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. An important tool in the proofs of these results is the convergence of a certain observable to a continuous state branching process. Our proofs incorporate new ideas which might be of use in other branching models.

Introduction and main results

We will consider one-dimensional branching Brownian motion with absorption, which evolves according to the following rules. At time zero, all particles are in p0, 8q. Each particle independently moves according to one-dimensional Brownian motion with a drift of ´µ. Particles are absorbed when they reach zero. Each particle independently branches at rate β. When a branching event occurs, the particle dies and is replaced by a random number of offspring. We denote by p k the probability that an individual has k offspring and assume that the numbers of offspring produced at different branching events are independent. We define m so that m`1 " ř 8 k"1 kp k is the mean of the offspring distribution, and we assume m ą 0. We also assume that ř 8 k"1 k 2 p k ă 8, so the offspring distribution has finite variance. Finally, we assume that β " 1{2m, which by scaling arguments entails no real loss of generality because 2. Branching Brownian motion with absorption, or more complicated models that build on it, can be interpreted as a model of a biological population under the influence of evolutionary selection. In this setting, particles represent individuals in a population, the position of a particle represents the fitness of the individual, and the absorption at zero models the deaths of individuals with low fitness. See, for example, the work of Brunet, Derrida, Mueller, and Munier [START_REF] Brunet | Noisy traveling waves: effect of selection on genealogies[END_REF][START_REF] Brunet | Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization[END_REF].

3. There are close connections between branching Brownian motion and partial differential equations, going back to the early work of McKean [START_REF] Mckean | Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov[END_REF]. Branching Brownian motion with absorption was used in [START_REF] Harris | Further probabilistic analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation: one-sided travelling waves[END_REF] to study the equation 1 2 f 2 ´ρf 1 `βpf 2 ´f q, which describes traveling wave solutions to the FKPP equation, under the boundary conditions lim xÓ0 f pxq " 1 and lim xÑ8 f pxq " 0.

The branching random walk with absorption, a discrete-time analogue of branching

Brownian motion with absorption, appears directly or indirectly in other mathematical models such as infinite urn models [START_REF] Mallein | Barak-Erdős graphs and the infinite-bin model[END_REF] or in the study of algorithms for finding vertices of large labels in a labelled tree generated by a branching random walk [START_REF] Aldous | Greedy Search on the Binary Tree with Random Edge-Weights[END_REF]. Also, branching Brownian motion with absorption is a toy model for certain noisy travelling wave equations (see again [START_REF] Brunet | Noisy traveling waves: effect of selection on genealogies[END_REF][START_REF] Brunet | Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization[END_REF]).

5. Branching Brownian motion with absorption can be regarded as a non-conservative Markov process living in an infinite-dimensional and unbounded state space (the space of finite collections of points on R `). As such, it is an interesting testbed for quasistationary distributions and Yaglom limits, which have seen a great deal of attention in the last decade [START_REF] Cattiaux | Quasi-stationary distributions and diffusion models in population dynamics[END_REF][START_REF] Méléard | Quasi-stationary distributions and population processes[END_REF][START_REF] Champagnat | Exponential convergence to quasi-stationary distribution and Q-process[END_REF], particularly regarding approximating particle systems [START_REF] Asselah | Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case[END_REF][START_REF] Moral | Mean field simulation for Monte Carlo integration[END_REF] 1.1 Some notation

We introduce here some notation that we will use throughout the paper. When the branching Brownian motion starts with a single particle at the position x, we denote probabilities and expectations by P x and E x respectively. More generally, we may start from a fixed or random initial configuration of particles in p0, 8q, which we represent by the measure ν consisting of a unit mass at the position of each particle. We then denote probabilities and expectations by P ν and E ν . To avoid trivialities, we will always assume that the initial configuration of particles is nonempty. When the initial configuration ν is random, P ν and E ν refer to unconditional probabilities and expectations, not conditional probabilities and expectations given the random measure ν. In particular, if A is an event, then P ν pAq is a number between 0 and 1, not a random variable whose value depends on the realization of ν. That is, using the language of random walks in random environments, P ν represents the "annealed" law rather than the "quenched" law. We will denote by pF t , t ě 0q the natural filtration of the process.

We will denote by N s the set of particles that are alive at time s, meaning they have not yet been absorbed at the origin. If u P N s , we denote by X u psq the position at time s of the particle u. We also define the critical curve

L t psq " cpt ´sq 1{3 , c " ˆ3π 2 2 ˙1{3 . (1.1) 
This critical curve appeared in the original paper of Kesten [START_REF] Kesten | Branching Brownian motion with absorption[END_REF]. As will become apparent later, it can be interpreted, very roughly, as the position where a particle must be at time s in order for it to be likely to have a descendant alive in the population at time t. We will also define Z t psq " ÿ uPNs z t pX u psq, sq, z t px, sq " L t psq sin ˆπx L t psq ˙ex´Ltpsq ½ xPr0,Lt psqs .

(

The process pZ t psq, 0 ď s ď tq will be extremely important in what follows. Lemma 5.5 below shows that, in some sense, this process is very close to being a martingale. Let Mpsq be the number of particles at time s, and let Rpsq denote the position of the right-most particle at time s. In symbols, we define

Mpsq " #N s , Rpsq " suptX u psq : u P N s u.

(1.3)

Finally, let ζ " infts : Mpsq " 0u be the extinction time for the process. We will often be working to prove asymptotic results as t Ñ 8 where, for each t, we are working under a different probability measure such as P νt or the conditional probability P νt p ¨|ζ ą tq. We use ñ to denote convergence in distribution and Ñ p to denote convergence in probability. If X t is a random variable for each t, then by X t Ñ p c under P νt we mean that P νt p|X t ´c| ą εq Ñ 0 as t Ñ 8 for all ε ą 0, while X t Ñ p 8 under P νt means P νt pX t ą Kq Ñ 1 as t Ñ 8 for all K P R `. We also write f ptq " gptq if lim tÑ8 f ptq{gptq " 1 and f ptq ! gptq if lim tÑ8 f ptq{gptq " 0.

Throughout the paper, C denotes a positive constant whose value may change from line to line. Numbered constants C k keep the same value from one occurrence to the next.

The probability of survival until time t

For branching Brownian motion started with a single particle at x ą 0, we are interested in calculating the probability that the process survives at least until time t. Kesten [START_REF] Kesten | Branching Brownian motion with absorption[END_REF] showed that there exists a positive constant K 1 such that for every fixed x ą 0, we have for sufficiently large t, xe x´Ltp0q´K 1 plog tq 2 ď P x pζ ą tq ď p1 `xqe x´Ltp0q`K 1 plog tq 2 .

Berestycki, Berestycki, and Schweinsberg [START_REF] Berestycki | Critical branching Brownian motion with absorption: survival probability[END_REF] tightened these bounds by showing that there are positive constants C 1 and C 2 such that for all x ą 0 and t ą 0 such that x ď L t p0q ´1, we have C 1 z t px, 0q ď P x pζ ą tq ď C 2 z t px, 0q.

(1.4)

Note that the results in [START_REF] Berestycki | Critical branching Brownian motion with absorption: survival probability[END_REF] are stated in the case when p 2 " 1, which means two offspring are produced at each branching event. However, the proof of (1.4) can be extended, essentially without change, to the case of the more general supercritical offspring distributions considered here. Also, a slightly different scaling, with β " 1 and µ " ? 2, was used in [START_REF] Berestycki | Critical branching Brownian motion with absorption: survival probability[END_REF]. Theorem 1.1 below is our main result regarding survival probabilities.

Theorem 1.1. Suppose that for each t ą 0, we have a possibly random initial configuration of particles ν t . Then there is a constant α ą 0 such that the following hold:

1. Suppose that, under P νt , we have Z t p0q ñ Z and L t p0q ´Rp0q Ñ p 8 as t Ñ 8. Then lim tÑ8 P νt pζ ą tq " 1 ´Ere ´αZ s.

2. Suppose that each ν t is deterministic, and that, under P νt , we have Z t p0q Ñ 0 and L t p0q ´Rp0q Ñ 8 as t Ñ 8. Then as t Ñ 8, we have P νt pζ ą tq " αZ t p0q.

In particular, if x ą 0 is fixed, then P x pζ ą tq " απxe x´Ltp0q .

(1.5)

Remark 1.2. The constant α in the statement of Theorem 1.1 has the expression α " π ´1e ´a2.14 ´3{4 , where a 2.14 is a constant related to the tail of the derivative martingale of the branching Brownian motion and defined in Lemma 2.13 below.

Note that (1.5) improves upon (1.4) when the initial configuration has only a single particle. Derrida and Simon [START_REF] Derrida | The survival probability of a branching random walk in presence of an absorbing wall[END_REF] had previously obtained (1.5) by nonrigorous methods.

Theorem 1.1 applies when there is no particle at time zero that is close to L t p0q. This condition is important, here and throughout much of the paper, because it ensures that no individual particle at time zero has a high probability of having descendants alive at time t. Theorem 1.3 below applies when the process starts with one particle near L t p0q. Here and throughout the rest of the paper, we denote by q the extinction probability for a Galton-Watson process with offspring distribution pp k q 8 k"0 . Note that Theorem 1.3 implies that when q " 0 and the process starts from one particle near L t p0q, the fluctuations in the extinction time are of the order t 2{3 , which can also be seen from Theorem 2 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: survival probability[END_REF].

Theorem 1.3. There is a function φ : R Ñ p0, 1q such that for all x P R, lim tÑ8 P Ltp0q`x pζ ď tq " φpxq (1.6) and, more generally, for all x P R and v P R, lim tÑ8 P Ltp0q`x pζ ď t `vt 2{3 q " φ ´x ´cv 3

¯.

(1.7)

We have lim xÑ´8 φpxq " 1 and lim xÑ8 φpxq " q. The function φ also satisfies 1 2 φ 2 ´φ1 " βpφ ´f ˝φq, where f psq " ř 8 k"0 p k s k is the generating function for the offspring distribution pp k q 8 k"1 . In fact, φpxq " ψpx `logpαπqq, where ψ is the function from Lemma 2.13 below and α is the constant from Theorem 1.1.

The process conditioned on survival

Our main goal in this paper is to understand the behavior of branching Brownian motion conditioned to survive for an unusually long time. The results in this section can be viewed as the analogs of the theorem of Yaglom [START_REF] Yaglom | Certain limit theorems of the theory of branching random processes[END_REF] for critical Galton-Watson processes conditioned to survive for a long time. Proposition 1.4, which is a straightforward consequence of Theorem 1.1, gives the asymptotic distribution of the survival time for the process, conditional on ζ ą t. We see that the amount of additional time for which the process survives is of the order t 2{3 , and has approximately an exponential distribution.

Proposition 1.4. Suppose that for each t ą 0, we have a deterministic initial configuration of particles ν t . Suppose that, under P νt , we have lim tÑ8 Z t p0q " 0, lim tÑ8 `Lt p0q ´Rp0q ˘" 8.

(1.8)

Let V have an exponential distribution with mean 1. Then, under the conditional probability measures P νt p ¨|ζ ą tq, we have t ´2{3 pζ ´tq ñ 3 c V as t Ñ 8. We are also able to get rather precise information regarding what the configuration of particles looks like at or near time t, conditional on the process surviving until time t. Recall the definitions of Mpsq and Rpsq from (1.3). Kesten proved (see (1.12) of [START_REF] Kesten | Branching Brownian motion with absorption[END_REF]) that for fixed x ą 0, there is a positive constant K 2 such that lim tÑ8 P x pMptq ą e K 2 t 2{9 plog tq 2{3 | ζ ą tq " 0.

(1.9)

Kesten also showed (see (1.11) of [START_REF] Kesten | Branching Brownian motion with absorption[END_REF]) that there is a positive constant K 3 such that lim tÑ8 P x pRptq ą K 3 t 2{9 plog tq 2{3 | ζ ą tq " 0.

(1.10) Theorem 1.5 below provides sharper results regarding the behavior of the number of particles in the system and the position of the right-most particle near time t, when the process is conditioned to survive until time t. Note that the time s depends on t.

Theorem 1.5. Suppose that for each t ą 0, we have a deterministic initial configuration of particles ν t such that (1.8) holds under P νt . Suppose s P r0, ts. Let V have an exponential distribution with mean 1. Under the conditional probability measures P νt p ¨| ζ ą tq, the following hold:

1. If t ´2{3 pt ´sq Ñ σ ě 0, then `t´2{3 pζ ´tq, t ´2{9 log Mpsq, t ´2{9 Rpsq ˘ñ ˆ3V c , c ´σ `3V c ¯1{3 , c ´σ `3V c ¯1{3 ˙. (1.11)
2. If t 2{3 ! t ´s ! t, then letting aps, tq " ppt ´sq{tq 2{3 and bps, tq " cpt ´sq 1{3 ´logpt ´sq, we have `t´2{3 pζ ´tq, aps, tqplog Mpsq ´bps, tqq, aps, tqpRpsq ´bps, tqq ˘ñ ˆ3V c , V, V ˙. (1.12)

Part 1 of Theorem 1.5 with σ " 0 implies that if t´s ! t 2{3 , and in particular if s " t, then conditional on ζ ą t, we have t ´2{9 log Mpsq ñ p3c 2 q 1{3 V 1{3 and t ´2{9 Rpsq ñ p3c 2 q 1{3 V 1{3 . When we start with one particle at x, these results improve upon (1.9) and (1.10). Note also that when t 2{3 ! t ´s ! t{plog tq 3{2 , the logpt ´sq term can be dropped from bps, tq.

Remark 1.6. The assumption in Proposition 1.4 and Theorem 1.5 that the initial configurations are deterministic is important. Suppose we allow the ν t to be random and assume, similar to part 1 of Theorem 1.1, that under P νt , we have Z t p0q Ñ p 0 and L t p0q ´Rp0q Ñ p 0. To see that the conclusions of Proposition 1.4 and Theorem 1.5 can fail, consider the example in which ν t consists of a single particle at 1 with probability 1 ´1{t and a single particle at 2L t with probability 1{t. Conditional on the initial particle being at 1, the probability that the process survives until time t is approximately απe 1´ct 1{3 by (1.5), while conditional on the initial particle being at 2L t p0q, the probability of survival until time t is approximately 1 ´q. Therefore, conditional on survival, with overwhelming probability the initial particle was at 2L t p0q, and on this event, the configuration of particles at time t will be quite different from what is predicted by Theorem 1.5.

Remark 1.7. It is possible to define the process conditioned to survive for all time, through a certain spine decomposition, which is classical for branching processes. One can easily convince oneself that in this process the number of particles at time t is of the order exppOpt 1{2 qq, which is of a very different magnitude from the exppOpt 2{9 qq obtained in the above theorems. This is in stark contrast to the classical case of (critical) Galton-Watson processes conditioned to survive until time t or forever, where the number of particles at time t is of the order of t in both cases (see e.g. [START_REF] Lyons | Conceptual proofs of L Log L criteria for mean behavior of branching processes[END_REF]); in fact, both are related through a certain change of measure.

Tools, heuristics, and further results

In this section, we describe some of the tools required to prove the main results stated in the introduction, along with the heuristics that allow us to see why these results are true. We also state some further results (Theorems 2.4, 2.9, and 2.10) which provide information about the behavior of the branching Brownian motion during the time interval rδt, p1 ´δqts, where δ ą 0 is small, conditioned on survival of the process until time t.

Theorems 1.1 and 1.3 and Proposition 1.4 depend heavily on a connection between branching Brownian motion with absorption and continuous-state branching processes. This connection is explained in Section 2.1, where Theorems 2.1 and 2.4 are stated. To prepare for the proof of Theorem 1.5, we present in Section 2.2 a slight generalization of a result on particle configurations from [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], which is Proposition 2.6. We also state in that section two more results complementing Theorem 1.5, namely Theorems 2.9 and 2.10. To be able to apply Proposition 2.6 for proving Theorem 1.5, we develop a method which allows us to predict the extinction time starting from an arbitrary initial configuration. This method is outlined in Section 2.3. Section 2.4 recalls a result on the number of descendants of a single particle in branching Brownian motion with absorption, which is used in the proof of Theorem 2.1. Finally, Section 2.5 explains the organization of the rest of the paper.

Connections with continuous-state branching processes

The primary tool that allows us to improve upon previous results is a connection between branching Brownian motion with absorption and continuous-state branching processes. This connection is a variation of a result of Berestycki, Berestycki, and Schweinsberg [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF], who considered branching Brownian motion with absorption in which the drift µ was slightly supercritical and was chosen so that the number of particles in the system remained approximately stable over the longest possible time. They showed that under a suitable scaling, the number of particles in branching Brownian motion with absorption converges to a continuousstate branching process with jumps. The intuition behind why we get a jump process in the limit is that, on rare occasions, a particle will move unusually far to the right. Many descendants of this particle will then be able to survive, because they will avoid being absorbed at zero. Such events can lead to a large rapid increase in the number of particles, and such events become instantaneous jumps in the limit as t Ñ 8. To prove the main results of the present paper, we will need to establish a version of this result when µ " 1, so that the drift is critical.

Continuous-state branching processes. A continuous-state branching process is a r0, 8svalued Markov process pΞptq, t ě 0q whose transition functions satisfy the branching property p t px `y, ¨q " p t px, ¨q ˚pt py, ¨q, which means that the sum of two independent copies of the process started from x and y has the same finite-dimensional distributions as the process started from x `y. It is well-known that continuous-state branching processes can be characterized by their branching mechanism, which is a function Ψ : r0, 8q Ñ R. If we exclude processes that can make an instantaneous jump to 8, the function Ψ is of the form Ψpqq " γq `βq 2 `ż 8 0 pe ´qx ´1 `qx½ xď1 q νpdxq, where γ P R, β ě 0, and ν is a measure on p0, 8q satisfying ş 8 0 p1 ^x2 q νpdxq ă 8. If pΞptq, t ě 0q is a continuous-state branching process with branching mechanism Ψ, then for all λ ě 0,

Ere ´λΞptq | Ξ 0 " xs " e ´xutpλq , (2.1) 
where u t pλq can be obtained as the solution to the differential equation

B Bt u t pλq " ´Ψpu t pλqq, u 0 pλq " λ. (2.2)
We will be interested here in the case

Ψpqq " Ψ a,b pqq " aq `bq log q (2.3)
for a P R and b ą 0. It is not difficult to solve (2.2) to obtain u t pλq " λ e ´bt e ape ´bt ´1q{b .

(2.4)

This process was first studied by Neveu [START_REF] Neveu | A continuous-state branching process in relation with the GREM model of spin glass theory[END_REF] when a " 0 and b " 1. It is therefore also called Neveu's continuous state branching process.

Relation with branching Brownian motion. The following result is the starting point in the study of branching Brownian motion with absorption at critical drift. Note that in contrast to the case of weakly supercritical drift considered in [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF], a nonlinear time change appears here.

Theorem 2.1. Suppose that for each t ą 0, we have a possibly random initial configuration of particles ν t . Suppose that, under P νt , we have Z t p0q ñ Z and L t p0q ´Rp0q Ñ p 8 as t Ñ 8. Then there exists a P R such that the finite-dimensional distributions of the processes pZ t pp1 ´e´u qtq, u ě 0q, under P νt , converge as t Ñ 8 to the finite-dimensional distributions of a continuous-state branching process pΞpuq, u ě 0q with branching mechanism Ψ a,2{3 pqq " aq `2 3 q log q, whose distribution at time zero is the distribution of Z.

The strategy for proving Theorem 2.1 will be similar to the one followed in [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF], but the proof is more involved due to the time inhomogeneity emerging in the analysis as a result of the non-linear time change. Yet, thanks to the introduction of several new ideas, we were able to significantly reduce the length of the proof.

Remark 2.2. The constant a in the statement of Theorem 2.1 has the expression a " 2 3 pa 2.14 log πq `1 2 , with a 2.14 the constant defined in Lemma 2.13 below.

Remark 2.3. To understand the time change, let s denote the original time scale on which the branching Brownian motion is defined, and let u denote the new time parameter under which the process will converge to a continuous-state branching process. From [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF], we know that the jumps in the process described above will happen at a rate proportional to L t psq ´3 or, equivalently, proportional to pt´sq ´1. This corresponds to the time scaling by plog Nq 3 in [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF]. Therefore, to get a time-homogeneous limit, we need to set du " pt ´sq ´1 ds. Integrating this equation gives u "

ż u 0 dv " ż s 0 pt ´rq ´1 dr " log ˆt t ´s˙.
Rearranging, we get s " p1 ´e´u qt, which is the time change that appears in Theorem 2.1.

The probability of survival. Let pΞpuq, u ě 0q be the continuous-state branching process that appears in Theorem 2.1. It follows from well-known criteria due to Grey [START_REF] Grey | Asymptotic behavior of continuous time, continuous state-space branching processes[END_REF] that pΞpuq, u ě 0q neither goes extinct nor explodes in finite time. That is, if Ξp0q P p0, 8q, then P pΞpuq P p0, 8q for all u ě 0q " 1. Let

α " e ´3a{2 .

(2.5)

The process ppe ´αΞpuq q, u ě 0q is a martingale taking values in p0, 1q, as can be seen either by observing that u t pαq " α for all t ě 0 and making a direct calculation using (2.1), or by observing that Ψpαq " 0 and following the discussion on p. 716 of [START_REF] Bertoin | On prolific individuals in a supercritical continuous-state branching process[END_REF]. By the Martingale Convergence Theorem, this martingale converges to a limit, and it is not difficult to see that the only possible values for the limit are 0 and 1. Therefore, using P x to denote probabilities when Ξp0q " x, we have, as noted in [START_REF] Bertoin | On prolific individuals in a supercritical continuous-state branching process[END_REF],

P x ´lim uÑ8
Ξpuq " 8 ¯" 1 ´e´αx , P x ´lim uÑ8

Ξpuq " 0 ¯" e ´αx .

(2.6)

As can be guessed from Theorem 2.1, the event that lim uÑ8 Ξ u " 8 corresponds to the event that the branching Brownian motion survives until time t, and this correspondence leads to Theorem 1.1. Note that the constant α in Theorem 1.1 and the constant a in the definition of the continuous-state branching process in Theorem 2.1 are related by the formula (2.5).

Conditioning on survival. To make a connection between continuous-state branching processes and branching Brownian motion conditioned on survival until time t, we need to consider the continuous-state branching process conditioned to go to infinity. Let pΞpuq, u ě 0q be a continuous-state branching process with branching mechanism Ψpqq " aq `2 3 q log q, started from Ξp0q " x. Bertoin, Fontbona, and Martinez [START_REF] Bertoin | On prolific individuals in a supercritical continuous-state branching process[END_REF] interpreted this process as describing a population in which a random number (possibly zero) of so-called prolific individuals have the property that their number of descendants in the population at time u tends to infinity as u Ñ 8. The number N of such prolific individuals at time zero has a Poisson distribution with mean αx, which is consistent with Theorem 1.1. As noted in Section 3 of [START_REF] Bertoin | On prolific individuals in a supercritical continuous-state branching process[END_REF], the branching property entails that pΞpuq, u ě 0q can be decomposed as the sum of N independent copies of a process pΦpuq, u ě 0q, which describes the number of descendants of a prolific individual, plus a copy of the original process conditioned to go to zero as u Ñ 8, which accounts for the descendants of the non-prolific individuals. Conditioning on the event lim uÑ8 Ξpuq " 8 is the same as conditioning on N ě 1. Furthermore, as x Ñ 0, the conditional probability that N " 1 given N ě 1 tends to one. Consequently, if we condition on lim uÑ8 Ξpuq " 8 and then let x Ñ 0, we obtain in the limit the process pΦpuq, u ě 0q. Therefore, the process pΦpuq, u ě 0q can be interpreted as the continuousstate branching process started from zero but conditioned to go to infinity as u Ñ 8. See [START_REF] Berestycki | The prolific backbone for supercritical superprocesses[END_REF][START_REF] Foucart | Continuous-state branching processes, extremal processes, and super-individuals[END_REF] for further developments in this direction. The following result, which we will deduce from Theorem 2.1, describes the finite-dimensional distributions of the branching Brownian motion with absorption, conditioned to survive for an unusually long time. where W has an exponential distribution with rate parameter αx. This result was stated for the case when the branching mechanism is Ψpqq " q log q in [START_REF] Neveu | A continuous-state branching process in relation with the GREM model of spin glass theory[END_REF] by Neveu, who attributed the result as being essentially due to Grey [START_REF] Grey | Almost sure convergence in Markov branching processes with infinite mean[END_REF]. A complete proof is given in Appendix A of [START_REF] Fleischmann | A super-stable motion with infinite mean branching[END_REF], and by using (2.4), this proof can be adapted to give (2.7) when Ψpqq " aq `2 3 q log q.

By conditioning on the event lim uÑ8 Ξpuq " 8, which is equivalent to conditioning on ´log W ą 0, and then letting x Ñ 0, we obtain lim uÑ8 e ´2u{3 log Φpuq " V a.s., (2.8) where V has the exponential distribution with mean 1. This exponential limit law was derived also in Proposition 7 of [START_REF] Foucart | Continuous-state branching processes, extremal processes, and super-individuals[END_REF]. It turns out that the random variable V in (2.8) is the same random variable that appears in Proposition 1.4 and Theorem 1.5 above. To see this, note that (2.8) combined with Theorem 2.4 implies that when u is large, we can write Z t pp1 ´e´u qtq « exppe 2u{3 V q. Using the Taylor approximation cpt `sq 1{3 ´ct 1{3 « c 3 st ´2{3 when s ! t, we have

Z t`vt 2{3 pp1 ´e´u qtq « exp ´e2u{3 V ´Lt`vt 2{3 pp1 ´e´u qtq `Lt pp1 ´e´u qtq « exp ´e2u{3 V ´c 3 pvt 2{3 qpe ´utq ´2{3 " exp ´e2u{3 V ´vc 3 e 2u{3 ¯.
(2.9)

The process should survive until approximately time t `vt 2{3 , where v is chosen so that Z t`vt 2{3 pp1 ´e´u qtq is neither too close to zero nor too large. This will happen when the expression inside the exponential in (2.9) is close to zero, which occurs when v " 3 c V . That is, conditional on survival until at least time t, the process should survive for approximately time t `3 c V t 2{3 , consistent with Proposition 1.4.

Particle configurations

After branching Brownian motion with absorption has been run for a sufficiently long time, the particles will settle into a fairly stable configuration. Specifically, as long as Z t psq is neither too small nor too large, the "density" of particles near y at time s is likely to be roughly proportional to sin ˆπy L t psq ˙e´y .

(2.10)

Berestycki, Berestycki, and Schweinsberg [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] obtained some results that made this idea precise, in the case of binary branching when the branching Brownian motion starts from a single particle that is far from the origin. The proposition below extends the results in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] to more general initial configurations and more general offspring distributions.

Proposition 2.6. Consider a possibly random sequence of initial configurations pν n q 8 n"1 , along with possibly random times pt n q 8

n"1 , where t n may depend only on ν n and t n Ñ p 8 as n Ñ 8. Suppose that, under P νn , the sequences pZ tn p0qq 8

n"1 and pZ tn p0q ´1q 8 n"1 are tight, and L tn p0q ´Rp0q Ñ p 8 as n Ñ 8. Let 0 ă δ ă 1{2. Then the following hold:

1. For all ε ą 0, there exist positive constants C 3 and C 4 , depending on δ and ε, such that if δt n ď s ď p1 ´δqt n and n is sufficiently large, then

P νn

ˆC3

L tn psq 3 e Lt n psq ď Mpsq ď C 4 L tn psq 3 e Lt n psq ˙ą 1 ´ε.

(2.11)

2. For all ε ą 0, there exist positive constants C 5 and C 6 , depending on δ and ε, such that if δt n ď s ď p1 ´δqt n and n is sufficiently large, then P νn `Ltn psq ´log t n ´C5 ď Rpsq ď L tn psq ´log t n `C6 ˘ą 1 ´ε.

(2.12)

3. Let N s,n denote the set of particles alive at time s for branching Brownian motion started from the initial configuration ν n . Let ps n q 8 n"1 be a sequence of times such that δt n ď s n ď p1 ´δqt n for all n. Define the probability measures

χ n " 1 Mps n q ÿ uPNs n,n δ Xupsnq , η n " ˆÿ uPNs n,n e Xupsnq ˙´1 ÿ uPNs n,n
e Xupsnq δ Xupsnq{Lt n psnq .

Let µ be the probability measure on p0, 8q with density gpyq " ye ´y, and let ξ be the probability measure on p0, 1q with density hpyq " π 2 sinpπyq. Then χ n ñ µ and η n ñ ξ as n Ñ 8, where ñ denotes convergence in distribution for random elements in the Polish space of probability measures on p0, 8q, endowed with the weak topology. Remark 2.7. Parts 1 and 2 of Proposition 2.6 give estimates on the number of particles at time s and the position of the right-most particle at time s. Part 3 of Proposition 2.6 states two limit theorems which together make precise the idea described in (2.10). If we choose a particle at random from the particles alive at time s, then most likely we will choose a particle near the origin. Using the sinpxq « x approximation for small x, we get that the density of the position of this randomly chosen particle is approximately g. If instead we choose a particle at random such that a particle at y is chosen with probability proportional to e y , and then we scale the location of the chosen particle such that the right-most particle is located near 1, then the density of the chosen particle is approximately h. Remark 2.8. Proposition 2.6 also allows us to see why Theorem 1.5 should be true. For simplicity, we focus on the case when s " t. Consider a branching Brownian motion that has already survived for time t and will ultimately survive until time t `v. We expect Z t`v ptq to be neither too close to zero (in which case the process would most likely die out before time t `v) nor too large (in which case the process would most likely survive beyond time t `v). Furthermore, because the process has evolved for a long time, we expect the density of particles at time t to follow approximately (2.10). It follows that the position of the right-most particle at time t should be close to L t`v ptq " cv 1{3 , while the number of particles at time t should be within a constant multiple of v ´1e cv 1{3 . The key to proving Theorem 1.5 is to argue that as long as t ´s ! t, the extinction time can be predicted fairly accurately from the configuration of particles at time s, so that we can apply Proposition 2.6 with the predicted extinction time of the process in place of t n . Proposition 1.4 tells us that conditional on survival until time t, the amount of additional time for which the process survives can be approximated by 3 c V t 2{3 , where V has an exponential distribution with mean one. Therefore, using 3 c V t 2{3 in place of v, we expect log Mptq « Rptq « cp 3 c V t 2{3 q 1{3 " p3c 2 V q 1{3 t 2{9 , consistent with Theorem 1.5.

More results conditioned on survival. The following two results complement Theorem 1.5 and will be proved using the same methods, explained in Section 2.3. As in Theorem 1.5, the time s depends on t.

Theorem 2.9. Suppose that for each t ą 0, we have a deterministic initial configuration of particles ν t such that (1. 

Predicting the extinction time

Our strategy for proving Theorem 1.5 will be to use Proposition 2.6 to deduce results about the configuration of particles at time s, where t ´s ! t, by allowing the configuration of particles at some time r ď s to play the role of the initial configuration of particles. To do this, we will need to show that the configuration of particles at time r satisfies the hypotheses of Proposition 2.6. However, because the number of particles near time t is highly variable, there is no deterministic choice of t n that will allow the tightness criterion in Proposition 2.6 to be satisfied. Consequently, we will develop a method for associating with an arbitrary configuration of particles a random time, which represents approximately how long the branching Brownian motion is likely to survive, starting from that configuration. This technique may be of independent interest. For all s ě 0, let T psq " inftt : L s`t psq ě Rpsq `2 and Z s`t psq ď 1{2u.

(2.13) For any fixed s ě 0, as have lim tÑ8 L s`t psq " 8, and for any fixed s ě 0 and x ą 0, we have lim tÑ8 z s`t px, sq " 0. Therefore, T psq is well-defined and finite. The following result allows us to interpret T psq as being approximately the amount of additional time we expect the process to survive, given what the configuration of particles looks like at time s, provided that no particle at time s is too close to L T psq p0q.

Lemma 2.11. Let ε ą 0. There exist positive constants k 1 , t 1 , and a 1 such that for all initial configurations ν such that T p0q ě t 1 and L T p0q p0q ´Rp0q ě a 1 , we have

P ν p|ζ ´T p0q| ď k 1 T p0q 2{3 q ą 1 ´ε.
To apply Proposition 2.6 to the configuration of particles at time r, we will need to know that with high probability, no particle at time r is too close to L T prq p0q. The key to this argument will be Lemma 2.12, which says that starting from any configuration of particles at time zero, there will typically be no particle close to this right boundary a short time later. Lemma 2.12. Let ε ą 0 and A ą 0. There exist positive real numbers t 0 ą 0 and d ą 0, depending on ε and A, such that if ν is any initial configuration of particles, then P ν ptRpdq ě L T pdq p0q ´Au X tT pdq ě t 0 uq ă ε.

Descendants of a single particle

Recall that pp k q 8

k"1 denotes the offspring distribution when a particle branches. Let L be a random variable such that P pL " kq " p k . Recall that we suppose that ErL 2 s ă 8. Let f psq " Ers L s be the probability generating function of the offspring distribution, and let q be the smallest root of f psq " s, which is the extinction probability for a Galton-Watson process with offspring distribution pp k q 8 k"1 . We record the following lemma, which is a consequence of results in Chapter 4 of [START_REF] Maillard | Branching Brownian motion with selection[END_REF].

Lemma 2.13. Suppose the branching Brownian motion is started with a single particle at zero, and there is no absorption at the origin. For each y ě 0, let Kpyq be the number of particles that reach ´y if particles are killed upon reaching ´y. Then there exists a random variable W such that lim yÑ8 ye ´yK pyq " W a.s.

We have PpW ą 0q " 1 ´q and Ere ´ex W s " ψpxq, where ψ is a solution to the equation

1 2 ψ 2 ´ψ1 " βpψ ´f ˝ψq
with lim xÑ´8 ψpxq " 1, lim xÑ8 ψpxq " q and 1 ´ψp´xq " xe ´x as x Ñ 8. In fact, there exists a 2.14 P R such that as λ Ñ 0,

Ere ´λW s " exp ´Ψa 2.14 ,1 pλq `opλq ¯, (2.14) 
where Ψ a,b pλq " aλ `bλ log λ is the function from (2.3).

In the case of binary branching, the existence of the random variable W in Lemma 2.13 goes back to the work of Neveu [START_REF] Neveu | Multiplicative martingales for spatial branching processes[END_REF]. Proposition 4.1 in Chapter 2 of [START_REF] Maillard | Branching Brownian motion with selection[END_REF] Remark 2.14. Lemma 2.13 holds under weaker assumptions on the offspring distribution; see [START_REF] Maillard | Branching Brownian motion with selection[END_REF]. Also, an analogous result for branching random walk has been proven recently in [START_REF] Buraczewski | On the derivative martingale in a branching random walk[END_REF]. The random variable W appearing in Lemma 2.13 is equal to the limit of the so-called derivative martingale [START_REF] Neveu | Multiplicative martingales for spatial branching processes[END_REF], but we will not use this fact explicitly.

Organization of the paper

In Sections 3 and 4, we prove the main results of the paper, assuming Theorem 2.1 and Proposition 2.6. The most novel arguments in the paper are in these two sections. In Section 3, we prove Theorems 1.1, 1.3, and 1.4, all of which pertain to survival times for the process, as well as Theorem 2.4, whose proof requires similar ideas. In Section 4, we consider the process conditioned to survive until a large time t. We prove Theorem 1.5 and Theorems 2.9 and 2.10, along with Lemmas 2.11 and 2.12.

The last four sections of the paper are devoted to the proofs of Theorem 2.1 and Proposition 2.6. In Section 5, we establish some preliminary heat kernel and moment estimates that will be needed to prove those results. In Section 6, we show how to use results from [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] to deduce Proposition 2.6. Finally, Theorem 2.1 is proved in Sections 7 and 8.

The probability of survival until time t

Let pΞpuq, u ě 0q denote a continuous-state branching process with branching mechanism Ψpqq " aq `2 3 q log q, where a is the constant from Theorem 2.1. Use P x and E x to denote probabilities and expectations for this process started from Ξp0q " x. Recall (2.6), and let E be the event that lim uÑ8 Ξpuq " 0, so that

P x pEq " e ´αx , (3.1) 
where α " expp´3a{2q as defined in (2.5). Throughout this section, we also use the notation φ t puq " p1 ´e´u qt.

We begin with the following lemma, which can be deduced from (1.4) and gives an initial rough estimate of the survival probability. Lemma 3.1. There exist positive constants C 2 and C 7 such that for all t ą 0 and all initial configurations ν such that Rp0q ď L t p0q ´1, we have

1 ´e´C 7 Ztp0q ď P ν pζ ą tq ď C 2 Z t p0q, (3.2) 
and the lower bound holds even if the condition Rp0q ď L t p0q ´1 is removed.

Proof. Recall that (1.4) implies that if 0 ď x ď L t p0q ´1, then C 1 z t px, 0q ď P x pζ ą tq ď C 2 z t px, 0q. (3.3) 
One easily checks that there exists C ą 0 such that z t px, 0q ď C and z t pL t p0q ´1, 0q ě C ´1 for t sufficiently large. Furthermore, P x pζ ą tq is an increasing function of x. Hence, the lower bound in (3. Remark 3.2. Once we prove Theorem 1.3, we will know that the condition Rp0q ď L t p0q ´1 keeps the probabilities P Xup0q pζ ą tq bounded away from one. This means there is a positive constant C for which 1 ´PXup0q pζ ą tq ě exp `´CP Xup0q pζ ą tq ˘for all u P N 0 . Therefore, letting C 8 " CC 2 , it will follow as in the above proof that

P ν pζ ą tq ď 1 ´exp ˆ´C ÿ uPN 0 P Xup0q pζ ą tq ˙ď 1 ´e´C 8 Ztp0q . (3.4)
This stronger form of the upper bound will be used in the proof of Lemma 2.12 below.

Lemma 3.3. Suppose that, for each t ą 0, we have a deterministic configuration of particles ν t . Suppose that, under P νt , we have L t p0q ´Rp0q Ñ 8 and Z t p0q Ñ z P p0, 8q as t Ñ 8.

Let δ ą 0 and r P p0, 1q. Then there exist ε ą 0 and y ą 0, depending on δ but not on r, such that for sufficiently large t, we have P νt ptζ ą tu X tZ t prtq ď εuq ă δ (3.5) and P νt ptζ ď tu X tZ t prtq ě yuq ă δ.

(3.6)

Proof. Write s " rt, and let A s,t be the event that all particles at time s are in the interval r0, L t psq ´1s. By applying the Markov property at time s along with the upper bound in Lemma 3.1, and noting that L t psq " L t´s p0q, we get that on the event A s,t , we have

P νt pζ ą t | F s q ď C 2 Z t psq. Therefore, P νt ptζ ą tu X tZ t psq ď εu X A s,t q ď P νt pζ ą t | A s,t X tZ t psq ď εuq ď C 2 ε.
Also, it follows from the conclusion (2.12) of Proposition 2.6 that P νt pA c s,t q ă δ{2 for sufficiently large t. The result (3.5) follows by choosing ε ă δ{p2C 2 q. Likewise, the lower bound in Lemma 3.1, in combination with the Markov property applied at time s, gives P νt pζ ď t | F s q ď e ´C7 Ztpsq . Therefore, P νt ptζ ď tu X tZ t psq ě yuq ď P νt pζ ď t | Z t psq ě yq ď e ´C7 y , and thus (3.6) holds for sufficiently large y. Lemma 3.4. Suppose that, for each t ą 0, we have a deterministic configuration of particles ν t . Suppose that, under P νt , we have L t p0q ´Rp0q Ñ 8 and Z t p0q Ñ z P p0, 8q as t Ñ 8.

Let δ ą 0. There exist ε ą 0, y ą 0, and u 0 ą 0 such that for each fixed u ě u 0 , we have for sufficiently large t, P νt ptZ t pφ t puqq ď εu △ tζ ď tuq ă 3δ P νt ptZ t pφ t puqq ą yu △ tζ ą tuq ă 3δ P z ptΞpuq ď εu △ Eq ă 3δ P z ptΞpuq ą yu △ E c q ă 3δ where △ denotes the symmetric difference between two events.

Proof. Choose ε ą 0 small enough that P ε pEq ě 1 ´δ and (3.5) holds. Choose y ą 0 large enough that P y pEq ď δ and (3.6) holds. Fix u 0 large enough that P z pε ă Ξpuq ď yq ă δ for u ě u 0 , which is possible because the limit in (2.6) exists. By Theorem 2.1, for u ě u 0 ,

lim tÑ8 P νt pε ă Z t pφ t puqq ď yq " P z pε ă Ξpuq ď yq ă δ.
The first two statements of the lemma follow from this result and Lemma 3.3. Likewise, it follows from the Markov property of pΞpuq, u ě 0q that P z ptΞpuq ď εuXE c q ď P ε pE c q ă δ and P z ptΞpuq ą yu X Eq ď P y pEq ď δ. The third and fourth statements of the lemma follow.

Proof of Theorem 1.1. The proof is similar to the proof of Proposition 6 in [START_REF] Berestycki | Survival of near-critical branching Brownian motion[END_REF]. Suppose the initial configuration ν t is deterministic, and, under P νt , we have Z t p0q Ñ z P p0, 8q and L t p0q ´Rp0q Ñ 8 as t Ñ 8. Let δ ą 0. Choose ε ą 0, y ą 0, and u 0 ą 0 as in Lemma 3.4. By Theorem 2.1, for each fixed u ě u 0 , we have lim tÑ8 P νt pZ t pφ t puqq ď εq " P z pΞpuq ď εq.

Therefore, using the first and third statements in Lemma 3.4, we obtain for each fixed u ě u 0 , lim sup tÑ8 |P νt pζ ď tq ´Pz pEq| ď 6δ `lim sup tÑ8 |P νt pZ t pφ t puqq ď εq ´Pz pΞpuq ď εq| " 6δ.

Since δ ą 0 was arbitrary, it follows that

lim tÑ8 P νt pζ ď tq " P z pEq " e ´αz , (3.7) 
which gives part 1 of Theorem 1.1 when each ν t is deterministic and z ą 0.

Next, suppose ν t is deterministic and, under P νt , we have Z t p0q Ñ 0 and L t p0q´Rp0q Ñ 8 as t Ñ 8. We may consider t large enough that 0 ă Z t p0q ă 1. Let ν t denote the initial configuration with t1{Z t p0qu particles at the location of each particle in the configuration ν t . Then, adding a star to the notation when referring to the process started from ν t , we have Z t p0q Ñ 1 as t Ñ 8. Also, we have L t p0q ´R˚p 0q Ñ 8. Thus, we can apply (3.7) to get

lim tÑ8 P ν t pζ ď tq " e ´α.
Because the process started from ν t goes extinct by time t if and only if each of the t1{Z t p0qu independent copies of the process started from ν t goes extinct by time t, we have

P ν t pζ ď tq " p1 ´Pνt pζ ą tqq t1{Ztp0qu .
It follows that P νt pζ ą tq " αZ t p0q, which establishes part 2 of Theorem 1.1. It follows that lim tÑ8 P νt pζ ď tq " 1, so (3.7) also holds when z " 0.

It remains only to establish part 1 of Theorem 1.1 when the initial configuration of particles may be random. Consider an arbitrary subsequence of times pt n q 8

n"1 tending to infinity. Because, under P νt n , we have Z tn p0q ñ Z and L tn p0q ´Rp8q Ñ p 8, we can use Skorohod's Representation Theorem to construct the sequence of random initial configurations pν tn q 8

n"1 on one probability space pΩ, F , Pq so that Z tn p0q Ñ Z and L tn p0q ´Rp0q Ñ 8 almost surely. Then, for P-almost every ω P Ω, we can apply the result (3.7) for deterministic initial configurations to get lim nÑ8 P νt n pωq pζ ď tq " e ´αZpωq .

Taking expectations of both sides and applying the Dominated Convergence Theorem gives lim nÑ8 P νt n pζ ď tq " Ere ´αZ s, which implies part 1 of Theorem 1.1.

Proof of Theorem 1.3. The proof is similar to the proof of Theorem 1 in [START_REF] Berestycki | Survival of near-critical branching Brownian motion[END_REF]. Recalling Lemma 2.13, we first start a branching Brownian motion with a single particle at zero and stop particles when they reach ´y. Let T y be the time at which the last particle is killed at ´y. Let g : p0, 8q Ñ p0, 8q be an increasing function such that lim yÑ8

PpT y ą gpyqq " 0.

(3.8) Fix x P R, and let t Þ Ñ yptq be an increasing function which tends to infinity slowly enough that the following three conditions hold:

lim tÑ8 yptq " 8, lim tÑ8 yptq L t p0q " 0, lim tÑ8 t ´2{3 gpyptqq " 0. (3.9) 
Now we begin a branching Brownian motion with a single particle at L t p0q `x. Let K t denote the number of particles that reach L t p0q `x ´yptq before time t, if particles are stopped upon reaching this level. For the process to go extinct before time t, the descendants of each of these K t particles must go extinct before time t. Let w 1 , . . . , w Kt denote the times when these particles reach the level L t p0q `x ´yptq. Then,

P Ltp0q`x pζ ď tq ď E " Kt ź i"1 P Ltp0q`x´yptq pζ ď t ´wi q  .
Let ν t denote the random configuration with K t particles at the position L t p0q `x ´yptq.

Recall that P νt is an unconditional probability measure, and does not refer to conditional probability given the value of ν t . Then for t large enough that gpyptqq ă t, P νt pζ ď t ´gpyptqqq ´PpT yptq ą gpyptqqq ď P Ltp0q`x pζ ď tq ď P νt pζ ď tq.

(3.10)

For the initial configuration ν t , we have

Z t p0q " K t L t p0q sin ˆπpL t p0q `x ´yptqq L t p0q ˙ex´yptq .
In view of the first two conditions in (3.9), we have

sin ˆπpL t p0q `x ´yptqq L t p0q ˙" πyptq L t p0q ,
where " means that the ratio of the two sides tends to one as t Ñ 8. Also, by Lemma 2.13, the processes for all t can be constructed on one probability space in such a way that yptqe ´yptq K t Ñ W a.s., where W is the random variable introduced in Lemma 2. [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] Also, by Theorem 2.1, the finite-dimensional distributions of pZ t pp1 ´e´u qtq, u ě 0q converge as t Ñ 8 to the finite-dimensional distributions of pΞpuq, u ě 0q started from Ξ 0 " z. Fix k P N and times 0 ď u 1 ă ¨¨¨ă u k . Let δ ą 0. Choose ε ą 0, y ą 0, and u 0 ą 0 as in Lemma 3.4, and then fix u ě u 0 . Let g : R k Ñ R be bounded and uniformly continuous, and let h : R `Ñ r0, 1s be a continuous nondecreasing function such that hpxq " 0 if x ď ε and hpxq " 1 if x ě y. By the convergence result stated at the end of the previous paragraph, lim tÑ8 E ν t rgpZ t pφ t pu 1 qq, . . . , Z t pφ t pu k qqqhpZ t pφ t puqqqs " E z rgpΞpu 1 q, . . . , Ξpu k qqhpΞpuqqs.

(3.15) Lemma 3.4 implies that for sufficiently large t, we have 

P ν t phpZ t pφ t puqqq ‰ ½ tζątu q ă 6δ (3.16) and P z phpΞpuqq ‰ ½ E c q ă 6δ. ( 3 
P ν t pζ ą tq " E z rgpΞpu 1 q, . . . , Ξpu k qq½ E c s P z pE c q , (3.18) 
which means the finite-dimensional distributions of pZ t pp1 ´e´u qtq, u ě 0q conditional on ζ ą t converge as t Ñ 8 to the finite-dimensional distributions of pΞpuq, u ě 0q started from Ξp0q " z and conditioned to go to infinity. We now take a limit as z Ñ 0. We can write the branching Brownian motion started from ν t as the sum of tz{Z t p0qu independent branching Brownian motions started from ν t . Let N t,z denote the number of these independent branching Brownian motions that have a descendant alive at time t. Conditioning on survival of the process until time t is the same as conditioning on N t,z ě 1. Therefore, the process conditioned on survival until time t can be constructed by summing three processes, in the following way.

1. The first process is branching Brownian motion started from ν t conditioned on survival until time t.

2. Choose a random variable M t,z whose distribution is the conditional distribution of N t,z given N t,z ě 1. The second process is the sum of M t,z ´1 independent branching Brownian motions started from ν t conditioned on survival until time t.

3. The third process is the sum of tz{Z t p0qu ´Mt,z independent branching Brownian motions conditioned to go extinct before time t.

We will denote the contributions from these three processes by Z 

P ν t pN t,z ě 2 | N t,z ě 1q " 0. (3.20) 
By Theorem 2.1, the finite-dimensional distributions of pZ p3q t pp1´e ´uqtq, u ě 0q, if the process were not being conditioned to go extinct, would converge as t Ñ 8 to the finite-dimensional distributions of pΞpuq, u ě 0q started from Ξp0q " z. As z Ñ 0, the limiting extinction probability for the branching Brownian motion as t Ñ 8 tends to one, while the process pΞpuq, u ě 0q started from Ξp0q " z converges to the zero process. These observations imply that for all δ ą 0, we have lim E z rgpΞpu 1 q, . . . , Ξpu k qq½ E c s P z pE c q " ErgpΦpu 1 q, . . . , Φpu k qqs.

The result follows.

Conditioning on Survival

In this section, we prove our main results concerning the behavior of branching Brownian motion conditioned to survive for an unusually large time t, namely Theorem 1.5 and Theorems 2.9 and 2.10.

We will frequently need estimates on z t px, 0q. Because 2x{π ď sinpxq " sinpπ ´xq ď x for all x P r0, π{2s, we have

2 mintx, L t p0q ´xue x´Ltp0q ď z t px, 0q ď π mintx, L t p0q ´xue x´Ltp0q (4.1)
for all t ą 0 and x P r0, L t p0qs.

Recall the definition of T psq from (2.13). The following result shows that Z T p0q p0q will be exactly 1{2 as long as T p0q is sufficiently large, and will allow us to prove Lemma 2.11.

Lemma 4.1. Given any initial configuration of particles, the function t Þ Ñ Z t p0q is monotone decreasing on tt ě 0 : L t p0q ě Rp0q `2u. Also, there is a positive number t ˚such that if T p0q ě t ˚, then T p0q is the unique positive real number t such that L t p0q ě Rp0q `2 and Z t p0q " 1{2.

Proof. To prove the first claim, note that

d dL Le x´L sin ˆπx L ˙" e x´L " p1 ´Lq sin ˆπx L ˙´πx L cos ˆπx L ˙.
If 0 ď x ă L{2, then both terms inside the brackets are negative when L ą 1. Suppose instead L{2 ď x ď L ´2. Then sinpπx{Lq ě sinp2π{Lq ě 4{L, so 

d
Consequently, if x ď L u p0q ´2, then z t px, 0q z u px, 0q ď π 2 ¨Lt p0q 2 ¨eLup0q´Ltp0q ď πe K 4 ¨Lt p0qe ´Ltp0q . (4.6) 
By the definition of T p0q, we have Z T p0q p0q ď 1{2 and Rp0q ď T p0q ´2. Therefore, we can choose t sufficiently large that for all initial configurations ν for which T p0q ď K under P ν , we have

Z t p0q ď Z T p0q p0q ¨πe K 4 ¨Lt p0qe ´Ltp0q ď πe K 8 ¨Lt p0qe ´Ltp0q ă ε C 2 ,
with C 2 the constant from Lemma 3.1. It follows from that lemma that the probability of survival until time t is bounded above by ε, as claimed.

We now work towards the proof of Lemma 2.12. To prepare for this proof, we record some bounds on the position of the right-most particle Rptq in branching Brownian motion with absorption. For branching Brownian motion without absorption, Bramson [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] considered this problem when q " 0. He showed that if m x ptq denotes the median of the distribution of Rptq when we start with a single particle at x, then there is a positive constant C such that for all t ě 1, we have

ˇˇˇm x ptq ´ˆx ´3 2 log t ˙ˇˇˇď C. (4.7) 
Bramson also showed (see equation (8.17) of [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF]) that there is another positive constant C 1 such that for all x P R, t ě 1, and y ě 1, we have P x pRptq ą m x ptq`yq ď C 1 ye ´y. Combining this result with (4.7) and noting that absorption at zero can only reduce the likelihood that there is a particle above a certain level at time t, we get that for branching Brownian motion with absorption, there is a positive constant C 2 such that for all x ą 0, t ě 1, and y ě 1, we have

P x ˆRptq ą x ´3 2 log t `y˙ď C 2 ye ´y. (4.8) 
We now claim that (4.8) holds even when q ą 0. To see this, we construct the branching Brownian motion process in the following way. First, we define a branching Brownian motion process with no killing at the origin. If we ignore the spatial positions of the particles, this process is simply a continuous-time Galton-Watson process. Next, we color particles red if they have an infinite line of descent, and blue if all of their descendants eventually die out. It follows from results in [START_REF] Gadag | Processes associated with a super-critical Markov branching process[END_REF] that the red particles form a continuous-time Galton-Watson process in which the offspring distribution still has finite variance but particles can never die. Furthermore, this process has the same growth rate as the original process. After coloring the particles red and blue, we again consider the spatial motion, which is independent of the branching structure, and add the killing at the origin by truncating paths once they hit the origin. Now the red particles form a branching Brownian motion whose offspring distribution satisfies q " 0, and so (4.8) holds. Because, conditional on the configuration of particles at time t, each particle is red with probability 1 ´q and blue with probability q, the result (4.8) must also hold for the original process that includes particles of both colors, after dividing the constant by 1 ´q.

We will also need an alternative bound when x is small that allows us to take the absorption into account. For this, let

V psq " ÿ uPNs X u psqe Xupsq .
It is well-known (see, for example, Lemma 2 in [START_REF] Harris | Survival probabilities for branching Brownian motion with absorption[END_REF]) that pV psq, s ě 0q is a nonnegative martingale, and its value is at least ye y when there is a particle above y. It follows from Markov's Inequality that P x pRptq ą yq ď P x pV psq ě ye y q ď x y e x´y . (4.9)

Proof of Lemma 2.12. Consider the set N 0 of particles at time zero. Rank the particles u 1 , u 2 , . . . in decreasing order by position, so that X u 1 p0q ě X u 2 p0q ě . . . . Now construct an extension of the process in which the absorption is suppressed, so that the trajectories of particles continue past the origin. Let G be the smallest integer g such that the particle u g has descendants alive at time d in this extended process. Note that if q d denotes the probability that a Galton-Watson process with offspring distribution pp k q 8 k"0 dies before time d, then PpG " k|#N 0 ě kq " q k´1 d p1 ´qd q. Let ν ˚denote the initial configuration consisting of the particles u i with i ě G. Let F 0 denote the σ-field generated by N 0 and G. Note that, conditional on F 0 , the descendants of the particles u i for i ě G `1 behave as they would in the original branching Brownian motion process, while the descendants of the particle u G are conditioned to survive until time d in the extended process.

Let T ˚p0q be defined as in (2.13) for the configuration ν ˚. We will show that given 0 ă ε ă 1 and A ą 0, we can choose d sufficiently large and then t 0 sufficiently large that

P ν pRpdq ě L T ˚p0q p0q ´2Aq ă ε 2 (4.10)
and

P ν ´tL T pdq p0q ď L T ˚p0q p0q ´Au X tT pdq ě t 0 u ¯ă ε 2 . (4.11)
These two results immediately imply the statement of the lemma.

We first show that (4.10) holds if d is sufficiently large. Let N 0 " N 0 ztu 1 , . . . , u G´1 u, and let N s denote the set of descendants of these particles alive at time s. Let α " e 2A εp1 ´qq .

Let S 1 " tu P N 0 : L T ˚p0q p0q ´Xu p0q ě αu and S 2 " N 0 zS 1 . Let Z t psq be defined as in (1.2), but summing only over particles in N s . To bound the probability that some particle in N 0 has a descendant above L T ˚p0q ´2A at time d, we apply (4.9) to particles in S 1 and (4.8) to particles in S 2 . The behavior of the descendants of the particle u G is affected by conditioning. However, because the probability that a continuous-time Galton-Watson process with branching rate β and offspring distribution pp k q 8 k"1 survives until time d is greater than 1 ´q, we can apply the results (4.8) and (4.9) to all particles in our process if we divide the upper bounds there by 1 ´q.

Consider first the particles in S 2 . Assume for now that L T ˚p0q p0q ě 2α, so that all particles in S 2 are above 1 2 L T ˚p0q p0q. Using that X u G p0q ď L T ˚p0q p0q ´2 by (2.13) as well as the lower bound in (4.1), we get z T ˚p0q pX u p0q, 0q ě 4e ´α for all u P S 2 . Because Z T ˚p0q p0q ď 1{2, it follows that there can be at most e α {8 particles in S 2 . In view of (4.8), the probability that one of these particles has a descendant above L T ˚p0q p0q´2A at time d tends to zero as d Ñ 8. Therefore, given ε and A, we can choose d large enough to keep this probability below ε{4. Using also (4.9) to handle the particles in S 1 , we get that on tL T ˚p0q p0q ě 2αu,

P ν pRpdq ě L T ˚p0q p0q ´2A | F 0 q ă ε 4 `1 1 ´q ÿ uPS 1 X u p0qe Xup0q´L T ˚p0q p0q`2A L T ˚p0q p0q ´2A .
The lower bound in (4.1), applied separately when x ď 1 2 L T ˚p0q p0q and x ą 1 2 L T ˚p0q p0q, yields

ÿ uPS 1 X u p0qe Xup0q´L T ˚p0q p0q`2A L T ˚p0q p0q ´2A ď e 2A 2 ÿ uPS 1 z T ˚p0q pX u p0q, 0q L T ˚p0q p0q ´2A max " 1, X u p0q L T ˚p0q p0q ´Xu p0q * .
Recall that L T ˚p0q p0q´X u p0q ě α for all u P S 1 , and therefore using that α ě 2A, we also have X u p0q ď L T ˚p0q p0q ´2A for all u P S 1 and L T ˚p0q p0q ´2A ě α on the event tL T ˚p0q p0q ě 2αu.

It follows that for all u P S 1 , we have

1 L T ˚p0q p0q ´2A max " 1, X u p0q L T ˚p0q p0q ´Xu p0q * ď 1 α .
Therefore,

1 1 ´q ÿ uPS 1 X u p0qe Xup0q´L T ˚p0q p0q`2A L T ˚p0q p0q ´2A ď εZ T ˚p0q p0q 2 ď ε 4 ,
and thus P ν pRpdq ě L T ˚p0q p0q ´2A | F 0 q ă ε 2 on the event tL T ˚p0q p0q ě 2αu. Lemma 4.2 implies that we can choose d large enough that P ν pRpdq ě L T ˚p0q p0q ´2A | F 0 q ď P ν pζ ą d | F 0 q ă ε{2 on the event tL T ˚p0q p0q ă 2αu. It follows that (4.10) holds, when d is chosen to be sufficiently large.

It remains to establish (4.11). Choose δ ą 0 small enough that

2δe C 8 {2 1 ´q `δ ă ε 2 , (4.12) 
where C 8 is the constant from (3.4). Let k 1 , t 1 , and a 1 be the constants from Lemma 2.11 with δ in place of ε. Choose a 0 large enough that a 0 ě a 1 , a 0 ą ck 1 {6, and φpa 0 q ď q `δ{2, where φ is the function from Theorem 1.3. We will assume that A ě 2a 0 , which can be done because the statement of the lemma is weaker when A ă 2a 0 . Next, choose d large enough that (4.10) holds, and large enough that the probability that a continuous-time Galton-Watson process with branching rate β and offspring distribution pp k q 8 k"1 survives until time d is at most 1 ´q `δ. Finally, choose t 0 ą 0 large enough that the following hold:

1. We have t 0 ě t 1 .

2. We have t ´k1 t 2{3 ě d for all t ě t 0 .

3. If x ě a 0 and t ě t 0 , then P Ltp0q`x pζ ě t `dq ě 1 ´q ´δ. Note that Theorem 1.3 and our assumption that φpa 0 q ď q `δ{2 imply that t 0 can be chosen this way.

4. If t ě t 0 , then ct 1{3 ´2a 0 ď cpt ´k1 t 2{3 ´dq 1{3 . Note that this is possible because ct 1{3 ´cpt ´k1 t 2{3 ´dq 1{3 " ck 1 {3 as t Ñ 8, and a 0 ą ck 1 {6.

Let T 1 be the time such that L T 1 p0q " L T ˚p0q p0q ´A. Our strategy will be to show that with high probability, the process will survive until time T 1 `d, which will preclude T pdq from being too small. In particular, we claim that on tT 1 ě t 0 u, we have

P ν pζ ą T 1 `d | F 0 q ě 1 ´q ´δ 1 ´q `δ . (4.13) 
Assume for now that (4.13) holds. It follows that

P ν ptζ ď T 1 `du X tT 1 ě t 0 uq ď 2δ 1 ´q `δ . (4.14) 
Because Z d`T pdq pdq ď 1{2 and Rpdq ď L T pdq p0q ´2 by definition, it follows from (3.4) that

P ν pζ ď T 1 `d | t 0 ď T pdq ď T 1 q ě P ν pζ ď T pdq `d | t 0 ď T pdq ď T 1 q ě e ´C8 {2 ,
and therefore

P ν ptζ ď T 1 `du X tT 1 ě t 0 uq ě P ν ptζ ď T 1 `du X tt 0 ď T pdq ď T 1 uq " P ν pt 0 ď T pdq ď T 1 qP ν pζ ď T 1 `d | t 0 ď T pdq ď T 1 q ě e ´C8 {2 P ν pt 0 ď T pdq ď T 1 q. (4.15)
From (4.14), (4.15), and (4.12), we get

P ν pt 0 ď T pdq ď T 1 q ď 2δe C 8 {2 1 ´q `δ ă ε 2 ,
which by the definition of T 1 is precisely (4.11).

It remains to prove (4.13). Let B " tX u G p0q ě L T ˚p0q p0q ´A{2u P F 0 . On the event B, the particle u G begins above L T 1 p0q `A{2. Our choices of a 0 and t 0 ensure that as long as A ě 2a 0 and T 1 ě t 0 , the probability that a particle started at the position X u G p0q has descendants alive at time T 1 `d is at least 1 ´q ´δ. Also, our choice of d ensures that the probability that, without absorption at zero, such a particle would have descendants alive until time d is at most 1 ´q `δ. Because our definition of G entails conditioning on the latter event, and because the presence of other particles in the initial configuration can only increase the probability that the process survives beyond time T 1 `d, the inequality (4.13) holds on the event B X tT 1 ě t 0 u. On the event B c , the configuration ν ˚has no particles above L T ˚p0q p0q ´A{2. Then we can apply Lemma 2.11, which implies that on the event B c X tT ˚p0q ě t 0 u we have

P ν pζ ě T ˚p0q ´k1 T ˚p0q 2{3 | F 0 q ą 1 ´δ. (4.16)
Note that this result holds even though, as noted at the beginning of the proof, conditioning on F 0 means the descendants of the particle at u G are conditioned to survive until time d in the extended process. This conditioning can only increase the chance that descendants of the particle at u G survive beyond time T ˚p0q ´k1 T ˚p0q 2{3 because, by our choice of t 0 , particles can not survive this long if they die out before time d even in the extended process. The fourth condition above on our choices of a 0 and t 0 guarantees that on the event tT ˚p0q ě t 0 u, we have T 1 `d ă T ˚p0q ´k1 T ˚p0q 2{3 . Also, p1 ´q ´δq{p1 ´q `δq ď 1 ´δ, so (4.16) implies that (4.13) holds also on B c X tT ˚p0q ě t 0 u, and therefore on tT 1 ě t 0 u.

Lemma 4.3. Let pν n q 8 n"1 be a sequence of deterministic initial configurations. Let ps n q 8

n"1 and pt n q 8 n"1 be sequences of times such that:

1) 0 ď s n ď t n for all n, 2) lim nÑ8 pt n ´sn q " 8, 3) lim nÑ8 s n {t n " 1. (4.17)

Suppose that, under P νn , we have Z tn p0q Ñ 0 and L tn p0q ´Rp0q Ñ 8 as n Ñ 8. For 0 ď u ď t n , define W n puq " P νn pζ ą t n | F u q. (4.18)

Under the conditional probability measure P νn p ¨| ζ ą t n q, we have W n ps n q Ñ p 1 as n Ñ 8.

Moreover, for all ε ą 0 and a P p0, 1q, there exists δ ą 0 such that for sufficiently large n,

P νn ´inf atnďuďtn W n puq ď δ ˇˇζ ą t n ¯ă ε. (4.19)
Proof. Suppose conditions 1), 2), and 3) hold. Let ε ą 0. Choose m sufficiently large that e ´C7 m ă ε 2 , where C 7 is the constant from Lemma 3.1. By Theorem 2.4, conditional on ζ ą t n , the finite-dimensional distributions of the processes pZ tn pp1 ´e´u qt n q, u ě 0q converge as n Ñ 8 to the finite-dimensional distributions of pΦpuq, u ě 0q, which is a continuous-state branching process started at zero and conditioned to go to infinity as u Ñ 8. Therefore, we can choose v P p0, 1q sufficiently close to 1 that

P νn pZ tn pvt n q ą m | ζ ą t n q ą 1 ´ε (4.20)
for sufficiently large n. Lemma 3.1 implies that P νn pζ ą t n | F vtn q ě 1 ´e´C 7 m ą 1 ´ε2 on the event tZ tn pvt n q ą mu for sufficiently large n. That is, we have W n pvt n q ą 1 ´ε2 on tZ tn pvt n q ą mu for sufficiently large n. Therefore, (4.20) implies that for sufficiently large n, we have P νn pW n pvt n q ą 1 ´ε2 | ζ ą t n q ą 1 ´ε. (4.21)

Since pW n puq, 0 ď u ď t n q is a r0, 1s-valued martingale, it follows from the Optional Sampling Theorem that

P νn ´inf vtnďuďtn W n puq ą 1 ´ε ˇˇW n pvt n q ą 1 ´ε2 ¯ě 1 ´ε.
We claim that we also have,

P νn ´inf vtnďuďtn W n puq ą 1 ´ε ˇˇtW n pvt n q ą 1 ´ε2 u X tζ ą t n u ¯ě 1 ´ε. (4.22)
To see this, note that the further conditioning on the event tζ ą t n u " tW n pt n q " 1u can only increase the probability that the martingale stays above 1 ´ε because the martingale can not stay above 1 ´ε between times vt n and t n on the event tζ ą t n u c " tW n pt n q " 0u. From (4.17), (4.21), and (4.22), we get that for sufficiently large n,

P νn pW n ps n q ą 1 ´ε | ζ ą t n q ě P νn ´inf vtnďuďtn W n puq ą 1 ´ε ˇˇζ ą t n ¯ą p1 ´εq 2 ,
which immediately gives the first conclusion of the lemma when conditions 1), 2), and 3) hold.

It remains to prove (4.19

). There exists b ą 0 such that P pΦp´logp1 ´aqq ą bq ą 1 ´ε{2. Then Theorem 2.4 implies that P νn pZ tn pat n q ą b | ζ ą t n q ą 1 ´ε 2

for sufficiently large n. It follows from Lemma 3.1 that, for sufficiently large n, we have W n pat n q ą 1 ´e´C 7 b on the event tZ tn pat n q ą bu, and therefore, writing d " 1 ´e´C 7 b ą 0, we have

P νn pW n pat n q ą d | ζ ą t n q ą 1 ´ε 2 . ( 4.23) 
Let δ " dε{2, and let D be the event that inf atnďuďtn W n puq ď δ. Using Bayes' Rule followed by the Optional Sampling Theorem, along with the trivial bound P νn pD | W n pat n q ą dq ď 1, we get Lemma 4.4. Let pν n q 8 n"1 be a sequence of deterministic initial configurations. Let ps n q 8

P νn pD | tW n pat n q ą du X tζ ą t n uq " P νn pD | W n pat n q ą dqP νn pζ ą t n | D X tW n pat n q ą duq P νn pζ ą t n | W n pat n q ą dq ď δ d . ( 4 
n"1 and pt n q 8 n"1 be sequences of times such that 1) 0 ď s n ď t n for all n,

2) lim nÑ8 pt n ´sn q " 8, 3) lim inf nÑ8 s n {t n ą 0. (4.25)

Suppose, under P νn , we have Z tn p0q Ñ 0 and L tn p0q ´Rp0q Ñ 8 as n Ñ 8. Then, under the conditional probability measure P νn p¨| ζ ą t n q, we have T ps n q Ñ p 8 and L T psnq p0q´Rps n q Ñ p 8 as n Ñ 8.

Proof. Let ε ą 0 and A ą 0. Define the martingale pW n puq, 0 ď u ď t n q as in Lemma 4.3.

Choose a ą 0 such that lim inf nÑ8 s n {t n ą 2a, and choose δ ą 0 such that (4.19) holds for sufficiently large n. It follows from (4.19) that

P νn pW n ps n q ď δ | ζ ą t n q ă ε. (4.26)
By Lemma 4.2 and the fact that t n ´sn Ñ 8, for any fixed K ą 0, we have W n ps n q ă δ on the event tT ps n q ď Ku for sufficiently large n. Therefore, for sufficiently large n, we have P νn pT ps n q ď K | ζ ą t n q ă ε. It follows that T ps n q Ñ p 8 as n Ñ 8 under P νn p ¨| ζ ą t n q.

Choose d and t 0 as in Lemma 2.12, with δε playing the role of ε. Because s n ´d ą at n for sufficiently large n, the reasoning that led to (4.26) also gives

P νn pW n ps n ´dq ď δ | ζ ą t n q ă ε. (4.27) 
By applying Lemma 2.12 with the configuration of particles at time s n ´d playing the role of ν, we get P νn ptRps n q ě L T psnq p0q ´Au X tT ps n q ě t 0 u | F sn´d q ă δε. In particular, because tW n ps n ´dq ą δu P F sn´d , we have P νn ptRps n q ě L T psnq p0q ´Au X tT ps n q ě t 0 u | W n ps n ´dq ą δq ă δε.

(4.28)

Elementary probability results imply that if B, C, D, and E are events, then P pB|Eq ď P pB X C X D|Eq `P pC c |Eq `P pD c |Eq " P pB X C X E|Dq ¨P pD|Eq P pE|Dq `P pC c |Eq `P pD c |Eq.

Now write B " tRps n q ě L T psnq p0q ´Au, C " tT ps n q ě t 0 u, D " tW n ps n ´dq ą δu, and E " tζ ą t n u. Note that P pE|Dq ą δ by definition, and P pD|Eq ą 1 ´ε by (4.27). Also, P pB X C X E|Dq ď δε by (4.28), and P pC c |Eq ă ε for sufficiently large n because we already know that T ps n q Ñ p 8 as n Ñ 8 under P νn p ¨| ζ ą t n q. Thus, for sufficiently large n,

P νn pRps n q ě L T psnq p0q ´A | ζ ą t n q ă δε ¨1 δ `2ε " 3ε.
Because ε ą 0 and A ą 0 were arbitrary, it follows that L T psnq p0q ´Rps n q Ñ p 8 under the conditional probability measure P νn p ¨| ζ ą t n q as n Ñ 8.

Lemma 4.5. Let pν n q 8 n"1 be a sequence of deterministic initial configurations. Let pt n q 8

n"1 be a sequence of times tending to infinity. Let δ ą 0, and let ps n q 8 n"1 be a sequence of times such that δt n ď s n ď p1 ´δqt n for all n. Suppose, under P νn , we have Z tn p0q Ñ 0 and L tn p0q´Rp0q Ñ 8 as n Ñ 8. Then, under the conditional probability measure P νn p¨| ζ ą t n q, we have L tn ps n q ´Rps n q Ñ p 8.

Proof. We will show that for all ε ą 0, there is a positive constant C, depending on δ and ε, such that P νn p|T ps n q ´pt n ´sn q| ą Ct 2{3 n | ζ ą t n q ă ε. (4.29)

Because L T psnq p0q ´Rps n q Ñ p 8 under P νn p ¨| ζ ą t n q by Lemma 4.4, we can see from (3.13) that (4.29) implies the result of the lemma. By Lemma 4.3, there exists η ą 0 such that P νn pW n ps n q ď η | ζ ą t n q ă ε{4 for sufficiently large n. By Lemmas 2.11 and 4.4 there is a constant k 1 such that, if H n denotes the random variable P νn p|pζ ´sn q ´T ps n q| ď k 1 T ps n q 2{3 | F sn q, then P νn pH n ą 1 ´ηε{4 | ζ ą t n q Ñ 1 as n Ñ 8. Elementary probability results imply that if B, C, and D are events, then P pB|Dq ď P pC c |Dq `P pB|C X Dq ď P pC c |Dq `P pB|Cq P pD|Cq .

By taking B " t|pζ ´sn q ´T ps n q| ą k 1 T ps n q 2{3 u, C " tH n ą 1 ´ηε{4u X tW n ps n q ą ηu P F sn , and D " tζ ą t n u, we get that for sufficiently large n,

P νn p|pζ ´sn q ´T ps n q| ą k 1 T ps n q 2{3 | ζ ą t n q ď ε 4 `pηε{4q η " ε 2 . (4.30)
Proposition 1.4 implies that there is another positive constant k such that

P νn pζ ą t n `kt 2{3 n | ζ ą t n q ă ε{4. (4.31) 
Now (4.30) and (4.31) imply P νn pT ps n q ą pt n ´sn q `kt 2{3 n `k1 T ps n q 2{3 | ζ ą t n q ă 3ε{4. (4.32)

To obtain the necessary lower bound on T ps n q, first note that by Theorem 2.4 and the assumptions on s n , there exists δ ą 0 such that P νn pZ tn ps n q ă δ | ζ ą t n q ă ε{4 (4.33)

for sufficiently large n. Choose k large enough that e ´ck{3 {2 ă δ. Lemmas 4.1 and 4.4 imply that under P νn p ¨| ζ ą t n q, with probability tending to one as n Ñ 8, we have Z sn`T psnq ps n q " 1{2 and therefore, in view of (4.5), we also have Z sn`T psnq`kT psnq 2{3 ps n q ă δ for sufficiently large n. On this event, by the monotonicity established in Lemma 4.1, if t n ą s n `T ps n q `kT ps n q 2{3 then Z tn ps n q ă δ. Combining this observation with (4.33), we see that for sufficiently large n, P νn pT ps n q ă pt n ´sn q ´kT ps n q 2{3 | ζ ą t n q ă ε{4. Proof of Theorem 1.5. If t ´2{3 pt ´sq Ñ σ ě 0, then let r " s ´t2{3 . If t 2{3 ! t ´s ! t, then let r " 2s ´t, so that s ´r " t ´s. Throughout the proof, we will work under the conditional distribution P νt p ¨| ζ ą tq. We will repeatedly make use of the fact that P νt pζ ą t | F r q Ñ p 1 as t Ñ 8, by Lemma 4. We now apply Proposition 2.6 with the configuration of particles at time r playing the role of the initial configuration of particles and the time T prq playing the role of t n . The assumptions of Proposition 2.6 are satisfied, because, as mentioned above, T prq Ñ p 8 and L T prq p0q ´Rprq Ñ p 8 as t Ñ 8, which implies that Z r`T prq prq Ñ p 1{2 as t Ñ 8, by the definition of T prq. If t ´2{3 pt ´sq Ñ σ ě 0, then using (4.39), we have

s ´r T prq " t 2{3 pt ´sq `ps ´rq `pT prq ´pt ´rqq ñ 1 σ `1 `3 c V . (4.41) 
The limiting random variable on the right-hand side is p0, 1q-valued, so given ε ą 0, we can find δ ą 0 such that P νt pδT prq ď s ´r ď p1 ´δqT prq | ζ ą tq ą 1 ´ε{2. We write that W t is O p p1q if for all ε ą 0, there exists a positive real number K such that P p|W t | ď Kq ą 1 ´ε for sufficiently large t, and we write that W t is o p p1q if W t Ñ p 0. Then, by (4.39) and (4.43), log Mpsq " L T prq ps ´rq ´3 log L T prq ps ´rq `Op p1q " cpt ´s `t2{3 V t q 1{3 ´logpt ´s `t2{3 V t q `Op p1q.

Likewise, by (4.39) and (4.44),

Rpsq " cpt ´s `t2{3 V t q 1{3 ´logpt ´r `t2{3 V t q `Op p1q.

When t ´2{3 pt ´sq Ñ σ ě 0, it follows that t ´2{9 log Mpsq " cpσ `Vt q 1{3 `op p1q and t ´2{9 Rpsq " cpσ `Vt q 1{3 `op p1q. These results, combined with (4.39) and (4.40), imply (1.12).

Proof of Theorem 2.9. Consider a sequence of times pt n q 8 n"1 tending to infinity, and choose ps n q 8

n"1 such that δt n ď s n ď p1 ´δqt n for all n. We will condition on ζ ą t n and then apply Proposition 2.6 with the configuration of particles at time δt n {2 playing the role of the initial configuration of particles. Because P p0 ă Φpuq ă 8q " 1 for all u ą 0, it follows from Theorem 2.4 that, under P νt n p ¨| ζ ą t n q, the distributions of the sequences pZ tn pδt n {2qq 8 n"1 and pZ tn pδt n {2q ´1q 8

n"1 are tight. Lemma 4.5 implies that, under P νt n p ¨| ζ ą t n q, we have L tn pδt n {2q ´Rpδt n {2q Ñ p 8 as n Ñ 8. Therefore, the hypotheses of Proposition 2.6 are satisfied.

To deduce the result of Theorem 2.9 from Proposition 2.6, we need to show that the conclusions are unaffected by conditioning on ζ ą t. We proceed as in the proof of Lemma 4.5. By Lemma 4.3, there exists η ą 0 such that P νt n pW n pδt n q ď η | ζ ą t n q ă ε{2 for sufficiently large n. By Proposition 2.6, if we define the random variables

H n " P νt n

ˆC3

L tn ps n q 3 e Lt n psnq ď Mps n q ď C 4 L tn ps n q 3 ˇˇˇF δtn{2 and J n " P νt n `Lt psq ´log t ´C5 ď Rpsq ď L t psq ´log t `C6 ˇˇF δtn{2 ˘,

then P νt n pH n ą 1 ´ηε{2 | ζ ą t n q Ñ 1 and P νt n pJ n ą 1 ´ηε{2 | ζ ą t n q Ñ 1 as n Ñ 8,
provided that we choose the values of the constants so that (2.11) and (2.12) hold with ηε{2 in place of ε. Following the steps in the derivation of (4.30) then yields the two conclusions in Theorem 2.9.

Proof of Theorem 2.10. Consider any sequence of times pt n q 8 n"1 tending to infinity, and let s n be the value of s associated with the time t n . We first consider the case in which t n ´sn ! t n . Let r n " s n ´t2{3 n if t n ´sn ď t 2{3 n , and let r n " 2s n ´tn if t n ´sn ě t 2{3 n . Let A δ n be the event that δT pr n q ď s n ´rn ď p1 ´δqT pr n q. Using the same reasoning used to establish (4.41) and (4.42), we can see that for all ε ą 0, there is a δ ą 0 such that P νt n pA δ n | ζ ą t n q ą 1 ´ε for sufficiently large n.

We apply Proposition 2.6 with the configuration of particles at time r n playing the role of the initial configuration of particles, the time T pr n q playing the role of t n , and s n ´rn playing the role of s n . The result of part 3 of Proposition 2.6 only applies on the event A δ n . Therefore, we will define the probability measure χ δ n to be equal to χ tn on the event A δ n and to be equal to µ otherwise. Likewise, we will define the probability measure η δ n in the same way as η tn , except with L T punq ps n ´rn q in place of Rps n q in the definition, on the event A δ n . Otherwise, we define η δ n to be the probability measure ξ. Define η t to be the same as η t , except with L T prnq ps n ´rn q in place of Rps n q in the definition. Then part 3 of Proposition 2.6 implies that for all δ ą 0, we have χ δ n ñ µ and η δ n ñ ξ as n Ñ 8. Note that Lemma 4.3 ensures that the conditioning on ζ ą t does not affect the result when we apply Proposition 2.6. Therefore, letting ρ denote the Prohorov metric on the space of probability measures on R, we have

lim nÑ8 P νt n pρpχ δ n , µq ą ε | ζ ą t n q " 0, lim nÑ8 P νt n pρpη δ n , ξq ą ε | ζ ą t n q " 0.
Because P νt n pA δ n | ζ ą t n q ą 1 ´ε for sufficiently large n, it follows that

lim sup nÑ8 P νt n pρpχ tn , µq ą ε | ζ ą t n q ď ε, lim sup nÑ8 P νt n pρpη tn , ξq ą ε | ζ ą t n q ď ε.
Because ε ą 0 is arbitrary, it follows that χ t ñ µ and η t ñ ξ. Finally, Rpsq{L T prq ps´rq Ñ p 1 as t Ñ 8 by part 2 of Proposition 2.6, so η t ñ ξ, as claimed. By a subsequence argument, it remains only to consider the case in which, for some δ ą 0, we have δt n ď s n ď p1 ´δqt n for all n. In this case, we can apply part 3 of Proposition 2.6 with the configuration of particles at time δt n {2 playing the role of the initial configuration of particles, as in the proof of Theorem 2.9, to obtain the result. Because the limit distributions µ and η are concentrated on a single measure, the result of Lemma 4.3 remains enough to ensure that the conditioning on ζ ą t does not affect the conclusion.

Moment estimates

Heat kernel estimates

First, consider a single Brownian particle which is killed when it reaches 0 or 1. Let w s px, yq denote the "density" of the position of this particle at time s, meaning that if the Brownian particle starts at the position x P p0, 1q at time zero, then the probability that it is in the Borel subset U of p0, 1q at time s is ż U w s px, yq dy.

It is well-known (see, for example, p. 188 of [START_REF] Lawler | Introduction to Stochastic Processes[END_REF]) that

w s px, yq " 2 8 ÿ n"1 e
´π2 n 2 s{2 sinpnπxq sinpnπyq.

(5.1) Equation ( 5.1) yields that for every x P r0, 1s and s ě 0, (5.7)

ż
We will also need the following two lemmas.

Lemma 5.1. For all x P p0, 1q and y P p0, 1{2s, we have

ż s 0 e π 2 r{2 sup y 1 Pr0,ys
w r px, y 1 q dr " Opyps sinpπxq `p1 ´xqqq.

Proof. For r ě 1, we have by (5.3) and (5.5), sup y 1 Pr0,ys w r px, y 1 q " Ope ´π2 r{2 sinpπxqyq.

(5.8)

It therefore suffices to show that

ż 1 0 sup y 1 Pr0,ys
w r px, y 1 q dr " Opyp1 ´xqq.

(5.9)

We bound w r px, yq by the heat kernel of Brownian motion killed at 0, i.e. Using the inequality 1 ´e´z ď 1 ^z for z ě 0, we get w r px, yq ď 1 ? 2πr e ´px´yq 2 {2r ˆ1 ^2xy r ˙.

(5.10)

The first step in proving (5.9) is to show the weaker statement

ż 1 0 sup y 1 Pr0,ys
w r px, y 1 q dr " Opyq.

(5.11)

To do this, we distinguish between two cases. When x ď 2y, equation (5.10) gives sup

y 1 Pr0,ys w r px, y 1 q ď 1 ? 2πr ˆ1 ^4y 2 r ˙.
Integrating over r and changing variables by r " y 2 u, this gives

ż 1 0 sup y 1 Pr0,ys w r px, y 1 q dr ď y ż 8 0 1 ? 2πu ˆ1 ^4 u ˙du " Opyq, (5.12) 
because the last integral converges. When x ą 2y, we use that x ´y1 ě x{2 for all y 1 ď y to get sup y 1 Pr0,ys w r px, y 1 q ď 2xy ?

2πr 3{2 e ´x2 {8r .

Integrating over r and changing variables by r " x 2 u,

ż 1 0 sup y 1 Pr0,ys
w r px, y 1 q dr ď 2y

ż 8 0 1 ?
2πu 3{2 e ´1{8u du " Opyq, (5.13) because the last integral converges. Equations (5.12) and (5.13) together yield (5.11). When x ď 3{4, equation (5.9) follows immediately from (5.11). Therefore, it remains to show (5.9) when x ě 3{4. By symmetry, for all x, y P p0, 1q and r ě 0, we have w r px, yq " w r p1 ´x, 1 ´yq and so, using (5.10) for the last step, w r px, yq " Now note that when x ě 3{4 and y ď 1{2, for all z P p0, 1q we have either px ´zq 2 ě 1{64 or py ´zq 2 ě 1{64. Hence, for all x ě 3{4 and y ď 1{2, we have w r px, yq ď yp1 ´xq r 3 e ´1{64r .

It follows that when y ď 1{2, we have

ż 1 0 sup y 1 Pr0,ys
w r px, y 1 q dr ď yp1 ´xq ż 1 0 1 r 3 e ´1{64r dr " Opyp1 ´xqq, because the integral converges.

Lemma 5.2. For all x P p0, 1q, we have

ż s 0 e π 2 r{2
ż 1 0 w r px, yq dy dr " Ops sinpπxq `p1 ´xqq.

Proof. Exchanging integrals, this is an immediate consequence of (5.6).

We now wish to estimate the density of the position of the Brownian particle at time s when the particle is killed if it reaches either 0 or Kpsq at time s, where Kpsq is a smooth positive function. That is, the right boundary at which the Brownian particle is killed moves over time. We will need somewhat sharper estimates than those provided in [START_REF] Berestycki | Critical branching Brownian motion with absorption: survival probability[END_REF]. To obtain such estimates, we will follow almost exactly the approach used by Roberts [START_REF] Roberts | Fine asymptotics for the consistent maximal displacement of branching Brownian motion[END_REF], which in turn was inspired by the work of Novikov [START_REF] Novikov | On estimates and the asymptotic behavior of nonexit probabilities of a Wiener process to a moving boundary[END_REF]. We will use the following general lemma. Lemma 5.3. Let T ą 0. Let K : r0, T s Ñ p0, 8q be twice differentiable. Let x P r0, Kp0qs. Let pΩ, F , P q be a probability space and pB s , s ě 0q be Brownian motion started at x on this space. For s P r0, T s, let

ρ s " ˆKp0q Kpsq ˙1{2 exp ˆK1 psqB 2 s 2Kpsq ´K1 p0qB 2 0 2Kp0q ´ż s 0 K 2 puqB 2 u 2Kpuq du ˙(5.14)
and τ psq "

ż s 0 1 Kpuq 2 du.
(5.15)

Then pρ s q sPr0,T s is a martingale and under the measure Q defined by dQ{dP " ρ T , pB s q sPr0,T s is equal in law to pKpsqW τ psq q sPr0,T s , where pW u q uě0 is a Brownian motion started at x{Kp0q. In particular, for all bounded measurable functions g : r0, 1s Ñ R and all s P p0, T s, we have (5.17)

That is, pX s , 0 ď s ď uq is a Brownian motion with a time and space dependent drift whose drift at time s is given by K 1 psqX s {Kpsq. For s P r0, T s, let

γ s " exp ˆż s 0 K 1 puqB u Kpuq dB u ´1 2 
ż s 0 K 1 puq 2 B 2 u Kpuq 2 du ˙.
We show below by an integration by parts argument that γ s " ρ s for all s P r0, T s, where ρ s is defined in (5.14), and assume this for the moment. Because K 1 puq{Kpuq is bounded over u P r0, T s by assumption, it follows, for example, from Corollary 3.5.14 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] that the process pγ s , 0 ď s ď T q is a martingale. Therefore, we can define a new probability measure Q on pΩ, F q such that for s P r0, T s, we have

dQ dP ˇˇˇG s " γ s .
By Girsanov's Theorem, the law of the process pB s , 0 ď s ď T q under Q is the same as the law of pX s , 0 ď s ď T q under P . Furthermore, we can see from (5.16) that by a standard time-change argument due to Dambis, Dubins, and Schwarz (see, for example, Theorem 3.4.6 of [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]), we can write

X s Kpsq " W τ psq ,
where pW s , s ě 0q is a Brownian motion under P with W 0 " x{Kp0q and τ psq is given by (5.15). This proves the first part of the lemma. In particular, if g P r0, 1s Ñ R is a bounded measurable function, then using E to denote expectations under P and E Q to denote expectations under Q, we have for s P r0, T s,

E " γ s g ˆBs Kpsq ˙½t0ăBu ăKpuq @uPr0,ssu  " E Q " g ˆBs Kpsq ˙½t0ăBu ăKpuq @uPr0,ssu  " E " g ˆXs Kpsq ˙½t0ăXu ăKpuq @uPr0,ssu  " E " gpW τ psq q½ t0ăWu ă1 @uPr0,τ psqsu ‰ " ż 1 0 gpyqw τ psq p x Kp0q
, yq dy.

To prove the lemma, it remains only to show that γ s " ρ s for all s P r0, T s. Observe that if we write Z s " K 1 psqB s {2Kpsq, then

dZ s " K 1 psq 2Kpsq dB s `ˆK 2 psq 2Kpsq ´K1 psq 2 2Kpsq 2 ˙Bs ds,
and therefore xB, Zy s "

ż s 0 K 1 puq 2Kpuq du " 1 2 log ˆKpsq Kp0q ˙.
Integrating by parts gives

K 1 psqB 2 s 2Kpsq ´K1 p0qB 2 0 2Kp0q " Z s B s ´Z0 B 0 " ż s 0 Z u dB u `ż s 0 B u dZ u `xB, Zy s " ż s 0 K 1 puqB u 2Kpuq dB u `ż s 0 K 1 puqB u 2Kpuq dB u `ż s 0 ˆK2 puq 2Kpuq ´K1 puq 2 2Kpuq 2 ˙B2 u du `1 2 log ˆKpsq Kp0q ˙,
and rearranging this equation, we get that γ s " ρ s , as claimed.

Next, for any fixed constant A ě 0, define

L t,A psq " cpt ´sq 1{3 ´A, (5.18) 
where c was defined in (1.1). We now consider the case in which Kpsq " L t,A psq. Then L t,A psq is defined for s P r0, t A s, with t A " t ´pA{cq 3 . Suppose there is a single Brownian particle at x P p0, L t,A prqq, where 0 ď r ă s, which is killed if it reaches 0 or L t,A puq at time u P pr, ss. Let q A r,s px, yq denote the "density" for the position of this particle at time s, meaning that the probability that the particle is in the Borel subset U of p0, L t,A psqq at time s is ż

U q A r,s px, yq dy. Define for 0 ď r ď s ă t A , τ A pr, sq " ż s r 1 L t,A puq 2 du (5.19) 
(we omit the parameter t in the notation of τ A ).

Proposition 5.4. For 0 ď r ď s ă t A , x P r0, L t,A prqs and y P r0, L t,A psqs, we have q A r,s px, yq " e Oppt´sq ´1{3 q pL t,A prqL t,A psqq 1{2 w τ A pr,sq ˆx L t,A prq , y L t,A psq ˙.

Proof. Let pB u , u ě rq denote Brownian motion started at x at time r. Let

ρ r,s " ˆLt,A prq L t,A psq ˙1{2 exp ˆL1 t,A psqB 2 s 2L t,A psq ´L1 t,A prqB 2 r 2L t,A prq ´ż s r L 2 t,A puqB 2 u 2L t,A puq du ˙. By Lemma 5.3, if h : r0, L t,A psqs Ñ R is a bounded measurable function, then E " ρ r,s hpB s q½ t0ăBu ăL t,A puq @uPrr,ssu ‰ " 1 L t,A psq ż L t,A psq 0 hpzqw τ A pr,sq ˆx L t,A prq , z L t,A psq ˙dz.
(5.20) We have

L 1 t,A psq " ´c 3 pt ´sq ´2{3 , L 2 t,A psq " ´2c 9 pt ´sq ´5{3 .
On the event that 0 ă B u ă L t,A puq for all u P rr, ss, we have

ˇˇˇL 1 t,A psqB 2 s 2L t,A psq ´L1 t,A prqB 2 r 2L t,A prq ´ż s r L 2 t,A puqB 2 u 2L t,A puq ˇˇď ˇˇˇL 1 t,A psqL t,A psq 2 ˇˇˇ`ˇˇˇL 1 t,A prqL t,A prq 2 ˇˇˇ`1 2 ˇˇˇż s r L 2 t,A puqL t,A puq du ˇˇď Cpt ´sq ´1{3
for some positive constant C. Therefore, ρ r,s " ˆLt,A prq L t,A psq ˙1{2 e Oppt´sq ´1{3 q .

(5.21)

It now follows from (5.20) and (5.21) that E " hpB s q½ t0ăBu ăL t,A puq @uPrr,ssu ‰ " e Oppt´sq ´1{3 q pL t,A prqL t,A psqq 1{2

ż L t,A psq 0 hpzqw τ A pr,sq ˆx L t,A prq , z L t,A psq ˙dz.
This implies the result.

First moment estimates

We now return to the original setting of the paper, in which each Brownian particle drifts to the left at rate 1 and branching events, each producing an average of m `1 offspring, occur at rate β " 1{2m. Suppose there is a single particle at x P p0, L t,A prqq at time r, where 0 ď r ă s, and particles are killed if they reach 0 or L t,A puq at time u P pr, ss. Let p A r,s px, yq denote the "density" for the process at time s, meaning that the expected number of particles in the Borel subset U of p0, L t,A psqq at time s is ż U p A r,s px, yq dy.

By Girsanov's Theorem, the addition of the drift multiplies the density by e px´yq´t{2 , and by the Many-to-one Lemma, the branching multiplies the density by e t{2 . It follows that p A r,s px, yq " e x´y q A r,s px, yq.

In this section and the next one, we use this fact to estimate first and second moments of various quantities of this process. Define N s,A to be the set particles at time s that stay below the curve L t,A until time s. We define

Z t,A psq " ÿ uPN s,A z t,A pX u psq, sq, z t,A px, sq " L t,A psq sin ˆπx L t,A psq ˙ex´Ltpsq ½ xPr0,L t,A psqs , Y t,A psq " ÿ uPN s,A y t,A pX u psq, sq, y t,A px, sq " x L t,A psq e x´Ltpsq , Ỹt,A psq " ÿ uPN s,A ỹt,A pX u psq, sq, ỹt,A px, sq " e x´Ltpsq .
We also define y t px, sq " y t,0 px, sq, ỹt px, sq " ỹt,0 px, sq.

Note that Y t,A psq ď Ỹt,A psq. We further define R t,A pr, sq, for r ď s, to be the number of particles absorbed at the curve L t,A between the times r and s. The notation P px,rq and E px,rq denotes probabilities and expectations for our branching Brownian motion process started from a particle at the space-time point px, rq.

We now collect a few estimates for L t,A psq and τ A pr, sq, which were defined in (5.18) and (5.19) respectively. Recall that t A " t ´pA{cq 3 , and define

s A " t ´ˆ2A c ˙3 ď t A ,
so that A{L t psq ď 1{2 for every s ď s A . It follows that for s ď s A , we have L t,A psq " L t psqe OpApt´sq ´1{3 q .

(5.22) Also, a simple calculation gives, for r ď s ď s A ,

τ A pr, sq " ż s r 1 c 2 pt ´uq 2{3 du `ż s r 2A c 3 pt ´uq du `OpA 2 pt ´sq ´1{3 q " 3 c 2 `pt ´rq 1{3 ´pt ´sq 1{3 ˘`2A c 3 log ˆt ´r t ´s ˙`OpA 2 pt ´sq ´1{3 q " 2 π 2 ˆLt prq ´Lt psq `2A 3 log ˆt ´r t ´s ˙`OpA 2 pt ´sq ´1{3 q ˙.
(5.23)

It follows that for r ď s ď s A , e ´π2 2 τ A pr,sq " e Ltpsq´Ltprq`OpA 2 pt´sq ´1{3 q ˆt ´s t ´r ˙2A 3 .

(

Furthermore, since L t,A psq ď L t psq for every s ď t A , we get by definition and a simple calculation, for every s ď t A (in particular, every s ď s A ), τ A pr, sq ě τ 0 pr, sq " 2 π 2 pL t prq ´Lt psqq, (

and also, by (5.22) and the definition of τ A from (5.19), for every s ď s A , τ A pr, sq " τ 0 pr, sqe OpApt´sq ´1{3 q .

(5.26) Lemma 5.5. We have for r ď s ď s A and x P r0, L t,A prqs, E px,rq rZ t,A psqs " e Opp1_A 2 qpt´sq ´1{3 q ˆt ´s t ´r ˙2A

3 `1 2 z t,A px, rq.

Proof. By applying Proposition 5.4 followed by equations (5.2) and (5.24), we get E px,rq rZ t,A psqs "

ż L t,A psq 0 e x´y q A
r,s px, yqz t,A py, sq dy

" e Oppt´sq ´1{3 q L t,A psq 1{2 L t,A prq 1{2 e x´Ltpsq ż L t,A psq 0 sin ˆπy L t,A psq ˙wτ A pr,sq ˆx L t,A prq , y L t,A psq ˙dy " e Oppt´sq ´1{3 q L t,A psq 3{2 L t,A prq 1{2 e x´Ltpsq e ´π2 2 τ A pr,sq sin ˆπx L t,A prq " e Opp1_A 2 qpt´sq ´1{3 q L t,A psq 3{2 L t,A prq 3{2 ˆt ´s t ´r ˙2A 3 z t,A px, rq.
The lemma follows from (5.22).

Lemma 5.6. Let γ ą 0. There exists a positive constant C, depending on γ, such that if r ď s ď t A and τ A pr, sq ě γ, then for x P r0, L t,A prqs, E px,rq r Ỹt,A psqs ď Ce Oppt´sq ´1{3 q z t,A px, rq L t,A prq .

Proof. By Proposition 5.4, E px,rq r Ỹt,A psqs "

ż L t,A psq 0 e x´y q A r,s px, yqe y´Ltpsq dy " e Oppt´sq ´1{3 q e x´Ltpsq L t,A prq 1{2 L t,A psq 1{2 ż L t,A psq 0 w τ A pr,sq ˆx L t,A prq , y L t,A psq ˙dy.
Because τ A pr, sq ě γ, it follows from (5.3) and (5.5) that

E px,rq r Ỹt,A psqs ď Ce Oppt´sq ´1{3 q e x´Ltpsq e ´π2 2 τ A pr,sq L t,A prq 1{2 L t,A psq 1{2 ż L t,A psq 0 sin ˆπx L t,A prq ˙sin ˆπy L t,A psq ˙dy ď Ce Oppt´sq ´1{3 q e x´Ltpsq e ´π2 2 τ A pr,sq ˆLt,A psq L t,A prq ˙1{2 sin ˆπx L t,A prq ˙.
Therefore, using (5.25) and the fact that L t,A is decreasing, we get

E px,rq r Ỹt,A psqs ď Ce Oppt´sq ´1{3 q e x´Ltprq sin ˆπx L t,A prq ˙,
as claimed.

To calculate the first moment of R t,A , we will use the following well-known result on the hitting time of a curve by a Brownian motion. In words, Lemma 5.7 says that the density at time s of the hitting time of the boundary b `is equal to the heat flow of u out of the boundary at time s. This result is so classical that it is difficult to find a complete proof of it in the literature. See e.g. [35, p. 154, eq. 32] for an early appearance (without proof) in the case of constant boundaries and note that in our one-dimensional setting, one can easily reduce to this case by a suitable change of variables. For two different proof ideas, one more elegant, the other one more robust, both directly applicable for non-constant boundaries, one may consult [START_REF] Lerche | Boundary crossing of Brownian motion[END_REF]Lemma I.1.4] and [20, Section 3], respectively. For a general discussion of parabolic measure on the boundary of a space-time domain and its relation to hitting times, see [24, Section 2.IX.13]. Lemma 5.7 can also be deduced from the formula given in Section 1.XV.7 of that book. A more readable, but non-rigorous discussion in the time-homogeneous case can be found in [29, Section 5.2.1].

Lemma 5.8. We have for r ď s ď s A and x P r0, L t,A prqs, E px,rq rR t,A pr, sqs ď πe A`Opp1_A 2 qpt´sq ´1{3 q ˆτ0 pr, sq L t prq z t,A px, rq `Opy 

ż s r ˆ´1 2 
d dy e x´y q A r,u px, yq ˇˇy

"L t,A puq ˙du " ż s r e x´L t,A puq ˆ´1 2 B y q A r,u px, L t,A puqq ˙du.
Because B y q A r,u px, L t,A puqq " lim yÒL t,A puq q A r,u px, yq{pL t,A puq´yq, the uniform bounds on q A r,u px, yq in Proposition 5.4 directly turn into uniform bounds on its derivative at y " L t,A puq. Therefore, We claim that

E px,rq rR t,A pr, sqs " e A e Oppt´sq ´1{3 q ż s r 1 L t,A prq 1{2 L t,A puq 3{2 e x´Ltpuq ˆ´1 2 B y w τ A pr,uq `x L t,
T :" e x´Ltprq ż s r 1 L t,A puq 2 e π 2 2 τ A pr,uq ˆ´1 2 B y w τ A pr,uq `x L t,A prq , 1 ˘˙du " π ˆτA pr, sq L t,A prq z t,A px, rq `Opy t,A px, rqq ˙. (5.30) 
Then (5.29) and (5.30), along with (5.22) and (5.26), imply the lemma because t´u t´r ď 1 for every u P rr, ss. To prove the claim, we transform the integral in (5.30) using the change of variables τ A pr, uq " u 1 along with (5.19), to get

T " e x´Ltprq ż τ A pr,sq 0 e π 2 2 u 1 ˆ´1 2 B y w u 1 `x L t,A prq , 1 ˘˙du 1 .

Equation (5.7) now gives

T " πe x´Ltprq ´τA pr, sq sin `πx L t,A prq ˘`Op x L t,A prq q ¯, which is exactly (5.30).

Second moment estimates

Lemma 5.9. Let ε, γ 1 , and γ 2 be positive numbers. Suppose r ď s ď p1 ´εqt ^sA . Suppose also that τ A pr, sq ě γ 1 and p1 _ A 2 qpt ´sq ´1{3 ď γ 2 . Then there exists a positive constant C, depending on ε, γ Changing variables y Þ Ñ L t,A puq ´y, and using the equality w u px 1 , y 1 q " w u p1 ´x1 , 1 ´y1 q for all x 1 , y Now making the change of variables y Þ Ñ L t,A puq ´y, using that w u px 1 , y 1 q " w u p1 ´x1 , 1 ´y1 q, and then using (5.24) as in the proof of Lemma 5.9, we get Note that this expression is identical to the expression in (5.33) except that the sign of A in the exponential in front of the integral is reversed, and we have y 2 `1 in place of y 2 in the integrand. Consequently, we can follow the same steps as in the proof of Lemma 5.9 to obtain T 2 ď Ce A ˆτ0 pr, sq L t prq z t,A px, rq `yt,A px, rq ˙, which completes the proof of the lemma.

T 2 ď CL t prq ż s r ż L t,A puq 0 e x`y´L

Particle configurations

Our goal in this section is to deduce Proposition 2.6 from results in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF]. The strategy of the proofs in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] is to show that if at time zero there is a single particle at x ą 0, then for all κ ą 0, the configuration of particles at time κt 2{3 will satisfy certain conditions. The rest of the proofs then use only what has been established about the configuration of particles at time κt 2{3 . Consequently, the results in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] immediately extend to any initial configuration of particles for which these conditions hold at time κt 2{3 . This observation yields Lemma 6.1 below. We define Ỹt psq " ÿ uPNs ỹt pX u psq, sq, which is similar to Ỹt,A psq defined at the beginning of Section 5.2, except that here particles are only killed at the origin and not at the curve L t,A .

Lemma 6.1. Suppose we have a sequence of possibly random initial configurations pν n q 8

n"1 such that the following conditions hold for a corresponding sequence of times pt n q 8 n"1 : 1. The times t n do not depend on the evolution of the branching Brownian motion after time zero, and t n Ñ p 8 as n Ñ 8.

2. For all ε ą 0 and κ ą 0, there is a positive constant C 13 , depending on ε and κ, such that for sufficiently large n,

P νn ˆỸ tn pκt 2{3 n q ď C 13 L tn pκt 2{3 n q ˙ą 1 ´ε. (6.1)
3. For all ε ą 0 and κ ą 0, there are positive constants C 14 and C 15 , depending on ε and κ, such that for sufficiently large n, P νn pC 14 ď Z tn pκt 2{3 n q ď C 15 q ą 1 ´ε. (6.2)

4. For all κ ą 0 and A ě 0, we have

lim nÑ8 P νn `Rpκt 2{3 n q ă L tn pκt 2{3 n q ´A˘" 1. (6.3) 
Let 0 ă δ ă 1{2. Then the three conclusions of Proposition 2.6 hold.

Proof. This proposition essentially restates the results of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] in the context of the present paper. The second, third, and fourth conditions that we require for the sequence pt n q 8

n"1 are the three conclusions of Lemma 15 of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], while the first condition that t n Ñ 8 in probability corresponds to the condition in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] that the position x of the initial particle tends to infinity. The first conclusion of Proposition 2.6 is Theorem 1 of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF]. The second conclusion of Proposition 2.6 is Theorem 2 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF]. The third conclusion of Proposition 2.6 is a combination of Theorems 3 and 4 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF]. Proposition 2.6 holds because these four theorems in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] are deduced from Lemma 15 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF]. When q " 0, the following adaptations are required to obtain the result in the present context:

• In [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], the branching rate is 1 and the drift is ´?2. However, it is straightforward to translate results into our setting by a simple scaling.

• Lemma 15 of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] includes a stronger form (6.2), in which the bounds are proved when the term sinpπx{L t psqq in the definition of Z t psq from (1.2) is replaced by sinpπx{pL t p0q`αqq for any α P R. However, we have |pL t p0q `αq ´Lt pκt 2{3 q| ď Cpκ `|α|q for some positive constant C, so the ratio of the two sine terms will be bounded above and below by positive constants with high probability as long as (6.3) holds and t n Ñ 8 in probability. Therefore, establishing (6.2) is sufficient.

• Theorems 2, 3, and 4 of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] are stated for the case when s " ut for some u P p0, 1q. However, it is not hard to see that the proof extends to the case where s " ut as t Ñ 8, with the constants being uniform over u P rδ, 1 ´δs, and then a subsequence argument gives the results in the form stated here.

• The results in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] are stated for a fixed initial configuration of particles. However, because the proof in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] ultimately works from the random configuration at time κt 2{3 , the only possible complication comes from the randomness of the times t n . In [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], Theorems 1 and 2 are probability statements that hold when the position x of the initial particle tends to infinity, while Theorems 3 and 4 establish convergence in distribution as x Ñ 8. The requirement that the random times t n tend to infinity in probability is therefore sufficient for these results to carry over to the present context.

• In [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], it is assumed that at the time of a birth event, a particle splits into two other particles. However, as long as q " 0, the only change that results from considering a general offspring distribution is that a different constant appears in front of the second moment estimates, which does not affect the results. Results of Bramson [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] are needed to prove Theorem 2 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], but those results hold under the more general offspring distributions considered here when q " 0. Note in particular that equation (1.2 1 ) on page 5 of [START_REF] Bramson | Convergence of solutions of the Kolmogorov equation to travelling waves[END_REF] is satisfied when the offspring distribution has finite variance.

The claim that Proposition 2.6 holds even when q ą 0 requires a bit more care. Indeed, the initial configuration with a single particle at x n , with x n Ñ 8, does not fulfill the four conditions in the lemma when q ą 0 because of the possibility that all descendants of the initial particle could die out. Nevertheless, once these four conditions, which correspond to Lemma 15 of [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF], are established, one deduces Theorems 1, 3, and 4 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] using moment estimates, which change only by a constant factor when q ą 0. Therefore, the first and third conclusions of Proposition 2.6 follow from the arguments in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] without change. Some additional argument is needed, however, to obtain the second conclusion of Proposition 2.6 because the proof of Theorem 2 in [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] uses a result of Bramson [START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF] which is valid only when q " 0.

To extend the second conclusion of Proposition 2.6 to the case q ą 0, we modify the process as follows. First, we construct the original branching Brownian motion in two stages. In the first stage, we construct the process without absorption at zero. At the second stage, we truncate any particle trajectories that hit zero. Now we can construct a modified process by deleting all particles that do not have an infinite line of descent in the first stage of this construction. This yields a new branching Brownian motion with q " 0 that includes a subset of the particles in the original branching Brownian motion. In particular, for any fixed s ą 0, the law of the new process at time s, conditioned on the original branching Brownian motion at time s, is obtained by independently retaining each particle of the original process with probability 1 ´q.

We check that the four conditions of the lemma hold for the new process. Condition 1 is immediate because we will use the same times t n as in the original process, while conditions 2 and 4 and the upper bound in (6.2) hold because the particles in the new process are a subset of the particles in the original process. To establish the lower bound in (6.2), note that (6.3) implies that for all θ ą 0, with probability tending to one as n Ñ 8, no individual particle in the original process contributes more than θ to Z tn pκt 2{3 n q. Now, suppose z 1 , . . . , z m is a sequence of numbers such that z 1 `¨¨¨`z m " z and z i ď θ for all i. Let ξ 1 , . . . , ξ m be independent Bernoullip1 ´qq random variables, and let Z " z 1 ξ 1 `¨¨¨`z m ξ m . Then ErZs " p1 ´qqz and VarpZq " qp1 ´qqpz 2 1 `¨¨¨`z 2 m q ď qp1 ´qqθz. By applying this observation to the numbers z tn pX u pκt 2{3 n q, 0q for u P N tn and θ sufficiently small, and then using Chebyshev's Inequality, we obtain the lower bound in (6.2).

It now follows from the result when q " 0 that the conclusion (2.12) holds for the new process. Because the particles in the new process are a subset of the particles in the original process, we immediately get the lower bound in (2.12) for the original process. Finally, recall that for any time s, the position of the right-most particle is the same in the new process as in the original process with probability 1 ´q. Therefore, the upper bound in (2.12) for the original process holds with probability at least 1 ´ε{p1 ´qq, which is sufficient.

We are now able to prove Proposition 2.6 by showing that the hypotheses of Proposition 2.6 imply those of Lemma 6.1.

Proof of Proposition 2.6. Suppose that the hypotheses of Proposition 2.6 are satisfied. The first condition of Lemma 6.1 holds by assumption.

Using that sinpxq ě 2x{π and sinpπ ´xq ě 2x{π for all x P r0, π{2s, we have for all x P r0, L tn p0q ´As, y tn,0 px, 0q

z tn px, 0q " x L tn p0q 2 sinp πx Lt n p0q q ď 1 2A . ( 6 

.4)

Because A is arbitrary and pZ tn p0qq 8 n"1 is tight, the assumption that L tn p0q ´Rp0q Ñ p 8 implies that Y tn p0q Ñ p 0 as n Ñ 8.

Let ε ą 0 and κ ą 0. To establish the second, third, and fourth conditions in Lemma 6.1, we consider the branching Brownian motion with particles killed when they reach either the origin or the curve s Þ Ñ L tn psq, run for time κt 2{3 n . We will need to make some moment calculations, conditional on the initial configuration of particles. By Markov's Inequality, Lemma 5.8 with A " 0, and equation (5.23), there is a positive constant C, depending on κ, such that P νn pR tn p0, κt 2{3 n q ě 1|F 0 q ď E νn rR tn p0, κt 2{3 n q|F 0 s ď C ˆZtn p0q L tn p0q `Ytn p0q ˙.

Because L tn p0q Ñ p 8 and Y tn p0q Ñ p 0 as n Ñ 8, and pZ tn p0qq 8 n"1 is tight, we can deduce that lim nÑ8 P νn pR tn p0, κt 2{3 n q ě 1q " 0. (6.5) Thus, we may disregard the possibility that particles are killed at L tn psq before time κt 2{3 n . By Lemma 5.6 with A " 0,

E νn r Ỹtn,0 pκt 2{3 n q|F 0 s ď CZ tn p0q L tn p0q , (6.6) 
where the positive constant C depends on κ. Because the sequence pZ tn p0qq 8 n"1 is tight and L tn p0q ě L tn pκt 2{3 q, the second condition (6.1) in Lemma 6.1 follows from (6.6) and Markov's Inequality, along with (6.5).

From Lemma 5.5 with A " 0, and the fact pZ tn p0qq 8 n"1 is tight, we conclude that for all ε ą 0 and δ ą 0, for sufficiently large n we have, on an event of probability at least 1 ´ε{2, δ ď E νn rZ tn,0 pκt 2{3 n q|F 0 s ď 1 δ .

By Lemma 5.9 with A " 0, there is a positive constant C such that Var νn pZ tn,0 pκt 2{3 n q|F 0 q ď C ˆZtn p0q L tn p0q `Ytn p0q ˙, and the right-hand side tends to zero in probability as n Ñ 8 by the argument before (6.5).

In view of our assumptions on the initial configurations as well as (6.5), the third condition (6.2) in Lemma 6.1 now follows from an application of Chebyshev's Inequality. Because ỹtn,0 pL tn pκt 2{3 n q ´A, κt 2{3 n q " e ´A, the fourth condition (6.3) in Lemma 6.1 follows immediately from (6.1).

7 Convergence to the CSBP: small time steps

In this section we state and prove a result (Proposition 7.1) which will be at the heart of the proof of Theorem 2.1 in Section 8.

Notation in this section

We will make heavy use of the results in Sections 5.2 and 5.3. In particular, we use all the notation introduced in Section 5.2. Whenever the symbol A appears, we will always tacitly assume that A ě 1.

In what follows, it will be necessary for us to let both t and A go to infinity. To this end, we will always first let t, then A go to infinity. We therefore introduce the following two symbols:

• ε t : denotes a quantity which is bounded in absolute value by a function hpA, tq satisfying: @A ě 1 : lim tÑ8 hpA, tq " 0.

• ε A,t : denotes a quantity which is bounded in absolute value by a function hpA, tq satisfying: lim AÑ8 lim sup tÑ8 hpA, tq " 0.

Note that the first condition is stronger than the second one. Furthermore, as above, the symbol Op¨q denotes a quantity bounded in absolute value by a constant times the quantity inside the parentheses. Also, throughout the section, we fix Λ ą 1 and a positive function θ such that θpAqA 2 Ñ 0 as A Ñ 8. The functions h above and the constant in the definition of Op¨q may only depend on the offspring distribution of the branching Brownian motion and on Λ and θ.

Throughout the section, let r ď s such that s ď p1 ´Λ´1 qt and t ´s " e ´θpt ´rq, for some θ P r θpAq{2, θpAqs. All estimates are meant to be uniform in r and s respecting these constraints.

Note that with this notation, we have τ 0 pr, sq L t prq " 2π ´2p1 ´e´θ{3 q " 2 3π 2 θp1 `Opθqq.

In particular, for all r ď r 1 ď s 1 ď s, τ 0 pr 1 , s 1 q L t pr 1 q " Opθq.

The main step in the proof of Theorem 2.1 will be to show the following proposition.

Proposition 7.1. Set a " 2 3 pa 2.14 `log πq `1 2 . Then, uniformly in λ P rΛ ´1, Λs, on the event t@u P N r : X u prq ď L t,A prqu, we have Ere ´λZtpsq | F r s " exptp´λ `θpΨ a,2{3 pλq `εA,t qqZ t prq `OpAY t prqqu.

The proof of this proposition will be decomposed into several steps. Inspired by [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF], we decompose the particles into those crossing the curve L t,A and those staying below it. The particles crossing the curve are exactly the ones causing the jumps in the CSBP. In Section 7.2, we give an asymptotic result for the Laplace transform of such a jump. In Section 7.3, we use this result to prove Proposition 7.1.

One particle at L t,A

Lemma 7.2. Uniformly in λ P rΛ ´1, Λs and q P rr, s ´t2{3 s,

E pL t,A pqq,qq re ´λZtpsq s " exp ! πe ´ApΨ a 7.3 ,1 pλq ´Aλ `εA,t q ) , (7.3 
) with a 7.3 " a 2.14 `log π.

The following lemma will be needed for the proof of Lemma 7.2.

Lemma 7.3. Let y : p0, 8q Ñ p0, 8q be a function such that yptq Ñ 8 and yptq " opt 1{3 q as t Ñ 8. Let f : p0, 8q Ñ p0, 8q be a function such that f ptq " opt 2{3 q as t Ñ 8. Then uniformly in q P rr, s ´t2{3 s, q 1 P rq, q `f ptqs, and λ P rΛ ´1, Λs, as t Ñ 8, we have E pLtpqq´yptq,q 1 q re ´λZtpsq s " exp ´pλ `εt `Opθqqπyptqe ´yptq ( .

Proof. Write x 1 " L t pqq ´yptq. Under P px 1 ,q 1 q , we have Z t psq " Z t,0 psq on the event tR t,0 pq 1 , sq " 0u. Hence, ˇˇE px 1 ,q 1 q re ´λZtpsq s ´Epx 1 ,q 1 q re ´λZ t,0 psq s ˇˇď P px 1 ,q 1 q pR t,0 pq 1 , sq ě 1q ď E px 1 ,q 1 q rR t,0 pq 1 , sqs. (7.5) By Lemma 5.8 and (7.2), E px 1 ,q 1 q rR t,0 pq 1 , sqs ď Cpθz t px 1 , q 1 q `yt px 1 , q 1 qq.

Furthermore, using that e ´z " 1 ´z `Opz 2 q for z ě 0, we have E px 1 ,q 1 q re ´λZ t,0 psq s " 1 ´λE px 1 ,q 1 q rZ t,0 psqs `OpE px 1 ,q 1 q rZ t,0 psq 2 sq. (7.7) By Lemma 5.5, E px 1 ,q 1 q rZ t,0 psqs " p1 `Opθq `εt qz t px 1 , q 1 q. (7.8)

As for the second moment, to apply Lemma 5.9, note that τ 0 pq 1 , sq ě γ 1 for some γ 1 ą 0, since q 1 ď s ´t2{3 `f ptq and f ptq " opt 2{3 q by assumption. Hence, for t large enough, by Lemma 5.9 and (7.2), E px 1 ,q 1 q rZ t,0 psq 2 s ď C pθz t px 1 , q 1 q `yt px 1 , q 1 qq . (7.9) Combining (7.5), (7.6), (7.7), (7.8) and (7.9), we have for large enough t, E px 1 ,q 1 q re ´λZtpsq s " 1 ´pλ `εt `Opθqqz t px 1 , q 1 q `Opy t px 1 , q 1 qq. (7.10) Now using that x 1 " L t pqq ´yptq and yptq " opt 1{3 q " opL t pq 1 qq, along with the fact that L t pqq ´Lt pq 1 q Ñ 0 as t Ñ 8 because q 1 P rq, q `f ptqs, we get z t px 1 , q 1 q " L t pq 1 q sin ˆπpyptq ´pL t pqq ´Lt pq 1 qqq L t pq 1 q ˙eLtpqq´Ltpq 1 q´yptq " p1 `εt qπyptqe ´yptq .

Furthermore, y t px 1 , q 1 q " x 1 L t pq 1 q e Ltpqq´Ltpq 1 q´yptq ď p1 `εt qe ´yptq .

It is also easy to check that z t px 1 , q 1 q 2 `yt px 1 , q 1 q 2 " Opy t px 1 , q 1 qq.

It follows from the above that the RHS of (7.10) is at least 1{2 for t large enough, since yptq Ñ 8 as t Ñ 8 by assumption. Using the equality 1 ´x " e ´x`Opx 2 q for x P r0, 1{2s, equation (7.10) together with the above equations gives E px 1 ,q 1 q re ´λZtpsq s " exp `´pλ `εt `Opθqqz t px 1 , q 1 q `Opy t px 1 , q 1 qq `Opz t px 1 , q 1 q 2 `yt px 1 , q 1 q 2 q " exp `´rpλ `εt `Opθqqπyptq `Op1qse ´yptq ˘, which implies the statement of the lemma, since yptq Ñ 8 as t Ñ 8.

Proof of Lemma 7.2. We start by proceeding as in the proof of Theorem 1.3. Let g : p0, 8q Ñ p0, 8q be an increasing function that satisfies (3.8). Let y : p0, 8q Ñ p0, 8q be defined so that, similarly to (3.9), we have lim tÑ8 yptq " 8, lim tÑ8 yptq L t p0q " 0, lim tÑ8 t ´2{3 gpA `yptqq " 0.

Starting with one particle at L t,A pqq at time q, we stop particles as soon as they hit the point L t,A pqq ´yptq " L t pqq ´A ´yptq. We denote again by K t the number of particles hitting that point and by w 1 , . . . , w Kt the times they hit it. Then w i P rq, q `gpA `yptqqs for all i " 1, . . . , K t with probability 1 ´εt by (3.8). We can apply Lemma 7. which finishes the proof of the lemma.

Proof of Proposition 7.1

Decomposing into the descendants of the particles living at time r, it is enough to show that for every x P r0, L t,A prqs, we have E px,rq re ´λZtpsq s " exptp´λ `θpΨ a,2{3 pλq `εA,t qqz t px, rq `OpAy t px, rqqu.

Fix x P r0, L t,A prqs throughout the section. We adapt an idea from [START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF] and stop the particles the moment they hit the curve L t,A during the time interval rr, ss. We denote by L t,A the set of those particles, identifying a particle with the time it hits the curve (one can do this more formally using the concept of stopping lines from [START_REF] Chauvin | Product martingales and stopping lines for branching Brownian motion[END_REF]). For every particle hitting the curve at time u, we denote by Z puq t psq the contribution to Z t psq of the descendants of u. We then have the following decomposition: Indeed, the upper bound follows using first the fact that Z 1 t,A psq ě Z t,A psq, which can be seen by observing that z t px, sq ě z t,A px, sq for every x ě 0 because the function L Þ Ñ L sinpπx{Lq is increasing on rx, 8q, and then using that e ´x " 1 ´x `Opx 2 q for x ě 0. Note that the second summand in the exponent on the RHS of (7.18) is always negative, because the product in the expectation on the RHS of (7.17) is bounded by 1. The lower bound, on the other hand, follows from the equality Z 1 t,A psq " Z t,A psq `OpAY t,A psqq, which is a consequence of the fact that z t px, sq " z t,A px, sq `OpAy t,A px, sqq), together with the inequality e ´x ě 1 ´x for every x ě 0.

Z t psq
We now gather the following estimates:

E px,rq rZ t,A psqs " e ´θp 2 3 A`1 2 q`εt z t,A px, rq by Lemma 5.5 8 Convergence to the CSBP: proof of Theorem 2.1

E
Before getting to the heart of the proof, we perform a series of reductions. First, it is enough to consider initial conditions such that Z is positive almost surely. For, suppose that, under P νt , we have Z t p0q Ñ p 0 as t Ñ 8. If we superpose tZ t p0qu independent copies of the system, we can reduce this case to the case where Z t p0q Ñ p 1 as t Ñ 8. Indeed, once we have established that the finite-dimensional distributions of these superposed processes converge to the CSBP pΞpuq, u ě 0q started from 1, which almost surely stays finite for all times, it will follow that when Z t p0q Ñ 0 in probability as t Ñ 8, the finite-dimensional distributions of the process converge to those of the process that is identically zero. This argument is easily generalized to the general case where Z has an atom at 0 of arbitrary positive mass.

Next, the finite-dimensional convergence can be easily deduced from the one-dimensional convergence result and the Markov property of the process. For this, it is enough to show that for every u P p0, 1q, with high probability, the configuration of particles at time ut again satisfies the hypotheses, with p1 ´uqt instead of t, i.e. that Z t putq ñ Z for some random variable Z ą 0 and L t putq ´Rputq Ñ 8 in probability (note that L t putq " L p1´uqt p0q and z t px, utq " z p1´uqt px, 0q). The first is precisely a consequence of the one-dimensional convergence result, together with the fact that Neveu's CSBP does not hit 0. The second on the other hand follows from the second part of Proposition 2.6.

Finally, by a simple conditioning argument, it is enough for the one-dimensional convergence result to assume an initial condition such that, under P νt , we have Z t p0q Ñ p z 0 as t Ñ 8, for some constant z 0 ą 0. We assume this for the rest of the section. Also, all probabilities and expectations for the rest of this section will be taken under P νt , so we will omit the subscript.

We now go on to prove the one-dimensional convergence. Fix τ ą 0. It is enough to show the following: for every λ ą 0, we have lim tÑ8 Ere ´λZtptp1´e ´τ qq s " e ´z0 uτ pλq , (

where u τ pλq is the function from (2.1) corresponding to the CSBP with branching mechanism Ψ a,2{3 , with a being the number from Proposition 7.1. We do this by discretizing time. As in Section 7.3, we introduce a parameter A which goes slowly to 8 with t. Recall the notation ε t and ε A,t from that section, as well as the function θ. Quantities denoted by ε t and ε A,t now may also depend on the initial condition and on τ . For A sufficiently large, choose θ P r θpAq{2, θpAqs such that τ " Kθ for some K P N. Define t k " tp1 ´e´kθ q for k " 0, . . . , K, so that t K " tp1 ´e´τ q. Set F k " F t k . By assumption, there exists a sequence a t Ñ 8 such that L t p0q ´at Ŕp0q Ñ 8 and a t Y t p0q Ñ 0 in probability as t Ñ 8. We assume without loss of generality that a t ď t 1{6 for every t ě 0. Define the events G k " t@j P t0, . . . , ku : Rpt j q ď L t,A pt j q, Y t pt j q ď Z t pt j q{a t u, k " 0, . . . , K, so that G k P F k for all k P t0, . . . , Ku. Lemma 8.1. We have PpG K q ě 1 ´εt .

Proof. We have PpRp0q ď L t,A p0q, Y t p0q ď Z t p0q{a t q ě 1 ´εt by assumption. Let k P t1, . . . , Ku. By part 2 of Proposition 2.6, we have L t,A pt k q ´Rpt k q Ñ 8 in probability as t Ñ 8. Furthermore, by part 3 of Proposition 2.6, we have L t pt k qY t pt k q{Z t pt k q Ñ c in rΛ ´1, Λs, and pu t pλqq tPr0,τ s is the solution to the ODE (2.2) and satisfies u t pλq P rΛ ´1, Λs for all t P r0, τ s, we have y pΛq ptq " u t pλq for all t P r0, τ s. Altogether, the above arguments show It remains to remove the localization: since u t pλq is contained in the open interval pΛ ´1, Λq for all t P r0, τ s, by (8.4), there exists δ 0 ą 0, such that for all |δ| ď δ 0 , for θ sufficiently small, λ pδ,Λq k P rΛ ´1, Λs for all k P t0, . . . , Ku. But since Ψ Λ " Ψ on rΛ ´1, Λs, a direct recurrence argument shows that λ pδ,Λq k " λ pδq k for all k " 0, . . . , K. This proves part 1. Part 2 immediately follows, using again (8.4).

We now prove part 3 of the lemma. Fix δ ą 0. Choose Λ ą 1 such that e ´τ ą Λ ´1 and such that the first part of the lemma holds with this Λ. By Proposition 7.1, we have for A and t sufficiently large, for every λ 1 P rΛ ´1, Λs, and every k " 0, . . . , K ´1, almost surely, e p´λ 1 `θpΨ a,2{3 pλ 1 q´δqqZtpt k q ½ G k ď E " e ´λ1 Ztpt k`1 q | F k ı ½ G k ď e p´λ 1 `θpΨ a,2{3 pλ 1 q`δqqZtpt k q ½ G k .

In particular, using the first part of the lemma, for every δ ą 0 small enough, for A and t sufficiently large, we have for every k " 0, . . . , K ´1, almost surely,

E " e ´λpδq k`1 Ztpt k`1 q | F k ı ½ G k ě e ´λpδq k Ztpt k q ½ G k , (8.5) 
E " e

´λp´δq k`1 Ztpt k`1 q | F k ı ½ G k ď e ´λp´δq k Ztpt k q ½ G k . (8.6) 
We now prove (8.2) by induction. For k " K, the inequalities trivially hold. Let k ă K and assume (8.2) holds for k `1, i.e.

Ere ´λpδq

k`1 Ztpt k`1 q ½ G k`1 s ´PpG K zG k`1 q ď E " e ´λZtpt K q ½ G K ‰ ď Ere ´λp´δq k`1 Ztpt k`1 q ½ G k`1 s. (8.7)

Using that G k`1 Ă G k , equation (8.7) easily implies

Ere ´λpδq k`1 Ztpt k`1 q ½ G k s ´PpG K zG k q ď E " e ´λZtpt K q ½ G K ‰ ď Ere ´λp´δq k`1 Ztpt k`1 q ½ G k s. (8.8) 
Equations (8.5), (8.6) and (8.8) now show that (8.2) holds for k. This finishes the induction.

We can now wrap up the proof of (8.1). By Lemma 8.1, we have PpG K q " 1 ´εt , and so Ere ´λZtpt K q s " Ere ´λZtpt K q ½ G K s `εt . (8.9)

Now fix ε ą 0 and choose δ ą 0 as in the second part of Lemma 8.2. We then have by the third part of that lemma and (8.9), for A and t sufficiently large, Ere ´puτ pλq`εqZtp0q ½ G 0 s ´εt ď Ere ´λZtpt K q s ď Ere ´puτ pλq´εqZtp0q ½ G 0 s `εt .

Hence, letting t Ñ 8, and using the assumption on the initial configuration, we have e ´puτ pλq`εqz 0 ď lim inf tÑ8 Ere ´λZtptp1´e ´τ qq s ď lim sup tÑ8 Ere ´λZtptp1´e ´τ qq s ď e ´puτ pλq´εqz 0 .

Letting ε Ñ 0 proves (8.1) and thus finishes the proof of Theorem 2.1.

  zÑ0 lim tÑ8 qpz, t, δq " 0. (3.21) From (3.20), (3.21), and the fact that w g pδq Ñ 0 as δ Ñ 0 by the uniform continuity of g, we obtain lim zÑ0 lim tÑ8

  [START_REF] Gardiner | Handbook of Stochastic Methods for Physics[END_REF]) can be deduced from (4.32) and (4.34).

w r px, yq ď 1

 1 

ż 1 0w

 1 r{2 px, zqw r{2 pz, yq dz ď sup zPp0,1q w r{2 px, zqw r{2 pz, yq " sup zPp0,1q w r{2 p1 ´x, 1 ´zqw r{2 pz, yq ď sup zPp0,1q 1 ? πr e ´px´zq 2 {r ˆ1 ^4p1 ´xq r ˙¨1 ? πr e ´pz´yq 2 {r ˆ1 ^4y r ˙.

Lemma 5 . 7 .

 57 Let b `, b ´: R `Ñ R be smooth functions and let y P pb ´p0q, b `p0qq. Let upy, sq be the density of Brownian motion started at x and killed when hitting one of the curves b ànd b ´. Let H `and H ´denote the hitting times of the curves b `and b ´, respectively. Then P x pH `P ds, H `ă H ´q " ´1 2 B y upy, sq ˇˇy "b `psq ds

  Theorem 2.4. Suppose that for each t ą 0, we have a deterministic initial configuration of particles ν t such that (1.8) holds under P νt . Then the finite-dimensional distributions of pZ t pp1 ´e´u qtq, u ě 0q, under the conditional probability measures P νt p ¨| ζ ą tq, converge as t Ñ 8 to the finite-dimensional distributions of pΦpuq, u ě 0q.

	Remark 2.5. Theorem 2.4 provides another way of understanding Proposition 1.4. It is known
	that		
	lim uÑ8	e ´2u{3 log Ξpuq " ´log W a.s.,	(2.7)

  8) holds under P νt . Let 0 ă δ ă 1{2, and suppose s P rδt, p1 ´δqts. For all ε ą 0, there exist positive constants C 3 , C 4 , C 5 , and C 6 such that if t is sufficiently large, then Ltpsq ď Mpsq ď C 4 L t psq 3 e Ltpsq ˇˇζ ą t ˙ą 1 ´ε and P νt `Lt psq ´log t ´C5 ď Rpsq ď L t psq ´log t `C6 ˇˇζ ą t ˘ą 1 ´ε. Xupsq δ Xupsq{Rpsq . Then, under the conditional probability measures P νt p ¨| ζ ą tq, we have χ s ñ µ and η s ñ ξ as t Ñ 8, where µ and ξ are defined as in Proposition 2.6. If lim sup tÑ8 s{t ă 1, then we may replace Rpsq by L t psq in the formula for η s .

		ˆC3					
	P νt L t psq 3 e Theorem 2.10. Suppose that for each t ą 0, we have a deterministic initial configuration of particles ν t such that (1.8) holds under P νt . Suppose s P r0, ts, and suppose lim inf tÑ8 s t ą 0.
	Define the probability measures				
	χ s "	1 Mpsq	ÿ uPNs	δ Xupsq , η s "	ˆÿ uPNs	e Xupsq	˙´1	ÿ

uPNs e

  establishes that

	PpW ą xq "	1 x	as x Ñ 8	(2.15)
	and			
	ErW ½ tW ďxu s ´log x Ñ C	as x Ñ 8.	(2.16)

The results (2.15) and (2.16) were proved earlier in

[START_REF] Berestycki | The genealogy of branching Brownian motion with absorption[END_REF] 

for binary branching. As indicated in

[START_REF] Maillard | Branching Brownian motion with selection[END_REF]

, the result (2.14) follows from (2.15) and (2.16) by de Haan's Tauberian Theorem (see Theorem 2 of

[START_REF] De Haan | An Abel-Tauber theorem for Laplace transforms[END_REF]

).

  . Therefore, as t Ñ 8, we have Z t p0q Ñ πe x W a.s.For the lower bound, let t 1 " t ´gpyptqq. By the third condition in (3.9), we have L t p0q ´Lt 1 p0q " ct 1{3 ´cpt ´gpyptqqq 1{3 Ñ 0 as t Ñ 8. Therefore, by repeating the arguments above, we see that as t Ñ 8, we have Z t 1 p0q Ñ πe x W and L t 1 p0q ´Rp0q Ñ 8 almost surely.Note that here both Z t`vt 2{3 p0q and Z t p0q are being evaluated under the same initial measure P νt . Therefore, by (3.13),

	Also, L t p0q ´Rp0q " yptq ´x Ñ 8 as t Ñ 8. Thus, by Theorem 1.1,
		lim tÑ8	P νt pζ ď tq " Ere ´απe x W s.	(3.11)
	Therefore,		
		lim	
	lim tÑ8	Z t`vt 2{3 p0q Z t p0q	" lim

tÑ8

P νt pζ ď t ´gpyptqqq " Ere ´απe x W s.

(3.12)

It follows from (3.8), (3.10),

(3.11)

, and (3.12) that lim tÑ8 P Ltp0q`x pζ ď tq " Ere ´απe x W s, which gives

(1.6)

. Finally, if we define ψ as in Lemma 2.13 and φpxq " Ere ´απe x W s, then φpxq " ψpx `logpαπqq, so the properties of φ claimed in the statement of the theorem follow from Lemma 2.13.

To prove (1.7), write t 2 " t `vt 2{3 . By differentiating, we get

lim tÑ8 `Lt 2 p0q ´Lt p0q ˘" lim tÑ8 `cpt `vt 2{3 q 1{3 ´ct 1{3 ˘" cv 3 . (

3

.13) Using (1.6), it follows that lim tÑ8 P Ltp0q`x pζ ď t 2 q " lim tÑ8 P L t 2 p0q`x´cv{3 pζ ď t 2 q " φpx ´cv{3q, as claimed. Proof of Proposition 1.4. Let v ą 0. By Theorem 1.1, as t Ñ 8 we have P νt pζ ą t `vt 2{3 | ζ ą tq " P νt pζ ą t `vt 2{3 q P νt pζ ą tq " Z t`vt 2{3 p0q Z t p0q . tÑ8 e Ltp0q´L t`vt 2{3 p0q " e ´cv{3 , which gives the result. Proof of Theorem 2.4. We begin by following a similar strategy to the proof of part 2) of Theorem 1.1. Let z ą 0. Let ν t denote the initial configuration with tz{Z t p0qu particles at the location of each particle in the configuration ν t . Adding the star to the notation when considering the process started from ν t , we have Z t p0q Ñ z and L t p0q ´R˚p 0q Ñ 8 as t Ñ 8. Equation (3.1) and Theorem 1.1 give lim tÑ8 P ν t pζ ą tq " 1 ´e´αz " P z pE c q. (3.14)

  E ν t rgpZ t pφ t pu 1 qq, . . . , Z t pφ t pu k qqq½ tζątu s P ν t pζ ą tq Define }g} " sup x |gpxq| and w g pδq " sup |gpx 1 , . . . , x k q ´gpy 1 , . . . , y k q| : |x i ´yi | ă δ for all i P t1, . . . , ku ( . pφ t pu i qq ą δ for some i P t1, . . . , kuq. Then, the absolute value of the second term on the right-hand side of (3.19) is bounded above by 2}g}pppz, tq `qpz, t, δqq `wg pδq. It is easy to see, for example by splitting the initial population into two groups of approximately equal size and applying(3.14) with z{2 in place of z, that there is a positive constant C such that for each z ą 0, we have P ν t pN t,z ě 2q ď Cz 2 for sufficiently large t. Therefore,

			`E" gpZ	p1q t pφ t pu 1 qq, . . . , Z	p1q t pφ t pu k qqq ´gpZ 1 t pφ t pu 1 qq, . . . , Z 1 t pφ t pu k qqq	‰	. (3.19)
	Let and		ppz, tq " PpZ p3q qpz, t, δq " PpZ t lim zÑ0 lim tÑ8 ppz, tq " lim t psq ą 0 for some s ě 0q p2q
	Z 1 t " Z	p1q t	`Zp2q		p3q t	and let

p1q t , Z p2q t , and Z t `Zp3q t . This means that the law of pZ 1 t psq, 0 ď s ă tq is the same as the conditional law of pZ t psq, 0 ď s ă tq given ζ ą t. Therefore, for all t ě 0, we have ErgpZ p1q t pφ t pu 1 qq, . . . , Z p1q t pφ t pu k qqqs " zÑ0 lim tÑ8

  rgpZ t pφ t pu 1 qq, . . . , Z t pφ t pu k qqq½ tζątu s P ν t pζ ą tq

			E	"	gpZ
					dimensional distributions
	of pΦpuq, u ě 0q. Thus, by taking limits in (3.19), observing that the left-hand side of (3.19) does not depend on z, and applying (3.18), we obtain
	lim tÑ8	ErgpZ	p1q t pφ t pu 1 qq, . . . , Z	p1q t pφ t pu k qqqs " lim zÑ0 E ν t " lim lim tÑ8 zÑ0

p1q t pφ t pu 1 qq, . . . , Z p1q t pφ t pu k qqq ´gpZ 1 t pφ t pu 1 qq, . . . , Z 1 t pφ t pu k qqq ‰ " 0.

Finally, as noted in Section 2.1, the finite-dimensional distributions of pΞpuq, u ě 0q started from Ξp0q " z and conditioned on E c converge as z Ñ 0 to the finite-

  For k ě 0, let t n , t ń pkq and t ǹ pkq denote the values of T p0q, T p0q´kT p0q 2{3 and T p0q`kT p0q 2{3 respectively under P νn . Recall by (3.13) that for every fixed k, L t ń pkq p0q " L tn p0q `Op1q " L t ǹ pkq p0q.From this calculation, and a similar calculation with t ǹ pkq in place of t ń pkq, it follows that Let ε ą 0 and K ą 0. Then there exists t ą 0, depending on ε and K, such that for all initial configurations ν for which T p0q ď K under P ν , we have P ν pζ ą tq ă ε.Proof. Let u ď K ď t. It follows from (4.1) that if 0 ď x ď mintL u p0q, L t p0qu, then

			lim nÑ8	Z t ń pkq p0q "	e ck{3 2	,	lim nÑ8	Z t ǹ pkq p0q "	e ´ck{3 2	.	(4.5)
	Because L tn p0q ´Rp0q Ñ 8 it now follows from Theorem 1.1 that
	lim nÑ8	P νn pζ ď t ń q " e ´pα{2qe ck{3 ,	lim nÑ8	P νn pζ ď t ǹ q " e ´pα{2qe ´ck{3 ,
	which imply (4.2) and (4.3).				
	Lemma 4.2. z t px, 0q z u px, 0q	"	L t p0q sinp πx Ltp0q qe ´Ltp0q L u p0q sinp πx Lup0q qe ´Lup0q ď	π 2	¨mintx, L t p0q ´xu mintx, L u p0q ´xu	¨eLup0q´Ltp0q .
			dL	Le x´L sin	ˆπx L	˙ď e x´L ˆ4p1 ´Lq L	`pL ´2qπ L	˙ă 0.
					kÑ8	lim sup nÑ8	P νn pζ ď T p0q ´kT p0q 2{3 q " 0,	(4.2)
					lim kÑ8	lim inf nÑ8	P νn pζ ď T p0q `kT p0q 2{3 q " 1.	(4.3)

It follows that t Þ Ñ Z t p0q is a monotone decreasing function on tt ě 0 : L t p0q ě Rp0q `2u. Therefore, either T p0q " Rp0q `2, or T p0q is the unique positive real number t such that L t p0q ě Rp0q `2 and Z t p0q " 1{2. Because lim tÑ8 z t pL t p0q ´2, 0q " 2π{e 2 ą 1{2, the first possibility can be ruled out if T p0q is sufficiently large, which completes the proof of the lemma.

Proof of Lemma 2.11. It suffices to show that for any deterministic sequence of initial configurations pν n q 8

n"1 such that T p0q Ñ 8 and L T p0q p0q ´Rp0q Ñ 8 as n Ñ 8, we have lim (4.4) Furthermore, by Lemma 4.1, we have Z T p0q p0q " 1{2 under P νn for sufficiently large n. If px n q 8 n"1 is a sequence of positive numbers for which L tn p0q ´xn Ñ 8, then using (4.4), lim nÑ8 z t ń pkq px n , 0q z tn px n , 0q " lim nÑ8 L t ń pkq p0q sin `πxn L t ń pkq p0q ˘exn´L t ń pkq p0q L tn p0q sin `πxn Lt n p0q ˘exn´Lt n p0q " lim nÑ8 e Lt n p0q´L t ń pkq p0q " e ck{3 .

  On the other hand, Lemma 4.4 implies that T prq Ñ p 8 and L T prq p0q ´Rprq Ñ p 8 as t Ñ 8. Then Lemma 2.11 implies that for all ε ą 0, there is a constant k 1 such thatP νt p|pζ ´rq ´T prq| ď k 1 T prq 2{3 | ζ ątq ą 1 ´ε (4.38) for sufficiently large t. Now we see from (4.37) and (4.38) that t ´1T prq Ñ p 0 as t Ñ 8, and then another application of (4.38) yields (4.35) as claimed. Now let V t " t ´2{3 pT prq ´pt ´rqq. It follows from (4.35) and (4.36) that

	We first claim that			
	t ´2{3 pT prq ´pζ ´rqq Ñ p 0 as t Ñ 8.	(4.35)
	Our choice of r ensures that 1 ! t ´r ! t, and Proposition 1.4 states that
	t ´2{3 pζ ´tq ñ	3 c	V.		(4.36)
	Combining these facts, we get			
	t ´1pζ ´rq Ñ p 0 as t Ñ 8.	(4.37)
	V t " t ´2{3 pT prq ´pt ´rqq ñ	3 c	V	(4.39)
	and			
	t ´2{3 pζ ´tq ´Vt Ñ p 0.		(4.40)

[START_REF] Asselah | Fleming-Viot selects the minimal quasi-stationary distribution: The Galton-Watson case[END_REF]

. Indeed, this allows us to remove the conditioning when applying results (namely, Lemma 2.11 and Proposition 2.6) with the particle configuration at time r playing the role of the initial configuration.

  These two results, combined with (4.39) and (4.40), give(1.11). When instead t 2{3 ! t´s ! t, the Mean Value Theorem implies that for some random variable ξ t such that 0 ď ξ t ď t 2{3 V

	ˆt	´s t	˙2{3	`log Mpsq ´cpt ´sq 1{3 `logpt ´sq	˘" c 3	V t `op p1q.
	By the same reasoning, we get
	ˆt	´s t	˙2{3	`Rpsq ´cpt ´sq 1{3 `logpt ´sq	˘" c 3	V t `op p1q.

t , we have log Mpsq " cpt ´sq 1{3 ´logpt ´sq `c 3 pt ´s `ξt q ´2{3 t 2{3 V t `Op p1q.

Because pt ´s `ξt q{pt ´sq Ñ p 1, it follows that

  t,A px, rqq E px,rq rR t,A pr, sqs.Proof. From Lemma 5.7 together with the many-to-one lemma, we get E px,rq rR t,A pr, sqs "

								ď
	ˆt t	´r ´s ˙2A 3 `1 6						(5.27)
		ż s r	ˆ´1 2	d dy	p A r,u px, yq ˇˇy	"L t,A puq	˙du.	(5.28)
	Equation (5.28) implies						
	E px,rq rR t,A pr, sqs "					

  Opp1_A 2 qpt´sq ´1{3 q e x´Ltprq

	ˆż s r	1 L t,A puq 2	ˆt t	´u ´r ˙2A 3 `1 6	e	π 2 2 τ A pr,uq ˆ´1 2	B

A prq , 1 ˘˙du. Now (5.24) and

(5.22) 

give E px,rq rR t,A pr, sqs " e A e y w τ A pr,uq `x L t,A prq , 1 ˘˙du.

(5.29)

  [START_REF]Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF] , and γ 2 , such that E px,rq rZ t,A psq 2 s ď Ce e x´y w τ A pr,sq `x L t,A prq , y L t,A psq ˘Lt,A psq 2 sin `πy L t,A psq ˘2e 2py´Ltpsqq dy.Now using (5.3), (5.4), and (5.5), along with the fact that τ A pr, sq ě γ 1 , we get prq 1{2 L t,A puq 1{2 w τ A pr,uq `x L t,A prq , y L t,A puq ˘zt,A py, uq 2 dy du.Applying the inequality z t,A py, uq ď πpL t,A puq ´yqe y´Ltpuq and using that L t,A is decreasing and that L t,A ď L t gives A pr,uq `x L t,A prq , y L t,A puq ˘pL t,A puq ´yq 2 dy du.

	˙. Proof. Let m 2 be the second factorial moment of the offspring distribution. Standard second ´A ˆτ0 pr, sq z t,A px, rq `yt,A px, rq L t prq
	moment calculations (see, for example, p. 146 of [34]) give
						«	ff
		E px,rq rZ t,A psq 2 s " E px,rq	ÿ uPNs	z t,A pX u psq, sq 2
						`βm 2	ż s r	ż L t,A puq 0	e x´y q A r,u px, yqE py,uq rZ t,A psqs 2 dy du
					": T 1 `T2 .	(5.31)
	We first bound the first term in (5.31). By Proposition 5.4,
	T 1 ď	C pL t,A prqL t,A psqq 1{2	ż L t,A psq 0
		T 1 ď	CL t,A psq 3{2 e x L t,A prq 1{2	ż L t,A psq 0	e ´π2 2 τ A pr,sq e y´2Ltpsq sin `πx L t,A prq ˘sin `πy L t,A psq ˘3 dy.
	Using (5.25), we get		
		T 1 ď ď	CL t,A psq 3{2 e x´Ltprq L t,A prq 1{2 Ce ´Az t,A px, rq L t,A prq 3{2 L t,A psq 3{2 . sin	ˆπx L t,A prq	˙ż L t,A psq 0	e y´Ltpsq sin `πy L t,A psq ˘3 dy	(5.32)
	We now bound the term T 2 in (5.31). By Proposition 5.4 and Lemma 5.5,
	ż s r L t,A T 2 ď CL t prq ż L t,A puq T 2 ď C 0 ż s r ż L t,A puq 0 e x´Ltpuq`y´L t,A puq´A e x´y L t,A puq 2	w τ

  1 P r0, 1s together with(5.25) gives T 2 ď CL t prqe x´Ltprq´A ´y w τ A pr,uq `1 ´x L t,A prq , y L t,A puq ˘dy du.(5.33) Now making the additional change of variables τ A pr, uq Þ Ñ u, using(5.19), and letting hpuq be the number such that τ A pr, hpuqq " u, we get T 2 ď CL t prqe x´Ltprq´A ´y w u `1 ´x L t,A prq , y L t,A phpuqq ˘dy du.We now split the inner integral into two pieces and use Tonelli's Theorem and the fact that L t,A is decreasing for the first piece to getT 2 ďCe x´Ltprq´A L t prq 2 e ´y w u `1 ´x L t,A prq , Pr0,y{L t,A psqs w u `1 ´x L t,A prq , y 1 ˘du dy `Ce x´Ltprq´A L t prq 3 e ´1 2 L t,A psq Ce x´Ltprq´A L t prq 4 e ´1 2 L t,A psq " τ A pr, sq sin ´x L t,A prq Lemma 5.10. Let ε, γ 1 , and γ 2 be positive numbers. Suppose r ď s ď p1 ´εqt ^sA . Suppose also that τ A pr, sq ě γ 1 and p1 _ A 2 qpt ´sq ´1{3 ď γ 2 . Then there exists a positive constant C, depending on ε, γ 1 , and γ 2 , such that E px,rq rR t,A pr, sq 2 s ď Ce A ˆτ0 pr, sq L t prq z t,A px, rq `yt,A px, rq ˙. Proof. As in the proof of Lemma 5.9, we have E px,rq rR t,A pr, sq 2 s " E px,rq rR t,A pr, sqs `βm 2 px, yqpE py,uq rR t,A pu, sqsq 2 dy du In view of (5.27), it only remains to bound T 2 . For every u P rr, ss and y P r0, L t,A puqs, we get, using Lemma 5.8 and the fact that τ 0 pu, sq ď CL t puq when s ď p1 ´εqt, pE py,uq rR t,A pu, sqsq 2 ď Ce 2A ˆτ0 pu, sq L t puq z t,A py, uq `yt,A py, uq Ce 2A `pL t,A puq ´yq 2 e 2py´Ltpuqq `e2py´Ltpuqq " Ce ´2pL t,A puq´yq `pL t,A puq ´yq 2 `1˘. prq 1{2 L t,A puq 1{2 w τ A pr,uq `x L t,A prq , y

	ż s r By Lemma 5.1, and then using (5.22) and the assumptions on s (in particular that s ď e π 2 2 τ A pr,uq L t,A puq 2 ż L t,A puq 0 ": T 3 `T4 . (5.34) p1 ´εqt), T 3 ď Ce x´Ltprq´A L t prq L t,A psq " τ A pr, sq sin ´x L t,A prq ¯`x L t,A prq ı ż 8 0 y 3 e ´y dy ď Ce ´A ˆτA pr, sq L t prq z t,A px, rq `yt,A px, rq ˙. (5.35) By Lemma 5.2, and using again (5.22) and the assumptions on s, T 4 ď ¯`x L t,A prq ı ď Ce ´A ˆτA pr, sq L t prq z t,A px, rq `yt,A px, rq ˙. (5.36) The lemma now follows from (5.31), (5.32), (5.34), (5.35), and (5.36), together with (5.26). ż s r ż L t,A puq 0 e x´y q A r,u ": T 1 `T2 . (5.37) y 2 e ż τ A pr,sq 0 e π 2 u{2 ż L t,A phpuqq 0 ˙2 ď Ce 2A `zt,A py, uq 2 `yt,A py, uq 2 ď y 2 e ż τ A pr,sq 0 e π 2 u{2 ż 1 2 L t,A psq 0 y L t,A phpuqq ˘dy du y 2 e ´yw u `1 ´x L t,A prq , `Ce x´Ltprq´A L t prq ż τ A pr,sq 0 e π 2 u{2 Plugging this into (5.37) and using Proposition 5.4, we get ż L t,A phpuqq 1 2 L t,A psq y L t,A phpuqq ˘dy du ď Ce x´Ltprq´A L t prq ż 1 2 L t,A psq 0 y 2 e ´y ż τ A pr,sq 0 e π 2 u{2 ż s ż L t,A puq e x´y ȇ´2pL T 2 ď C r 0 L t,A L t,A puq sup y 1 ż τ A pr,sq 0 e π 2 u{2 0 w u `1 ´x L t,A prq , L t,A phpuqq ˘dy du y ż L t,A phpuqq t,A puq´yq `pL t,A puq ´yq 2 `1˘d y du.

y

  t,A puq L t,A puq 2 w τ A pr,uq `1 ´x L t,A prq , y A pr,uq `1 ´x L t,A prq , y L t,A puq˘e´y py 2 `1q dy du.

					L t,A puq	˘e´2y py 2 `1q dy du
	ď CL t prqe x´Ltprq`A	ż s r	π 2 2 τ A pr,uq L t,A puq 2 e	ż L t,A puq 0	w τ

  3 with A `yptq in place of yptq and f ptq " gpA `yptqq to get E pL t,A pqq,qq re ´λZtpsq s " E pL t,A pqq,qq « E pLtpqq´A´yptq,w i q re ´λZtpsq s ff " E pL t,A pqq,qq " exp `´K t pλ `εt `OpθqqπpA `yptqqe ´A´yptq ˘‰ `εt . (7.11) Recall that yptqe ´yptq K t converges in law to W , the random variable from Lemma 2.13. It follows that E pL t,A pqq,qq re ´λZtpsq s " Erexpp´πe ´Apλ `OpθqqW qs `εt . (7.12) Note that λ `Opθq " λp1 `Opθqq, uniformly in λ ě Λ ´1. Hence, by (7.12), combined with Lemma 2.13, as A Ñ 8, we have E pL t,A pqq,qq re ´λZtpsq s " exp ! Ψ a 2.14 ,1 pπe ´Ap1 `Opθqqλq `ope ´Aq `εt ) " exptπe ´Ap1 `Opθqqλplog λ `a2.14 `log π ´A `Opθq `εA,t qu. (7.13) Setting a 7.3 " a 2.14 `log π and using the fact that θA ď θpAqA Ñ 0 as A Ñ 8, equation (7.13) implies E pL t,A pqq,qq re ´λZtpsq s " exptπe ´ApΨ a 7.3 ,1 pλq ´Aλ `εA,t qu, (7.14)

	Kt
	ź
	i"1

  t pX u psq, sq, with N s,A defined in Section 5.[START_REF] Aldous | Greedy Search on the Binary Tree with Random Edge-Weights[END_REF]. In what follows, we will also make use of the quantities Z t,A , Y t,A etc. defined in that section.By the (strong) branching property, conditionally on L t,A , the Z puq are independent and independent of Z 1 t,A psq. Therefore, we can write E px,rq re ´λZtpsq s " E px,rq Define s 1 " s ´t2{3 . Using Markov's inequality and conditioning on F s 1 , then applying Lemma 5.8, Lemma 5.5, and Lemma 5.6, we have P px,rq pL t,A X rs 1 , ss ‰ Hq ď E px,rq rR t,A ps 1 , sqs ď E px,rq rZ t,A ps 1 qε t `Ope A Y t,A ps 1 qqp1 `εt qs " z t,A px, rqε t . Xrr,s 1 s E pL t,A puq,uq re ´λZtpsq s fi fl `zt,A px, rqε t . (7.17) Equation (7.17) and Lemma 7.2 now give E px,rq re ´λZtpsq s " E px,rq " e ´λZ 1 t,A psq`R t,A pr,s 1 qπe ´ApΨ a 7.3 ,1 pλq´Aλ`ε A,t q ı `zt,A px, rqε t . (7.18) We next claim that (7.18) implies E px,rq re ´λZtpsq s " 1 ´λE px,rq rZ t,A psqs `πe ´ApΨ a 7.3 ,1 pλq ´Aλ `εA,t qE px,rq rR t,A pr, s 1 qs `OpE px,rq rZ t,A psq 2 `pAe ´AR t,A pr, s 1 qq 2 `AY t,A psqsq `zt,A px, rqε t . (7.19)

	Hence,				
		»			
	E px,rq re ´λZtpsq s " E px,rq	-e ´λZ 1 t,A psq	ź uPL t,A	
		" Z 1 t,A psq	`ÿ uPL t,A	Z	puq t psq,	(7.16)
	where				
		Z 1 t,A psq "	ÿ uPN s,A
			»			fi
			-e ´λZ 1 t,A psq	ź	e ´λZ puq t psq	fl
						uPL t,A
		" E px,rq		

z » -e ´λZ 1 t,A psq ź uPL t,A E pL t,A puq,uq re ´λZtpsq s fi fl .

  px,rq rR t,A pr, s 1 qs " πe A`OpθAq`εt ˆˆˆ2 3π 2 θp1 `Opθqq `εt ˙zt,A px, rq `Opy t,A px, rqq ˙by Lemma 5.8 and (7.1) E px,rq rZ t,A psq 2 s ď Ce ´Apθz t,A px, rq `yt,A px, rqq by Lemma 5.9 E px,rq rR t,A psq 2 s ď Ce A pθz t,A px, rq `yt,A px, rqq by Lemma 5.10 E px,rq rY t,A psqs ď z t,A px, rqε t by Lemma 5.6 Using that θA 2 ď θpAqA 2 Ñ 0 as A Ñ 8, equation (7.19) together with the above estimates gives after some calculation, with a 7.20 " 2 3 a 7.3 `1 2 , E px,rq re ´λZtpsq s " 1 `p´λ `θpΨ a 7.20 ,2{3 pλq `εA,t qqz t,A px, rq `OpAy t,A px, rqq. (7.20) Using that z t,A px, rq " OpAe ´Aq and y t,A px, rq ď e ´A for x ď L t,A prq, as well as z t,A px, rq 2 " Opy t,A px, rqq, we get E px,rq re ´λZtpsq s " exp ´´λ `θpΨ a 7.20 ,2{3 pλq `εA,t qqz t,A px, rq `OpAy t,A px, rqq ¯. (7.21)

Using again the equality z t px, rq " z t,A px, rq `OpAy t,A px, rqq, equation (7.21) implies (7.15) with a " a 7.20 and concludes the proof of Proposition 7.1.
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probability as t Ñ 8, for some constant c P p0, 8q. Hence, since a t ď t 1{6 by assumption, a t Y t pt k q{Z t pt k q Ñ 0 in probability as t Ñ 8. A union bound shows that PpG K q " 1 ´εt . Now fix λ ą 0. For every δ P R, define recursively,

1. There exists Λ ą 1 such that for |δ| small enough and for θ small enough (a priori depending on δ), we have λ pδq k P rΛ ´1, Λs for all k " 0, . . . , K.

2. For every ε ą 0, there exists δ ą 0 such that for all θ sufficiently small, λ pδq 0 , λ p´δq 0 P ru τ pλq ´ε, u τ pλq `εs.

3. For every δ ą 0, we have for sufficiently large A and t, for every k " 0, . . . , K,

Proof. Parts 1 and 2 follow from standard results on convergence of Euler schemes for ordinary differential equations, after suitable localization arguments. We provide the details for completeness.

Write Ψ " Ψ a,2{3 for simplicity. Fix λ ą 0. Choose Λ ą 1 such that u t pλq P pΛ ´1, Λq for all t P r0, τ s. Define Ψ Λ : R Ñ R by

Then Ψ Λ is a Lipschitz function. If we define pλ pδ,Λq k q k"0,...,K recursively by

K´k q k"0,...,K is the explicit Euler scheme for the ODE Furthermore, because the right-hand side of (8.3) depends continuously on the parameter δ, we have y pδ,Λq Ñ y p0,Λq ": y pΛq as δ Ñ 0, uniformly on r0, τ s. Finally, since Ψ Λ " Ψ on