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The operational formulations of quantum the-
ory are drastically time oriented. However, to
the best of our knowledge, microscopic physics
is time-symmetric. We address this tension
by showing that the asymmetry of the oper-
ational formulations does not reflect a funda-
mental time-orientation of physics. Instead,
it stems from built-in assumptions about the
users of the theory. In particular, these for-
malisms are designed for predicting the future
based on information about the past, and the
main mathematical objects contain implicit as-
sumption about the past, but not about the
future. The main asymmetry in quantum the-
ory is the difference between knowns and un-
knowns.

Introduction
Classical mechanics is invariant under time reversal:
its elementary laws do not distinguish past from fu-
ture. The observed arrow of time is a macroscopic
phenomenon that depends on the use of macroscopic
variables and the contingent fact that the entropy de-
fined by these variables was lower in the past. Is it
the same for quantum mechanics?

On the one hand, the Schrödinger equation is time
reversal invariant and so is quantum field theory (up
to parity transformation and charge conjugation). El-
ementary physics is time reversal invariant and the
source of time orientation is again macroscopic and
entropic. Elementary quantum phenomena do not
carry a preferred arrow of time. On the other hand,
however, the formalism of quantum theory is often
defined in a markedly time oriented way.

Here we address this tension between the physics
and the formalism. We investigate the reason for the
time orientation of the quantum formalism and show
that the tension can be resolved. The asymmetry in
the formalism is due to the inherent directionality in
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the process of inference, which is related to the arrow
of time only indirectly.

Let us start by noting that, in any inferential prob-
lem, there is an asymmetry between what is known
(the data), and what is unknown (the desiderata).
Let us call this directionality the arrow of inference.
The arrow of inference is not necessarily aligned with
the entropic arrow of time. The arrow of inference
may be pointed towards the past as well as towards
the future. Quantum phenomena are such that we
can only compute conditional probabilities, so quan-
tum theory inherits the asymmetry between data and
desiderata.

Quantum theory allows us to compute the prob-
ability of future events from past ones, but it also
allows us to compute the probability of past events
from future ones. As we illustrate in detail below,
quantum theory does not distinguish between these
two tasks. In contrast, the users of quantum theory
are generally more interested in predicting the future
than postdicting the past. We live in thermodynam-
ically oriented world that has abundant macroscopic
traces of the past but not of the future [1, 2]. Hence
in most problems, the arrow of inference points in the
same direction as the arrow of time. As a result we
have designed formulations of quantum theory that
conflate the two arrows. Ignoring the distinction may
be a source of confusion.

We will focus on formalisms used in quantum infor-
mation [3–5]. These are designed to study information
processing tasks and the correlations that agents can
achieve by sharing and manipulating quantum sys-
tems. This approach has lead to a wealth of insights,
both of theoretical and technological value [6–20]. In
particular, the information-theoretic reconstructions
of quantum theory [21–30] derive the formal Hilbert
space structure of quantum theory from simple phys-
ical principles (much like Einstein’s two postulates
of special relativity allowed to re-derive the Lorentz
transformations [31, 32]). With the notable excep-
tion of Ding Jia’s [29], the reconstructions either start
by considering a space of theories that is intrinsically
time-oriented [21–23, 25–27, 29] or introduce the time
orientation explicitly as a postulate [24, 28, 30] (“no
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signaling from the future”).
There is nothing wrong with time-oriented for-

malisms designed to study time-oriented questions.
But the success of this approach risks obscuring the
time reversal invariance of elementary physics, and
this could turn into an obstacle when extending it
to the investigation of phenomena outside the labo-
ratory. An example of such situations is quantum
gravitational phenomena, in which the existence of
a background spacetime cannot be taken for granted
[33, 34].

During the development of this work, Schmid,
Selby, and Spekkens [35], and Hardy [36] have pro-
posed formalisms in which the physical and the in-
ferential aspects of a theory can be separated and
make space for time-symmetric physics. The present
work can be seen as an additional motivation for these
frameworks.

Our argument proceeds as follows. We start with
the uncontroversial assumption that the Born rule
gives prediction probabilities: conditional probabili-
ties for future events, given past ones. We apply stan-
dard probability theory to find formulas for postdic-
tion probabilities: probabilities about the past, given
the future. Note that we do not postulate these prob-
abilities: we derive them from the prediction proba-
bilities.

In section 2, we show that for closed quantum sys-
tems the probabilities for prediction and postdiction
are identical, a property we call inference symmetry.
The Born rule can be used in both directions of time
without modification, contrary to what is sometimes
stated.

In section 3, we discuss open quantum systems,
where this symmetry is hidden. In that case, the pre-
diction and postdiction probabilities differ. However
the difference is dictated by the asymmetries in the in-
ferential problem, not by the arrow of time, once again
contrarily to what is often stated in the literature.
Unitary quantum mechanics is both time-symmetric
and inference-symmetric.

In section 4, we investigate the same question for
quantum channels, the more general evolutions fea-
turing in operational formulations of quantum theory
used in quantum information. Quantum channels are
not, in general, inference-symmetric. By shifting the
Heisenberg cut to include part of the apparatus, we
show that the inference-asymmetry of quantum chan-
nels stems from asymmetries in the inferential data.

In section 5, we relate the tasks of postdiction with
passive and active time-reversals, and discover that
quantum channels can also be seen as shorthands for
calculations about the past.

We combine all insights in section 6 to show that
the asymmetries of the quantum information formula-
tions do not stem from an arrow of time intrinsic to all
quantum systems, but from the asymmetry inherent
in the process of inference. The time-asymmetry of

the operational formalisms used in quantum informa-
tion theory is that of the time-oriented macroscopic
agents that set up the experiments.

At the end of the paper, we briefly discuss the time
orientation of other formulations (Copenhagen, Ev-
erettian, de Broglie-Bohm) as well.

Previous work
The exploration of the time-symmetry of quantum
uncertainty started early with Einstein, Tolman, and
Podolski [37] already noting in 1931 that “the prin-
ciples of quantum mechanics actually involve an un-
certainty in the description of past events which is
analogous to the uncertainty in the prediction of fu-
ture events.”

Aharonov, Bergmann, and Lebowitz [38] build a
time-symmetric theory out of quantum theory by con-
sidering the frequencies of outcomes of a sequence of
projective measurements in ensembles constructed by
pre- and post-selection. They note that this theory
is time-symmetric in the sense that the frequencies
observed in one ensemble are the same as the ones
observed in the ensemble prepared by swapping the
pre- and post-selection and performing the measure-
ments in the reversed order. They note that proba-
bilities calculated based only on preselection are ex-
perimentally accurate, while probabilities calculated
only on post-selection are insufficient. They argue
that this time-asymmetry is not inherent to quan-
tum mechanics but is a consequence of the asymme-
try of the macroscopic world. Finally they advance
that this asymmetry should be represented by adding
a time-asymmetric postulate to the time-symmetric
theory. In light of our work, we don’t need to build
a time-symmetric theory and then break the symme-
try. Quantum mechanics is already symmetric in the
sense that generally it does not distinguish prediction
and postdiction, or the past from the future. Our
work also has a different aim: to understand the time-
asymmetry of the operational formulations of quan-
tum theory.

While Aharonov et. al. [38] considered a se-
quence of measurements “sandwiched” between selec-
tion events, the setup in our work is similar to that
in [39], where Watanabe was concerned with calculat-
ing the probabilities for a past or future event given
a present event. Watanabe introduced retrodictive
quantum mechanics, where a state is assigned to the
system based on present data and then evolved to past
times. Like Aharonov et. al., Watanabe remarks that
“blind retrodiction,” (i.e. what we call postdiction:
retrodiction with flat priors on the past events) does
not work well in practice because agents in the past
can decide to interrupt or go on with the experiments.
Watanabe also recognises that inference is inherently
asymmetric and can run in either direction of time,
starting from data at a given instant.
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Retrodictive quantum mechanics has been further
developed over the decades by Barnett, Pegg, Jeffers
and collaborators [40–42] who devise general postdic-
tion formulas, including ones equivalent those we de-
rive in sections 2 and 4.2 for postdiction in closed
systems and for quantum channels respectively. Our
contribution to retrodictive quantum mechanics is
twofold. First, we propose the explanation of the
asymmetry between prediction and postdiction in
quantum channels in terms of implicit data about the
past of a purifying system. Secondly, we prove no-
signalling from the unknown, which is a property of
quantum mechanics, and in particular of retrodictive
quantum mechanics, that to our knowledge has not
been recognised before. We also pay attention to the
conceptual difference between retrodiction and time-
reversal, and we relate these two concepts.

Leifer and Pusey [43] consider a similar prepare-
and-measure scenario as us and investigate what time-
symmetry can imply on possible ontological models
for quantum theory. Their definition of an opera-
tional time reverse formally equivalent to what we
call an active time-reversal. They define operational
time-symmetry as the existence of an operational time
reverse. They derive a fascinating no-go theorem for
ontic extensions (aka hidden variable models) of oper-
ational time-symmetric processes. We share the belief
that operational time-symmetry is an essential fea-
ture of quantum mechanics, but we do not concern
ourselves with ontic extensions. Instead, we are in-
terested in understanding why not all quantum chan-
nels are operationally time-symmetric. We also study
the difference and relation between postdiction and
time-reversal, prove that operational time-symmetry
is equivalent to inference symmetry.

Oreshkov and Cerf [44] define an extension to op-
erational quantum theory, allowing for a “notion of
operation that permits realizations via both pre- and
post-selection.” Their motivation for building a new
theory is stated in the abstract: “The symmetry of
quantum theory under time reversal has long been a
subject of controversy because the transition proba-
bilities given by Born’s rule do not apply backward
in time.” Our work shows that the Born rule applies
equally well in both directions in time—as long as
we treat prediction and postdiction on equal footing.
We argue that the asymmetry of operational quantum
theory reflects the asymmetry of the agents, not the
asymmetry of quantum phenomena per se.

Our work was inspired by conversations at the QISS
conference at HKU and at the QISS virtual seminars
[45], where it transpired that the time-asymmetric
operational formulation obfuscated the fundamental
time-symmetry of quantum theory.

The importance of separating the physical from the
inferential in quantum mechanics is a more modern
idea, perhaps traceable to E.T. Jaynes who famously
compared quantum theory to an omelette to be un-

scrambled [46]. The QBists see quantum theory as
not much more than the correct probability calculus
to use in our world [47]. Leifer and Spekkens [48]
have formally developed the analogy between quan-
tum probabilities and Bayesian inference. They intro-
duce a notion of “quantum conditional states” repre-
senting sequential and parallel quantum experiments
and prediction and postdiction on the same footing,
just like in classical probability theory. In our work,
we limit ourselves to classical probability theory. At
first, we use the Born rule to obtain classical condi-
tional probability distributions Ppre(x|a, U) for pre-
diction probabilities in sequential experiments. We
show that the Born rule actually can be used to com-
pute prediction and postdiction probabilities.

We summarize the main original contributions of
this work.

• We interpret the inference-asymmetry of quan-
tum channels as due to implicit information
about the purifying system. (Section 4.3).

• We note that the asymmetry of the operational
formulation of quantum mechanics is due to three
factors.

1. The asymmetry intrinsic in the process of
inference (Section 6)

2. The operational formulation is interested in
prediction.(Section 4.1)

3. Quantum operations contain built-in as-
sumptions about the past and the ability of
agents to pre-select states, and this is where
the time-symmetry is broken. (Sections 4.3
and 6.4)

• The proof of the no-signalling from the further
unknown property of quantum mechanics, a con-
sequence of the conservation of probability and
not an independent axiom. (Section 6.3) When
applied to prediction, it reduces to the well-
known “no-signalling from the future.”

• The derivation that inference-symmetry is equiv-
alent to bistochasticity (Section 4.4) and hence
to operational time-symmetry (Section 5.2).

1 Prediction and postdiction
Quantum indeterminism is time-reversal invariant. In
presenting the probabilistic nature of quantum the-
ory, we often emphasise that the future of a quantum
system is not entirely determined by its past. It cer-
tainly is true that the outcomes of future interactions
with a quantum system are uncertain, given the de-
tails of past interactions. What is less often recog-
nised is that the converse is equally true: given the
details of present interactions, the past ones are un-
certain. This was already pointed out a long time ago
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[37]: the irreducible indeterminism of quantum phe-
nomena cuts both ways, leaving both the past and
the future uncertain, given data about the present.
This has practical consequences such as the impos-
sibility of deterministic state-discrimination and the
no-cloning theorem [3]: interactions with a quantum
system do not allow us to guess with certainty how it
was prepared.

As we will see below, the past of a quantum system
is quantitatively as uncertain as its future: the proba-
bilities calculated using the Born rule can be applied
to both predict and postdict. Quantum theory, in
fact, does not distinguish a priori the tasks of predic-
tion and postdiction and we might say that there is
a fundamental “unpostdictability” of the behaviour of
quanta.

Let us operationally define what we mean by pre-
diction and postdiction using two related tasks. In
both tasks, a friend prepares a quantum system in
an initial configuration, allows it to undergo a given
transformation, measures it, and finds it in some final
configuration. The friend then gives us some infor-
mation and about these events, and asks us to guess
the rest. In the first task, we are asked to guess the
outcome of the measurement, given the initial config-
uration and the details of the transformation and of
the measurement. In the second task, we guess the
outcome of the preparation, given the outcome of the
measurement, the details of the transformation, and
the set of possible initial states.

Definition 1 (Prediction task). Given a preparation,
a map and a test and the outcome of the preparation,
calculate the probabilities for the outcomes of the test.

Definition 2 (Postdiction task). Given a prepara-
tion, a map and a test and the outcome of the test, cal-
culate the probabilities for the outcomes of the prepa-
ration.

These are inferential tasks, in which we use the
available information to make educated guesses. If
we want to think of probabilities in frequentist terms,
we can imagine the friend repeating the setup many
times, ensuring a uniform distribution in the initial or
final configuration and interpret the calculated prob-
abilities as relative frequencies of outcomes in an en-
semble of trials, in the limit of infinite trials.

While the setting of these tasks might appear ar-
tificial at first, a moment of thought reveals that it
serves as a useful shorthand for physically relevant
situations. In fact, postdiction has been extensively
studied before [40, 49, 41, 50] and has a number of
practical applications; see [42, 51, 52] and references
therein.

In the following, we study the relation between
these two tasks, as it captures the role played by the
arrow of time in quantum theory. First, we consider
the case of closed systems, namely when the system
under consideration is isolated between preparation

and observation. Then we consider open systems,
namely when we ignore some degrees of freedom, such
as environmental degrees of freedom. Finally, we ex-
tend the analysis to the more general case in which
the notions of preparation, evolution and measure-
ment are subsumed in the more general idea of op-
eration used in quantum information and quantum
foundations.

2 Closed systems
In this section, we assume that the friend prepares the
system by determining the values of a maximal set of
compatible observables and does the same at observa-
tion. We also assume that the system under consider-
ation is isolated between preparation and observation.
Therefore, the preparation and test are represented
by orthonormal bases of the Hilbert space associated
with the quantum system and the transformation is
represented by a unitary transformation.

In this case, the Born rule is equally good for pre-
dicting the future given the past and postdicting the
past given the future [39]. Since this fact is not uni-
versally known, we derive it assuming only the un-
controversial fact that the Born rule can be used to
predict the future.

We denote by {ai}d
i=1 and {xi}d

i=1 the bases of the
preparation and test, respectively—although we drop
the basis indices when they are not strictly needed,
to keep the notation cleaner. The solution to the pre-
diction task with the unitary evolution U , and the
outcome of the preparation a is given by the Born
rule: the probability

Ppre(x|a, U) = |〈x|U |a〉|2, (1)

for the outcome x of the test. The solution to the
postdiction task is obtained from the solution of the
prediction game and standard probability theory. By
Bayes’ theorem

Ppost(a|x, U) = Ppre(x|a, U)P (a)
P (x) , (2)

where P (a) is the prior probability on the initial con-
figuration and P (x) is the probability of the final con-
figuration given the prior. Since all we know in the
postdiction task is the basis of the preparation, we
have

P (ai) = 1
d

(3)

for all i = 1, . . . d. The a priori probability of the
outcome of the test is computed summing over all
possible initial states:

P (x) =
d∑

i=1

1
d
Ppre(x|ai, U) = 1

d
, (4)
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where we used the fact that the evolution is unitary.
The postdiction probability is then computed from
(2):

Ppost(a|x, U) = | 〈x|U |a〉 |2 = Ppre(x|a, U), (5)

which, in terms of the pictorial calculus of Ref. [5],
reads

Ppre(x|a, U) = U

a

x

= Ppost(a|x, U). (6)

Thus for a closed quantum system, the solution to the
prediction and postdiction tasks is given by the same
formula.

Note that the flat prior (3) is crucial in the deriva-
tion above. Had the prior been different, the postdic-
tion probabilities would be different from the predic-
tion probabilities. However, assuming a different prior
would introduce an inappropriate asymmetry between
the two tasks. Our objective is to treat the prediction
and postdiction tasks on equal footing. When we pre-
dict the result of a measurement using the Born rule,
we do not assume any prior knowledge on the result
of the experiment besides the space of alternatives.
Therefore, in a postdiction task we do not assume
any prior knowledge of the result of the preparation
besides the space of alternatives, hence the the flat
prior. The flat prior does not imply that the input
system was prepared in the maximally mixed state, it
is simply the probability distribution that represents
the prior knowledge in the postdiction task.

For a system evolving unitarily between the prepa-
ration and the observation events, later events are un-
certain given the earlier event and earlier events are
uncertain given later events, and the probabilities are
given by the same formula. The Born rule does not
distinguish the past from the future: it allows to cal-
culate the probability of an event given another event,
no matter their order in time.

Let us formalise this property:

Definition 3 (Inference symmetry). A transforma-
tion Φ is inference symmetric if for any two orthonor-
mal bases {ai}dA

i=1 and {xi}dX
i=1 for the input and out-

put spaces respectively, the prediction and postdiction
probabilities are identical for given i and j:

Ppre(xi|aj ,Φ) = Ppost(aj |xi,Φ) (7)

Quantum unitary evolution is inference-symmetric.
Why is this time-symmetric aspect of unitary evolu-
tion rarely emphasised?

In most practical situations, we don’t need to use
the flat prior when guessing the past. We can do bet-
ter, because there are macroscopic traces of the past,

like our memories or entries in a notebook. Addi-
tionally, in most laboratory experiments, the initial
distribution is known or chosen so that frequency of
events in the ensemble is far from uniform.

The fact that macroscopic traces are records of the
past and not the future and the fact that an exper-
imenter’s choice can affect the future and not the
past are both macroscopic phenomena that pertain to
the irreversible physics of the macroscopic world sur-
rounding the experiment [2, 53], not to the quantum
dynamics, which by itself does not know the arrow of
time.

Some authors go so far as to say that the Born
rule does not work ‘backward in time’ and see it as a
fundamental asymmetry in the theory [44] and that
quantum theory needs to be modified, or extended,
to make it symmetric. But this is too quick. If we do
not assume any knowledge or bias in the past, (5) is
indeed the correct formula to use according to quan-
tum theory. In turn, the validity of the Born rule
in predicting the future relies on the same assump-
tions about the future. Namely, if we did have some
knowledge of the future, then (1) would not be the
best formula to make predictions. For example, if the
detector does not detect certain states, the Born rule
fails.

The presence of records of the past is not a prop-
erty of quantum theory per se, or the behaviour of a
single quantum, but a property of what surrounds the
quantum. See also [39, 38] for early examples of this
argument.

3 Open systems
Let us now consider the case when the system we deal
with is not isolated. An open quantum system can
always be seen as a part of a larger closed quantum
system. To study this case, consider a tensor decom-
position of the input A⊗B and output X⊗Y Hilbert
spaces. The tasks we consider now regard comput-
ing probabilities restricted to some of these subspaces.
Denote by dA, dB , dX and dY the dimensions of the
respective spaces and with {ai}, {bi}, {xi}, and {yi}
bases on them. The evolution between input and
output space is represented by the unitary U . By
the results of the previous subsection, this process is
inference-symmetric with the solution

Ppre(xy|ab, U) = | 〈xy|U |ab〉 |2 = Ppost(ab|xy, U).
(8)

Suppose that we agree with our friend to ignore the
subspace Y of the outcome space and compute only
the probability of finding x as the outcome of the
test on X. This simulates the situation in which our
system gets entangled with some other system that is
subsequently ignored, like when information leaks into
the environment. Note that the difference between a
closed and an open system is in the inferential data,
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not in the physical system. We can solve the predic-
tion task by computing the marginal probability

Ppre(x|ab, U) =
dY∑
i=1

Ppre(xyi|ab, U), (9)

where we sum over the space Y we decided to ne-
glect. Similarly we solve the postdiction task with
the same unitary evolution, with only knowledge on
the outcome of the test on the space X, weighting the
original postdiction probabilities with a flat prior:

Ppost(ab|x, U) =
dY∑
i=1

1
dY

Ppost(ab|xyi, U). (10)

We can use the inference symmetry of the closed sys-
tem (8) to relate the two expressions above:

Ppost(ab|x, U) = 1
dY

Ppre(x|ab, U). (11)

Thus the prediction and postdiction probabilities are
no longer equal once part of the output system is ig-
nored.

Suppose now that we agree with our friend to ne-
glect the B part of the input space. This corresponds
to the situation in which a system in an unknown
state interacts with our original system. Again, the
difference is in the inferential data, not the physical
setup. The prediction probabilities are obtained by
assigning a flat prior to the system B:

Ppre(xy|a, U) =
dB∑
i=1

1
dB

Ppre(xy|abi, U), (12)

while the postdiction probabilities are

Ppost(a|xy, U) =
dB∑
i=1

Ppost(abi|xy, U). (13)

The two are again related using (8):

Ppost(a|xy, U) = dBPpre(xy|a, U). (14)

Again, the two probabilities are different.
We can similarly analyse the case where we agree

with our friend to neglect the result of the prepara-
tion in B and the outcome of the test on Y , which
simulates a situation in which the system is open to
influences from an unobserved quantum system. The
prediction and postdiction probabilities again differ
by a simple normalisation constant:

dY Ppost(a|x, U) = dBPpre(x|a, U). (15)

Note that the probabilities are equal only when dB =
dY , so that A ≡ X. When the input and output
spaces are treated symmetrically, prediction and post-
diction tasks are symmetric.

Crucially, the normalisation factor that makes the
two kinds of probabilities different does not depend
on time: if we neglect a subsystem B at time t1 and
another system Y at time t2, then the probabilities
for the values at t2 given the values at t1 are dY /dB

times the probabilities of guessing the values at t1
given the values at t2. This has nothing to do with a
pre-established direction of time. Indeed, it is true re-
gardless of whether t1 < t2 (as in the example above)
or t1 > t2.

In the general case, the asymmetry between the
prediction and postdiction tasks arises because of an
asymmetry in the inferential data, not because of an
intrinsic asymmetry in the physics or the evolution of
the system. Indeed, in all these cases, the underly-
ing process U is inference-symmetric. The inferential
tasks are asymmetric only when the inferential data
are asymmetric.

The normalisation of the identity is deter-
mined by the arrow of inference
We can rephrase all the probability calculations above
in terms of density operators. Under unitary evolu-
tion a density operator transforms as ρ 7→ U [ρ] :=
UρU†. A pure state ψ can be represented as a den-
sity operator by the projector |ψ〉〈ψ| and the Born rule
can be recast as a trace

|〈xy|U |ab〉|2 = tr
(
|xy〉〈xy| U [|ab〉〈ab|]

)
. (16)

Let us start with prediction, the more familiar task.
In this language the prediction probability (9) can be
rewritten as

Ppre(x|ab, U) =
dY∑
i=1

Ppre(xyi|ab, U)

=
dY∑
i=1

tr
(
|xyi〉〈xyi| U [|ab〉〈ab|]

)
Ppre(x|ab, U) = tr

(
(|x〉〈x| ⊗ IY ) U [|ab〉〈ab|]

)
.

(17)

The decision to ignore part of the output system is
represented by the insertion of the identity operator
IY , which in this role is called the discard operator
of the subsystem Y . This is the classic technique of
‘tracing out’ a subsystem to ignore its future. Equa-
tion (12) can be similarly recast as

Ppre(xy|a, U) = tr
(
|xy〉〈xy| U

[
|a〉〈a| ⊗ 1

dB
IB

])
,

(18)
where the flat prior is represented by the maximally
mixed state, the density operator IB/dB . This is also
the well known result of doing prediction based on
partial information. Note that the two formulas above
make it clear that the choice of basis of the ignored
system is irrelevant to the computed probabilities.
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Let us now look at the postdiction probabilities.
Using the two equations above together with (11) and
(14), we can immediately write

Ppost(ab|x, U) = tr
((
|x〉〈x| ⊗ 1

dY
IY

)
U [|ab〉〈ab|]

)
,

(19)
Ppost(a|xy, U) = tr

(
|xy〉〈xy| U [|a〉〈a| ⊗ IB ]

)
. (20)

We see that the identity operator appears again in
the ignored systems. However, the normalisation is
the opposite of the predictive case.

The discard operator and the maximally mixed
state are well known, and are normally only applied
to the output and input side respectively. But the
normalisation of the identity operator does not reflect
the direction of time, the past or the future, input or
output. It reflects the direction of inference. This is
particularly obvious rewriting in the pictorial calcu-
lus:

Ppre(x|a, U)= U

x

a
1
dB

Ppost(a|x, U)= U

x

a

1
dY

(21)

with and representing the identity operator as
an output and input respectively. We discard in the
direction we guess, and we have the maximally mixed
state on the side of the data.

Thus the way the inference-symmetry appears to
be broken in open systems reflects an asymmetry on
the inferential data that is, a priori, independent on
the direction of time.

An example illustrates why it is natural that the
normalisation depends on the direction of inference
and is independent on the direction of time. Consider
a system evolving with the identity, i.e. nothing hap-
pens to it. If we are told the state a of the system
and we are not asked to guess anything, then all the
probabilities are trivially 1 = tr |a〉〈a|. Conversely,
if we are only told the system is in one state out of
a orthonormal basis, then the probability that it is
in a given state a is 1

d = 1
d tr |a〉〈a|. When we don’t

guess, all the probabilities are 1. When we are told
to guess but we have no clue, our only option is to as-
sume a uniform distribution. This is true regardless
of whether we are predicting or postdicting

We often use quantum theory to predict, which is
why we generally associate the normalisation factor
1/d to the identity operator in the input space. In
practice, we are normalising our data. If we were post-
dicting, we would associate the normalisation factor
to the identity in the output space. The operator I/d
does not represent a physical fact, but the probability
distribution we use to weight the conditional proba-
bilities.

The results of these two sections show that the irre-
ducible quantum uncertainty applies equally to both
directions of time. Indeed, when dealing with a closed
quantum system, the Born rule gives both the predic-
tion and postdiction probabilities directly. When the
prediction and postdiction probabilities differ, they do
so because of an asymmetry in the inferential data.

4 Quantum Operations
The transformations considered above might seem
limited in scope to researchers in quantum informa-
tion and quantum foundations. In these communi-
ties, the notions of preparation, evolution and mea-
surement are subsumed by the more general notion of
operation, which reflects their more elaborate needs:
a more coarse-grained description of quantum pro-
cesses, independent on the underlying dynamics, the
capacity of melding classical and quantum informa-
tion processing, dealing with classical uncertainty and
so on. However, since agents and labs are made
of atoms and photons, and the interactions between
atoms and photons is satisfyingly described by the
unitary evolution and pure state approach, the results
of the previous section have bearing on quantum op-
erations too.

After a brief survey of the notion of quantum op-
eration, we solve the prediction and postdiction tasks
for a general quantum channel and explain their post-
diction asymmetry.

4.1 Operations
Here we provide a short description of the notion of
operation (for a more careful introduction see for ex-
ample [4, 5, 3]). We then note that this notion is
time-oriented by design and recall how it relates to
the more basic notions.

An operation OA→X , also known as an instrument,
from an input Hilbert space A to an output Hilbert
spaceX is represented is a set {Oi} of completely pos-
itive (CP) trace non-increasing linear maps (aka quan-
tum maps) from the space L(A) of linear operators on
A to L(X), satisfying the completeness equation (aka
the causality condition):

∀ρ ∈ L(A) :
∑

i

trOi[ρ] = tr ρ. (22)

An operation OA→X = {Oi} also defines a completely
positive, trace-preserving (CPTP) map ρ 7→ O[ρ] :=∑

i Oi[ρ]. When the operation OA→X is applied to a
system in state ρ, the outcome i happens with prob-
ability given by the generalised Born rule

P (i|ρ,O) = trOi[ρ], (23)

and the state of the system after this outcome is

ρi = Oi[ρ]
trOi[ρ] . (24)
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We see that the completeness requirement (22)
amounts to a statement of the conservation of proba-
bilities. If the outcome i is unknown, then the state of
the system is a mixture of the states above, weighed
by the relevant probability:

O[ρ] =
∑

i

P (i|ρ,O)ρi =
∑

i

Oi[ρ]. (25)

If the output space of an operation OA→X coincides
with the input space of another operation MX→Y ,
these two operations can be sequentially composed
forming a new operation (M◦O)A→Y = {Mj ◦ Oi}.
If the state of the input system is ρ, the probability
of the outcome ij is

P (ij|ρ,M◦O) = trMj [Oi[ρ]]. (26)

Operations can also be composed in parallel using
the tensor product structure of the underlying Hilbert
spaces.

A preparation of a system associated with a Hilbert
space A is an operation PI→A. By a simple math-
ematical isomorphism, quantum maps from I to A
can always be associated with positive linear opera-
tors on A, so that any preparation can be represented
by a subset {ρi} ⊂ L(A) such that

∑
i tr ρi = 1.

Above, we have considered only preparations of the
form {|ai〉〈ai| /dA}dA

i=1, where {ai} is an orthonormal
basis for A.

A test on the same system is an operation T A→I

from the Hilbert space A to the trivial Hilbert space.
By the isomorphism above, and the Riesz represen-
tation theorem, tests are often also represented by
a collection of positive operators {σj} ⊂ L(A), such
that

∑
j σj = IA with their actions on the state given

by ρ 7→ trσjρ.
An operation ΦA→X with a single outcome is also

called a quantum channel, and is represented by a
CPTP map. Quantum channels are also called deter-
ministic quantum maps, as they have only one out-
come. Above, we considered only unitary quantum
channels, of the form ρ 7→ UρU†, but much more
general ones are possible. For example, consider the
dephasing channel on a qubit:

ρ 7−→ 〈0|ρ|0〉 |0〉〈0|+ 〈1|ρ|1〉 |1〉〈1| (27)

The dephasing channel can be seen as the result of
applying the nondestructive projective measurement{

ρ 7→ |i〉〈i| ρ |i〉〈i|
}1

i=0 (28)

and ignoring the result.
A preparation with a single outcome is also called

a state. States are by definition represented as unit-
trace positive operators, i.e. density matrices. A test
with a single outcome is also called a deterministic
effect. There is only one deterministic effect, repre-
sented by the identity operator.

Note that this formalism is time-asymmetric by
construction. The time asymmetry shows up in two
ways, reminiscent of the Copenhagen-type interpre-
tations. First, the outcomes {i} depend probabilis-
tically on the state of the system in the past: the
probabilities calculated in this setting are invariably
prediction probabilities. Second, the state of a system
at any point in time reflects events in the past, and it
is independent of the events in the future. The only
data assumed to be available is data about the past.

The spaces of states and effects are not isomor-
phic. This was identified as the main source of time-
asymmetry of operational quantum theory in [44],
where it was proposed to enlarge the space of effects
by not requiring that operations sum up to trace-
preserving maps. However, from the perspective of
our present work, we understand this asymmetry be-
tween states and effects as being the difference be-
tween known and unknown in the process of infer-
ence. Preparations represent our assumptions in the
inferential problem, while tests represent the differ-
ent propositions about the unknowns. There is no
need to remove the distinction between preparations
and tests to make quantum theory time-symmetric,
all is needed is to recognise that operational quantum
theory is geared for prediction: a situation where the
data is in the past of the unknowns.

Operational quantum theory is connected to the
simpler setting of pure states and unitary evolutions
by the concept of purification. Any quantum channel
ΦA→X can be purified [54], meaning it can be repre-
sented by a unitary channel UΦ : A⊗B → X⊗Y and
a pure state b for system B such that

∀ρ ∈ L(A) : Φ[ρ] = trY UΦ[ρ⊗ |b〉〈b|]. (29)

In other words, any quantum channel can always be
understood as a unitary interaction with an ancilla
quantum system prepared in a specific way and where
part of the output is ignored. In fact, any operation
OA→X = {Oi} can be purified [55], meaning that it
is mathematically equivalent to a unitary evolution of
the system A in the presence of an ancilla B, in which
part of the output system is ignored and part of it
is measured on an orthonormal basis. That is, there
exists a unitary operator UO on the Hilbert space A⊗
B and a decomposition A ⊗ B ≡ X ⊗ Y ⊗ Z and a
pure state |b〉〈b| ∈ L(B) such that

∀ρ ∈ L(A),∀i :
Oi[ρ] = trY Z

(
(|i〉〈i|Y ⊗ IZ) ◦ UO[ρ⊗ |b〉〈b|]

)
,

(30)

where i now labels an orthonormal basis of the Hilbert
space Y . Pictorially,

=Oi UO

b

i

. (31)
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It is a well-known property of quantum theory that
one can always shift the Heisenberg cut to include
part of the apparatus in the quantum system under
description. This is the physical content of the two
mathematical results above. The label i that distin-
guishes the various outcomes of the operation O is
now seen as labelling the possible values of a pointer
variable, a part of the apparatus that gets entangled
with the system and that, when observed, allows the
determination of the state of the system. If one cared
enough, one could model every quantum operation ex-
plicitly in these terms. But countless purifications are
consistent with the same operation, and these low-
level details are not important when one is only in-
terested in the effect on the given quantum systems.
Quantum operations are useful shorthand.

4.2 Prediction and postdiction with quantum
channels
We now solve the prediction and postdiction tasks
using the generalised Born rule, similarly to how we
did for closed quantum systems. Unitary evolution is
replaced by a CPTP map Φ. The input and output
spaces are A and X respectively, which do not need
to be isomorphic. Preparation and measurement are
performed on bases {ai}dA

i=1 and {xi}dX
i=1. The solution

of the prediction task is given by the generalised Born
rule:

Ppre(x|a,Φ) = tr |x〉〈x|Φ[|a〉〈a|]. (32)
The solution to the postdiction task is found again by
Bayesian inversion

Ppost(a|x,Φ) = Ppre(x|a,Φ)P (a)
P (x) . (33)

Assigning a flat prior for P (a), we can compute the
probability of the data

P (x) =
dA∑
i=1

1
dA
Ppre(x|ai,Φ) = tr |x〉〈x|Φ

[
1
dA

IA

]
,

(34)
which this time is not uniform. Equation (33) then
becomes

Ppost(a|x,Φ) = tr |x〉〈x|Φ[|a〉〈a|]
tr |x〉〈x|Φ[IA] . (35)

This formula was also derived in [40]. At first, it looks
quite different from the formula for the prediction
probabilities. However, it is also a remarkably sim-
ple solution. Note that the postdiction probabilities
are related to the prediction probabilities by a simple
multiplicative factor

Ppost(a|x,Φ) = fΦ(x) · Ppre(x|a,Φ), (36)

where

fΦ(x)−1 =
dA∑
i=1

Ppre(x|ai,Φ) = tr |x〉〈x|Φ[IA]. (37)

For a given measurement outcome x, the prediction
probabilities are proportional to the postdiction prob-
abilities, up to a fixed normalisation factor fΦ(x).
Once one has calculated the set of prediction proba-
bilities, one already has the postdiction probabilities,
up to this normalisation factor.

Inference symmetry is thus broken in general, and
this seems to support the idea there is a fundamental
difference between the past and the future in quan-
tum theory. But it is broken in a simple way, reminis-
cent to the situation in the previous section when we
were concerned with partial data in a closed system.
Indeed, when we “look under the hood” using purifi-
cation, we see that this is essentially what is going on.
From the purified point of view, there is an asymme-
try between inputs and outputs because the purifying
ancilla’s state is assumed known in input and ignored
in output.

4.3 Purified task
Let Φ be a quantum channel from Hilbert space A to
Hilbert space X. Then there exists a unitary channel
UΦ : A ⊗ B → X ⊗ Y and a pure state b for system
B such that

Φ[|a〉〈a|] = trY UΦ[|a〉〈a| ⊗ |b〉〈b|]. (38)

The prediction probabilities for Φ are, by definition,
just those of the corresponding pure open system:

Ppre(x|a,Φ) = Ppre(x|ab, UΦ), (39)

as given in (9). However, in general

Ppost(a|x,Φ) 6= Ppost(ab|x, UΦ). (40)

This is readily explained by the fact that the initial
state of the ancilla is assumed known, or “held fixed.”
Since we know the ancilla’s input state is b, the prob-
ability of the data is in fact

P (x) = Ppre(x|b, UΦ). (41)

Thus, by Bayes’ theorem,

Ppost(a|x,Φ) = Ppre(x|ab, UΦ)
dAPpre(x|b, UΦ) = Ppre(x|a,Φ)

dAPpre(x|b, UΦ) ,

(42)

which indeed immediately translates to (35). We now
have a different perspective on the normalisation fac-
tor fΦ(x): it quantifies the implicit knowledge about
the input ancilla system and how this knowledge af-
fects the postdiction task. The specification of the
quantum channel Φ contains information about the
past of the purifying system system so that postdic-
tion on the quantum channel Φ is equivalent to post-
diction on the purified system but with some added
information about the input system.
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Indeed, we can arrive at the same formula by us-
ing the postdiction probabilities for the purified open
system and the simple formula P (a|b) = P (ab)/P (b).
Indeed one can verify that

Ppost(a|x,Φ) = Ppost(ab|x, UΦ)
Ppost(b|x, UΦ) , (43)

by using (11) and (15).
While we have used an arbitrary purification, the

two equations above hold for any purification of the
quantum channel Φ. So, whatever the physically ap-
propriate purification might be, the lesson is the same:
the inference asymmetry for a quantum channel de-
rives not from an asymmetry of quantum mechanics,
but from an asymmetry in the questions asked.

4.4 Inference-symmetric channels
We have seen that not every quantum channel is
inference-symmetric. Thanks to the solution (35) to
the postdiction task in the case of a general quan-
tum channel, we immediately see that a channel Φ
is inference-symmetric if and only if fΦ(x) = 1 for
all pure states x, namely, if and only if it is identity-
preserving:

Φ[IA] = IX . (44)
Since quantum channels are trace-preserving, it fol-
lows that the input and output spaces are isomorphic.
The trace and identity preserving maps are known
as the bistochastic quantum maps or unital channels
[56, 57], and they are the free operations of the re-
source theory of quantum thermodynamics [58] with
trivial hamiltonians, and the resource theory of purity
[59].

Every unitary channel is obviously bistochastic.
The noisy operations:

ρ 7−→ trB U

[
ρ⊗ 1

dB
IB

]
. (45)

form a strict subset of the bistochastic channels
[58, 60]. A noisy operation represents the evolution of
a system that undergoes unitary interaction with an
ancilla about which nothing is known. These chan-
nels are exactly those that are simulated by the tasks
considered in the previous section when Y ≡ B and
both Y and B are left out of the task.

Since the bistochastic channels are the only chan-
nels that admit an active time-reversal [61], the equiv-
alence of inference-symmetry and bistochasticity fur-
ther connects inference-symmetry and time-reversal
invariance, as we will see in the next section.

4.5 More general preparations
Until now, we limited the preparation to the random
element of an orthonormal basis. The reason we con-
sidered this is that it reflects the simplest way to in-
teract with a system, namely, to couple to one of its

non-degenerate observables. But what if our friend
tells us that they prepared one out of n, not neces-
sarily orthogonal, states? This situation can also be
accounted for using purification.

Say the set of possible initial states states is
{ψi}n

i=1, in the d-dimensional Hilbert space A, let U
be the unitary evolution and {xj}d

j=1 the orthonor-
mal basis of the measurement. Then the prediction
probabilities are

Ppre(x|ψi, U) = | 〈x|U |ψi〉 |2. (46)

The postdiction probabilities are again found by
Bayes’ theorem:

Ppost(ψi|x, U) = Ppre(x|ψi, U)P (ψi)
P (x) . (47)

Since we are only told the set of possible states, we
assume a flat prior over them:

P (ψi) = 1
n
, (48)

and then the probability for the outcome is

P (x) =
n∑

i=1

1
n
| 〈x|U |ψi〉 |2 = tr (|x〉〈x|U [ρA]) (49)

where we have defined ρA :=
∑

i |ψi〉〈ψi| /n. And thus

Ppost(ψi|x, U) = Ppre(x|ψi, U)
n tr (|x〉〈x|U [ρA]) . (50)

So the prediction and postdiction probabilities are in
general different if the space of possible initial config-
urations does not represent an orthonormal basis.

We can understand this asymmetry again in terms
of implicit knowledge. Let B be a n-dimensional
Hilbert space, and {bi}n

i=1 an orthonormal base for
it. Choose an orthonormal basis {ai}d

i=1 on A and
find a unitary UP on A⊗B that maps:

UP : |a1〉 ⊗ |bi〉 7−→ |ψi〉 ⊗ |bi〉 . (51)

Also define the unitary U ′ : A⊗B → X ⊗B given by

U ′ = (U ⊗ IB) ◦ UP . (52)

We can relate the prediction and postdiction proba-
bilities for these two games. For prediction we have:

Ppre(x|ψi, U) = Ppre(x|a1bi, U
′) (53)

since, for an arbitrary basis {yi}n
i=1 of B:

Ppre(x|a1bi, U
′) =

n∑
j=1
〈xyj |U ′|a1bi〉

=
n∑

j=1
| 〈xyj |U ⊗ IB |ψibi〉 |2

= | 〈x|U |ψi〉 |2 ·
n∑

j=1
| 〈yj |bi〉 |2

Ppre(x|a1bi, U
′) = Ppre(x|ψi, U),

(54)
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where we have used the definitions of U ′ and UP to
obtain the second equality.

For postdiction we have

Ppost(ψi|x, U) = Ppost(a1bi|x, U ′)
Ppost(a1|x, U ′)

, (55)

which is entirely analogous with (43). The proof is
just a matter of expressing nominator and denomina-
tor in terms of probabilities for the original task:

Ppost(a1bi|x, U ′) = 1
n

n∑
j=1

Ppost(a1bi|xyj , U
′)

= 1
n

n∑
j=1

Ppre(xyj |a1bi, U
′)

= 1
n
Ppre(x|a1bi, U

′)

Ppost(a1bi|x, U ′) = 1
n
Ppre(x|ψi, U)

(56)

and so

Ppost(a1|x, U ′) =
n∑

i=1
Ppost(a1bi|x, U ′)

=
n∑

i=1

1
n
Ppre(x|ψi, U)

Ppost(a1|x, U ′) = tr (|x〉〈x|U [ρA]) .

(57)

Thus, cases where we have more general prepara-
tions can be understood in terms of preparations on
orthonormal bases. From (55), in analogy with (43),
that the preparation of non-orthonormal states con-
tains some implicit information about an ancilla sys-
tem that allows to prepare the non-orthogonal states.
Again, we see that in this purified game, the only way
to achieve postdiction probability 1 is to marginalise
over bi, i.e. not guess at all.

This method can be further generalised to the
preparation of an arbitrary set of density operators
by adding a purifying system that gets traced over in
the prediction task, and is assigned a flat prior in the
postdiction task. The asymmetry again can be un-
derstood as an asymmetry in the assumed knowledge
in the tasks.

5 Relation between time-reversal and
postdiction
We have explored the symmetry between guessing the
future and guessing the past. We have seen that in
the case of a closed system, the past is quantitatively
as uncertain as the future, in the sense that the Born
rule can also be used, without modification, to guess a
past event based on information about a future event.
In the case of a general quantum channel, this sym-
metry is broken: the prediction and postdiction prob-
abilities are given by different formulas. However, the

reason for this is that the implementation of a general
quantum channel requires the preparation of a system
in a given state, so that knowing a channel was imple-
mented confers information about the input system,
breaking the symmetry between prediction and post-
diction. Quantum probabilities by themselves have
no regard for the direction of time.

In this section, we examine another way in which
the quantum probabilities do not distinguish between
past and future by examining the more familiar no-
tion of time symmetry: that of time-reversal symme-
try. There are two notions of time-reversal, which we
could call active and passive, or operational and de-
scriptive. These notions of time-reversal are slightly
different from, but closely related to, those that would
be applied to a system of differential equations, where
one maps solutions to solutions.

In the passive time-reversal of a system, one simply
examines the changes in the system in the reverse or-
der, starting from the future and moving towards the
past. Applied to the inference tasks we have been con-
sidering, passive time-reversal amounts to switching
from the prediction task to the postdiction task and
vice versa. The previous sections have thus been an
investigation of passive time-reversal symmetry; we
proved that passive time-reversal symmetry is equiv-
alent to inference-symmetry.

Active time-reversal consists instead in finding a
process that undoes the change that was brought by
a previous transformation. In the context of the infer-
ence tasks, active time-reversal consists in considering
a new, time-reversed task.

5.1 Time-reversed task with unitary channel
Unitary maps are invertible, and thus for every evo-
lution U of a closed quantum system, there exists a
time-reversed evolution given by the adjoint U†.

Definition 4 (Time-reversed task). Consider a task
in which a closed system is prepared in a basis {ai}d

i=1
and measured in a basis {xi}d

i=1 after undergoing the
unitary evolution U . In the time-reversed task, the
system is prepared in {xi}d

i=1 and measured in {ai}d
i=1

after undergoing the evolution U†.

It follows immediately from the properties of the inner
product that

Ppre(a|x, U†) = Ppre(x|a, U). (58)

While this is result is trivial to derive, it is never-
theless profound, as it compounds with the inference
symmetry

Ppre(x|a, U) = Ppost(a|x, U), (59)

to show how little regard the probabilities of closed
quantum systems have about the direction of time.
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Indeed, given two pure states a and x of the corre-
sponding Hilbert spaces, the same quantity

| 〈x|U |a〉 |2 (60)

is the solution for four conceptually distinct taks:

• Ppre(x|a, U), for the prediction task with unitary
evolution U ,

• Ppost(a|x, U), for the postdiction task with uni-
tary evolution U ,

• Ppre(a|x, U†), for the prediction task with time-
reversed unitary evolution U†, and

• Ppost(x|a, U†), for the postdiction task with time-
reversed unitary evolution U†.

The familiar Born rule, which is normally thought to
apply only to the first case, actually applies to all four
of these cases. In each one of them, x can be either
the future or the past event, and can either be the
known or unknown in the scenario.

Ppre(x|a, U) �
active - Ppre(a|x, U†)

| 〈x|U |a〉 |2

Ppost(a|x, U)

passive

?

6

�
active

- Ppost(x|a, U†)

passive

?

6

Let us now consider the case of open systems and
study the time-reversed version of the tasks examined
in section 3. If we neglect the outcome of the mea-
surement on B, we can write:

Ppre(a|xy, U†) =
dB∑
i=1

Ppre(abi|xy, U†) (61)

=
dB∑
i=1

Ppre(xy|abi, U) (62)

Ppre(a|xy, U†) = Ppost(a|xy, U), (63)

where we have used the time-reversal symmetry (58)
in the second equality, and (11) in the third. This
equation relates the probability of the prediction task
to the probability of the time-reversed postdiction
task. In both cases, we are calculating the probability
of event a based on knowledge of event xy. However,
in one case xy is to the past of a and in the other
case the opposite is true. In a similar fashion, we can
derive the following equations:

Ppre(ab|x, U†) = Ppost(ab|x, U), (64)
Ppost(xy|a, U†) = Ppre(xy|a, U), (65)
Ppost(x|ab, U†) = Ppre(x|ab, U), (66)

for when only one side is being ignored, as well as

Ppre(a|x, U†) = Ppost(a|x, U), (67)
Ppost(x|a, U†) = Ppre(x|a, U), (68)

for when data is being ignored on both sides. Recall
the discussion in section 3 about the normalisation of
the identity that is required to calculate the quantities
on the right hand side. The same applies here, which
reinforces the lesson: the direction of time is irrelevant
to the normalisation of the identity. What matters is
the direction of inference:

Ppre(x|a, U) = U

x

a
1
dB

= U

a

x

1
dB

= Ppost(x|a, U†).

(69)
The equation above1 refers to inference tasks in

which we have information about the system A and
want to guess something about the system X. It does
not matter if A is in the past or the future of X. The
answer is the same. There is no way of telling which
way the arrow of time is pointing.

5.2 Time-reversed task with quantum channel
The natural candidate for the time-reversed task is
the one with the adjoint Φ† of the quantum chan-
nel Φ. In fact, Chiribella et. al. proved that this
is essentially the unique way of defining the active
time-reversal of a quantum channel [61, 62]. We must
distinguish two cases, as the adjoint of a CPTP map
may or may not be a CPTP map.

The adjoint Φ† is trace-preserving if and only if Φ is
unit preserving since, by the definition of the adjoint,
for all ρ ∈ L(X):

tr Φ†[ρ] = tr IA ◦ Φ†[ρ] = tr Φ[IA] ◦ ρ. (70)

Furthermore, we have seen that the bistochastic chan-
nels are exactly the inference symmetric channels. In
analogy with the discussion above on the closed sys-
tems, for a bistochastic channel Φ, the quantity

tr |x〉〈x| ◦ Φ[|a〉〈a|], (71)

given by the generalised Born rule, yields the numer-
ical value of four a priori conceptually distinct quan-
tities:

• Ppre(x|a,Φ), for the prediction task with bis-
tochastic channel Φ,

• Ppost(a|x,Φ), for the postdiction task with bis-
tochastic channel Φ,

1In the diagrammatic calculus, flipping a diagram along a
horizontal axis denotes taking the hermitian conjugate.
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• Ppre(a|x,Φ†), for the prediction task with time-
reversed bistochastic channel Φ† and

• Ppost(x|a,Φ†), for the postdiction task with time-
reversed bistochastic channel Φ†.

Thus postdiction-symmetry is intimately linked with
time-reversal invariance even in the context of open
quantum systems.

In general, however, the adjoint of a CPTP map
might fail to be trace non-increasing. So it might not
only fail to represent a quantum channel, but may not
even be a quantum map, i.e. part of an operation. In
this case, an active time-reversal of the corresponding
quantum channel does not exist, as has been recently
shown in [61, 62].

5.3 Quantum channels towards the past
A quantum channel might not have an active time-
reversed version. Nevertheless, we can learn some-
thing striking by looking at the time-reversed task of
a purification of this quantum channel: CPTP maps
can describe postdictions in situations in which part
of the future data is left implicit and fixed. Consider
the time-reversed version of the purified task in sec-
tion 4.3. The system is prepared in some state corre-
sponding to the basis {xiyj} and measured on some
basis {aibj} after undergoing the transformation de-
scribed by UΦ

†. Using the time-symmetry of unitary
open systems (66), observe that

Ppre(x|a,Φ) = Ppre(x|ab, UΦ) = Ppost(x|ab, U†Φ).
(72)

That is, the quantity

tr |x〉〈x|Φ[|a〉〈a|] (73)

is the solution to two different tasks:

• Ppre(x|ab, UΦ) for the prediction task with uni-
tary UΦ, and

• Ppost(x|ab, U†Φ) for the time-reversed postdiction
task with U†Φ.

Thus one can take the quantity (73) to relate to an in-
ference towards the past, in a situation in which part
of the future events are only implicitly described. This
furthers the argument that the inference-asymmetry
of the CPTP maps is not an asymmetry related to
an intrinsic direction of time in the details of a quan-
tum process, but in an asymmetry in the data about
a system. The input of a CPTP map does not neces-
sarily lie to the past of the output, it can also lie to
its future.

This last insight will play a major role in dispelling
a source of confusion regarding the time-orientation
of quantum phenomena.

6 The arrow of inference

In this section, we discuss two closely related asym-
metric aspects of the operational formalism, encapsu-
lated by two maxims: “there exists a unique determin-
istic effect” and “no signalling from the future”. These
expressions reflect mathematical properties of the the-
ory that are often taken as evidence of an asymmetry
between the past and the future. Here we show that
these properties reflect the asymmetry due to the ar-
row of inference, which is in principle independent of
the arrow of time.

6.1 “There exists a unique deterministic ef-
fect”

As a mathematical statement, given the definitions,
this maxim is correct. A quantum map is deemed
deterministic, or causal, if it is trace preserving. An
effect is a quantum map from a Hilbert space to the
trivial Hilbert space. Thus a deterministic effect is an
effect that is trace-preserving. It is easy to see that
the only such effect is the one that maps a state to its
trace, i.e. the discard operator. In this precise sense
the discard is the only deterministic effect.

As a statement of the irreducible uncertainty of
quantum phenomena, the maxim is also correct: the
only way to be certain about a prediction in all cases is
not to guess at all. In the context of prediction tasks,
discarding means not trying to predict anything about
the system and is represented by the identity operator
as an effect (see section 3). Not guessing is the only
way to always guess right, and this is the physical
content of “there exists a unique deterministic effect.”

The uniqueness of the deterministic effect is some-
times understood as the conservation of probability, a
mere aspect of inference (see for example [63, 35]).
However, the maxim is sometimes taken to signify
something fundamental about the distinction between
the past and the future [44, 64], and this is not cor-
rect. In fact, we can define by analogy what it means
to discard something in the past. If discarding in the
future means marginalising prediction probabilities,
then discarding in the past means marginalising post-
diction probabilities. Discarding in the past is also
represented by the identity operator when computing
probabilities—this time in the input side, as we have
seen at the end of section 3. Indeed, looking at the
formula (35) for postdiction with a general quantum
channel, we see that the only way to have probability
1 is to discard the system, i.e. by not guessing at all.

Thus, the uniqueness of the discard operator is not
a consequence of the time-orientation of quantum phe-
nomena. It is instead a manifestation of thoroughly
time-symmetric quantum indeterminism in the con-
text of prediction.

Accepted in Quantum 2021-07-22, click title to verify. Published under CC-BY 4.0. 13



6.2 “No signalling from the future”
This maxim means that the probabilities of the out-
comes of a quantum operation do not depend on the
nature of a later operation. To lay down some nota-
tion, we reproduce the standard proof of this property,
which is an immediate consequence of the equations
(22) and (26). In the next subsection we comment
on the physical reasons for this and show that it too
is in fact a property of the arrow of inference, not a
property of time.

Suppose a system starts in a state ρ, and the oper-
ation EA→D = {Ex} is applied. The quantity

Ppre(x|ρ, E) = trEx[ρ] (74)

is the probability of observing outcome x.
Suppose instead that the operation E is immedi-

ately followed by another operation FD→Z = {Fy}.
The probability for the outcomes x and y is given
definition by (26):

Ppre(xy|ρ,F ◦ E) = trFy [Ex[ρ]] (75)

An immediate application of probability theory and
the completeness equation (22) yields

Ppre(x|ρ,F ◦ E) =
∑

y

trFy [Ex[ρ]] = trEx[ρ], (76)

and we thus have the identity

Ppre(x|ρ,F ◦ E) = Ppre(x|ρ, E). (77)

The probabilities of the outcomes of the first oper-
ation are independent on the nature of the second
operation.2 The case in which the operation F is
performed and the case in which it is not are indis-
tinguishable by looking only at what happens at E .
A future experimenter cannot affect the statistics in
the present by manipulating a system in the future,
hence “no signalling from the future.”

What about the opposite direction? By linearity
and (25) we have

Ppre(y|ρ,F ◦ E) = Ppre(y|E [ρ],F), (78)

so that the probability of y clearly depends on the
first operation E .

Thus the future operation does not affect the prob-
abilities of past events, while the past operation af-
fects the probability of future events. One seems com-
pelled to conclude that this reveals a time-asymmetry

2Note that the no-signalling from the future property (77)
can also be seen as a motivation for the definition (26) for the
probabilities of the outcomes of sequential operations in the
first place. Indeed by linearity, these can be rewritten as:

trFy [Ex[ρ]] = tr
[
Fy

(
Ex[ρ]

trEx[ρ]

)]
· trEx[ρ] (79)

so that, by setting ρx = Ex[ρ]/trEx[ρ] one can write:
Ppre(xy|ρ,F ◦ E) = Ppre(y|ρx,F) · P (x|ρ, E). (80)

in quantum theory. But this conclusion is too quick.
In previous sections, we have encountered various sit-
uations in which asymmetric aspects of quantum the-
ory should not be ascribed to a difference between
past and future, but to the directionality of inference
and an asymmetry of the data. We have also seen
that the operational formulations assume that the ar-
row of time and the arrow of inference point the same
way. We should be cautious.

6.3 “No signalling from the further unknown”

The calculation above in fact shows that the future
operation does not affect the prediction probabilities
of events in its past, while the past operation affects
the prediction probabilities of events in its future. In
other words, if somebody in the past of both opera-
tions is trying to guess what would be the outcome
of the first operation, they can safely discard any in-
formation about the second operation that might be
available at that time.3 Put another way: an event
further away from the data does not affect the predic-
tion probabilities closer to the data.

A similar statement holds also when the arrow of
inference points toward decreasing time, i.e. when
doing postdiction. As we have already seen in sec-
tion 5.2, one can understand a CPTP map as a short-
hand to calculate a postdiction probability when a
future event is implicitly considered fixed. The same
is generally true of any operation: it can serve as a
shorthand to aid the calculation of postdiction proba-
bilities. Then (77), understood as a statement about
postdiction probabilities, tells us that what happened
in the further past does not affect our ability to infer
what happens in the closer past. When predicting, an
event does not affect prediction probabilities about an
event in its past. When postdicting, an event does not
affect postdiction probabilities of events in its future.
In both cases, there is no signalling from the further
unknown.

As an illustration, let us consider a purification of
the two operations EA→D and FD→Z above. Let us
assume for simplicity that there is no need to dis-
card a part of the output system (by handling the
more general case we would reach the same con-
clusions but with more typographical effort). Then
there exists Hilbert spaces B,C,X and Y , unitaries
UE : A⊗B → X ⊗D and UF : D ⊗ C → Y ⊗ Z,
pure states |b〉 ∈ B and |c〉 ∈ C as well as orthonormal
bases for X and Y labelled by x and y respectively,

3To be sure, having knowledge of the outcome of the second
operation does provide an advantage in guessing the outcome
of the first one, since

P (x|y, ρ,F ◦ E) = trFy [Ex[ρ]]/trFy [E[ρ]]. (81)

This data however is unavailable to somebody sitting in the
past of both operations.
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such that for all ρ ∈ L(A) and σ ∈ L(D):

Ex[ρ] = trX |x〉〈x| ◦ UE [ρ⊗ |b〉〈b|], (82)
Fy[σ] = trY |y〉〈y| ◦ UF [σ ⊗ |c〉〈c|], (83)

meaning that:

b c

UE

UF

yx

=
Ex

Fy

. (84)

We can write down the prediction probabilities for the
purified task in terms of the operations:

Ppre(xy|abc, UFUE) = trFy[Ex[a]]. (85)

Now we can use the property (66) of time-reversed
unitary tasks to also write

Ppost(xy|abc, U†EU
†
F ) = trFy[Ex[a]]. (86)

Thus the quantities trFy[Ex[a]] are also postdiction
probabilities for a different scenario, in which future
events b and c are held fixed, and this knowledge is
used to guess something happening to their past (x
and y):

b c

UE

UF

yx

=
Ex

Fy

a

a

. (87)

In this case, the operation F contains information
about something that happens earlier in the system,
namely, the interaction U†F between the subsystems
Y and Z, and the outcome of the measurement of C.
All of this information is irrelevant when postdicting
only the preparation on X:∑

y

Ppost(xy|abc, U†EU
†
F ) = Ppost(x|abc, U†E). (88)

Thus, when postdicting, the outcome and nature of
the earlier operation is irrelevant to the probabilities
for the outcome of the later operation.

6.4 Why we can signal from the past
We have seen that the operation E affects the pre-
diction probabilities for the outcome of F . How is
this related to the notion of signalling? Let’s imagine
two parties, one located where E takes place and one

where F takes place. Let’s call them Eve and Fred.
How can Eve send a signal to Fred? The barebone
scenario for signalling to the future is that Eve’s op-
eration is simply a state preparation of a qubit, and
Fred’s is a projective measurement. Eve, who knows
the basis on which Fred will measure, chooses one of
the two states so that she fully determines the out-
come of Fred’s operation. Like this, she can send one
bit of information.

Notice, however, that Eve’s ability to choose is cru-
cial to this protocol. If she cannot pick what state
to send to Fred, she cannot send a message to him.
All she can do is try to predict what will be the
outcome of Fred’s measurement, once—and if—she
knows what state she sent him. How does somebody
prepare a system in a specific state? In practice, this
is done by subjecting the system to a maximal test
and discarding the systems yielding unwanted results
[65]. Alternatively, one can apply a unitary transfor-
mation to the system, conditional on the outcome of
the maximal test. Both of these procedures require
an increase in the entropy of the universe, as the first
involves picking and choosing [53, 66] and the second
is an instance of erasure so Landauer’s principle ap-
plies [67], a rigorous proof of which just appeared [68].
Thus, signalling is a concept beyond single quantum
transition probabilities and has its origins in the ther-
modynamic arrow of time.

We are time oriented creatures, we know more
about the past than about the future, we mostly try
to guess the future. Quantum probabilities do not
care if you are making guesses about the future or
the past. They are about predicting what is unknown
from what is known. The difference between what is
known and what is unknown is at the origin of the
time asymmetric maxims of the operational formu-
lations. The first maxim arises from the fact that
postdiction scenarios are rarer than prediction ones
in practice. If we want to learn about the past, we
find there are plenty of records about past events in
the present. The existence of traces is not a property
of the probabilities of individual quantum systems, so
the fact that we rarely have to guess about the past
the same way we have to guess about the future is
no evidence of a time asymmetry of the physics of
quanta.

The grip of the second maxim on the community
is more subtle. It rests on the notion of signalling,
which is itself tightly linked with ideas of causation
and agency, concepts we have strong intuitions for
and rely on daily. We humans make choices and these
choices influence our future (not our past). The same
goes for a lot of systems around us: when my laptop
suddenly “decides” to break, it will affect my abil-
ity to finish a future paper (not a past one). Is this
time-orientation a direct consequence of some time
asymmetry in quantum phenomena? Hopefully, by
now, the answer is clear. Is causation a fundamental
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property of the world in some other way? This ques-
tion has received surprisingly little attention from the
physics community at large [1]. This question needs
to be addressed carefully if one hopes of extending
these operational formalisms to probe physics outside
laboratories. The notion of causes always preceding
effects is strongly related to notions of agency. And
agency is a perspectival property, stemming from a
partial description of systems and the presence of an
entropy gradient [53, 66]. One should be cautious in
extending notions of time oriented causation all the
way to elementary physics.

7 Time orientation of other formalisms
Before concluding the paper, we add some comments
regarding the time orientation in other formalisms.

In the de Broglie-Bohm interpretation [69, 70], the
particle and the pilot-wave obey time-reversal invari-
ant dynamics. The Everettian wavefunction [71, 72]
also obeys time-reversal invariant dynamics. Branch-
ing towards the future is interpreted as a past low
entropy condition: systems were uncorrelated in the
past, hence the vanishing of von-Neumann relative
entropy. Alternatively, it can be interpreted as a per-
spectival aspect of the Everettian relative state deter-
mined by an observation in the present.

The Copenhagen quantum state is correlated with
past observations, not future ones, but the state
is, of course, unobservable and its ontological sta-
tus is debated. Its empirical content is given by the
probabilities it allows to calculate. If we ask time-
symmetric questions, the probabilities we obtain are
time-symmetric [38]. The state is assumed to be cor-
related with past events because we are using past
data to infer about the future. If we want to guess
about the past, we could just as well use a quantum
state correlated with a future event [39, 42, 73].

In QBism [47], quantum theory is interpreted as
a means to aid decision making, allowing an agent
to calculate the probabilities of the consequences of
their interactions with the world. Because decision-
making agents play a central role in bringing about
the world according to the QBists [74], the ontology
of the theory is fundamentally time oriented.

Lab measurements generally involve decoherence
and amplification of a microscopic phenomenon to the
macroscopic realm, both of which rely on the entropy
gradient. Views of quantum theory that insist that
the only real events are of this kind are therefore
time-oriented, even though the probabilities them-
selves might be time-symmetric. These views also
imply that there is no interpretation of the theory
outside of the macroscopic approximation.

According to the relational interpretation of quan-
tum mechanics (RQM) [31, 75], facts happen at every
interaction between any two systems, but the facts
are relative to the systems involved in the interac-

tion. The quantum state only plays a computational
role in this interpretation. Decoherence comes into
play to ‘stabilise’ a fact [76], so that one might ignore
its relational nature, which is manifest in interference
effects. Decoherence requires information loss and an
increase in entropy. Hence RQM is a time-symmetric
formulation of quantum theory, but the dynamics of
relative facts is time symmetric while the dynamics of
stable facts is time oriented.

Conclusion
Quantum theory is not about predicting the future, it
is about time-symmetric conditional probabilities re-
lating events. The directionality internal to the the-
ory is the arrow of inference, the difference between
known and unknown.

There are formulations of quantum theory that
break time reversal symmetry and use time ori-
ented theoretical notions. These either refer to non-
observable entities, or to assumptions about the time
orientation of inference problems, or to the entropic
time orientation of decoherence. Examples of such
formulations are provided by the use of a quantum
state determined by past interactions in the Copen-
hagen interpretation, and the use of the quantum op-
erations described above. The time orientation of op-
erations is due to them being high-level notions with
a built-in assumption about time asymmetric capabil-
ities of the experimentalists.

The time orientation of the formalisms we use is de-
termined by the common boundary conditions we set
for the physical processes we study: they come from
the assumptions about the agent interacting with the
system and the conditions she imposes on it. The
agent is not directly modelled in the theory and is
instead represented by the inferential boundary con-
ditions and choice of operations, the exogenous vari-
ables of [77]. Time orientation is in this way external
to the elementary quantum process being modelled.
It can, in principle, be entirely accounted for at the
level of statistical mechanics as a consequence of the
existence of an entropy gradient, namely past low en-
tropy [78, 2, 53, 66].

Some authors [44, 38] have built time-symmetric
theories to replace quantum theory. However, the
results of sections 2 and 5 show that quantum the-
ory is already time-symmetric as it is. The transi-
tion probabilities calculated with quantum theory are
blind to the direction of time. The probabilities of
closed quantum systems are inference symmetric and
time-reversal invariant. Thus, when accounting for
all the relevant degrees of freedom, the predictions of
quantum theory are thoroughly time-agnostic. The
probabilities of open quantum systems are in general
neither inference symmetric nor time-reversal invari-
ant. We have shown that the asymmetry between
prediction and postdiction in this case is only a con-
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sequence of treating the two problems asymmetrically,
by assuming more knowledge in one case than in the
other. Both inference asymmetry and the failure of
time-reversal invariance of quantum channels can be
understood in the same terms. This asymmetry4 is
not intrinsic to the mechanical theory, but is, rather,
an asymmetry of the questions we humans ask using
the theory.
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