily
non-reversible to sustain a current. Again, the simplest example is the open exclusion process
on a chain, which is coupled at its ends to reservoirs which inject and remove particles at
different rates. Here the dual process simplifies the analysis by transforming the reservoirs into
absorbing boundaries [4]. In doing so, the study of correlation functions in the open system is
reduced to following the dynamics of a few dual particles that are eventually absorbed in the
boundaries.

Dual counterparts of the open exclusion process played a crucial role in the construction of
the so-called hydrodynamic limit [5], i.e. a macroscopic theory described by partial differential
equations. This turned out to be true for a large class of diffusive systems (Kipnis-Marchioro-
Presutti process, symmetric inclusion process, Brownian energy process [6–11]) related to the
study of Fourier’s law of heat conduction. Other simplifications due to duality occurred in
the study of asymmetric exclusion process on the infinite line [12–15], directly related to the
height profile of interface growth models. There, duality helps the study of fluctuations around
the hydrodynamic limit: the evolution of one dual particle is related to the microscopic version
of the Cole/Hopf transform that maps the non-linear and ill-posed KPZ equation to the linear
stochastic heat equation [15,16].

Duality has also another surprising consequence. Years ago, Tailleur et al. [17] were puz-
zled by a crucial step associated with the solution of Bertini et al [18] of the large deviations
(around the hydrodynamic limit) of a family of transport models: the fact that the explicit
construction of a trajectory with time-reversed extremes was possible even out of equilibrium.
The solution of the puzzle was that these models revert, via a non-local transformation, into
problems with detailed balance. In a recent paper [19], we have shown that this is a general
consequence of duality, to be expected if (and probably only if) some form of duality is present.

It is then natural to ask if duality may be introduced, and if so, which (if any) of the
simplifications obtained by such a construction survive in a quantum stochastic system [1,20–
24]. This is precisely the question addressed in this paper. At first sight, the two problems
may seem completely different, as the replacement of the Markov evolution with a quantum
semigroup substantially changes the averaging procedure: quantum averages are quadratic in
the wavefunction, whereas the probability density appears linearly in the averages of classical
stochastic systems. However, as we shall further discuss below, there is a key argument that
brings the two problems in close contact: in both settings, classical and quantum, the evolution
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Γ3,λ3

Γ2,λ2

Γ1,λ1

Figure 1: Schematic picture of a transport model on a graph. A non-equilibrium stationary
state is attained as a consequence of interactions with sources at different parameters. The
example shows three ‘baths’ with couplings Γi and average densities of particles λi , with
i = 1, 2,3.

can be described in algebraic terms using a Lie algebra. For classical systems this was remarked
years ago in a pioneering paper by Schütz and Sandow [25] and then further extended in [26].
Here we show, by focusing on a specific example, that quantum stochastic systems admits the
same algebraic description, provided one moves to superoperators. This allows to repeat the
pattern that lead to the formulation of duality in Markov systems.

The example we shall discuss is a system of free fermions with a noisy dynamics which
has been extensively studied in [1,23,24]. The system plays a paradigmatic role for quantum
stochastic evolutions, similar to the exclusion process of classical systems, and indeed it has
been named the quantum exclusion process (we will discuss bosons in a separate paper). For
simplicity we restrict here our discussion of duality to the boundary-driven setting. We believe
our construction of a dual process extends to other quantum models as well, particularly those
of exactly solvable quantum Liouvillians (or Lindbladians), beyond the quantum symmetric
exclusion (e.g. [27–30]).

In a quantum stochastic systems two sources of randomness coexist: quantum fluctuations
(due to the quantum evolution) and dynamical fluctuations (due to a noisy dynamics). These
play a role similar to thermodynamic fluctuations and quenched disorder, in disordered sys-
tems.

2 Outline of duality technique

The duality technique may be described through the following steps:

• We start with a general graph, not necessarily (although often) a chain. Between the
vertices of the graph particles or energy are transported, the amount per unit time is a
stochastic process (Figure 1).

• We connect ‘leads’ of the graph to sources of heat or particles: the ‘baths’. These may be
constructed from first principles by considering each bath as a very large (in fact, infinite)
equilibrium system. Transport occurs when the equilibria of the baths are incompatible
(Figure 2).

• In all systems where duality has been introduced, it happens that the Hamiltonian gen-
erating the dynamics may be written in terms of the generators of a (non-abelian, Lie)
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group. The bulk is invariant under the group operations, while the baths are not. Acting
with the group hence only modifies the baths’ properties.

• Like in any stochastic system, we may compute expectation values of observables. We
may then switch to the ‘adjoint’, in which one evolves the observables rather than the
state of the system. (cf. going from Schrödinger to Heisenberg pictures).

• Crucially: there is a judicious combination of group operation and passing to the adjoint
that maps the system into a system with purely absorbing baths, and only a few particles.
This is the ‘dual’ setting.

• Stationary results for the original system are retrieved from the long-time results, when
the baths have emptied completely the system, by counting how many particles (or how
much energy) was absorbed by each lead.

We shall outline in what follows how these steps are implemented in the quantum case.

3 A quantum transport model

On a graph G = (V, E) with vertex set V and edge set E, we consider a set of fermionic cre-
ation/annihilation operators and the random Hamiltonian

Hη(t) =
∑

(k,`)∈E

p
ck`

�

a†
ka`ηk`(t) + a†

`
ak η̄k`(t)

�

, (1)

where {ai , a j} = 0, {a†
i , a†

j } = 0, {ai , a†
j } = δi, j . This describes a system of free fermions

jumping on the graph G, the ckl are coupling constants. The jump terms are noisy: the external
quenched noise is given by pairs of independent and identical distributed complex conjugated
Gaussian white noise (one pair for each edge of the graph) with covariances

E[ηk`(t)η̄k′`′(t
′)] = δ(t − t ′)δk`,k′`′ . (2)

Using the Trotter’s product formula, it then follows for the density matrix

ρη(t) = T
�

exp
¦

− i

∫ t

t0

[Hη(t
′), · ]d t ′

©�

ρ(0) , (3)

where T denotes “time-order”. Expanding we have

ρη(t) = T

�

�

1− i

∫ t

t0

d t1[Hη(t1), · ]−
1
2

∫ t

t0

d t1

∫ t

t0

d t2[Hη(t2), [Hη(t1), · ]] + ...
�

�

ρ(0) .

(4)

We are interested in the noise-dependent expectation

〈A(t)〉η = Tr[Aρη(t)] , (5)

where A is a generic operator (which may be expressed in terms of ai and a†
i ) as well as the

averaged-quenched expectation

E[〈A(t)〉η] = Tr[Aρ(t)] , (6)
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where we have defined the quenched-averaged density matrix

ρ(t) = E[ρη(t)] . (7)

In the formulas above ‘Tr’ denotes the trace operation yielding the quantum expectations.
Averaging (4) with respect to the external noise and using the covariances (2) we get the
evolution equation [1]

d
d t
ρ = −

1
2

∑

(k,`)∈E

ckl

�

[a†
ka`, [a

†
`
ak,ρ]] + [a†

`
ak, [a†

ka`,ρ]]
�

≡ −H(ρ) .
(8)

Developing the commutators H may be written as

H = −
∑

(k,`)∈E

ckl

�

J +k J −` +J −k J +` + 2C+k C
+
` + 2C−k C

−
` −

1
2

�

, (9)

where we have defined the following on-site superoperators acting as follows on an operator
A:

J +i (A) = a†
i Aai , (10)

J −i (A) = aiAa†
i ,

C+i (A) =
1
2

�

a†
i aiA− Aa†

i ai

�

,

C−i (A) =
1
2

�

a†
i aiA+ Aa†

i ai − A
�

.

Just by applying two of these in succession (in both orders), one can directly check they satisfy
(on each vertex i) an u(2) algebra, decomposable as su(2)

[C−i ,J ±i ] = ±J
±
i , [J +i ,J −i ] = 2C−i , (11)

and C+i , which commutes with everything [C+i ,J ±i ] = 0= [C+i ,C−i ] and are hence constants of
motion for every i. It is easy to see that they count the number of creation minus the number of
destruction operators in every site. Throughout this paper, this number is zero: there is always
an equal number of creation and destruction operators in all sites. Other representations are
of course possible.

We get, for the averaged-quenched expectation value of an operator A at time t:

E[〈A(t)〉η] = Tr
�

Ae−tHρ(0)
�

= Tr
�

ρ†(0)e−tH†
A†
�∗

, (12)

where we have introduced the adjoint D† of a superoperator D as:

Tr[A†D(B)]∗ = Tr[B†D†(A)] , ∀ A, B . (13)

Note that the same symbol is used both for the adjoint A† of an operator A on the Hilbert
space, and for the adjoint of superoperators.

Using the cyclic property of the trace, it is easy to see that:

[J ±i ]
† = J ∓i and [C±i ]

† = C±i . (14)
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1 2 3

Figure 2: Schematic picture of a reservoir connected to site 1 of the graph. The bath is
made of infinitely many vertices in a papyrus fashion (in the figure we represent some of
them as the points connected from the left to site 1) with the same rule of transport of the
bulk system. Each bath is an equilibrium system.

4 Real replicas and expectation values

What we have done up to now is not enough [20, 21]. Indeed, suppose we wish to calculate
the following expectation: E

�

〈A(t)〉η〈B(t)〉η
�

= E
�

Tr[Aρη(t)]Tr[Bρη(t)]
	

. A way to do this
is to replicate the system twice (all superoperators, operators and states) and use the fact that
the trace of a tensor product is the product of the traces:

E
�

〈A(t)〉η〈B(t)〉η
�

= E
¦

Tr[AαBβρ(α)η ⊗ρ
(β)
η (t)]

©

, (15)

where the ‘replica index’α,β = 1,2. This will lead us to product density functionsρ2 = E[ρ(1)η ⊗
ρ(2)η ] of two real replicas, and an averaged operator H2(a

†
i,α, ai,α, a†

i,β , ai,β) acting on it. The
noise is the same for both replicas. Note the close analogy with disordered systems: here the
fermions are the replicated variables (like the spins of a spin-glass), and the noise is the dis-
order, playing the role of the disordered interactions Ji j . For simplicity, we shall run the steps
in detail for a single replica, and then present in a more compact way the same steps for the
n-times replicated case.

5 Explicit construction of a bath

We shall construct the bath as an ensemble of s independent sites represented by fermionic
operators b†

m, bm connected to site number 1 in a papyrus fashion like in Figure 2. The bath
is larger than any other number in the problem (s→∞), and its particle density is fixed on
average by its initial density matrix:

ρbath =
e−µ

∑s
m=1 b†

m bm

(1+ e−µ)s
, (16)

which we should tensor-product with the initial one of the chain.
Thus we consider a sum of s interaction terms, which we shall assume are of intensity

c1,m = Γ1/s, with Γ1 > 0 the coupling constant to the reservoir. DenotingK± ≡ (
∑

m∈bath J
±
m )/s

and D± ≡ (
∑

m∈bath C
±
m)/s, the combined jump superoperators to all the leaves in the bath

(which obviously obey the same algebra), we may write:

H(s)1 = −Γ1
�

K+J −1 +K−J +1 + 2D+C+1 + 2D−C−1 −
1
2

�

. (17)
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Now, let us consider the action of K±, D± on ρbath. For example,

K+(ρbath) =
1
s

∑

m

b†
mρbath bm =

1
s

eµ
∑

m

b†
m bmρbath .

Because s is of large, by the law of large numbers we may substitute the number of fermions
in the bath by its average: 1

s

∑s
m=1 b†

m bm →
e−µ

1+e−µ ≡ λ as s →∞. This implies that we may
substitute, for large s

K+→ 1−λ , K−→ λ , (18)

D−→ 2λ− 1
2

, D+→ 0 .

The net effect is that (now allowing for several leads i):

Hbath = −
∑

i∈V

Γi

�

λi

�

J +i + C−i −
1
2

�

+ (1−λi)
�

J −i − C−i −
1
2

�

�

, (19)

which is clearly of the Lindbladian form.

6 Transformations

Bearing the group structure in mind, the transformations leading to a dual process are now
readable from the analogous ones in the classical system [19]. To simplify we start considering
just one lead to a bath i = 1

(H1)
† = −

�

λ(J −1 + C−1 −
1
2
) + (1−λ)(J +1 − C−1 −

1
2
)
�

, (20)

where we have used (14). Now conjugate with eJ
+
1 and find

e−J
+
1 (H1)

†eJ
+
1 = −λJ −1 + C−1 +

1
2

.

We now consider an extended system and write H = Hbulk +Hbaths. Doing the same with
every lead i, and using that the bulk superoperator Hbulk commutes with J +tot =

∑

i∈V J +i we
get

H† = eJ
+
tot

�

Hbulk −
∑

i∈V

Γi

§

λiJ −i − C−i −
1
2

ª

�

e−J
+
tot

= eJ
+
totH

′
e−J

+
tot .

(21)

Let us now reinstate baths, undoing the step we did before. We thus attach to each vertex
i ∈ V an extra site with superoperators K±i and D±i describing now empty baths (i.e. all having
λ= 0, cf. Eq. (18))

λiJ −i − C−i −
1
2
→ λiK+i J

−
i + 2D−i C

−
i −

1
2

. (22)

Comparing to (17) we notice that the terms K−i J
+
i and D+i C

−
i are absent because the baths

are now empty. We stress once more that, altough labeled with the indexes i of the vertices
of the graphs, the superoperators describing the empty bath live in an additional extra space
(i.e. they act on vertices attached to the bath). Finally another conjugation allows to eliminate
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the disturbing factors λi . Indeed, using the fact that elnλi(D−i +1/2)K+i e− lnλi(D−i +1/2) = λiK+i we
may write

H′ = e
∑

i lnλi (D−i +1/2)Hdual e−
∑

i lnλi (D−i +1/2) , (23)

where

Hdual ≡Hbulk −
∑

i∈V

Γi

§

K+i J
−
i + 2D−i C

−
i −

1
2

ª

. (24)

All in all, the conjugation in (21) can thus be used to write the expectation of an observable
O as:

Tr
�

Oe−tHρ(0)
�

= Tr
�

ρ(0)†e−tH†
O†
�∗

= Tr
�

ρ(0)†eJ
+
tot e−tH′e−J

+
tot O†

�∗
.

(25)

As we shall later see, it is convenient to define

Ô ≡ e−J
+
tot O† = Πie

−J +i O† . (26)

Note that because of the product form, Ô depends exclusively on the same sites as O. We have
to make a choice of how we extend O in the product space. We shall choose (without loss
of generality) that it is Õ = Ô ⊗ |0b〉〈0b|: the bath sites are completely empty at time zero.
Instead, the operator ρ(0) is now understood as ρ(0) ⊗ 1b, it acts on the bath sites as the
identity. Suppose for example that O = a†

kak for a chain of length N , then

Πie
−J +i (a†

kak)
† = (1− a†

1a1)...a
†
kak...(1− a†

N aN )

= |0〉〈0|1...⊗ |1〉〈1|k ⊗ ...⊗ |0〉〈0|N ,
(27)

i.e. a chain with one fermion in site k, and otherwise empty.
Going back to (25) and using once again the adjoint in (14), we get

Tr
�

Oe−tHρ(0)
�

= Tr
h
�

eJ
−
tot (ρ(0))

�†
e−tH′(Ô)

i∗
, (28)

and inserting (23) into (28) we obtain the final result

E[〈O(t)〉η] = Trbulk Trbaths

hn
�

eJ
−
tot (ρ(0))

�†
e
∑

i lnλi (D−i +1/2)
o

e−tHdual
(Õ)

i∗
. (29)

We have used the fact that Õ has no particles in the bath sites, so that (D−i +1/2)(Õ) = 0 (cf. Eq.
(10)). This is the duality result: to compute the expectation of the observable O evolving with
the original process and starting from the density matrix ρ(0), we consider instead an initial
density matrix Õ which evolves through the dual process, and we evaluate the ‘observable’
�

eJ
−
tot (ρ(0))

�†
e
∑

i(lnλi) (D−i +1/2) at the end. Note that if Õ has not the requirements of unit trace
and positivity of a density matrix, it can always be brought into one that has those properties,
by addition of a term proportional to the invariant measure, and multiplication by a constant
(to normalize).

7 Billiard pocket

Duality relations show their power when considering infinite time evolution. When t →∞ the
evolution voids the chain. We may thus expect that limt→∞ e−tHdual

(Õ) = [empty bulk]⊗O∞,
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where O∞ lives in the space of bath sites exclusively. Equation (29) becomes, then:

lim
t→∞
E[〈O(t)〉η] = 〈0|eJ

−
tot (ρ(0))|0〉bulk Trbaths

�

e
∑

i lnλi (D−i +1/2)O∞
�∗

= Trbaths

�

e
∑

i lnλi (D−i +1/2)O∞
�∗

,
(30)

where we have used 〈0|
�

eJ
−
tot (ρ(0))

�†
|0〉bulk = Trbulk[ρ(0)] = 1. All the interesting informa-

tion is stored in the matrix O∞. Because O∞ is a combination of bath sites that are either void
or have one fermion, and denoting ni the total number of fermions in the bath i, we get the
simple expression:

lim
t→∞

Tr
�

Oe−tHρ(0)
�

=
∑

{ni}

c[O]{ni}
Πiλ

ni
i , (31)

where the coefficients c[O]{ni}
depend on the observable O. We shall see a concrete example of

this presently.

Example. Consider a liner chain of length N connected at the extremes (denoted by 1 and
N) to two reservoirs at densities λL on the left, respectively λR on the right. Suppose we are
interested in the average number of “particles” at site k in the stationary state. For this problem
we now put Ok = a†

kak (see Eq. (27)) and i ∈ {L, R}. We start the dual evolution from the
density operator associated to the pure state with only one fermion at site k. In the long-time
limit we will have either a fermion in the left or a fermion in the right bath, with probabilities
c[Ok]

L and c[Ok]
R = 1− c[Ok]

L , respectively. Since for a symmetric random walk

c[Ok]
L = 1−

k
N + 1

(32)

we conclude from (31) the stationary linear profile

〈a†
kak〉= λL +

λR −λL

N + 1
k , k ∈ {1, . . . , N} . (33)

A similar result can be obtained on a generic graph G, replacing the c[Ok]
L with the harmonic

function of the symmetric random walk on the graph G.

8 Correlation functions & real replicas

We introduce replicas (labeled by 1,2, . . .) by considering copies of the system subject to same
realization of the external noise η and characterized by fermionic operators ai,1, a†

i,1, ai,2, a†
i,2, . . .

(in the bulk) and bim,1, b†
im,1, bim,2, b†

im,2, . . . (in the bath).
A generic number n of copies is described by the noise-dependent density operator given

by the tensor product and we are interested in its average:

ρn = E[ρ(1)η ⊗ρ
(2)
η ⊗ · · · ⊗ρ

(n)
η ] , (34)

where each ρ(α)η acts on ai,α, a†
i,α, bim,α, b†

im,α’s, which are coupled by the same realization of

the external noise. This system evolves with the replicated noisy Hamiltonian Hη(t) =
∑n
α=1

�

∑

(k,`)∈E

�

a†
k,αa`,αηk`(t) + a†

`,αak,α η̄k`(t)
��

. Developing up to second order, and averaging

over the noise we get the evolution equation d
d tρn = −Hnρn with

Hn = −
n
∑

α,β=1

∑

(k,l)∈E

ckl

�

J +k,αβJ
−
l,βα +J −k,αβJ

+
l,βα + 2C+k,αβC

+
l,βα + 2C−k,αβC

−
k,βα −

δαβ

2

�

(35)
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obtained by expanding commutators just as above. The operators are now:

J +i,αβ(A) = a†
i,αAai,β , (36)

J −i,αβ(A) = ai,β Aa†
i,α ,

C+i,αβ(A) =
1
2

�

a†
i,αai,β A− Aa†

i,αai,β

�

,

C−i,αβ(A) =
1
2

�

a†
i,αai,β A+ Aa†

i,αai,β − Aδαβ
�

,

which satisfy a u(2n) algebra. The operators
∑

α C+i,αα commute with everything and thus do
not evolve, they count the total number of creators minus annihilators per site. We shall only
be interested in the case they are all zero. Hn is a nearest-neighbor quantum su(2n) chain.

We may now distinguish bath terms, and we obtain in an entirely analogous manner:

Hn,bath = −
n
∑

α,β=1

∑

i∈V

Γi

�

K+i,αβJ
−
i,αβ +K−i,αβJ

+
i,αβ + 2D+i,αβC

+
i,αβ + 2D−i,αβC

−
i,αβ −

1
2
δα,β)

�

→−
n
∑

α,β=1

∑

i∈V

Γi

�

λi,αβ(J +i,αβ + C−i,αβ −
δα,β

2
) + (δαβ −λi,αβ)(J −i,αβ − C−i,αβ −

δα,β

2
)
�

,

(37)

where we have substituted as before bath operators by their expectation values:

K+i,αβ → δαβ −λi,αβ , K−i,αβ → λi,αβ ,

D−i,αβ →
2λi,αβ −δαβ

2
, D+i,αβ → 0 . (38)

The λi,αβ define the bath. The most general replica-symmetric form is λi,αβ = λiδαβ + λ′i .
Matrices with different (λi ,λ

′
i) commute and may be diagonalized simultaneously for all baths

by a rotation in the fermion space. We shall in fact not need to do this here for the following
reason: one can easily show that for α 6= β , Tr

�

a†
iαaiβ ρ

�

= E[〈a†
i 〉ρ〈ai〉ρ] ∝ λ′i , but this

expectation must vanish. Hence λ′i = 0 and the λ matrix is proportional to the identity. We
get

Hn,baths = −
∑

i∈V

n
∑

α=1

Γi

�

λi(J +i,αα + C−i,αα −
1
2
) + (1−λi)(J −i,αα − C−i,αα −

1
2
)
�

. (39)

The set of generators (J ±i,αα,C−i,αα) build an su(2) algebra for each 1≤ α≤ n and commute for
different α: from the point of view of the baths we are back to the single replica problem. We
must just repeat the transformations for every replica:

H′→Hbulk −
∑

i

Γi

∑

α

§

λiJ −i,αα − C−i,αα −
1
2

ª

(40)

and then continue introducing the empty bath as before, to get:

Hdual =Hbulk −
∑

iα

Γi

§

K+i,ααJ
−
i,αα + 2D−i,ααC

−
i,αα −

1
2

ª

. (41)

Because of the diagonal nature of the hopping into the bath operator, the bath sites can only
exchange creation and destruction operators of the same replica in pairs. Mathematically, this
comes from the fact that a diagonal bath respects an extra symmetry, generated by the oper-
ators C+tot

αα =
∑

i∈V C+i,αα which in fact count the total number of creators minus annihilators
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Figure 3: The configurations that are relevant in the calculation of two-point correlation
functions in the test. Red and black denote replicas one and two, full points are creators and
empty points are annihilators.

in the whole system for each species α separately. These numbers are conserved, and equal to
zero for all α with reasonable initial conditions, and for reasonable operators O with non-zero
expectation. We shall restrict to this situation here. This is shown in Figure 3 where all the
possibilities are shown for a two-point operator. We shall then have, for the dual chain at
infinite times

lim
t→∞

Tr
�

Oe−tHρ(0)
�

= c[O]{nL,α}
λ

∑

α nL,α

L + c[O]{nR,α}
λ

∑

α nR,α

R , (42)

where we have used the fact that creation and annihilation operators exit in pairs of the same
species.

For example, when O = a†
j,1ai,1a†

i,2a j,2 (the case with n = 2 replicas), for the stationary
state of a chain we have:

E[Gi jG ji] = E[Tr(a†
j,1ai,1a†

i,2a j,2 ρ
(1) ⊗ρ(2))]

= c[i j]
LL λ

2
L + c[i j]

RL λLλR + c[i j]
LR λRλL + c[i j]

RR λ
2
L .

(43)

Because the trace is conserved, c[i j]
LL + c[i j]

RL + c[i j]
LR + c[i j]

RR = 0. In particular, this means that for
the stationary equilibrium λL = λR = λ the expectation E[Gi jG ji] = 0 ∀i, j. Similarly, putting
O = a†

i,1ai,1a†
j,2a j,2 we have

E[GiiG j j] = E[Tr(a†
i,1ai,1a†

j,2a j,2 ρ
(1) ⊗ρ(2)))] (44)

and we find, at equilibrium, E[GiiG j j] = λ2, because the trace is now one.
In the non-equilibrium steady state with λL 6= λR, the expressions for the coefficients ap-

pearing in (43) have been calculated in [1]. We conclude this section by mentioning that the
invariance of the super-Hamiltonian with respect to unitary rotations of the fermions in replica
space may be used to find useful relations for the non-equilibrium stationary state of a chain.
For example, in the case with n = 2 replicas, the rotation d±i = (ai,1 ± ai,2)/

p
±2 transforms

the expectation (44) and allows us to show that:

E[Gi jG ji] = E[GiiG j j]c −E[Gii j j]c , (45)

where E[Gii j j]c = 〈(d+i )
†d+i (d

+
j )

†d+j 〉c = 〈nin j〉class
c , the label ‘classical’ denotes the connected

correlation of the classical open symmetric exclusion process (see, e.g., Eq(2.4) in [31]). This
identity may be verified in the expressions of Reference [1].

9 Mapping the driven system into one satisfying detailed balance

Recently it was show in [19] that a large family of classical diffusive models of transport that
has been considered in the past years admits a transformation into the same model in contact
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with an equilibrium bath. This mapping holds for any initial conditions and is independent of
the topology of the network. Such a construction provides a framework to discuss questions
of time reversal in out of equilibrium contexts. Let us now briefly see that this relation holds
at the quantum level with the same generality.

Consider a system in which the λi = λ are all the same, thus making it possible to equili-
brate. Transform now (40) as

H′′ = e−
λ
2 J− tot
αα H′e

λ
2 J− tot
αα (46)

= Hbulk −
∑

i

Γi

§

2C− tot
αα −

1
2

ª

= (H′′)† .

This, when H′′ is written in terms of H, is a detailed balance property.
Now, let us go back to a general H′ of (40) and develop the operators on which it acts

in subspaces defined by the value m in C− tot
αα (O) = mO. Because [C− tot

αα ,J −i,αα] = −J
−
i,αα it

is clear that the terms in H′ proportional to J −iαα (the only ones depending on the λi) are
lower ‘triangular’ in this (super) matrix, do not affect the spectrum. Thus, all possible bath
combinations are mappable by a similarity transformation into one another, and in particular
to the situation with detailed balance (see [19,32] for an extensive discussion of the classical
case).

10 Conclusion

We have shown how to construct a dual model for a quantum transport system. We have also
shown that there is a transformation that maps all possible evolutions of the system into one
in which the bath ensemble satisfies detailed balance. Because these properties are directly
deduced from the group structure, the generalization to other models (e.g. the quantum Kac
model [33,34] or quantum KMP [6]) should be immediate – just changing group.
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A Algebra and representations

The generators can be arranged into a u(2n) algebra

EAB =

 

C+
αβ
+ C−

αβ
+
δαβ

2 J +
αβ

J −
αβ

C+
αβ
− C−

αβ
+
δαβ

2

!

, (47)

satisfying the commutation relations

[EAB,EC D] = δBCEAD −δDAECB . (48)

The space of states consists of arbitrary combinations of the fermionic oscillators (aα, a†
β
), with

α,β = 1, . . . , n. From the nilpotency of fermionic oscillators it is then clear that we are deal-
ing with finite-dimensional representations. For a given number of replicas n the space of

12

https://scipost.org
https://scipost.org/SciPostPhys.10.6.135


SciPost Phys. 10, 135 (2021)

states can be decomposed into irreducible representations on which the first Casimir
∑

α C
+
αα,

which counts the number of creation minus annihilation operators, is proportional to the iden-
tity. These reducible representations are the antisymmetric (fundamental) representations of
dimension

�2n
k

�

with Dynkin weights

λ[k] = (1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

2n−k

) , (49)

with k = 0, 1, . . . , 2n. The corresponding highest weight states are

v[k]hws =

¨
∏k

i=1 a†
i

∏n
j=1 a j , 1≤ k ≤ n

∏n
i=1 a†

i

∏n
j=k−n+1 a j , n< k ≤ 2n

. (50)

We verify that EAB v[k]hws = 0 for 1 ≤ A < B ≤ 2n and EAA v[k]hws = λ
[k]
A v[k]hws and note that the

number of creation minus annihilation operators is related to the index k in (49) via k− n.
The Hamiltonian density, cf. (35), is then mapped to the coproduct of the second Casimir

Hn = −
2n
∑

A,B=1

E1
ABE

2
BA+

1
2

� 2n
∑

A=1

E1
AA+

2n
∑

A=1

E2
AA

�

. (51)

The first Casimir
∑2n

A=1 EAA is local and proportional to the identity for a given irreducible
representation.

From the representation theory it is clear that the quantum model can be realised “classi-
cally” where EAB are matrices acting on a vector space. The matrices are block diagonal with
block sizes corresponding to the irreducible representations λ[k] where k = 0,1, . . . , 2n. Fix-
ing the first Casimir we can restrict to the corresponding block. As described in the main text
the boundary terms can be understood in the same framework. The algebra reduces to u(2).
It further becomes clear that there is a basis where EAA is diagonal, EAB with A < B is upper
triangular and EAB with A> B is lower triangular. This is essential for the proposed duality. We
further remark that algebraically the models with k = 1 are equivalent to the standard multi-
color SSEP, cf. [35], where the generators are replaced by the elementary matrices EAB → EAB
. In the example above, see Figure 3, we have n = 2 and k = 2 such that the representation
is of dimension 6. The matrix realisation of the super operator H can be obtained by writing
the generators in the basis

v1 = 1 , v2 = a†
1a1 , v3 = a†

1a2 ,

v4 = a†
2a1 , v5= a†

2a2 , v6 = a†
1a1a†

2a2 .
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