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Abstract In the context of geographic routing in wireless sensor net-
works linked by fading communication channels, energy efficient trans-
mission is important to extend the network lifetime. To this end, we
propose a novel method to minimize the energy consumed by one bit of
information per meter and per second towards the destination in fading
channels. Using the outage probability as a measure to maximize the
amount of information delivered within a given time interval we decide
energy efficient geographic routing between admissible nodes in a wire-
less sensor network. We present three different approaches, the first is
optimal and is obtained by varying both transmission rate and power,
the other two are sub-optimal since only one of them is tuned. Sim-
ulation examples comparing the energy costs for the different strate-
gies illustrate the theoretical analysis in the cases of log-normal and
Nakagami shadow fading. With the method proposed it is possible to
obtain a significant energy savings (up to ten times) with respect to
fixed transmission rate and power.
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1 Introduction

Applications of Wireless Sensor Networks (WSNs) are numerous in both industry
and everyday life. These networks are made up of low-cost sensor devices capable
of collecting and transmitting different types of information autonomously. Geo-
graphic routing strategies used in wireless communication networks require that
each transmitting node is aware of its location, the locations of its neighbors, and
the destination. With this information, the message can be routed by choosing
intermediate nodes, or relays, which allow the destination to be reached with the
maximum possible transmitted information rate and with minimum delay. How-
ever, the main design goal of Wireless Sensor Networks is not only to transmit
data from a source to a destination, but also to ensure the minimum energy con-
sumption thereby maximizing the lifetime of the network.

In many applications, sensors are deployed in hard-to-reach areas and are not
easy to replace. For a sensor, transmission is the most energy-intensive function.
Thus, designing energy-efficient routing mechanisms is paramount. This can be
achieved by employing energy efficient routing protocols that take into account
measurements related to energy efficiency such as Energy per Packet, Average
Energy Dissipated, Average Packet Delay, Packet Delivery Ratio, Time until the
First Node Dies, and Distance. Many of these protocols are based on the geo-
graphic distribution of the nodes and the associated transmission range for each
transmitting sensor. However, the idea of a transmission range in fading channels
as a bound is an overly simplistic approach. In such cases, the transmission range
must be considered as a random variable and must be treated as such to optimize
the efficiency of a network.

We assume the problem of optimal joint routing and transmission strategies
can be separated, to obtain the same energy savings. There is some MAC layer
scheduling mechanism taking care of interference issue; therefore energy consump-
tion is independent among all hop-by-hop transmissions. Then, given two nodes
at distance d and a fixed amount of available energy for transmitting information,
the case treated in this paper consists on maximizing the amount of information
delivered within a given time interval by tuning the transmitter power, the rate
of information, or both together when the transmission is affected by fading.

In the presence of fading, the signal to noise ratio is random and the metric
used to evaluate the transmission performance depends on the rate of change of
the fading. The bit error probability is an appropriate metric that is applied when
the fading coherence time is of the order of a symbol time. In this case the signal
fading levels are approximately constant and the error correction coding techniques
can retrieve the information. However, in the event that the fade signal changes
slowly and deeply with respect to the duration of the symbol, they cannot be
recovered by encoding. Under these circumstances, a probability of outage is an
appropriate metric for assessing transmission performance with independence of
the MAC layer is configured.

The channel capacity is a metric for measuring the outage probability, it gives
the maximum data rates that can be transmitted over wireless channels with
asymptotically small error probability. This metric is a function of the signal-to-
noise ratio at the receiver. If it is greater than a given threshold, the transmission
can be decoded and vice versa. Thus, in shadow fading channels the capacity is
random and the probability that the message cannot be decoded, called outage
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probability, is an important metric related to energy consumption. The factors
to be taken into account in defining the criterion are the outage probability, the
expected progress of such information measured in bits/s/m, and the expected
delay time to deliver the information.

The most accepted path loss model for wireless signal propagation is that where
the power attenuation at the receiver is a function of the distance between the
transmitter and receiver. Additionally, the signal transmitted through a wireless
channel propagation will typically experience random variation due to multipath,
giving rise to random variations in the power received at a given distance. Both
effects define the fading channel between the transmitter and receiver leading to
changes in the signal-to-noise level at the receiver. The simplest way to argue
that shadow fading as Lognormal distribution is due to the central limit theorem.
However, in a more general context it can be different from Lognormal. We use a
Mixture of Gaussians (MoG) distribution as an accurate approximation for several
possible envelopes of the signal-to-noise ratio (SNR) distributions of wireless fading
channels. In the simulation section, results from the different strategies illustrates
the theoretical analysis in the cases of Lognormal and Nakagami shadow fading
where a significant saving in energy is obtained when the transmission rate, power,
or both simultaneously are tuned.

Using the fact that power consumption is independent among all hop-by- hop
transmissions, the optimal and sub optimal designs can be extended to the case
of having to select a relay within a subset of admissible relays. Certain geographic
routing protocols are able to select, instead of a single relay, a subset of admissible
relays as possible next hop relay. For example due to uncertainties or others, there
are several possible next hops relays. In this case, the selection strategy among
them is found by obtaining the consumed energy for each one in the set. Then,
the relay that uses less energy is selected as optimal.

2 Related work

The problem of adapting the transmission of data on wireless channels has been of
great interest in recent decades and there has in particular been a remarkable de-
velopment in the area of sensor networks. In [1] a recent survey analyzes both the
energy-efficient and energy-balanced routing protocols for WSNs. In that paper
the authors reviewed different energy-efficient and energy-balanced routing proto-
cols that attempt to extend the network lifetime and functionality by minimizing
the energy consumption in the network, emphasising the importance of an energy-
efficient and energy-balanced routing protocol. In [2] such protocols are classi-
fied into four main schemes: Network Structure, Communication Model, Topology
Based and Reliable Routing. All these protocols take into account metrics related
to energy efficiency such as Energy per Packet, Average Energy Dissipated, Av-
erage Packet Delay, Packet Delivery Ratio, Time until the First Node Dies, and
Distance. However, the attention in these protocols is focused mainly on strategies
that define the best routing of data subject to energy and delay efficiency. By as-
suming the joint problem of routing and transmission strategies can be separated
to obtain the same energy, important energy savings are obtained in [4] by con-
trolling the transmitted power and in [5] by controlling the transmission rate. In
[4] the authors propose a transmission power control for energy efficient delivery
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of information in multihop wireless networks based on finding the optimal signal-
to-noise ratio. In [5] energy saving is obtained via lazy schedules that smartly vary
packet transmission times. The strategies in [4] and [5] consider gausssian chan-
nels. However, they are not optimal since only the transmission power
or rate is tuned, respectively. This approach differs from our work in
that we minimize energy by jointly controlling both actions. Moreover,
we analyse the case of fading channnels. The transmission power and rate
are designed using the cross-layer approach. For example, the analysis of queuing
delay for IEEE 802.16 networks was conducted in [6], [7], and [8] by combining
link-layer queuing with physical-layer transmission.

As regards with power and rate control for data transmission in a single
transmitter-receiver link several techniques have been proposed. The authors in [9]
consider a cross-layer optimization framework for video streaming in multi-node
wireless networks in a time-varying interference environment. A joint power con-
trol and rate adaptation framework that exploits the time diversity of the wireless
channels is designed in such a way that a target delay is achieved. Taking into
account the time varying channels and interference, stringent delay constraints,
and a certain fairness/satisfaction criterion, they design the link as a stochastic
control problem by minimizing a non-linear risk-sensitive cost function. In [10]
the authors propose a dynamic rate and power control algorithms for distributed
wireless networks that also allow for the congestion levels in a network. Three dis-
tributed rate and power control algorithms for wireless networks are presented: an
adaptive scheme, a quadratic control scheme, and a robust scheme. The design is
achieved by formulating state-space models with and without uncertain dynamics
and by determining control signals that help meet certain performance criteria
(such as robustness and desired levels of signal-to-interference ratio). However,
the goal in [9] and [10] is to achieve the target delay or a desired signal
to noise level. Theses approaches differs from ours is the sense that they
do not take into account energy efficiency.

In a typical mobile radio propagation scenario, the received signal presents
power fluctuations due to multipath propagation, known as fading (shadowing).
The fading results in a SNR fluctuations around the mean level giving rise to
typical distributions like Log-normal, Rayleigh, Nakagami, Weibull and Rice. In
most cases an average between some of them results in a complicated pdf that has
no closed form expression, as is described in [18]. Thus, a generalized Mixture of
Gaussian (MoG) distributions, [19], [20], as an accurate approximation for several
possible envelopes, is used.

Fading is important in reliable wireless sensor networks [3]. In [11] experi-
mental results show that many well-designed protocols will fail simply because
of fading experienced in a realistic wireless environment. While fading for radio
propagation are well understood in the wireless communication community, they
are rarely studied in network level research for wireless sensor networks. The au-
thors show that fading can have a significant influence on network performance,
notably in multichannel CDMA systems. Similar conclusions are reported in [12].
In [13] it is recognized that fading affects the wireless network and they analyze the
connectivity of multihop radio networks in a log-normal shadow fading environ-
ment. Assuming the nodes have equal transmission capabilities and are randomly
distributed according to a homogeneous Poisson process, they give the minimum
node density that is necessary to obtain an almost surely connected network. Due
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to fading, the amount of information being transmitted between the transmitter
and receiver is random, leading to random queuing delays for the buffered packets.

Based on the fact that the consumed energy is a decreasing func-
tion of the transmission duration, the total transmission energy can
always be reduced by increasing the transmission rate. Associated with
a transmission rate, there is a corresponding transmission power that
would be required to transmit at a certain rate for a given error prob-
ability. Joint optimization of the transmission power, rate, and packet
transmission schedules that minimize energy subject to a deadline or a
delay constraint have been studied in point-to-point wireless networks
by [15],[16], and [17]. The goal is to transmit a set of dynamically arrived
packets with the least amount of energy. In all these works is assumed
the channel state is known at present time but evolves stochastically in
the future as a Markov process. The channel knowledge is based on re-
ceiver feedback, pilot measurement or other sophisticated schemes. In
[15] and [16] dynamic programming to develop strategies for transmis-
sion optimization is used. In [15] the analysis of the buffer occupancy
is included. In [17] an optimal-control formulation is used. The main
difference between these approaches with our work is that we do not
consider channel knowledge in real-time. Instead we assume the dis-
tribution of the fading is known avoiding the problem of feedback. On
the other hand, the deadline constrained data transmission in our case
can be addressed by changing the desired transmission time which is a
real-time design variable.

The original contribution of this work is the design of an optimal
(energy efficient) information transmission scheme which controls the
transmission power and the rate of information in fading channels with-
out knowledge of the channel gain in real-time. The optimization max-
imizes the information transmitted per unit of time between two WSN
nodes separated by a given distance. The energy cost is minimized and
realistic fading is taken into account. The optimal transmission design
between admissible nodes is used as a metric to decide energy efficient
geographic routing. Additional contributions are the possibility to fix
the duration for the transmission of the information as well as to de-
rive sub-optimal strategies where only the transmission power or the
transmission rate is controlled.

3 Outage Probability

For a complete description of notation used, see Table 1. Let us assume that a
source sends r messages per second, and the entropy of a message is H bits per
message. The information rate is R = rH bits/second. Shannon’s theorem states
that i) a given communication system has a maximum rate at which information
can be transmitted, known as the channel capacity, C; ii) if the information rate R
is less than C, then one can obtain an arbitrarily small error probability by using
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Table 1 Notations.

Name [Units| Meaning
Channel C, [bits/s.] Channel capacity
B, [KHZ] Bandwith
o' Path loss coeff.
wi[dB] Mean of ith MoG component relative to ImW
oi|dB] Stand. dev. of ith component relative to 1mW
wj weight of ith MoG component
Power PIB [dB] Path loss power relative to 1mW
PiB [dB] Received relative to 1mW to ImW
P4B | [dB] Noise power relative to 1mW
P4B [dB] Transmitted power relative to 1mW
n4B, [dB] Fading power relative to 1mW
Power Ratios SNRIB | [dB] Signal to Noise Ratio at the receiver

SNRdB, [dB] Mean of SNR at the receiver
SNR%P, [dB] SNR at rate transmission R

v, [dB] SNR' — SNRiP
Transmission EYB [dB] Consumed energy relative to 1mWs.
T4B  [dB] Time one bits to travel one meter relative to 1s.
B, mW Electronic consumption
d?B | [dB] Distance between sensors relative to 1m
n Number of retransmissions
a Mean number of retransmissions
Po Outage Probability

intelligent coding techniques. In contrast, if R is greater than C due to increased
noise, the information can not be recovered. For Gaussian channels, the capacity
is given in bits of information per second by

C = Blog,(1+ SNR), (1)

where B is the bandwidth of the channel and SNR is the signal-to-noise power
ratio at the receiver. Note that the SNR is not in decibels (dB). By using our
notations and considering B = log(2), without loss of generality the capacity is
written as,

C =In(1+ SNR) (2)

In order to obtain the expression of SN R, we assume the well-known path loss
model affected by fading:

priB — piB _ pydB | dB | pdB 3)

The received power, priB , is equal to the power transmitted, piB , measured at
a reference distance dgp = 1m, minus the path loss, PldB , which is function of the
distance between nodes, d, plus the random fading process, ndB, plus the thermal
noise. The path loss is given by:

PI*P = 10ylog,(d/do), (4)

where  is the path loss distance exponent (typically between 2 and 4). All quan-
tities are written in decibels with respect to 1mW. The fading is represented by
a random power signal, n%Z, with probability density function that could be Log-
normal, Rayleigh, Nakagami, Weibull, Rice, or most likely an average of some of
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them. PZP is the constant power of the thermal additive white Gaussian noise.
Therefore, the signal-to-noise ratio in dB at the receiver is given by

SNRdB - [PdB - PldB + ndB]signal - [PgB]noise
= SNRY 4 pB, (5)

where

SNR'® = P _ 107 log,(d/do) — PI®, (6)
Thus, the signal-to-noise ratio is a random variable with mean value SNRdB. Now,
let us assume the transmission rate is R[bits/s]. The necessary signal-to-noise ratio
level that allows information to be succesfully transmitted at rate R is obtained
from the expression of the channel capacity, (2), expressed in dB as follows:

SNRE =10log,,(e™ — 1) (7)

Since the SNR is random, using the concept of channel capacity it is clear that
the message is correctly received when SNR > SNRpr and it is lost if SNR <
SN Rpg. Thus, the outage probability is the probability that the SN R is lesser than
SN Rp. For example, Figure 1 depicts a possible case where the SN R%E has normal
distribution. In this case the outage probability is the area of the distribution in
the interval given by —co < SNR < SNRp. The outage probability is formally
obtained as follows:

SNR$P
P, =Pr{SNR < SNRg} = / Fa(SNR™P)d((SNRP)

-c, (SNRdRB) . (8)

where Pr stands for probability, f, is the fading probability density function,
and Cy, is the cumulative distribution function of the fading in dB, evaluated at
SNREE.

We use an MoG distribution as an accurate approximation of several possible
fading channels. It is formed by a weighted sum of Gaussian functions each with
a different mean and variance. The general expression of f, using MoG is,

(o _(SNREB_ )2

SNRP) =
Il =X Zmart ©)

where w; are weights of each normal component such that w1 +---+wn, =1, s
is the mean value and o; is the standard deviation of each component.

The MoG distribution can effectively fit any arbitrarily shaped distribution
using normal mixture models by fitting the triplets w;, p;, 0; using the maximum
likelihood criteria via the iterative Expectation-Maximization (EM) algorithm, see
[19], [20]. Replacing (9) in (8) the outage probability is given by:

SNRE® w0 _(SNRIP )P B
P, = / t e d(SNR*")
oo = V2T o
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Fig. 1 Probability density function of SNRE in the case of Gaussian distribution. The area
D = {SNRIB|SNRIE < SNRdRB}, is the outage probability.

Notice that P, is function of a single variable, v, defined as
v=p—SNRIE. (11)

where p = SNR is the mean value of the fading distribution f;. Note that v is
a function of P*® and R through SNRE.

We shall now see how to use this metric to select the relay from a subset of
possible candidates in different scenarios. To this end, we need to define the cost
function and the decision criterion.

4 Energy consumption

Let us assume that the energy consumed by one bit of information to travel one
meter is E in [W. s. / bit. m.]. This energy is proportional to the transmitted power,
P, multiplied by the averaged number of re-transmissions for each bit, «, and
inversely proportional to the distance, d, and the rate of information transmitted,
R. The efficiency of the transceiver is included in P. The constant power supply,
[, is added for consumption that is not proportional to the transmitted power
itself. The resulting expression is:

p=t ;Rﬁ)a [mejts} ' (12)

To obtain the value of o let us assume that a number of bits of information
must be transmitted from one node to another. In the first attempt there will
be a proportion, P,, that cannot reach the receiving node. Those bits must be
re-transmitted, but again a quantity proportional to P, will fail and must be re-
transmitted and so on until some desired error probability is reached. Thus, the
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amount of bits transmitted will be greater than the amount of information to be
transmitted according to the following calculation:

_ 1-Pr
S i

T 1-P, (13)

where PJ' is the probability that at the end of the re-transmissions, one bit of
information cannot reach the next hop. Since P} << 1 the series rapidly converges
toa=1/(1—"P,) as n increases.

Thus, the energy consumed as follows:

E=(P+8)T, (14)
where T is the time that one bit needs to travel one meter,

"= i L vits) a3

5 Optimal and pseudo-optimal strategies

We assume the two problems of joint routing and information transmission can
be separated, to obtain the same energy savings. We assume there is some MAC
layer scheduling mechanism taking care of the interference issue. Therefore, power
consumption is independent among all hop-by-hop transmissions. Let us first con-
sider the case where some given information needs to be transmitted between two
nodes located at distance d from each other. Our strategy, called optimal, con-
sists in finding the pair (P, R) such that the energy consumption to successfully
transmit a given amount of information in a given time interval, T, at the given
distance, d, is minimal. Since this optimal design is achieved by tuning both R
and P it is called PR-control. However, in many cases both variables cannot be
tuned and one or both must remain fixed. Hence, there are two possible types of
sub-optimal selections. One is by tuning the transmission power while the rate is
fixed, called P-control. The other is when the rate is tuned and the power is fixed,
called R~control. All strategies will be analyzed.

5.1 Optimal PR-control

The transmitted power can be expressed by replacing Equation (6) in (11) as
follows:
P8 = SNRYP 4+ v + ~a?P 4+ pPIB. (16)

The time, T, in decibels with respect to one second, is given by:
TdB — adB _ ddB _ RdB (17)

Formulated in this way, for each given value of d, T, and P, there are three
unknowns, P, R, and «a that need to satisfy two linear equations, (16) and (17)
subject to the constraints of minimal energy. Since « is determined by P, and
this is a function of v, we first obtain v as a minimizer of the energy, E. Then, we
replace v in (16) to obtain P and in (10) to obtain P,. With P, we obtain « using
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(13). Replacing « in (17) we obtain R. Thus, considering that 87" is constant, the
minimizer v can be obtained by considering only the energy proportional to he
transmitter power in dB,

(PT)dB — PdB +adB _ RdB _ ddB (18)

By replacing (16) in the above and equating to zero the partial derivative with
respect to v the following holds:

o (PT)*P DB
=1 = 1
v + ov 0 (19)
Applying the chain rule, we obtain,
22 da 0P, 0
da 0P, Ov

Taking into account that a = 1/(1 — P,) and solving the above we obtain the
following necessary and sufficient conditions for the minimizer v:

-8 -, (20)

Remark 1: Note that being a single variable function, the minima are very
easy to obtain, either numerically or graphically. Note also that there always exists
at least one pair (v, Po(v)) that satisfies (20). See Appendix 1.

Using (10) in (20) we obtain the following condition for the minimal energy:

_ —mpi=w)?
sz <erf <M \/gla >—|— ge 207 ) =1 (21)

where p = 20/1n(10)y/27. It should be noted that depending on the fading distri-
bution this equation can have more than one solution. For example, in those cases
where the distribution has several relative maximum and minimum, there may be
several pairs (v, P,) satisfying (21). In those cases is necessary to check each one
to choose the optimal. This equation together with (16) and (17) is used to obtain
R and P and also the energy consumed by one bit of information to travel one
meter, given by (12).

The steps to obtain the optimal values of P, R, and E for single link and, if
necessary, the selection from the admissible set can be summarized as follows:

1. First, parameters w;, i;, and o; are obtained from the Expectation-Maximization
algorithm by fitting the fading distribution. In order to obtain these parame-
ters it is necessary to carry out prior experimental studies. A signal of known
power is emitted by the transmitter and measured at the receiver. Power de-
viations from their average value are recorded and used by the EM algorithm.
With these parameters obtain v using (21) and also the outage probability, P,
from (10).

2. Use the value of P, to obtain « from (13) for a given pre-specified desired
outage probability.
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3. Use «, a given time interval T', and distance d to obtain the optimal value of
R from (17).

4. Use v and R together with the path loss coefficient 7, distance d, and noise

power P, to obtain the optimal value of the transmitter power, P, using (16).

Finally the energy consumed is obtained by Equation (12).

6. The previous steps allow us to obtain the optimal PR~control for the informa-
tion transmission between two nodes. The design can be extended in the case of
having to select a relay from a subset of admissible relays. Certain geographic
routing protocols are able to obtain, instead of a single relay, a subset of ad-
missible relays as possible next hop relay. For example, due to uncertainties,
such as location errors or others, there are several possible next hop relays. In
this case, the selection strategy among them is found by obtaining the energy
consumed for each one in the set by following the steps 1 to 5. Then, the relay
that uses the least energy is selected as optimal. Formally, for each admissible
next hop relay at distance d; and fixed time T with consumed energy, FE;, is
used in (22) for the optimal selection as follows:

o

arg min {E;}. (22)

This minimization gives the ith relay that consumes the least energy to send
a bit of information per meter in the time interval T.

5.2 Sub-optimal P-control and R-control schemes

In the case of P-control, the rate R is fixed and given by averaging the values of
SNR$P obtained from the PR-control for a possible distribution of distances d;,

R=1In(l + SNRg) (23)

where SNRp = 106ISVEZ1/10 314 € means expected value. This parameter can
be obtained a priori by assuming a possible distribution of distances. When a
relay selection is carried out from an admissible subset of possible relays, the sub-
optimal strategies select the same relay as in PR-control. The constant v and the
outage probability will remain constant for all the strategies.

Similarly, for sub-optimal R-control, the power is fixed equal to the average
value of P?B obtained from the PR-control for possible distances d;.

P = 1081F"/10, (24)

Note that now, in both sub-optimal designs, the time T is not fixed but varies
around the value of the optimal strategy. The energy is obtained with Equation
(12) where d; is given by (22) and P by P, R by R according to the sub-strategy
adopted.

Remark 2 It can be stated that always the consumed energy for R-control is
closer to PR~control than P-control. This result is demonstrated in the Appendix
2.
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Table 2 Simulation parameters.

Name Name Value
Lognormal fading m Mean 0dB

o o 1.42 dB
Nakagami fading m Shape 0.2

w Spread 0.5
Channel parameters B Bandwith log(2)

B Const. power (10,400] mW

5 Path loss coeff. | [2,4]

P, Noise Power [—20,0] dB

6 Simulation results

In this section, we present simulations to illustrate the performance and also com-
parisons between the different strategies and different fading distributions. In the
simulations, it is assumed that the admissible relays are pre-selected using a pro-
tocol that ensures the advance direction of the message toward the destination.
Moreover, the protocol used is able to select relays that are in a narrow band
around a straight line to the destination. Any other relay that does not satisfy
this condition is discarded, eliminating, in this way, the possibility of considering
those that are farther away from the destination than the transmitter, i.e. be-
hind the transmitter. We also assume that each node broadcasts its own location
periodically and proactively.

In the example, a Gaussian communication channel affected by shadow fading
is simulated. Two different fading distributions are considered, the first with log-

normal distribution,
1 —(In(z)—p)?

T, U, 0) = ———e 27 25
fulwma) = —— (25)
with ©4 = 0dB and ¢ = 1.42dB. The second is a Nakagami distribution,

m

fv(z,myw) =2 (;)m

’VYI,.’L‘2

ﬁx(szl)e w (26)
where I' is the Gamma function with shape parameter m = 0.2 and scale pa-
rameter w = 0.5.The mean value is p = —9.5dB. The MoG approximations for
Nakagami fading was obtained using the expectation-maximization algorithm with
six Gaussian components and a set of 10° random samples scaled in dB. The pa-
rameter values used for simulations are shown in Table 2. In Figure 2 their scaled
histograms and the corresponding MoG approximation are shown for both distri-
butions. The optimal pair (v, P,) that satisfies equality (21) is found in Figure 2
for both log-normal and Nakagami fading. In both cases there is only one solution.
The value of v is 1.28 for log-normal and —7.77 for Nakagami distribution. Using
these values in the MoG representation the outage probability for each distribution
is 0.26 for Log-normal and 0.74 for Nakagami.

The simulations were carried out using Matlab. A set of uniformly distributed
random distances dg ; in the interval [1,150] meters were considered, where k =
1,2...,nk is the sensor number and ¢ = 1, ---ni is the ith stochastic realization.
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Fig. 2 Right, Lognormal with © = 0dB and ¢ = 1.42dB and Nakagami with m = 0.2
and w = 0.5 densities and scaled histograms. Left, pair (v, P,) that fullfils Equality (21) or
equivalently Equation (19)

The number of ni = 1000 repetitions for a set of nk = 10 admissible sensors were
simulated. For each time T the corresponding elements Ry ;, Pk ;, and Ej.; of
the ni are obtained using Equations (17), (16), and (12), respectively following
the steps detailed in subsection 5.1. The channel capacity between the transmitter
and receiver has a bandwidth B = log(2) H z. The electronic power is § = 200mW .
The mean values R = £[Ry, ;] and P = E[Py ;] for sub-optimal strategies are also
obtained from the PR-control design. For each of the ni realizations the relay
among the nk’s with less mean energy is selected for the next hop. Since the
design is based on the probability of outage it is not necessary to simulate the
coding systems or to compute the errors associated with the decoding, as they are
implicit in the outage probability.

The transceiver is often powered by batteries that have a limited amount of
energy. Then, we are interested in evaluating the different relay selection strategies
that maximize the total information per distance that can be delivered given a
fixed amount of energy. Moreover, we are interested in its expected value. Such
an amount of rate information in per unit of energy is the inverse of the expected
value of the consumed energy for each control strategy in terms of [m.bits/W.s.].

To analyze the efficiency of the proposed strategies, improvements with respect
to simultaneous fixed values of both P and R were evaluated. The comparative
improvements came from the differences between the performance of the strategies
and that obtained with the best possible fixed values of P and R. To this end an
exhaustive search of possible simultaneous fixed values of P and R that provide
the minimum possible energy, called Fixed Power and Rate, FPR, was carried
out a posteriori. This means, after the n; realizations fixed values were found by
exhaustive search. Although this method is not possible in a normal operation, it
is appropriate for a comparison since it is not possible to find fixed values of P
and R that improve the performance achieved with the a posteriori adjustment.
For this reason the errors that can be obtained in a normal operation are always
superior to those obtained in this comparison.

The number of information bits traveling one meter per unit of energy for
variations around the nominal values as a function of the period T for both dis-
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tributions are depicted in the Fig 3 and the relative differences between them
depicted in Fig 4.
From the figures the following observations arise:

— Since the PR-control design is based on fixing the delivery time T, it is possible
to choose the total time to deliver efficiently all the information.

— The amount of information that can be sent using the full charge of the battery
increases with the delay time as expected according to the Shannon capacity
theory. In other words, low transfer speeds increase the net amount of infor-
mation sent for the same energy and this effect coincides with the result in
[5]. However, there is a limit to the time which can not grow indefinitely due
to energy consumption 8 which does not depend on R or on P. So, there is a
maximum amount of information that can be delivered for any specific time
delay. From the different cases analyzed, improvements more than ten times are
possible using optimal and suboptimal strategies with respect to fixed values
of P and R, as can be seen from Fig 4.

— R-control and P-control have performances very similar to those achieved with
PR-control. This is because although one of them is fixed the other is able to
compensate to ensure the efficiency of the transmission. However, in Appendix
I it is shown that R-control improves P-control.

— The increase in the path loss coefficient, v, reduces the power in the receiver so
that, even with PR control, the information bits traveling one meter per unit
of energy decay. The relative difference from the FPR increases as 7 increases.
This reveals that, under the most extreme conditions, PR-control achieves
greater relative advantages. A similar situation occurs with the thermal noise
power level, P,,.

— In the case of varying the fixed power consumption, it is seen that the infor-
mation bits traveling one meter per unit of energy decline with the increase of
B as T increases. The relative improvement with respect to the case of FPR
increases for smaller 8.

6.1 Performance comparison with other approaches

In [4] a transmission power control for energy efficient delivery of information in
multihop wireless networks is performed. The authors propose a local power effi-
ciency metric for distributed routing such that at each step, to select the next hop,
the transmitter picks the neighbor for which this metric is maximized. Through ex-
tensive simulations, they compare the performance of the proposed algorithm with
others that are globally optimal: the Dijkstra [21] algorithm which utilizes global
knowledge of channel state information to find the shortest end-to-end path in
terms of minimal expected power for reliable transmissions; the Joint Distributed
Routing and Power Control, JDRPC, proposed by the authors, [4], in which at
each step the transmitter picks, as the next hop, the neighbor of with optimal
SNR in terms of energy efficiency; the Fixed-transmission-power routing algo-
rithm which allows a transmitting node to choose the next hop in its local neigh-
borhood within a given radius to make the maximal progress toward the sink; and
the Distance-based routing, which finds the best end-to-end path with the least
expected end-to-end power consumption, utilizing only the distance information
between nodes. From exhaustive simulations and comparing the performances of
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Fig. 3 Number of information bits traveling one meter per unit of energy for variations
around the nominal values v = 3, = 200mW and P, = —10dB as a function of the period
T. The graphs in the first column (left side) correspond to the log-normal fading and those
on the second column (right side) to Nakagami fading. The graphs in the first row show
the performance obtained for variations of v = 2, v = 3 and v = 4 (upper, middle and
lower curves). The graph of the second row shows the performance obtained for variations of
P, = 0dB, P, = —10dB and P, = —20dB (upper, middle and lower curves). Finally, the
graphs of the third (last) row show the performance for changes in 8. At the upper part is
depicted the performance for § = 10mW S = 200mW and 8 = 400mW (upper, middle and

lower curves).
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Fig. 4 Relative differences of information bits traveling one meter per unit of energy between
strategies and FPR. The graphs on the first column (left side) correspond to the log-normal
fading and those on the second column (right side) to Nakagami fading. The graphs in the first
row show the relative differences obtained for variations of v = 4, v = 3, and v = 2 (upper,
middle and lower curves). The graphs of the second row shows the relative differences obtained
for variations of P, = —20dB, P, = —10dB, and P,, = 0dB (upper, middle and lower curves).
Finally, the graphs of the third (last) row show the relative differences for changes in 8. We
set B = 10mW, 8 = 200mW and § = 400mW (upper, middle and lower curves).

the different strategies with respect to the Fixed-transmission-power routing, the
authors conclude that JDRPC outperforms the others in up to six times of reduc-
tion in power usage. From the simulation analysis of our results it is observed that
P-control shows similar performances to those obtained with JDRPC. Moreover,
our results show similar improvements are found with respect to other variables
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such as thermal noise and the path loss coefficient. In the case of low values of the
path loss coefficient, improvements are even greater than for power consumption.
The performances achieved with JDRPC are even improved by using the R-control
and PR-control strategies. An important difference is that PR-control allows one
to set the time interval T' to carry out the transmission of the information with
energy constraints. This does not happen with any of the other strategies. In ad-
dition, we show in Appendix I that R-control always exceeds P-control, although
the behavior is very similar to optimal PR-control.

7 Conclusions

We have presented three designs for energy efficient transmission in a sensor net-
work under shadow fading channels based on minimal energy consumption. The
first is when both the transmission rate and power can be tuned. In the second and
third, only the transmission power or the transmission rate is tuned. The criterion
is based on computing the outage probability of the information to reach the next
hop. The two sub-optimal controlled strategies perform similarly to the optimal,
but we have analytically demonstrated that the rate-control is closer to the op-
timal than the power control. In the optimal case, PR-control, the minimization
is performed for a fixed period of time. This implies that for a given amount of
information that needs to be sent it is possible to fix the interval delay time with
minimum energy. However, in both sub-optimal designs, the time interval time is
not fixed but varies very close around the value of the optimal design. In order to
evaluate the improvements, simulations were performed using two fading distribu-
tions, the Log-normal and the Nakagami and comparing with the case in which
the rate and power are fixed. The results shows that even in the case with best
possible fixed values of P and R, performances can be improved by up to ten times.
Finally, we leave for future work a robust energy efficient design that
does not require knowledge of the probability distribution of fading.

Appendix I: P,(v) is a continuous and monotonically decreasing function of
v from Po(—00) = 1 to Po(00) = 0. Then, for any arbitrary value v* it follows that
Po(v™) € (0,1), and the derivative in (20) belongs in the interval (—log(10)/10,0).
Then, invoking the mean value theorem there exists at least one value v > v* and
v < v* such that the following holds:

OPo(v) _ log(10) .
oo | " ~—10 (1 —"Po(v") (27)
_ 730(62 — Po(v) (28)

which proves that there always exists at least one pair (v, Po(v)) that satisfies (20).

Appendix II: Denoting by Z the mean value of a random variable z, the sub-
fix o for PR-control, p for P-control, and r for R-control, from (12), considering
B = 0 for simplicity, and taking into account that in all cases the pair (v,P,) is
the same, which means the comparison is made over the same fading, we obtain
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the following mean values for the energy in decibels:
B4® = piB _ RAP 4 4P _ 0P, (29)
Bi® = PiB _ RAE 4 ot _ B (30)
where Rp and P, are constant values. From (16) we obtain,

P = SNRH +v +~d*® + Py, (31)

PP = SNRE, + v +~d™ + Pn. (32)

where SNRg, = E[e" — 1] and SNRg, = e — 1. Replacing in (29) and (30)
we obtain,

Ef =SNRy, —RP + L, (33)

B3P = SNRE, — RIP + L. (34)

where L = a®® + v + (v — 1)d*® + P, is a constant. Since R, is a design variable

that minimize F, for each value of d, the following property holds: SNRg, =

Elefim —1] # efIE] _ 1. This optimal can never be satisfied by a constant value
R, for which SNRg, = £[ef? — 1] = e€[FP] — 1. Thus, always fulfils £ < EZ5.
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