
HAL Id: hal-02981199
https://hal.science/hal-02981199

Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Grouping tasks to save energy in a cyclic scheduling
problem: A complexity study

Claire C. Hanen, Zdenek Hanzalek

To cite this version:
Claire C. Hanen, Zdenek Hanzalek. Grouping tasks to save energy in a cyclic scheduling prob-
lem: A complexity study. European Journal of Operational Research, 2020, 284 (2), pp.445-459.
�10.1016/j.ejor.2020.01.005�. �hal-02981199�

https://hal.science/hal-02981199
https://hal.archives-ouvertes.fr


Grouping tasks to save energy in a cyclic scheduling problem:
a complexity study

Claire Hanen

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France

UPL , Université Paris Nanterre , 92000, Nanterre, France

Zdenek Hanzalek

Czech Technical University in Prague
Czech Institute of Informatics, Robotics and Cybernetics

CZ-160 00 Prague 6, Czech Republic

Abstract

This paper is motivated by the repetitive and periodic transmission of messages in Wireless Sensor Net-

works (WSNs) given by the ZigBee standard. In order to save energy, communication tasks are grouped

in time. The WSN applications, such as control loops used in production lines, impose deadlines on the

message delivery time.

By introducing a grouping constraint, this paper extends the polynomial cyclic scheduling problem of

building a periodic schedule with uniform precedence constraints and no resource constraints. We consider

that each task belongs to one group, and each group is to be scheduled as a super-task in every period.

We show two examples issued from different applications of such grouping constraints, using uniform

constraints to model the deadlines expressed in the number of periods. We tackle the feasibility problem

(the existence of a periodic schedule), which has shown to be independent of the processing times. We

propose a graph formulation of the problem using the retiming technique.

In the ZigBee case, we prove that the particular tree structure of the groups and of the uniform

precedences based upon the communication tree, lead to a polynomial algorithm to solve the problem.

But the general problem is proven to be NP-complete even if no additional resource constraints are

considered, and unit processing times are assumed. This extension of the cyclic scheduling leads to a new

range of grouping problems with applications, not only in communication networks but also in production

and logistics scheduling.

Keywords: scheduling, complexity theory, cyclic scheduling, task grouping, energy savings

1. Introduction

This paper was initially motivated by the periodic scheduling of messages in Wireless Sensor Networks

(WSNs). Applications (such as industrial control systems with feedback loops) using WSNs define a set

of messages to be periodically transmitted through the sensor network, along predefined routes eventually

in opposite directions. The applications usually impose deadline constraints on a message delivery time

Preprint submitted to European Journal of Operational Research January 6, 2020



(called the start-to-end deadline in this paper), which makes the scheduling of communications interesting

from an OR perspective, and relates it to cyclic scheduling problems.

The wireless devices are usually battery-powered, so the communications performed by the device

during each period are grouped in time, in order to save energy. Thus, the main motivation of the paper

was to model the grouping and to study how it affects the complexity of the underlying cyclic scheduling

problem. The grouping may be considered not only in communication networks, but also in production

and logistics (see the example in Subsection 2.3), so that the question we tackle in this paper is a general

issue for cyclic scheduling.

Cyclic scheduling addresses problems where a set of tasks T has to be repeated iteratively and several

repetitions may interleave in time. Such problems can be found in the computation loops of Dupont de

Dinechin & Munier-Kordon (2014); Benabid & Hanen (2011); Hanzalek (1998) or in the embedded systems

of Marchetti & Munier-Kordon (2009); Khatib et al. (2016); Bodin et al. (2016). Cyclic scheduling was

successfully applied in robotic cells or the shop problems of Proth & Xie (1995); Levner et al. (2007);

Alcaide et al. (2007); Gultekin et al. (2006); Bonfietti et al. (2011); Kats & Levner (2011b); Bocewicz

et al. (2017); Kats & Levner (2018); Pempera & Smutnicki (2018). A cyclic variant of a hoist scheduling

problem was studied in Che et al. (2015); Feng et al. (2018); Gao & Zhou (2019).

Most papers use a model with cyclic precedence constraints, due to the data flows or production process

dependencies. The simplest and widely accepted model is the uniform precedence model of Munier (1996);

Brucker & Kampmeyer (2005); Hanen (2009), which is used in this paper too.

One repetition of a set of tasks is called an iteration. A schedule assigns a starting time si,k to each

iteration k ≥ 1 of each task i. So for each i, (si,k)k≥1 is an infinite increasing sequence. The usual

criterion in cyclic scheduling is to minimize the average cycle time, i.e., the mean time interval between

two iterations of the task set T lim
k→ +∞

maxi∈T si,k
k

.

The concept of uniform precedences is used to control the interleaving of the iterations. Assuming

uniform precedence constraints and no additional resource constraint, periodic schedules (for which an

occurrence of task i starts every λ time units, i.e., sik = si + (k − 1)λ ) are dominating schedules (i.e.,

among the optimal schedules, at least one is periodic) with respect to the usual criteria of the average

cycle time minimization. λ is then the average cycle time of the schedule. It is also called the period of

the periodic schedule. Moreover, under these assumptions, there are polynomial algorithms to compute

the minimum period λ of a periodic schedule in Munier (1996); Levner & Kats (1998); Hanen (2009).

Even if periodic schedules are no longer dominating in the presence of additional resource constraints,

many authors consider the periodic schedule, since they are easy to implement and since approximation

algorithms have been found for these problems. Among them we note the retiming based algorithms of

Gasperoni & Schwiegelshohn (1994); Calland et al. (1998) that inspired the techniques developed in this

paper. From the complexity point of view, a cyclic scheduling problem that combines resource constraints

and arbitrary uniform precedence constraints is usually NP-hard, Hanen (1994), but some polynomial

2



special cases have been published, Hanen (2009); Kats & Levner (2011a).

In Hanzalek & Jurcik (2010) the scheduling problem induced by the WSN following the IEEE 802.15.4/Zig-

Bee standard was studied, and it was observed that the problem could be formulated as a periodic cyclic

scheduling problem, and that precedences induced by the data flow could be formulated as uniform

precedence constraints. When considering multiple collision domains (that may be modeled as dedicated

resources with multi-resource tasks) and exact start-to-end deadlines, we modeled and solved the problem

by ILP (Integer Linear Programming).

Then in Hanzalek & Hanen (2015), “core precedence constraints” were introduced to model the general

precedence relations between the tasks during an interval of length λ, the period, regardless of their

iteration number. That was the first attempt to model one of the characteristics of the grouping of tasks.

It was shown that the existence of a periodic schedule with uniform precedence constraints and core

precedence constraints is an NP-hard problem, even without additional resource constraints. However,

this model did not provide a polynomial solution to the ZigBee case.

In this paper, we propose a new model for the grouping in a cyclic context that is suitable for WSN,

and was partly inspired by batching, or clustering.

Each task belongs to a group, as in Potts & Kovalyov (2000) where each task belongs to a family.

However, unlike in Potts et al.’s paper, no setup times are considered to model the incentive to the group

tasks of the same family into a batch. The grouping constraint imposes that at each period interval, all

the tasks of the same group have to be processed together as a super-task, but the iteration number of

the tasks composing the super-task is still to be determined. A precedence constraint between the two

tasks belonging to the different groups is then applied to the corresponding super-tasks.

In Section 2, we address the general UGF (Uniform Grouped Feasibility) problem of the feasibility of

a system combining uniform precedence constraints and grouping constraints. We describe a production

example, and we use cyclic scheduling theory to express the UGF as a graph problem that does not

depend on the processing times.

In Section 3, we address the WSN ZigBee standard as a special case of the UGF . We propose a

model of the start-to-end deadlines expressed in a number of periods that allows them to be formulated

as usual uniform precedence constraints. We then show that, due to the special structure of the groups,

the existence of a feasible periodic schedule can be checked in polynomial time.

In Section 4, we show that the general UGF problem, defined in Section 2, is NP-complete, even if

unit processing times are assumed.

2. General problem setting

In this section, we introduce the notations, we show an example from the area of production scheduling,

and we define the features of the cyclic grouping problem addressed in the paper.

3



2.1. Uniform precedence model

We consider uniform precedence constraints, which are often used to model cyclic scheduling problems

Hanen (2009). Furthermore, we extend it by introducing a new “grouping constraint”.

A set of tasks T is given. The processing time of task i is denoted by pi. The tasks are assumed to be

infinitely repeated with no reentrance: the (k + 1)th iteration of task i cannot start before the end of the

kth iteration of task i.

Definition 1. A valued graph G = (T , A, L,H) of uniform precedence constraints is given as follows:

an arc a = (i, j) of A is characterized by two non-negative values called length L(a) = lij and height

H(a) = hij of the arc. Arc a represents an infinite number of precedence constraints: for any integer k,

the (k + hij) − th iteration of task j cannot start earlier than lij times units after the beginning of the

k − th iteration of task i.

The non-reentrance of i can be modeled by a uniform constraint a = (i, i) with L(a) = pi and

H(a) = 1. Below, these non-reentrance constraints remain implicit. Notice that unlike the noncyclic

scheduling problem, G may contain cycles. For any path µ of G we denote by L(µ)(resp. H(µ)) the sum

of the lengths (resp. heights) of the arcs of µ.

c
d

ae

3
0

0

0

0

Graph G

a b c d e

si 0 1 2 3 4

σ(i) 0 1 0 1 0

α(i) 0 0 1 1 2

Figure 1: A uniform graph G with unit lengths of the arcs and unit processing times, labeled with the heights of the arcs,

and a periodic schedule of period λ = 2 with four iterations of the tasks

Definition 2. A periodic schedule of period λ assigns a starting time si to the first iteration of each

task i so that the starting time si,k of the k-th iteration of i is :

sik = si + (k − 1)λ

Notice that si may be greater than λ, so that the completion time of the first iteration of tasks (i.e.,

max{i∈T }si + pi) may be greater than several periods.

The uniform precedence constraints induced by G can then be expressed with the following inequality:

∀(i, j) ∈ G, sj − si ≥ lij − λhij (1)

Let us define C(G) as a set of cycles in graph G. The necessary condition of the existence of a feasible

schedule is that for any C ∈ C(G), H(C) > 0. Moreover, in any periodic schedule, λ ≥ maxC∈C(G)
L(C)
H(C)

Hanen (2009).

4



Definition 3. A periodic schedule can also be described by its core σ and its retiming α as follows:

α(i) is the non-negative integer quotient and σ(i) is the non-negative integer remainder after dividing si

by λ so that

si = σ(i) + λα(i), with σ(i) ∈ [0, λ). (2)

In the rest of the paper we shall denote a schedule by a triple (σ, α, λ).

Let us consider an interval [(x−1)λ, xλ] with a sufficiently large non-negative integer x. We call it the

xth execution period. Notice that at time (x− 1)λ+ σ(i), the iteration x− α(i) of task i starts. Indeed,

the starting time of this iteration of task i is σ(i) + λα(i) + λ(x− α(i)− 1) = (x− 1)λ+ σ(i).

For task i, the retiming α(i) defines the iteration number (i.e., x−α(i)) of task i performed in the xth

execution period, whereas core σ defines the starting time of task i in any execution period regardless of

the task iteration number.

Now consider an arc (i, j) of G, the corresponding uniform constraint is expressed with the following

relation:

σ(j)− σ(i) ≥ lij − λ(hij + α(j)− α(i)) (3)

2.2. Grouping

We consider here the definition of what we call a grouping constraint, which defines the way the tasks

have to be grouped as super-tasks.

Definition 4. A grouping constraint Y is composed by

• an integer K representing the number of groups;

• an integer ki ∈ 1, . . . ,K representing the group label for each task i ∈ T ;

• an assumption that the subgraph of G, in which the nodes are the tasks of a given group k, is acyclic;

• a starting time g(i) relative to the starting time of the group ki (see below) for each task i ∈ T ;

• a processing time πk of super-task γk associated to each group k ∈ 1, . . . ,K.

This grouping constraint will induce constraints on the periodic schedule of the super-tasks.

Definition 5. A grouped periodic schedule satisfying a grouping constraint Y is a periodic schedule

such that the tasks of the same group are executed as a single super-task in the core schedule: for any

task i ∈ T for which ki = k, we can define σ(i) = σ(γk) + g(i) (i.e. the starting time of i can be given

relatively to the starting time of its super-task). Moreover, for each arc (i, j) of G such that ki 6= kj, the

inequality (4), defined below, is met.

5



The values of g(i) for all ki = k are assumed to be compatible with the precedence constraints issued

from the subgraph of G restricted to group k. In the model addressed in Section 3, the tasks of the same

group are independent. Hence, in this case, we will assume that all the tasks composing an iteration of

the super-task γk start at the same time in the core. But, in other applications, πk could also be the sum

of the processing times, or the maximum processing time (if the tasks of the same group are independent).

If we consider the xth period interval, for a sufficiently large x, the iteration numbers of the tasks

composing the super-task performed in this interval might be different from each other. So the retimings

of the tasks composing a group may have different values.

We now define inequality (4) that highlights the relationship between a grouped periodic schedule and

the uniform graph G. Let (σ, α, λ) be a grouped periodic schedule.

Consider a uniform precedence constraint (i, j) with ki 6= kj then the iteration of the super-task γki

embedding the iteration q of i precedes (with length lij + πki − pi) the iteration of the super-task γkj

embedding the iteration q + hij of j so that it induces a constraint between the super-tasks :

σ(γkj ) + λα(j)− σ(γki)− λ(α(i)) ≥ lij + πki − pi − λhij (4)

As the position of the task within a super-task is not known, inequality (4) considers the worst

positions, i.e. the completion of task i at the completion time of super-task γki , and the start of task j at

the start time of super-task γkj .

We address the following question: Given a uniform precedence graph G and a grouping constraint Y

does a grouped periodic schedule of G exist? We call this decision problem the UGF (Uniform Grouped

Feasibility).

2.3. A production example

Let us consider the following example illustrated by Figure 2. There are three manufacturing plants

I, II, III and three carriers 1, 2, 3 so that carrier 1 handles the grouped tasks from I to II, carrier 2 from

II to III, and finally carrier 3 from III to I.

There are three (work) flows: the first flow, starting in plant I with manufacturing task a1, is further

transported (task b1) by carrier 1 to plant II, where another manufacturing task c1 is performed. Then

it is transported (task d1) by carrier 2 to plant III, where it is finished by the manufacturing task e1.

Similarly, the second flow starts with task a2 in II, and it is transported by carrier 2 to III and by carrier 3

to I, where it is finished by task e2. Finally, the third flow starts with task a3 in III, and it is transported

by carrier 3 to I and by carrier 1 to II, where it is finished by task e3. The duration of each task is one

hour.

The transportation tasks performed by a given carrier are grouped together and performed just once

per period (the period is equal to one shift of 8 hours) to save energy. Each flow is executed periodically

every shift and is constrained by the start-to-end deadline expressed in the number of traversed periods.

6



0

0

0

0

0

0

0
0

0
0

0

0

Figure 2: Graph G of an example with three manufacturing plants and three transport services (G has the unit lengths of

the arcs, the unit processing times and labels standing for the heights of the arcs).

The start-to-end deadline has a value of one in the case of flows 1 and 3, it means the iteration of the

flows has to start and finish within 8 hours. This implies that the kth iteration of e1 precedes the k+ 1th

iteration of a1, this results in a uniform precedence between e1 and a1 with height 1. Two shifts in the

case of flow 2 means the flow has to start and finish within 16 hours.

The question is: how to schedule the operations and particularly the carriers so that the periodic

production is feasible?

A feasible periodic schedule is represented in Figure 3. Please notice that the second flow spans two

periods. If the second flow would have a start-to-end deadline of 1 shift, then no feasible grouped periodic

schedule could be found, whatever period length (mid-day, day, month) or processing time (minute,

second) is considered.

The schedule depicted in Figure 3 is defined by the following values:

retiming α ai bi ci di ei

flow 1 0 0 0 0 0

flow 2 0 0 0 1 1

flow 3 0 0 0 0 0

core σ ai bi ci di ei

flow 1 0 3 4 5 6

flow 2 0 5 6 1 2

flow 3 0 1 2 3 4

7



a1

a2

a3

b1 c1

c3

d1

d3

e1

first iteration second iteration third iteration

first shift second shift third shift

Figure 3: A periodic schedule of the example in Figure 2

2.4. A graph expression of UGF

According to Relation (3), we can recall important properties of the core of a periodic schedule sat-

isfying the uniform precedence constraints, Darte & Huard (2000); Hanen (2009). Let s be a periodic

schedule with retiming α and core σ.

Property 1. For any arc (i, j) of G, hij + α(j) − α(i) ≥ 0. Moreover, if hij + α(j) − α(i) = 0 then

σ(j) ≥ lij + σ(i).

Definition 6. Following Calland et al. (1998), we say that the retiming α is a legal retiming, if for

any arc (i, j) of G, hij + α(j)− α(i) ≥ 0.

Property 2. For any cycle C of G with height H(C) there are, at most, H(C) arcs for which hij+α(j)−

α(i) > 0

For a given legal retiming α, we define the retiming graph Rα to be the sub-graph of G composed with all

the arcs (i, j), so that hij + α(j)− α(i) = 0. The arcs are valued by lij . Notice that this retiming graph

might have no arc. According to Relation (3), Rα is an acyclic graph: a cycle µ = (i1, . . . , ik, i1) would

induce a contradiction σ(i1) < σ(i2) < . . . < σ(ik) < σ(i1). The core σ meets the non cyclic precedence

constraints defined by Rα. Indeed, if (i, j) is an arc of Rα, then

σ(j)− σ(i) ≥ lij − λ(hij + α(j)− α(i)) = lij .

It has been shown (see Hanen (2009)) that for a given legal retiming α, according to Definition 6, and

for any schedule σ meeting the precedence constraints of Rα, a value λ exists that can be computed in

polynomial time so that for any λ ≥ λ (σ, α, λ) there is a feasible periodic schedule.

We now have to express that the tasks of the same group are executed as a super-task in the core

schedule:

Definition 7. Let α be a given retiming, and Gα be the graph (called the grouped retiming graph)

obtained from Rα by merging the nodes of the same group.

8



According to Relation (4), which defines the grouping constraint, for any arc (i, j) of Rα, with ki 6= kj ,

which results in an arc of Gα,

σ(γkj )− σ(γki) ≥ lij + πki − pi − λ(hij + α(j)− α(i)) = lij + πki − pi > 0

So an arc (i, j) of Rα results in an arc (γki , γkj ) of Gα with the value lij + πki − pi.

The feasibility problem can be expressed as follows:

Theorem 1. An instance of UGF is feasible, if and only if, there is a legal retiming vector α so that the

resulting grouped retiming graph Gα is acyclic.

Proof. Even if Rα is acyclic, by merging the nodes, Gα may contain cycles. So, in such a case, no feasible

core schedule of the super-tasks can be built, since the core schedule of the super-tasks should respect the

precedence relations defined by Gα. As observed above, for any arc (i, j) of Rα, with ki 6= kj , we should

have

σ(γkj )− σ(γki) ≥ lij + πki − pi − λ(hij + α(j)− α(i)) = lij + πki − pi > 0

Conversely, suppose that Gα is acyclic and consider a schedule σ of the super-tasks that satisfies the

precedence relations induced by Gα. We can provide a core schedule of the original tasks by setting, for

each task i, σ(i) = σ(ki) + g(i). For any arc (i, j) of G, several cases may occur:

• ki = kj , and by assumption g(j) ≥ g(i) + lij so that g(j)− g(i) = σ(j)− σ(i) ≥ lij ≥ lij − λ(hij +

α(j)− α(i)) for any λ ≥ 0, and, thus, the uniform constraint is satisfied for any period value.

• kj 6= ki and (i, j) is an arc ofRα, i.e., hij+α(j)−α(i) = 0. We know that σ(j)−σ(i) = σ(kj)+g(j)−

σ(ki) − g(i). But g(j) − g(i) ≥ πki − pi, since the processing time of the group is greater than the

processing time of any task composing the group. Hence, σ(j)−σ(i) ≥ σ(kj)−σ(ki)−(πki−pi) ≥ lij
according to Relation (4) of the grouping constraint. No matter where the position of the tasks in the

super tasks is, the precedence relation is satisfied. As hij + α(j)− α(i) = 0, the uniform constraint

(i, j) is satisfied since Relation (3) is satisfied for any value of λ ≥ maxi∈T σ(i) + pi.

• Otherwise, kj 6= ki and hij +α(j)−α(i) ≥ 1. According to Relation (4) on the grouping constraint,

we should have σ(kj)− σ(ki) ≥ lij + πki − pi − λ(hij + α(j)− α(i)). This is always true assuming

λ ≥ σ(ki)− σ(kj) + πki − pi + lij . Moreover, for such a value of λ,

σ(j)− σ(i) = σ(kj)− σ(ki) + g(j)− g(i) ≥ σ(kj)− σ(ki)− (πki − pi) ≥ lij − λ(hij + α(j)− α(i)).

Hence, the original uniform constraint is satisfied.

Hence, there will be a value λ so that a grouped periodic schedule exists for any λ ≥ λ.

Notice that Theorem 1 shows that solving the UGF decision problem can be undertaken without

considering the processing times of the tasks and super-tasks, since checking the existence of cycles in

Gα does not depend on the processing times. This is the reason why the unit processing times and unit

9



a3

c3

d3

e3

a3

a2

b2

c2

d2

e2

e1
d1

c1

b1

a1

a3

c3

e3

a3

a2

c2

g2

e2

e1

c1

a1

g1

Grouped retiming graphRetiming graph

group 1

group2

group3

g3
b3

Figure 4: The retiming graph Rα (left) and the grouped retiming graph Gα (right)

length are assumed in the applications we consider in the paper (Section 2 and 3). However, of course,

the processing times are to be considered when constructing a solution as in the Proof of Theorem 1.

Figure 4 shows graphs Rα and Gα for the periodic schedule depicted in Figure 3.

2.5. Basic properties of the UGF

The graph formulation of the UGF has some algorithmic outcomes on the properties of the grouped

schedules

Property 3. For a given legal retiming α, checking the existence of a periodic schedule (σ, α, λ) satisfying

the grouping constraints can be undertaken in polynomial time.

Proof.

Assume that we are given a retiming α so that for any arc (i, j) of G:

hij + αj − αi ≥ 0

From α, we can build Rα, and, thus, the grouped retiming graph Gα. To know if a feasible grouped

periodic schedule can be built from α, we just have to check whether Gα is acyclic, which can be calculated

by a depth first search in linear time Cormen et al. (2009).

Property 4. If a core schedule σ of the super-tasks is given, checking the existence of a retiming α and

a period λ so that (σ, α, λ) is a feasible periodic schedule can be undertaken in polynomial time.

10



Proof. Once the schedule of the groups, and, hence, the core schedule σ, is known, notice that for any

task i, λ > σ(i) (otherwise σ could not be the core of the schedule). The only thing to check is the

existence of a legal retiming α and a period λ satisfying Relation (3) for an arc a = (i, j) of G :

αj − αi ≥
⌈
lij + σ(i)− σ(j)

λ

⌉
− hij (5)

Let us denote vλ(a) =
⌈
lij+σ(i)−σ(j)

λ

⌉
− hij

For a fixed value of λ, Relation 5 induces a difference constraint system, Cormen et al. (2009), i.e., a

system of inequalities of the form x − y ≤ b (or in our case x − y ≥ b - which can also be expressed as

y − x ≤ −b of the first form) with variables x, y and constant b which may be positive or negative.

It is known that a solution exists if and only if graph G has no cycles µ with vλ(µ) > 0. This can

be checked in polynomial time by using the Bellman-Ford Algorithm presented in Cormen et al. (2009)

inspired by the Bellman algorithm, Bellman (1958), to compute the shortest paths (or longest paths) from

a single source.

Now observe that vλ(a) decreases with λ. So that if there is a solution α of Relation 5 for a value λ0,

then the solution also holds for any λ ≥ λ0. As we consider here the existence of (α, λ) satisfying Relation

5 for each arc, such an existence can be checked for any large enough λ.

Now observe that for an arc a = (i, j), if σ(i)+ lij > σ(j) then for λ ≥ σ(i)+ lij−σ(j), vλ(a) = 1−hij .

Otherwise, σ(i)+lij ≤ σ(j) < λ, so that vλ(a) = −hij . Let us choose λ ≥ max(i,j) arc of G σ(i)+lij−σ(j).

vλ(a) =

 1− hij if σ(i) + lij > σ(j)

−hij otherwise

So the existence of α and λ such that Relation 5 is met for each arc can be checked in polynomial time

by finding whether graph G with the valuation vλ has no cycle of positive value. This can be checked in

polynomial time using the Bellman-Ford algorithm, Cormen et al. (2009).

From this property, we deduce a polynomial special case of our problem:

Property 5. If G does not contain any cycle, then the problem instance of UGF is feasible, and a feasible

schedule can be computed in polynomial time.

Proof. Let us consider any schedule σ of the super-tasks. According to the definition of the grouping

constraint, this induces a schedule σ of the original tasks. Then following Property 4, as the feasibility is

checked through the existence of some cycles in G, if G does not contain any cycle, it is always possible

to find a retiming α and a value λ meeting Relation (5).

3. The special ZigBee case

The IEEE 802.15.4/ZigBee standard is the leading technology for low-cost and low-power WSNs (see

IEEE (2006); ZigBee (2006); Palopoli et al. (2011)). In one of its variants, the underlying communication

11



topology of the devices forms an undirected tree, called the cluster-tree. Each cluster knows its neigh-

bors in the tree. When a cluster is active, it consumes a considerable amount of energy to perform its

communication tasks respecting the tree topology.

We consider that all the devices may have sensing and/or actuating capabilities, therefore, they can

be sources and/or sinks of periodic message-flows, respectively. The (periodic) message-flow traverses

different clusters on its routing tree determined by several source devices, and a unique sink device on the

underlying cluster-tree.

In order to save the energy of the battery powered devices, the standard specifies that each cluster

is active only once during the period, so that during a period, all the tasks of the message-flows passing

through a cluster are grouped. In addition, the message-flows may have opposite directions, and they are

constrained by the start-to-end deadlines. Consequently, not every instance has a feasible solution. In

this section, we first discuss the modeling of the ZigBee problem as an instance of the UGF . Then we use

the specific structure of the groups and constraints to prove that the feasibility problem can be solved in

polynomial time in this case.

3.1. Modeling the ZigBee constraints

We are given a cluster-tree T , whose nodes represent the clusters and whose edges represent the logical

links between them. Figure 5 shows an example of a cluster-tree consisting of nine clusters.

0 1 2 3 4 5 6ρ

8

7

f1

f2
f3

Figure 5: An example of cluster-tree T and three message-flows

We then consider a collection of message-flows. Each message-flow f is defined by a copy of a subtree

of T , oriented as an in-tree, and represents the communication of data along the communication links of

T from the source nodes of the message-flow to the unique sink xf . For message-flow f , if node i belongs

to the sub-tree of f , then we denote, by uif , the communication task associated to node i in message-flow

f . We assume the unit processing times of the communication tasks.

An example of the message-flow is given in Figure 7, where message-flow 2 has source nodes associated

with clusters 5 and 8, while the sink node is associated with cluster 0.

An iteration of each message-flow will start at each period. Moreover, the energy constraints of the

ZigBee standard consider that each cluster should be active once in each period.

12



Figure 6: A periodic schedule with grouping constraints for two opposite message-flows

So tasks uif for all message-flows f passing through node i belong to group i, which should be scheduled

once in the period as a super-task, of the unit processing time (all together). Hence in the grouping

constraint for this problem, for each message-flow f , the group of uif is i, g(uif ) = 0, and for each i ∈ T ,

πi = 1.

So we are looking for a grouped periodic schedule of the tasks uif . We now need to model the precedence

constraints associated with the data transmission and message delay.

Obviously, if j is a successor of i in the in-tree defining the message-flow f , then the kth iteration of

uif precedes the kth iteration of ujf . So this can be modeled by a uniform precedence constraint of length

1 and height 0.

Let us consider, for example, two opposite message-flows f1 = (0 → 1 → 2 → 3 → 4 → 5 → 6) and

one branch of f2 : (5→ 4→ 3→ 2→ 1→ 0), and a unit time length of each cluster activity happening

once during a period. It is easy to see that if an iteration of a message-flow starts during the period

[kλ, (k + 1)λ) then the data will be delivered to the sink node several periods later. For example, let us

consider a schedule, depicted in Figure 6 with a period of λ = 3 where clusters 0, 3, 6 are active at time 0,

clusters 1, 4 are active at time 1 and clusters 2, 5 are active at time 2 of each period. Then, if an iteration

of message-flow f1 starts a transmission in the first period by the communication in cluster 0, then it will

end the transmission in the third period by the communication in cluster 6. On the other hand, if an

iteration of message-flow f2 starts its transmission in the first period by communication in cluster 5, then

it will end the transmission in the fifth period by the communication in cluster 0.

Of course, if we do not limit the time of delivery, then the periodic scheduling problem can be handled

in polynomial time (see Property 5). However, in order to achieve a good response time, the start-to-end

deadlines are usually settled. Here, we chose to limit the number of periods crossed by the message-flow

13



until its delivery.

The choice of this model with coarse-grained start-to-end delays can, of course, be discussed, but the

use of cyclic scheduling tools and algorithms can usefully balance the lack of accuracy:

• For large-scale systems, we need efficient polynomial algorithms.

• Systems with a long period (to save energy), long message-flows spanning many clusters and opposite

orientation of the message-flows lead to the transmission over many periods and then the relative

position within the period is negligible compared to the length of the start-to-end delay.

The experiments with the scheduling tool of Ahmad & Hanzalek (2018), which enables system designers

to configure all the required parameters of the IEEE 802.15.4/ZigBee cluster-tree WSNs, illustrate the

efficiency of our model.

Definition 8. For each message-flow f and each source of message-flow uif we define the period cross-

ing constraint associated to source uif and given by the integer value cif (i.e., the maximum num-

ber of crossed periods): in any periodic schedule, and any non-negative integer y, if the yth iteration

of uif starts in the interval [xλ, (x + 1)λ) the yth iteration of f will end during or before the interval

[(x + cif )λ, (x + cif + 1)λ). We say that the periodic schedule meets the period crossing constraint for

message-flow f .

We can now associate the uniform graph Gf to each message-flow f .

3.2. The graph formulation of the ZigBee problem

1. The nodes of Gf are the tasks uif for all clusters belonging to the sub-tree of f .

2. If there is a communication link uif → ujf in the underlying sub-tree, then (uif , u
j
f ) is an arc of Gf

with height 0.

3. If uif is the sink of the message-flow f and ujf is a source, there is an arc from uif to ujf with height

h(uif , u
j
f ) = cjf + 1. Notice that this constraint can be interpreted as follows: for any integer y the

time delay between the starting time of the yth iteration of ujf and the completion of the iteration of

uif is at most λ(cif + 1) which is obviously implied by the period crossing constraint of message-flow

f .

Uniform graph G is just the union of the message-flow sub-graphs Gf . For our example, in Figure 5,

if we set c0f1 = 3, c5f2 = 3, c8f2 = 2, c6f3 = 3 then we get the uniform graph shown in Figure 7.

Definition 9. A periodic schedule is feasible if it meets the precedence constraints associated to data

transmission and the period crossing constraints.

The following Lemma states that the period crossing constraint is met by the periodic schedules of

the uniform graph defined above with an additional property.

14



u0
f2

u7
f2

u5
f2

u4
f2

u3
f2

u2
f2

u1
f2

u8
f2

u5
f3

u6
f3

u4
f3

u7
f3

u8
f3

u0
f1

u1
f1

u2
f1

u3
f1

u4
f1

u5
f1

u6
f1

0

00

00000

0 0

0

0

0

0000

3

4

4

4

Figure 7: The uniform graph G for the message-flows in Figure 5

Lemma 1. A feasible periodic schedule exists, if and only if, a periodic schedule of G based on retiming

α exists so that for any message-flow f with source ujf and sink uif ,

cjf + 1 + α(ujf )− α(uif ) > 0.

Proof. Consider a feasible schedule meeting the period crossing constraints for each message-flow, and

α its retiming. For message-flow f with source ujf and sink uif , consider the underlying path from node j

to node i in the underlying tree T . A path in the uniform graph G, where each arc has height equal to 0,

corresponds to this path.

Consider the interval [xλ, (x + 1)λ). We know that the iteration y = x − α(ujf ) + 1 of ujf starts

in this interval. By assumption, the same iteration y of uif completes before the end of the interval

[(x+cjf )λ, (x+1+cjf )λ). But we know that the iteration of uif performed in this interval is x+cjf−α(uif )+1.

Hence

x+ cjf − α(uif ) ≥ x− α(ujf ) ⇒ α(uif )− α(ujf ) ≤ cjf

So cjf + 1 + α(ujf )− α(uif ) ≥ 1 > 0. q.e.d.

Conversely, let us consider a feasible periodic schedule of G such that for message-flow f , cjf + 1 +

α(ujf )− α(uif ) > 0. Thus, α(uif )− α(ujf ) ≤ cjf . We can then claim that x+ cjf − α(uif ) ≥ x− α(ujf ) and,

thus, that the iteration y = x−α(ujf )+1 of uif completes before the end of interval [(x+cjf )λ, (x+1+cjf )λ).

Notice that the specificity of the ZigBee graph is not really due to the decomposition of G into disjoint

sub-trees since we can define an equivalent problem with a graph composed of disjoint cycles that are

15



further grouped in the grouped retiming graph Gα. Let us consider graph G′f constructed from the

message-flow sub-graph Gf as follows: Consider the message-flow f having the form of an in-tree, with

sources ui1f , . . . , u
it
f . Let urf be a source, and ujf be any node on the path from urf to the sink in Gf .

Then for each r ∈ {i1, . . . , it} we create a copy of the path from urf to the sink while using label ujf (r)

to distinguish the copy of node ujf in path r. Finally, we add a copy of the return arc from the copy of

the sink to the copy of the source urf (r). So t cycles will be constructed in G′f . Then graph G′ is just the

union of the message-flow sub-graphs G′f .

For example, the in-tree message-flow 2 in Figure 5 could be represented by two paths : 5→ 4→ 3→

2 → 1 → 0 with a cf value of 3 and 8 → 7 → 4 → 3 → 2 → 1 → 0 with a cf value of 2. We can now

establish that:

Lemma 2. A grouped schedule of G satisfying the period crossing constraint exists if, and only if, a

grouped schedule of G′ satisfying the period crossing constraint exists.

Proof. Notice that in G′, all copies of a node of G belong to the same group and, thus, in a grouped

schedule, they will merge in the same super-task. So the existence of an acyclic grouped graph G′α

satisfying the constraints is exactly the same problem as the existence of an acyclic grouped graph Gα.

Thus, we can assume without loss of generality that G is a collection of disconnected cycles, each of

them composed with a path from the source to the sink and a return arc.

Property 6 shows that the feasibility problem thus relies on a graph formulation of the existence of a

feasible retiming.

Definition 10. α is a feasible retiming if for each message-flow f , the return arc and, at most, cf

other arcs from the cycle representing f are removed from G to build Rα and if the grouped retiming graph

Gα is acyclic.

Property 6. In the ZigBee case, the feasibility problem reduces to the following graph decision problem:

For each message-flow f , is it possible to remove the return arc and, at most, cf other arcs from the

cycle representing f (this entirely defines a retiming α) so that the grouped retiming graph Gα obtained by

merging all the nodes of the same group is acyclic?

Proof. By Lemma 1, the return arc is removed in any retiming of a periodic schedule satisfying the

period crossing constraint (its height added to the difference of the retiming values is strictly positive)

to get the retiming graph Rα. Property 2 yields that at most cf other arcs should be removed from the

graph to get Rα. Then the arguments of Section 2.4 achieve the proof.

The structure of the underlying tree T might influence the structure of the solutions. In order to

have a further look into this question, we need to simplify the problem instance by assuming that the

underlying tree T is a chain.

16



a1 b1 a2 b2

b3 a3 b4 a4

0 1 2 3 4 5 6 7 8 9 10

N1 = 0 N2 = 1 N3 = 1 N4 = 2 N5 = 2 N6 = 3 N7 = 3 N8 = 3 N9 = 3 N10 = 4N0 = 0

a5b5

ρ

supertask 0 1 2 3 4 5 6 7 8 9 10

σ 1 0 1 0 1 0 3 2 1 0 1

Figure 8: A ZigBee-chain solution: by removing the crossed arcs we obtain the retiming graph Rα. A corresponding grouped

retiming graph Gα is represented by the filled in black nodes and bold arcs. A core schedule of the supertasks satisfying the

precedence constraints of Gα is shown.

3.3. ZigBee-chain: A simple ZigBee-like subproblem

In this case we consider that the underlying structure T is a chain of nodes numbered from 0 to n− 1.

Then, each message-flow f is completely characterized by the source index af , the sink index bf and the

unique period crossing constant cf (since there is a unique source of the message-flow, we omit the upper

index). The associated uniform graph is then a cycle whose nodes and arcs are:

• if af < bf , we say f is an increasing message-flow and we define its nodes

u
af
f , u

af+1
f , . . . , u

bf
f

with arcs (ukf , u
k+1
f ) of length 1 and height 0 for all k ∈ [af , bf − 1], and an arc, called a return arc

(u
bf
f , u

af
f ) with length 1 and height cf + 1.

• if af > bf , we say f is a decreasing message-flow and we define its nodes

u
af
f , u

af−1
f , . . . , u

bf
f

with arcs (ukf , u
k−1
f ) of length 1 and height 0 for all k ∈ [bf + 1, af ], and a return arc (u

bf
f , u

af
f ) with

length 1 and height cf + 1.

Figure 8 shows a solution of the UGF based on the arc removal derived from Property 6 and the

associated grouped retiming graph Gα is depicted by the filled in black nodes and bold arrows. Figure 9

shows a grouped schedule of period λ = 4 derived from this solution.

3.3.1. Removing Bridges

Let us first assume that there is an interval [i, j], where i, j are two integers with i < j so that no

decreasing message-flow crosses the interval, i.e., for each decreasing message-flow f , either af ≤ i or

17



message-flow 1 message-flow 2

u01 u11 u21 u31 u41 u51 u61 u72 u82 u92 u102

α 0 1 1 2 2 3 3 0 1 2 2

σ 1 0 1 0 1 0 3 2 1 0 1

s 1 4 5 8 9 12 15 2 5 8 9

message-flow 3 message-flow 4 message-flow 5

u43 u33 u23 u13 u03 u94 u84 u74 u64 u54 u55 u45 u35 u25

α 0 1 1 2 2 0 0 0 0 1 0 0 1 1

σ 1 0 1 0 1 0 1 2 3 0 0 1 0 1

s 1 4 5 8 9 0 1 2 3 4 0 1 4 5

Figure 9: A schedule of period λ = 4 derived from the graph of Figure 8. The retiming α, core schedule σ and starting

time of the first iteration of tasks s are shown. Recall that uj
f

is the task of message-flow f that passes through node j and

belongs to group j.

bf ≥ j. We say that [i, j] is a left-to-right bridge. This occurs similarly ([i, j] is a right-to-left bridge) if

no increasing message-flow crosses the interval, i.e., for each increasing message-flow f , either af ≥ j or

bf ≤ i. The example shown in Figure 8 has two bridges: [6, 7] is a right-to-left bridge, whereas [9, 10]

is a left-to-right bridge. The main idea of this subsection is to argue that the arcs crossing the bridges

can never create a cycle in the grouped retiming graph Gα of any retiming α. Hence, if we merge two

consecutive nodes of a bridge we get a reduced problem, such that a feasible periodic schedule in the

original problem exists, if and only if, a feasible periodic schedule in the reduced problem exists.

Let [i, i+ 1] be a left-to-right bridge. We build a bridge-reduced problem as follows: for any increasing

message-flow f such that arc (uif , u
i+1
f ) is in the message-flow, we modify f by merging node uif and node

ui+1
f into a node uif . In the ZigBee chain, node i is merged with node i+ 1, so that the numbering of the

nodes is now 0, . . . , i, i + 2, . . . , n − 1. For any message-flow f af = i + 1, we change it for af = i. For

any ZigBee-chain instance I with a left-to-right bridge, we denote it by LRBi(I), as the bridge-reduction

described above.

Similarly if [i, i + 1] is a right-to-left bridge, we can, by merging the nodes associated to i and i + 1,

build a reduced instance denoted by RLBi(I).

Lemma 3. For any ZigBee-chain instance I with a left-to-right bridge [i, i + 1] a periodic schedule for

I exists, if and only if, a periodic schedule for LRBi(I) exists. Similarly, if I has a right-to-left bridge

[i, i+ 1] then a periodic schedule for I exists, if and only if, a periodic schedule for RLBi(I) exists.

Proof. Let us consider an instance with a left-to-right bridge [i, i+ 1]. Assume that we have the retiming

α such that Gα is acyclic. Let us prove that there is no path from i + 1 to i in Gα. Notice that in Gα,

since the return arcs are removed, the only arcs are of the form (k, k + 1) or (k + 1, k). As no decreasing

18



message-flow crosses the bridge [i, i+1], Gα cannot contain an arc (i+1, i). Hence, if we merge node i and

node i+ 1 into Gα, no cycle will appear. So this will define a feasible solution for LRBi(I). Conversely,

consider that the instance LRBi(I) is feasible, with a retiming α′. Then we can build α, the retiming for

I by setting α(ui+1
f ) = α′(uif ) and for any k 6= i+ 1 α(ukf ) = α′(ukf ). Then in Gα, the arc (i, i+ 1) will be

kept, and, as argued previously, it does not induce any cycle. Moreover, the number of arcs removed from

the cycles representing the message-flows to get Gα has not increased. Hence, I is a feasible instance.

The same arguments can be used for the RLBi reduction.

So for any problem instance with bridges, applying this reduction iteratively will lead to an equivalent

instance (in terms of feasibility) without bridges. Thus, we can assume, without loss of generality, that

there is no bridge.

3.3.2. A necessary and sufficient feasibility condition stated by the difference constraint system

Let us assume an instance of the feasibility problem for the chain without a bridge.

This implies that for all k ∈ {0, . . . , n−2]}, an increasing message-flow AND a decreasing message-flow

crossing the interval [k, k + 1] do exist.

So, if f is an increasing message-flow crossing this interval and f ′ is any decreasing message-flow

crossing the interval, then one of the arcs (ukf , u
k+1
f ) or (uk+1

f ′ , ukf ′) must be removed from the graph

in any feasible retiming, otherwise the cycle (k, k+ 1, k) would remain in the grouped retiming graph Gα.

Assume that both are removed in a feasible retiming α. Then it is always possible to change the value

of the retiming so that one of the two arcs remains in the graph. Indeed, adding an arc will not contradict

the condition on the maximum number of removed arcs per cycle (see Property 6). The only problem

would be if adding the arc could create a cycle in the grouped retiming graph Gα.

But, if both arcs would create a cycle, then there would be a path from k to k + 1 (since the arc

(k + 1, k) yields a cycle) in Gα and similarly a path from k + 1 to k , since the arc (k, k + 1) would yield

a cycle. Hence, Gα would not be acyclic. So, one of the two arcs can be added without violating the

constraints.

Moreover, assume, without loss of generality, that arc (ukf , u
k+1
f ) stays there and that (uk+1

f ′ , ukf ′) is

removed. Then, in any feasible retiming, if there is another decreasing message-flow f ′′ crossing the

interval [k, k + 1] then arc (uk+1
f ′′ , ukf ′′) has to be removed as well.

This means that the decision of keeping an arc of the form (ukf , u
k+1
f ) and, thus, removing (uk+1

f ′ , ukf ′)

will apply to any message-flow crossing the same interval in the same direction. Hence, we can consider

a binary choice for each interval [k, k + 1]: to keep all arcs of the form (ukf , u
k+1
f ) and to remove arcs of

the form (uk+1
f ′ , ukf ′) or vice versa: to keep (uk+1

f ′ , ukf ′) and to remove (ukf , u
k+1
f ).

We say that interval [k, k+1] is “oriented from left to right” if we decide to keep the arcs of the increas-

ing message-flows crossing the interval and remove the arcs of the decreasing message-flows. Otherwise,

the interval is said to be “oriented from right to left”.

19



For a given schedule, and each integer j ∈ [1, n − 1] let us denote, by Nj , the number of all intervals

[k, k + 1] with k + 1 ≤ j that are oriented from left to right. Furthermore, we state N0 = 0.

We then get the following Lemma:

Lemma 4. For any feasible retiming α, the associated variables Nj satisfy the following inequalities:
0 ≤ Nk+1 −Nk ≤ 1 ∀k ∈ {0, . . . , n− 2}

bf − af − (Nbf −Naf ) ≤ cf for any increasing message− flow f

(Naf −Nbf ) ≤ cf for any decreasing message− flow f

(6)

Proof. Let f be a decreasing (resp. increasing) message-flow. We know that, at most, cf arcs are

removed from the path from u
af
f to u

bf
f . If an arc (uk+1

f , ukf ) (resp (ukf , u
k+1
f ) is removed the opposite arc

is kept, so that the interval [k, k + 1] is oriented from left to right (resp from right to left). In the case

of a decreasing message-flow (resp. increasing), we conclude that the number of intervals crossed by the

message-flow that are oriented from left to right (resp. right to left) represents the number of removed

arcs in the message-flow. But the number of intervals crossed by f that are oriented from left to right

is Naf − Nbf for a decreasing message-flow, whereas the number of intervals crossed by an increasing

message-flow f and oriented from right to left is bf −Nbf − (af −Naf ).

We can now state the main result of this section:

Lemma 5. If the System (6) has a solution (Nj)j∈{0,...,n−1} then a feasible periodic schedule exists.

Proof. Notice that as the system matrix of (6) is totally unimodular and all constants are integers, if the

system is feasible then it has an integer solution. Hence, assuming an integer solution Nj , we notice from

the first inequality that for any interval [k, k+ 1), Nk+1−Nk equals 0 or 1. So we define xk = Nk+1−Nk.

Let us define the following retiming: for any increasing message-flow f and for any k such that

af ≤ k ≤ bf , α(ukf ) = (k − Nk) − (af − Naf ) (i.e., the number of intervals between af and k for which

an orientation from right to left is chosen). For any decreasing message-flow f and for any k such that

bf ≤ k ≤ af , α(ukf ) = Naf −Nk (i.e., the number of intervals between af and k for which an orientation

from left to right is chosen).

Let us remark that for any increasing message-flow f , an arc (ukf , u
k+1
f ) is removed, if and only if,

α(uk+1
f ) − α(ukf ) > 0. But such an event occurs if k + 1 − Nk+1 − (k − Nk) > 0 ⇔ xk = 0. As

bf −Nbf − (af −Naf ) ≤ cf there are at most cf such arcs.

So the number of removed arcs on the cycle of the message-flow respects the uniform constraints, if

we remove the return arc.

Similar arguments can be used for decreasing message-flows: An arc (uk+1
f , ukf ) is removed only if

α(ukf )− α(uk+1
f ) > 0, i.e., if Nk+1 −Nk > 0, and, thus, xk = 1.

So to summarize:

• If xk = 0 then the arc (ukf , u
k+1
f ) is removed from any increasing message-flow f passing through k

and the arc (uk+1
f , ukf ) is kept in any decreasing message-flow f passing through k.

20



a1 b1

0 1 2 3 4 5 6

N1 = 1 N2 = 1 N3 = 1
N4 = 2

N5 = 3 N6 = 3N0 = 0

ρ

8

7
N7 = 2

N8 = 2

a′2

b3

a3b2

b′2

a2

Figure 10: A solution of ZigBee: G is represented by the blank nodes and plain arcs, Rα is obtained from G by removing

the crossed arcs, Gα is represented by the filled in nodes with bold arcs

• If xk = 1 then the arc (ukf , u
k+1
f ) is kept in any increasing message-flow f passing through k and

the arc (uk+1
f , ukf ) is removed from any decreasing message-flow f passing through k.

Let us now build a grouped retiming graph Gα. The nodes of Gα are {0, . . . , n− 1}. Let us show that

Gα is acyclic. First, notice that no return arc belongs to this graph so the arcs have the form (k, k + 1)

or (k + 1, k). In such a graph, any elementary cycle would be composed by two such arcs.

But according to the previous properties, if (k, k + 1) is in the graph, then xk = 0 and if (k + 1, k)

belongs to Gα, xk = 1, so both arcs cannot belong to Gα.

Notice that System (6) is a difference constraints system that can be solved using the longest or

shortest path algorithms of Cormen et al. (2009); Bellman (1958) as mentioned above. The complexity is

polynomial in the number of nodes n and the number of message-flows z (O(nm) where m is the number

of arcs, which depends on z and n). At this stage, we could consider that the ZigBee chain can be solved in

polynomial time. Unfortunately, the input of the ZigBee-chain problem given by (af , bf , cf )message−flows f

can be encoded in O(log(n) ∗ z) (where z is the number of message-flows), since the graph of the chain is

not part of the input. Thus, the complexity is not a polynomial of the input size (it is a polynomial of the

number of nodes). However, the system can be extended in order to handle the general ZigBee setting

(where the network topology is part of the input) that will be solved in polynomial time.

3.4. The ZigBee problem feasibility can be solved in polynomial time

In the original ZigBee problem, the input comprises the tree T , which has size O(n) since the topology

needs to be encoded in the input.

Among the properties studied for the ZigBee-Chain, the following properties still hold:

21



1. The bridges can still be merged so that we can assume no bridge (i.e., no edge of the underlying

subtree is crossed by message-flows of the same direction only).

2. If two message-flows have opposite directions on one edge of the tree, then, of course, in the retiming,

one of the arcs will be removed and the other kept; otherwise a cycle would appear in the grouped

retiming graph. Moreover, the decision made on one arc applies to all the message-flows crossing

this arc in the same direction.

Notice that as the underlying structure is a tree and not a chain, there is no real “left to right” or “right

to left” natural orientation. So, in the rest of the paper, we consider an arbitrary underlying orientation

of the edges of the tree T so that it forms an out-tree T̂ with some root ρ. For any arc (a, b) of this

out-tree T̂ , and any feasible grouped retiming graph Gα, if (a, b) is in Gα, we say that the arc (a, b) is

topological, whereas if (b, a) is in Gα, we say the arc (a, b) is inverted.

From these properties, it is possible to formulate inequalities equivalent to System (6) that gives a

necessary and sufficient condition of feasibility as follows:

A message-flow f , in the form of a chain from the source node af to the sink node bf can have the

following forms:

• f is an increasing message-flow if there is a oriented path from af to bf in the given out-tree T̂ .

• f is a decreasing message-flow if there is a oriented path from bf to af in the given out-tree T̂ .

• Otherwise, f is said to be a bipolar message-flow. According to the tree structure, and as f is a

subchain of the non oriented tree T , a node zf in T crossed by f exists so that in the given out-tree

T̂ , there is a path from zf to af and a path from zf to bf . So f is “decreasing” from af to zf and

“increasing” from zf to bf .

We denote for node j of the tree by ν(j), the number of arcs on the unique path from root ρ to node

j in the orientation given by T̂ (i.e., the distance from the root). This value will replace the numbering

of nodes used in the Zigbee-chain.

We then have the following result:

Theorem 2. A feasible periodic schedule exists, if and only if, the following system has an integer solution

N : 

0 ≤ Nj −Ni ≤ 1 ∀(i, j) arc of T̂

ν(bf )− ν(af )− (Nbf −Naf ) ≤ cf for any increasing message− flow f

Naf −Nbf ≤ cf for any decreasing message− flow f

Naf + ν(bf )− ν(zf )−Nbf ≤ cf for any bipolar message− flow f

(7)

The system can be checked in polynomial time.

Proof. Now, similarly to the ZigBee chain case, we first prove that if a schedule exists, then it defines

the orientation of the edges of T and, thus, we can compute the associated value Nj that satisfies System

(7).

22



Let us consider a feasible schedule, its retiming α, retiming graph Rα and grouped graph Gα. We

define for any node j of the tree, Nj to be the number of topological arcs of Gα along the chain from ρ to

j (i.e., the arcs for which the orientation in Gα coincides with the orientation of T̂ ).

The proof for the increasing or decreasing message-flows is similar to the one of the ZigBee-chain,

so we shall skip it here, and focus on the case of the bipolar message-flow f with its intermediate node

common ancestor zf of af and bf in T̂ .

We need to express the constraint saying that the number of arcs of the message-flow f that are

removed is not greater than cf . Obviously, an arc of the message-flow is removed by the retiming if its

chosen orientation (topological or inverted) is not the one given by the message-flow (otherwise, the arc of

the message-flow would induce a cycle). So, for f , this is the number of topological arcs along the chain

from af to zf (since, in the out-tree, we have a path from zf to af , opposite to the direction of this part

of f) plus the number of inverted arcs along the path from zf to af .

The first member is Naf −Nzf , and the second is ν(bf )−Nbf − (ν(zf )−Nzf ). So we get the following

number of removed arcs on the af → zf → bf path (Naf − Nzf ) + ν(bf ) − ν(zf ) − (Nbf − Nzf ) =

Naf + ν(bf )− ν(zf )−Nbf .

Hence, this number is less than cf , so that System (7) holds.

Conversely, we show that the solution of System (7) provides a feasible retiming.

We define:

• If f is an increasing message-flow and k is a node through which f is passing: α(ukf ) = ν(k)−Nk −

(ν(af )−Naf )

• If f is a decreasing message-flow and k is a node through which f is passing: α(ukf ) = Naf −Nk

• If f is a bipolar message-flow with an intermediate node zf and k is a node through which f is

passing in its decreasing part: α(ukf ) = Naf − Nk. If k is in the increasing part, then α(ukf ) =

Naf −Nzf + ν(k)−Nk − (ν(zf )−Nzf )

We now have to check that the number of arcs removed from the cycle associated to the bipolar message-

flow f in Rα is not greater than cf (the proof for the increasing or decreasing message-flow is similar to

the ZigBee-chain case). Let (a, b) be an arc of a bipolar message-flow f in G with height 0. If the arc (a, b)

belongs to T̂ then (a, b) belongs to its increasing part, then α(b)−α(a) = Naf −Nzf +ν(b)−Nb−(ν(zf )−

Nzf )−(Naf−Nzf +ν(a)−Na−(ν(zf )−Nzf )). But ν(b)−ν(a) = 1. So α(b)−α(a) = 1−(Nb−Na) ∈ {0, 1}.

As we know that 0 ≤ Nb − Na ≤ 1, the arc (a, b) is removed to get Rα only if α(b) − α(a) = 1. Hence,

the number of removed arcs in the increasing part is α(u
bf
f ) − α(u

zf
f ) = ν(bf ) − ν(zf ) − (Nbf − Nzf ).

Similarly, let us assume that (b, a) belongs to T̂ , then α(b)− α(a) = Naf −Nb − (Naf −Na) = Na −Nb.

As we know that 0 ≤ Na−Nb ≤ 1, the arc (a, b) is removed to get Rα only if α(b)−α(a) = 1. Hence, the

number of removed arcs from the decreasing part is α(u
zf
f )− α(u

af
f ) = Naf −Nzf . So the whole number

23



of removed arcs of height 0 is: ν(bf )− ν(zf )− (Nbf −Nzf ) +Naf −Nzf = Naf + ν(bf )− ν(zf )−Nbf ≤ cf
from System (7).

Let us now consider the return arc (u
bf
f , u

af
f ) of the message-flow. Let us compute α(u

af
f )− α(u

bf
f ) =

α(u
af
f ) − α(u

zf
f ) + α(u

zf
f ) − α(u

bf
f ) ≥ −cf . As the height of this arc is cf + 1 in G, the chosen retiming

yields cf + 1 + α(u
af
f )− α(u

bf
f ) > 0 so that the return arc is removed to get Rα.

Finally, we prove that the grouped retiming graph Gα is acyclic. As all the return arcs are removed

to get Gα, the structure of Gα is the orientation of the underlying tree given by the retiming. So there

cannot be any other cycles than those linking the two adjacent nodes in T , which cannot occur. Indeed,

let (a, b) be an arc of T̂ and the two message-flows f and f ′ crossing the arc, so that (uaf , u
b
f ) is an arc of

f and (ubf ′ , uaf ′) is an arc of f ′. According to the definition of α, α(ubf ) − α(uaf ) = 1 + Nb −Na whereas

α(ubf )− α(uaf ) = Na −Nb clearly, both values cannot equal 1, so one of the two arcs vanishes in Gα.

Corollary 1. The existence of a schedule for the ZigBee problem can be determined in polynomial time

Proof. The matrix of System (7) is totally unimodular, so that the integer solution dominates. It is

a difference constraints system that can be solved by the Bellman-Ford algorithm Cormen et al. (2009).

Hence, the feasibility of the system can be checked in polynomial time.

NOTE: If the problem is not feasible then probably some constraints are too hard. We suggest

that System (7) could be extended to handle an optimization problem (8): starting from the minimal

requirements for the cf values, we could add a variable part g for all message-flows and, thus, formulate

the following integer linear program, so that it can be solved in polynomial time by the interval bisection

method on g combined with the LP for the feasibility of a fixed g :



Min g

0 ≤ Nj −Ni ≤ 1 ∀(i, j) arc of T̂

ν(bf )− ν(af )− (Nbf −Naf ) ≤ cf + g for any increasing message− flow f

Naf −Nbf ≤ cf + g for any decreasing message− flow f

Naf + ν(bf )− ν(zf )−Nbf ≤ cf + g for any bipolar message− flow f

(8)

4. UGF is NP-complete

The grouping constraints might be considered as a special case of the core precedences introduced in

Hanzalek & Hanen (2015). They can be easily embedded in an ILP formulation, even with additional

resource constraints and timing considerations. While the existence of a feasible schedule with core

precedences has been proven NP-hard by Hanzalek & Hanen (2015), the complexity of UGF remained

open. In this section, we use the graph formulation of UGF to prove the NP -completeness of the problem

with a reduction from 3− SAT .

24



Theorem 3. UGF is NP-Complete

The proof of this theorem relies on several definitions and lemmas. After proving its membership to the

NP class, we define a reduction from 3-SAT. Then we will establish that when we are given a satisfiable

instance of 3-SAT then the associated instance of UGF does have a periodic schedule. Conversely, we

start from a periodic schedule of an instance of UGF to get a solution of 3-SAT.

Lemma 6. UGF belongs to NP.

Proof. If there is a feasible schedule, then following Lemma 3, the definition of the retiming (whose size

is polynomial) will allow one to check the feasibility in polynomial time and define a feasible grouped

schedule.

4.1. A polynomial reduction

Definition of 3− SAT

Let us consider an instance of the 3− SAT problem. We are given n binary variables x1, . . . , xn and

m clauses C1, . . . , Cm. Each clause is defined by 3 literals. A literal is either an xi or its complement xi.

The decision problem 3− SAT can be formulated as follows:

• Do binary values of the variables exist so that, in each clause, at least one literal is true?

This problem can be illustrated by the following example with 4 variables and 3 clauses: C1 =

{x1, x2, x3}, C2 = {x2, x3, x4}, C3 = {x1, x3, x4}

For this example, x1 = 1, x2 = 0, x3 = 0, x4 = 0 provides the satisfiability of this system.

Let us associate a 3− SAT instance with an instance of UGF as illustrated in Figure 11.

The uniform graph

We build a uniform graph associated to an instance of 3-SAT as follows: all the tasks defined below

have unit processing times, and all the arcs have unit length.

Let us define, for each variable xi of the 3-SAT instance, two tasks denoted by xi and xi with an arc

from xi to xi with height 0, and an arc from xi to xi with height 1. These arcs and nodes are called

decision cycles

Moreover, we consider 3n additional nodes z1, . . . , zn, z1, . . . , zn, y1, . . . , yn with the following arcs:

∀k ∈ 1, . . . n− 1, there are four arcs (zk+1, yk), (zk+1, yk), (yk, zk), (yk, zk) with height 0. Moreover, we

add two arcs (z1, yn), (z1, yn) with height 1. The subgraph composed with the nodes zi, zi, yi and the arcs

described above is called the ordering structure

Now, let us define, for each clause Cj six tasks c0j , c
1
j , c

2
j , c

3
j , c

4
j , c

5
j linked as a cycle : for each

k ∈ 0, . . . , 4 there is an arc (ckj , c
k+1
j ) with height 0. Moreover, there is an arc (c5j , c

0
j ) with height 4.

The cycle is called a Clause cycle. Moreover, among the cycle itself, the arcs starting from c0j , c
2
j , c

4
j

are called literal arcs and the other ones are called sequence arcs.

25



z1

y1

z1

x1

X3

x1

z2

y2

z2

x2 x2

z3

y3

z3

x3

c51

z4

z4

X2

X1

X4

X1

X2 X3 X4

c52

1, 1

y4

c01

c13

c23

c33

c43

c11 c21 c31 c41

c12c02 c22 c32 c42

c03

1, 1 1, 1 1, 1

1, 0 1, 0 1, 0 1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 0

1, 1

1, 1

x4x4

1, 0

1, 0

1, 0 1, 0 1, 0 1, 0 1, 0

1, 4 1, 0 1, 0 1, 0 1, 0 1, 0

1, 4

1, 0 1, 0 1, 01, 0
1, 0

1, 4

x3

1, 0

1, 0

c53

Figure 11: A uniform graph with groups for the 3-SAT example with 4 variables and 3 clauses.

Groups

There are 3n groups. For each variable xi of the SAT instance, we define three groups Xi, Xi, Yi.

Group Yi = {yi}.

Nodes xi, zi belong to group Xi, nodes xi, zi belong to group Xi .

Consider a clause Cj whose literals are sorted in increasing order of the index of variables. We consider

that the literals are indexed by 0, 1, 2. If the kth literal is xi then c2kj ∈ Xi, and c2k+1
j ∈ Xi. If the kth

literal is xi then c2kj ∈ Xi, and c2k+1
j ∈ Xi.

4.2. Defining a feasible grouped periodic schedule from an instantiation of variables

Lemma 7. If the instance of the 3−SAT problem is satisfiable, then there is a grouped periodic schedule

of G.

Proof. To prove this Lemma, we first define the retiming α associated to the instantiation of the

variables. We then show that graph Rα is acyclic, and that the number of removed arcs satisfy the

constraints induced by the uniform graph. In the third part, we then build the grouped retiming graph

Gα and prove it is still acyclic. According to the graph formulation of UGF, this is sufficient to build a

periodic schedule based on this retiming.

Let us consider an instantiation x̂1, . . . , x̂n of the variables such that each clause is satisfiable. To this

instantiation, we associate the following retiming:

∀i ∈ {1, . . . , n},


α(zi) = α(zi) = α(yi) = 0

α(xi) = α(xi) = 0 if x̂i = 1

α(xi) = 0, α(xi) = 1 if x̂i = 0

26



Notice that in Rα, the only arcs vanishing from the ordering structure (based on nodes zi, zi, yi) are

those of height 1, namely (z1, yn), (z1, yn). And the subgraph of Rα supported by the ordering structure

is acyclic. Moreover, any remaining arc (u, v) so that u ∈ {zi, zi, yi}, v ∈ {zl, zl, yl} satisfies l ≤ i.

Now, if the variable x̂i is true then the arc (xi, xi) remains in Rα while (xi, xi) vanishes, and if x̂i is

false then (xi, xi) remains in Rα while (xi, xi) vanishes.

For each clause Cj , the retiming of the clause nodes is defined as follows:

• α(c0j ) = 0.

• α(c2j ) = α(c1j ) + 1, α(c4j ) = α(c3j ) + 1.

• If the literal k ∈ {0, 1, 2} is true:

– Then α(c2kj ) = α(c2k+1
j )

– Otherwise α(c2k+1
j ) = α(c2kj ) + 1.

These equations define all the retiming values for the clause nodes. They are defined so that there is only

one remaining sequence arc: (c5j , c
0
j ) in the graph Rα, and at least one remaining literal arc corresponding

to the true literal of the clause. As the number of arcs of the clause cycle is 6, if at least two arcs remain

in Rα , then at most 4 arcs vanish, which is the constraint induced by this cycle (see Property 2). Notice

that since the literals of a clause are sorted in an increasing order of the index, if c5j ∈ Xi ∪ Xi then

c0j ∈ Xl ∪Xl with l < i.

According to this retiming, graph Rα is acyclic, since at least one arc vanishes from every cycle of G.

Let us now consider the grouped retiming graph Gα, in which all the nodes of a group are merged into

a node. Let us prove that Gα does not contain any cycle.

The nodes of Gα are the groups Xi, Xi, Yi.

Let us consider the group Xi of some literal xi.

If x̂i = 1 then group Xi is a successor of Xi in Gα. There is no arc from Xi to Xi. Indeed, the only

such possible arc would be a literal arc (ckj , c
k+1
j ) of a clause Cj . According to the definition of the literal

arcs, if ckj ∈ Xi then the kth literal of clause Cj is xi. But the literal arc remains in Rα only if x̂i = 0.

Notice that if x̂i = 0 the same arguments about the clause arcs can be stated so that in this case Xi

is a successor of Xi in Gα and there is no arc from Xi to Xi.

Now assume that there is a cycle in Gα. There would, thus, be an arc (u, v) so that u ∈ {Xi, Xi, Yi}

and v ∈ {Xl, Xl, Yl} with i < l. This arc would be issued from an arc of Rα. But in Rα, this cannot be

a clause arc (neither a literal nor a sequence arc) nor an arc from the ordering structure. So, it does not

exist.

4.3. Building a feasible instantiation from a feasible grouped periodic schedule

Let us consider a grouped periodic schedule of G, with its core σ, retiming α and corresponding graphs

Rα and Gα.

27



Lemma 8. For any variable i, either (xi, xi) or (xi, xi) is an arc of Rα.

Proof. According to Property 2, as the cycle (xi, xi) is of height 1, exactly one arc will be removed from

G in Rα.

Lemma 9. In Rα, all the arcs from the ordering structure are present, except a pair of arcs either from

node yk0+1 or to node yk0 . Moreover, the tasks y1, . . . , yn are scheduled in the core according to a circular

permutation of the sequence (yn, yn−1, . . . , y1). Consequently, in Gα, if u ∈ {Xi, Xi} and v ∈ {Xl, Xl}

with i < l then :
if k0 ≥ l or k0 + 1 < i v → u in Gα

if l − 1 > k0 ≥ i u→ v in Gα

if i = k0 + 1 or l = k0 + 1 u→ v or v → u according to the removed arcs

(9)

Proof. According to Property 2, as the height of the cycle (yn, zn, yn−1, zn−1, . . . , y1, z1) is 1, exactly

one arc will be removed from this cycle in Rα. Assume that, in the cycle {yn, zn, yn−1, zn−1, ...y1, z1}, the

arc (yk0+1, zk0+1) is removed. Then, either the arc (yk0+1, zk0+1) or the arc (zk0+1, yk0) is also removed.

Otherwise, there would be a cycle in Rα : zk0+1, yk0 , . . . , z2, y1, z1, yn, . . . , yk0+1, zk0+1.

Similarly, if the arc (zk0+1, yk0) is removed, then either (yk0+1, zk0+1) or (zk0+1, yk0) is removed,

otherwise, there would be the following cycle in Rα :

zk0+1, yk0 , . . . , z2, y1, z1, yn, . . . , yk0+1, zk0+1.

The remaining arcs induce a path, starting in both cases by yk0 and following the circular permutation

of the indexes: yk0 , . . . , y1, yn, . . . , yk0+1.

Now, let us consider the grouped graph Gα, and u and v nodes so that u ∈ {Xi, Xi} and v ∈ {Xl, Xl}

with i < l. Notice that if v = Xl (resp. Xl) then as zl (resp. zl) also belongs to group Xl (resp. Xl), then

if k0 ≥ l the arc (zl, yl−1) (resp. (zl, yl−1)) remains in Rα, and induces an arc (v, Yl−1) in Gα. The path

v, Yl−1, . . . , Yi (resp Xl . . .) remains in the graph, and combined with arc (Yi, u) will form a path from v

to u.

If, now, k0 + 1 < i, then the ordering structure will induce a path in Gα starting from v, then Yl, then

a path to Yi and the arc (Yi, u). Hence v → u.

Consider the case i = k0+1. Then, as shown previously, inRα : one of the two arcs (yk0+1, zk0+1), (zk0+1, yk0)

is removed, while one of the two arcs (yk0+1, zk0+1), (zk0+1, yk0) is removed. This implies that in Gα either

(Yk0+1, Xk0+1) or (Xk0+1, Yk0) is removed, and similarly either (Yk0+1, Xk0+1) or (Xk0+1, Yk0) is removed.

Now, if u = Xk0+1, and if (Yk0+1, Xk0+1) is removed, we have, in Gα, an arc (u, Yk0) then a path from

Yk0 to Yl and an arc (Yl, v) so that u→ v. If u = Xk0+1, and if (Xk0+1, Yk0) is removed, then we have in

Gα an arc from v to Yl, a path from Yl to Yk0+1 and an arc (Yk0+1, Xk0+1) which together form a path

from v to u. Similar arguments can be used considering u = Xk0+1.

28



Consider the case where l = k0 + 1 and v = Xl. Then, if (Xl, Yk0) is in Gα, we can build a path

v, Yk0 , . . . , Yi+1, u. Otherwise, if (Yl, Xl) is in Gα, we can build a path u, Yi, . . . , Y1, . . . , Yl, v. Similar

arguments can be used if v = Xl

Finally, if i ≤ k0 < l − 1 we can constitute a path from u to v by combining (u, Yi) with a path from

Yi to Yl following the ordering structure, and an arc (Yl, v).

In the graph Gα, let Uk = Xk ∪Xk. Let us denote, for two nodes, u, u′ the relationship u→ u′ if there

is a path from u to u′ in Gα.

Lemma 10. In Rα, for each clause Cj, there is, at most, one remaining sequence arc, and, at least, one

remaining literal arc.

Proof. Notice that as the height of the clause cycle is 4, according to Property 2, at most 4 arcs

are removed from G to get Rα. Now, consider the index of the variables of the clause k1 < k2 <

k3. The sequence arcs induce the arcs (u′, v), (v′, w), (w′, u) in Gα, with u, u′ ∈ {Xk1 , Xk1}, v, v′ ∈

{Xk2 , Xk2},w,w′ ∈ {Xk3 , Xk3}.

But, according to Lemma 9 and depending on the situation of the break in the ordering structure k0,

we necessarily have two of the three arcs that induce a cycle with a path from the ordering structure:

• if k0 + 1 < k1 then System (9) says that w → v′ and v → u′.

• if k0 + 1 = k1 then w → v′. Notice that if u = Xk1 then u′ = Xk1 (or conversely). According to

System (9), w → v′ and if u′ → v then u→ w′ so that arc (w′, u) induces a cycle, whereas if v → u′

the arc (u′, v) induces a cycle.

• if k1 ≤ k0 and k0 + 1 < k2 then System (9) says that w → v′ and u→ w′.

• similar arguments hold for other cases.

Thus, there cannot be two sequence arcs remaining in Gα. As there are 6 arcs in the clause cycle (3

literal arcs, and 3 sequence arcs), and as there is, at most, one remaining sequence arc there is, at least,

one remaining literal arc (otherwise 5 arcs would have been removed)

Lemma 11. A solution of the associated 3−SAT instance can be constructed from any grouped periodic

schedule of G.

Proof. Assume that a grouped periodic schedule of G has been found, and consider its retiming α.

According to Lemma 8, there will be, for each variable index i, either the arc (Xi, Xi) or the arc (Xi, Xi)

remains in Gα. Let us set:  xi = 1 if (Xi, Xi) ∈ Gα

xi = 0 if (Xi, Xi) ∈ Gα

We claim that this is a true assignment for each clause. Indeed, let us consider a clause. We know,

from Lemma 10 that there is at least one remaining literal arc in the associated clause cycle. Assume that

the corresponding literal is xj (resp. xj). The literal arc links in Gα the nodes: (Xj , Xj) (resp. (Xj , Xj)).

29



So, since Gα does not contain any cycle, the arc remaining from the variable arcs cannot be (Xj , Xj)

(resp. (Xj , Xj)). So xj = 1 in the instantiation (resp. xj = 1). So the clause is true.

5. Conclusion

This paper was motivated by the study of cyclic scheduling problems induced by the ZigBee standard

for Wireless Sensor Networks.

We introduced a new grouping constraint in a cyclic scheduling framework, and our contribution

is both to the cyclic scheduling theory, where such constraints had never been introduced, and to the

particular problem induced by the ZigBee standard.

In the case of the general problem UGF of checking the existence of a grouped periodic schedule,

we proposed a graph formulation using a retiming graph and a grouped retiming graph. UGF has been

shown to be NP-complete even if unit processing times are assumed and no additional resource constraints

are considered.

However, the graph formulation of the problem allowed us to propose a model for the ZigBee case by

formulating the start-to-end deadlines of the message-flows in terms of the number of periods crossed by

a message-flow. We use the particular tree structure of the groups to provide a polynomial solution to

the problem.

The mathematical properties established in this paper are important, among other things, for Wireless

Sensor Networks with realistic flows, resource constraints (i.e., multiple collision domains) and timing

constraints. In Ahmad & Hanzalek (2018) the application context of the results was investigated and

an efficient configuration tool calculating the parameters of the ZigBee network was designed. Heuristic

algorithms based on this work are able to find near-optimal configuration parameters for large Wireless

Sensor Networks with thousands of clusters and multiple collision domains.

Beyond feasibility, optimization problems might be addressed in the future, using the tools we devel-

oped in the paper. Minimizing the period length of a periodic grouped schedule (when it exists) should

be our next cyclic scheduling challenge.

Acknowledgements: This work was funded by the EU Structural funds and the Ministry of Educa-

tion of the Czech Republic within the project Cluster 4.0 (number CZ.02.1.01/0.0/0.0/16 026/0008432)

and by by the Technology Agency of the Czech Republic under the Centre for Applied Cybernetics

TE01020197.

References:

Ahmad, A., & Hanzalek, Z. (2018). An energy efficient schedule for IEEE 802.15.4/ZigBee cluster tree

WSN with multiple collision domains and period crossing constraint. IEEE Transactions on Industrial

Informatics, 14 , 12–23.

30



Alcaide, D., Chu, C., Kats, V., Levner, E., & Sierksma, G. (2007). Cyclic multiple-robot scheduling with

time-window constraints using a critical path approach. European Journal of Operational Research,

177 , 147–162.

Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16 , 87–90.

Benabid, A., & Hanen, C. (2011). Worst case analysis of decomposed software pipelining for cyclic unitary

RCPSP with precedence delays. Journal of Scheduling , 14 , 511–522.

Bocewicz, G., Nielsen, P., Banaszak, Z. A., & Wójcik, R. (2017). An analytical modeling approach to

cyclic scheduling of multiproduct batch production flows subject to demand and capacity constraints.

In ISAT (2) (pp. 277–289). Springer volume 656 of Advances in Intelligent Systems and Computing .

Bodin, B., Kordon, A. M., & de Dinechin, B. D. (2016). Optimal and fast throughput evaluation of CSDF.

In Proceedings of the 53rd Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June

5-9, 2016 (pp. 160:1–160:6).

Bonfietti, A., Lombardi, M., Benini, L., & Milano, M. (2011). A constraint based approach to cyclic

RCPSP. In Principles and Practice of Constraint Programming CP 2011. Lecture Notes in Computer

Science, vol 6876. Springer, Berlin, Heidelberg (pp. 130–144).

Brucker, P., & Kampmeyer, T. (2005). Tabu search algorithms for cyclic machine scheduling problems.

Journal of Scheduling , 8 , 303–322. 10.1007/s10951-005-1639-4.

Calland, P.-Y., Darte, A., & Robert, Y. (1998). Circuit retiming applied to decomposed software pipelin-

ing. IEEE Trans. Parallel Distrib. Syst., 9 , 24–35. doi:http://dx.doi.org/10.1109/71.655240.

Che, A., Feng, J., Chen, H., & Chu, C. (2015). Robust optimization for the cyclic hoist scheduling

problem. European Journal of Operational Research, 240 , 627–636.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms, Third

Edition. (3rd ed.). The MIT Press.

Darte, A., & Huard, G. (2000). Loop shifting for loop compaction. International Journal of Parallel

Programming , 28 , 499–534.

Dupont de Dinechin, B., & Munier-Kordon, A. (2014). Converging to periodic schedules for cyclic schedul-

ing problems with resources and deadlines. Computers and Operations Research, 51 , 227 – 236.

Feng, J., Chu, C., & Che, A. (2018). Cyclic jobshop hoist scheduling with multi-capacity reentrant tanks

and time-window constraints. Computers & Industrial Engineering , 120 , 382–391.

Gao, Z., & Zhou, B. (2019). Bi-objective cyclic scheduling for single hoist with processing-time-window

constraints considering buffer-setting. J. Systems & Control Engineering , 233 .

31

http://dx.doi.org/http://dx.doi.org/10.1109/71.655240


Gasperoni, F., & Schwiegelshohn, U. (1994). Generating close to optimum loop schedules on parallel

processors. Parallel Processing Letters, 4 , 391–403.

Gultekin, H., Akturk, M. S., & Karasan, O. E. (2006). Cyclic scheduling of a 2-machine robotic cell with

tooling constraints. European Journal of Operational Research, 174 , 777 – 796.

Hanen, C. (1994). Study of a NP-hard cyclic scheduling problem: The recurrent job-shop. European

Journal of Operational Research, 72 , 82 – 101.

Hanen, C. (2009). Cyclic scheduling. In Y. Robert, & F. Vivien (Eds.), Introduction to Scheduling

chapter 5. Springer.

Hanzalek, Z. (1998). A parallel algorithm for gradient training of feedforward neural networks. Parallel

Computing , 24 , 823–839.

Hanzalek, Z., & Hanen, C. (2015). The impact of core precedences in a cyclic RCPSP with precedence

delays. Journal of Scheduling , 18 , 275–284.

Hanzalek, Z., & Jurcik, P. (2010). Energy efficient scheduling for cluster-tree wireless sensor networks

with time-bounded data flows: Application to IEEE 802.15.4/ZigBee. Industrial Informatics, IEEE

Transactions on, 6 , 438 –450.

IEEE (2006). IEEE 802.15.4 wireless medium access control (MAC) and physical layer (PHY) specifica-

tions for low-rate wireless personal area networks (LR-WPANs). IEEE SA Standards Board.

Kats, V., & Levner, E. (2011a). Cyclic routing algorithms in graphs: Performance analysis and applica-

tions to robot scheduling. Computers & Industrial Engineering , 61 , 279–288.

Kats, V., & Levner, E. (2011b). A faster algorithm for 2-cyclic robotic scheduling with a fixed robot route

and interval processing times. European Journal of Operational Research, 209 , 51–56.

Kats, V., & Levner, E. (2018). On the existence of dominating 6-cyclic schedules in four-machine robotic

cells. European Journal of Operational Research, 268 , 755–759.

Khatib, J., Kordon, A. M., Klikpo, E. C., & Trabelsi-Colibet, K. (2016). Computing latency of a real-time

system modeled by synchronous dataflow graph. In Proceedings of the 24th International Conference

on Real-Time Networks and Systems, RTNS 2016, Brest, France, October 19-21, 2016 (pp. 87–96).

Levner, E., & Kats, V. (1998). A parametric critical path problem and an application for cyclic scheduling.

Discrete Applied Mathematics, 87 , 149–158.

Levner, E., Kats, V., & de Pablo, D. A. L. (2007). Cyclic scheduling in robotic cells: An extension of

basic models in machine scheduling theory. In E. Levner (Ed.), Multiprocessor Scheduling: Theory and

Applications (pp. 1–20). Vienna Austria: I-Tech Education and Publishing.

32



Marchetti, O., & Munier-Kordon, A. (2009). Cyclic scheduling for the synthesis of embedded systems. In

Y. Robert, & F. Vivien (Eds.), Introduction to Scheduling chapter 6. Springer.

Munier, A. (1996). The complexity of a cyclic scheduling problem with identical machines and precedence

constraints. European Journal of Operational Research, 91 , 471 – 480.

Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor

networks. Industrial Informatics, IEEE Transactions on, 7 , 328–339.

Pempera, J., & Smutnicki, C. (2018). Open shop cyclic scheduling. European Journal of Operational

Research, 269 , 773–781.

Potts, C. N., & Kovalyov, M. Y. (2000). Scheduling with batching: A review. European Journal of

Operational Research, 120 , 228 – 249.

Proth, J. M., & Xie, X. (1995). Modélisation, analyse et optimisation des systèmes à fonctionnement

cyclique. Masson.

ZigBee (2006). ZigBee Specification, No. 053474r13 . ZigBee Standards Org.

33


	Introduction
	General problem setting
	Uniform precedence model
	Grouping
	A production example
	 A graph expression of UGF
	Basic properties of the UGF

	The special ZigBee case
	Modeling the ZigBee constraints
	The graph formulation of the ZigBee problem
	ZigBee-chain: A simple ZigBee-like subproblem
	Removing Bridges
	A necessary and sufficient feasibility condition stated by the difference constraint system

	The ZigBee problem feasibility can be solved in polynomial time

	UGF is NP-complete 
	A polynomial reduction
	Defining a feasible grouped periodic schedule from an instantiation of variables
	Building a feasible instantiation from a feasible grouped periodic schedule

	Conclusion

