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Abstract — In this paper, we introduce a novel color pixel reconstruction algorithm for a RGBZ CMOS imager. A 

RGBZ imager is a Vision System on Chip (VSoC) sensor that captures simultaneously color and depth information with 

a hybrid pixel matrix. The imager pattern is based on a Bayer filter array where the Z pixel covers an equivalent area 

of a 2x2-color-pixel size, and one quarter of the total color information is missing. We propose an original adaptive 

algorithm to reconstruct the color information using a new operator called semi-gradient. The results show 

improvements on edges, corners, and narrow lines reconstruction, and a reduction of color and structural artefacts 

compared to classical reconstruction algorithms. 

Index Terms — RGBZ CMOS Imager, edge-directed algorithm, local adaptive weight, color depth filter array, VSoC. 

I. INTRODUCTION 

Systems acquiring both color (RGB) and depth (Z) information are more and more used [1][2]. Everybody knows the Microsoft 

Kinect [3] or the facial recognition system of the Apple iPhone10. Both of these systems are composed of two sensing devices. 

One for the color acquisition and one for the depth acquisition based on using InfraRed light (IR). In order to have a more 

compact solution, without needing a calibration step, merging these two devices into a monolithic RGBZ sensor has emerged 

in the past few years [4]. New scientific issues are raised to realize these new sensors, at several technical levels, leading to 

different possible RGBZ matrix architectures: layout of the heterogeneous pixel matrix, energy consumption, readout circuitry, 

color/IR on-chip filters. Among these, color reconstruction is a problem at the Z pixel locations, where no color information is 

present. The color filter array (CFA) is incomplete compared to a classical Bayer RGB scheme. The demosaicing step [5] of 

an image signal processing chain thus cannot be directly applied. Our paper focuses on this color reconstruction challenge. In 

[6], Shi et al. used a RGBZ pattern that is an alternation of four rows of RGB pixels and two rows of Z depth pixels. They 

proposed an edge-directed based approach derived from de-interlacing techniques and a color-selective adaptative demosaicing. 

Their pattern has a spatial distribution structured in rows. In order to have a homogeneous color distribution around a Z pixel 

for a given 5x5 kernel, we have chosen to work on an RGBZ structure (Fig.1) based on Bayer pattern with a 2-by-2 Z pixel 

size, where one-quarter of the color pixels are replaced by Z pixels.  To our knowledge, there is no dedicated reconstruction 

method for this RGBZ pattern. Therefore, we studied different universal reconstruction methods: the bilinear interpolation (BI) 

and an edge directed interpolation (EDI) inspired from [7], where A. Horé and D. Ziou introduced an edge-directed demosaicing 

method for various CFA patterns. But applying them to our RGBZ matrix, even after some functional adaption, we observed a 

lot of structural and color artefacts (Fig.4). Consequently, we worked on an original reconstruction algorithm based on an 

operator that estimates more finely the missing color information in the CFA image. 

II. PROPOSED ALGORITHM 

First, we implemented an adaptive algorithm using a classical Sobel-based gradient [8][9] that reduces the visibility of the 

Z pixels pattern across the matrix. However, some structural artefacts are still present along narrow edges (width edges less 
than 2 pixels). We propose a new operator called semi-gradient to improve the reconstruction. The idea of the semi-gradient 

is to find for a given orientation, to which side the missing pixel belongs. 

 
(a)            (b) 

Figure 1. (a) RGBZ pattern. (b) The four kernels depending on the 

central missing pixel: 1. Blue pixel. 2. Green pixel. 3. Red pixel. 4. 

Green pixel. 



A. Gradients computation 

The gradients are computed by the sum of pairwise differences between known color pixels. The color pixels used for each 

difference are located on either side of a given axis of symmetry of the kernel. Fig.2 represents the masks used for the four 

gradients computation. The mask depends on the kernel configuration (Fig.1.b): Z pixel values are set to 0; only color pixels 

are used to compute the gradient. The correlation between the R, G and B channels [10][11] is used to compute inter-channel 

differences. This allows detecting edges in any of the three channel and increasing the number of terms, which reduces noise 

impact. The four gradients (Grads) are normalized following the number of terms used to compute them. Normalized gradients 

are then discriminated with a gaussian function to compute weights ω for each direction according to the four gradients: 

Where, min(Grad) corresponds to the minimum of the four gradients and Grad represents a given gradient. The 

weights 𝜔′(𝑖, 𝑗) are normalized: 

𝜔′(𝑖, 𝑗) = 𝜔(𝑖, 𝑗)/ ∑ 𝜔(𝑔, ℎ)

(𝑔,ℎ)∈𝜉

 (2) 

Finally, the missing pixel I(p,q) is interpolated with: 

𝐼(𝑝, 𝑞)  =  ∑ 𝜔′(𝑔, ℎ)𝐼(𝑔, ℎ)

(𝑔,ℎ)∈𝜉

 (3) 

Where ξ is the computation kernel centered on the missing pixel (𝑝, 𝑞)  and (𝑔, ℎ) the coordinates of the weighted pixel. 
The new operator, the semi-gradient, is described in the next section. 

B. The semi-gradient operator 

Semi-gradient (SG) is a new local operator designed to improve the reconstruction of the missing information, using both 

intra and inter-channel information. It is firstly used to enhance the gradient computation in order to detect narrow edges (1-2 

pixels width). It is also used during the weights computation step to promote weights on the preferred side along an edge. The 

aim is to evaluate how close neighbors of the missing pixel are similar to pixels in the eight directions. These evaluations allow 

refining the identification of structures and identifying in which direction there is a continuity of the texture. Hence, we can 

interpolate the missing pixel along the detected direction.  

When the missing pixel is located on an edge, we must interpolate along this edge. To do so, we introduce two values: a 

Discriminated Semi-Gradient (DSG) and a Discriminated Improved gradient (DIG). The weights are computed as weighted 

sums between these two values. The weights of the pixels along the edge are mainly defined by the DIG and, conversely, the 

weights of the pixels located on either side of the edge are mainly defined by the DSG. As we have no information about the 

missing pixel, the DSGs allow considering image information on each side of the edge. We compare a given DIG to its 

orthogonal DIG⊥ to determine the edge and then adapt the weight computation. For example, to compute the edge-directed 

weight of the North area, we compare DIG
N S−

 with DIG
E W−

 to identify if the edge-directed weight 𝜔 needs to be mainly based 

on the DIG
N S−

(edge along the North-South axis) or the DSG
N

(edge along the East-West axis). The comparison between the 

two orthogonal gradients for a given orientation ori is defined by: 

 

 
𝜆𝑜𝑟𝑖 =  

𝐷𝐼𝐺𝑜𝑟𝑖

𝐷𝐼𝐺𝑜𝑟𝑖 + 𝐷𝐼𝐺𝑜𝑟𝑖⊥

 (4) 

And the edge-directed weight 𝜔𝑑𝑖𝑟  for a given direction dir is computed by: 

 

𝜔𝑑𝑖𝑟 = 𝜆𝑜𝑟𝑖 ∗ 𝐷𝐼𝐺 𝑜𝑟𝑖 + (1 − 𝜆𝑜𝑟𝑖) ∗ 𝐷𝑆𝐺𝑑𝑖𝑟 (5) 

 

𝜔𝑑𝑖𝑟 = 𝑒
−

𝐺𝑟𝑎𝑑(𝑑𝑖𝑟)²

2(𝑚𝑖𝑛(𝐺𝑟𝑎𝑑)+1)² 
(1) 

 
Figure 3. Computation masks of the arrays. Close pixels are marked 

in grey. Left to right: North differences, South differences, West 

differences and East differences. 

 
Figure 2. Computation mask centered on the missing pixel, for the 

four directions of the gradient. Left to right: North-South, West-

East, Northwest-Southeast and Southwest-Northeast. 



Finally, weights 𝜔(𝑖, 𝑗) are normalized (2) before the interpolation (3).  

DIG and DSG are obtained using semi-gradients. Two SGs are computed for each orientation, e.g. North SG and South SG 

are computed for the North-South orientation. Each SG results in the summation of pair-wise differences between color pixels: 

a pixel close to the missing one and a second pixel located near the boundary of the kernel, both located on the same side versus 

the central point. Pixels on the axis of symmetry for a given direction are considered as close pixels. Two arrays of ten values 

are computed corresponding to the vertical and the horizontal differences (Fig.3): 

 

I() are color pixels in the kernel. Pixels corresponding to a part of the Z pixel are not considered in these equations. The 

index j ∈ [0,4] is the index of both arrays. North differences correspond to (6), South to (7), West to (8), and East to (9). 

Horizontal and vertical differences are then associated to form the semi-gradients according to their direction. For example, 

semi-gradient of the North area (10) is computed using the vertical North differences, and the semi-gradient of the North-West 

area (11) is computed using vertical North differences and horizontal West differences:  

𝑆𝐺𝑁 = ∑ 𝑑𝑖𝑓𝑓𝑣𝑒𝑟𝑡[𝑗]

𝑗∈{0;2;6;8}

 (10) 

𝑆𝐺𝑁𝑊 = ∑ 𝑑𝑖𝑓𝑓𝑣𝑒𝑟𝑡[𝑗] + 𝑑𝑖𝑓𝑓ℎ𝑜𝑟𝑖[𝑗]

𝑗∈{0;2}

 (11) 

For each SG, the number of color differences could vary due to the Z pixel location inside the kernel (Fig.1.b). They are then 

used to improve the four gradients Grads. The improved gradient (IG) is defined by:  

𝐼𝐺 =
1

𝑘𝑡𝑜𝑡
(𝐺𝑟𝑎𝑑 + 𝑆𝐺1 + 𝑆𝐺2) (12) 

Where 𝑘𝑡𝑜𝑡 is the normalization factor corresponding to the number of terms used to compute the Grad and both SGs, and 

𝑆𝐺1 and 𝑆𝐺2 are the two semi-gradients associated to the gradient Grad. For example, for 𝐺𝑟𝑎𝑑𝑁𝑊 , 𝑆𝐺1=𝑆𝐺𝑁 and 𝑆𝐺2=𝑆𝐺𝑊. 

We use a scaled version of the SGs to compensate for the missing differences due to lack of color pixels at Z location (13):  

 
𝑆𝐺𝑠𝑐𝑎𝑙𝑒𝑑 =  

𝑆𝐺

𝑁
 (13) 

Where 𝑆𝐺𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled semi-gradient, and 𝑁 ∈ [3,4] the number of terms used to compute the corresponding semi-

gradient. Before the computation of the interpolation weights, both IGs and scaled SGs are separately discriminated using (1) 

to obtain the four discriminated improved gradients (DIGs) and the eight discriminated semi-gradients (DSGs).  

III. EXPERIMENTAL RESULTS 

In this section, we present a series of tests made on the 18 images from the McMaster dataset [12] and on the 24 images 

from the Kodak dataset [13]. To assess the algorithms, a virtual test bench has been implemented. The RGBZ images are 

𝑑𝑖𝑓𝑓𝑣𝑒𝑟𝑡[2j] = |𝐼(0, j − 2) − 𝐼(−2, j − 2)|, if j ≠ 2 else 0  

𝑑𝑖𝑓𝑓𝑣𝑒𝑟𝑡[2j + 1] = |𝐼(0, j − 2) − 𝐼(2, j − 2)|, if j ≠ 2 else 0 

𝑑𝑖𝑓𝑓ℎ𝑜𝑟𝑖[2j] = |𝐼(j − 2,0) − 𝐼(j − 2, −2)|, if j ≠ 2 else 0 

𝑑𝑖𝑓𝑓ℎ𝑜𝑟𝑖[2j + 1] = |𝐼(j − 2,0) − 𝐼(j − 2,2)|, if j ≠ 2 else 0 

(6) 

(7) 

(8) 

(9) 

TABLE I 

PERFORMANCE COMPARISON OF RECONSTRUCTION 

METHODS IN TERMS OF PSNR, C-PSNR AND SSIM 
  

 

Kodak BI EDI PS
PS-SG (our 

solution)

PSNR 27.00 27.61 28.21 28.70

C-PSNR 31.72 32.65 33.12 33.62

SSIM 0.944 0.950 0.953 0.957

McM BI EDI PS
PS-SG (our 

solution)

PSNR 27.53 28.46 28.90 29.31

C-PSNR 31.78 33.07 33.46 33.88

SSIM 0.943 0.952 0.956 0.958



generated from color images using a RGBZ sensor model based on a noise model described in [14]. The missing pixel 

reconstruction algorithms are included into a typical image sensor processor (ISP) to generate the full color images. Classical 

steps as the white balance correction, demosaicing and gamma correction are computed here. The demosaicing algorithm used 

is described in [15]. A reference image corresponding to the original image sampled with the Bayer pattern and processed with 

the same chain is also built to assess the quality of the reconstructed image. Four methods have been implemented: the bilinear 

interpolation (BI), the edge-directed interpolation (EDI) [7], the proposed solution without the semi-gradient improvement (PS) 

and the proposed solution with the semi-gradient improvement (PS-SG). They have been evaluated using the peak signal-to-

noise ratio (PSNR), the color-peak signal-to-noise ratio (CPSNR) [16] and the Structural Similarity index (SSIM) [17]. The 

PSNR metric is used to evaluate the quality of the CFA images (prior to the demosaicing step) while both C-PSNR and SSIM 

metrics are applied on the final color images. We have reported results in Table I. As we can see, the proposed solution using 

the semi-gradient improvement leads to the best reconstruction. Structural and color artifacts are visually reduced (Fig.4). Some 

structural artifacts due to the Z pixel pattern are noticeable for the BI, EDI and the PS while they are significantly reduced with 

the PS-SG algorithm. 

IV. CONCLUSION 

In this paper, we have described a new algorithm to fill the missing color information for a RGBZ matrix in order to 

reconstruct a full Bayer image. Due to the unique structure of the RGBZ matrix where one quarter of the color information is 

missing and each Z pixel has a size of a 2x2-color-pixel kernel, the reconstruction becomes a challenging problem. Three 

classical methods were studied, and we developed an original reconstruction algorithm based on a new operator: the semi-

gradients. The experimental results have shown that our algorithm is at the state of the art in terms of visual aspect and objective 

quality measures, compared to classical interpolation algorithms adapted to our RGBZ matrix. To go further, we will investigate 

joint reconstruction methods using both color information and amplitude information from depth sensing. 
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