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Abstract—Yield estimation is an indispensable piece of infor-
mation at the onset of high-volume production of a device, as
it can inform timely process and design refinements in order to
achieve high yield, rapid ramp-up and fast time-to-market. To
date, yield estimation is generally performed through simulation-
based methods. However, such methods are not only very time-
consuming for certain circuit classes, but also limited by the
accuracy of the statistical models provided in the process design
kits. In contrast, herein we introduce yield estimation solutions
which rely exclusively on silicon measurements and we apply
them towards predicting yield during (i) production migration
from one fabrication facility to another, and (ii) transition from
one design generation to the next. These solutions are applicable
to any circuit, regardless of process design kit accuracy and
transistor-level simulation complexity, and range from rather
straightforward to more sophisticated ones, capable of leveraging
additional sources of silicon data. Effectiveness of the proposed
yield forecasting methods is evaluated using actual high-volume
production data from two 65nm RF transceiver devices.

I. INTRODUCTION

The inherent variation of the semiconductor manufacturing
process is a fundamental obstacle towards achieving high
yield, especially for contemporary mixed-signal System-on-
Chip (SoC) designs, wherein digital, analog and RF circuits
are integrated together in advanced technology nodes. Indeed,
understanding the complex interaction between design and
manufacturing, and accurately estimating the expected yield
prior to high-volume manufacturing (HVM) of a device in light
of such variation, constitutes a challenging yet highly desirable
task towards production and yield ramp-up. To this end, a large
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number of methods have been proposed in the past to estimate
and optimize yield of a device [1], [2]. The vast majority of
these methods concern yield estimation prior to fabrication
and are based on simulation. Therefore, besides being very
time-consuming and, often, impractical for large and complex
circuits, they have a limited view of process statistics, as their
grounding to silicon is established only through the variation
models reflected in the process design kit (PDK).

In contrast, in this work we focus on yield estimation in two
specific scenarios wherein much more data reflecting process
statistics is available:
• Fab-to-Fab Production Migration: Demand fluctuations

and other financial, geographical or political reasons often
cause a production to be migrated from one fabrication
plant to another, wherein a device may have never been
fabricated before [3], [4]. Forecasting how well a device
will yield in the target plant is extremely valuable for
production planning and yield ramp-up purposes.

• Transition to New Design Generation: In order to
remain competitive, offer new features, and deal with
production quality issues, designs are, sometimes, sub-
jected to re-spins where minor modifications and tweaks
are introduced to enhance performance and robustness
[5]. Estimating how well the new device generation will
yield when it replaces the prior one in HVM production
is, again, an indispensable piece of information.

In principle, these two yield estimation problems may
be solved by relying on existing simulation-based methods.
However, in both scenarios, a large volume of relevant silicon
data, such as measurements on devices produced in the source
fab, or measurements from the prior generation of a device,
is already available. Therefore, this work seeks to develop
yield forecasting solutions which rely solely on such silicon
measurements; thereby these solutions are not susceptible to
PDK accuracy limitations and are applicable regardless of size,
complexity and simulation time of a design.

The type of silicon measurements that the proposed methods
are based on are the typical e-test and probe-test data that
is obtained and logged as part of a production. E-tests are
electrical measurements performed on simple structures known
as process control monitors (PCMs), which are typically
placed in the scribe lines of the wafer. Probe-tests, on the
other hand, are the measurements performed through standard
functional or structural tests on every die at wafer level.

In the fab-to-fab production migration scenario, we consider
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Fig. 1: Yield prediction during fab-to-fab product migration.

a device currently being produced in HVM in a source fab
A, whose production will be migrated to a target fab B of
the same technology node. In order to predict how well the
device will yield in fab B, we experiment with various methods
which make use of one or more of the following data sources:
(a) e-test and probe-test data from HVM production of the
device in source fab A; (b) e-test data from HVM production
of a prior device fabricated recently in the same technology
node in fab B; and (c) limited e-test and probe-test data from
production of the device in target fab B, originating from
a very small number of characterization wafers, which are
typically produced prior to ramping-up HVM production. In
particular, we examine four different methods, namely model
migration, predictor calibration, early learning, and Bayesian
Model Fusion (BMF). As illustrated in Fig. 1, the model
migration and predictor calibration methods make use of data
sources (a) and (b), the early learning method makes use of
data sources (b) and (c), while the BMF method makes use of
all three data sources (a)-(c).

In the transition to a new generation scenario, we consider a
device N, which stems from minor modifications to a previous
generation device P, and which is to be produced in HVM
in the same fab and technology node as its predecessor.
In order to predict how well the device N will yield, we
experiment with various methods which make use of one or
more of the following data sources: (a) e-test and probe-test
data from HVM production of device P; and (b) limited e-test
and probe-test data from device N, originating from the few
characterization wafers which are typically produced prior to
ramping-up HVM production. In particular, we consider four
different methods, namely averaging, early learning, naive
mixing of data, and Bayesian Model Fusion (BMF). As shown
in Fig. 2, the averaging method uses only probe-tests from (b),
while all other methods make use of e-test and probe-test data
from both (a) and (b).

All aforementioned methods, except for the averaging
method in the scenario of yield estimation across design
generations, establish a model which predicts wafer yield

Site 1

Site 2

Site 3

Site 4

Site 5

HVM

E-tests

Probe-tests

Previous generation

(device P)

Early learning

Bayesian Model Fusion

Next generation

(device N)
Site 1

Site 2

Site 3

Site 4

Site 5

E-tests

Probe-tests

Few early wafers

Data Yield prediction method

Averaging

Naïve mixing of data

data (a)

data (b)

Rev. 1

Rev. 2

Es
ti

m
at

ed
 y

ie
ld

Fab B

Fab B

Fig. 2: Yield prediction across design generations.

(i.e., the fraction of devices on a wafer which pass all
their specifications) or parametric yield (i.e., the fraction of
devices on a wafer which pass a given specification) from
the e-test profile of the wafer. The underlying conjecture
is that there exists sufficient correlation between e-tests and
device performances, as they are subject to the same process
variations experienced by the wafer. Therefore, variation of
device performances and, by extension, wafer or parametric
yield, can be predicted sufficiently well through the e-test
measurements of a wafer. Such correlations are very intricate
and, most often, it is impossible to analyze and explain why
they are in force. For this reason, they are extracted using
machine learning.

It is important to stress that the proposed methods can
expose yield loss whenever its root-cause is also reflected
by the e-tests. Yield loss can be due to random defects
(e.g., particle contamination) or process variations, which can
be further classified into systematic inter-die variations (e.g.,
lithography-related gate-length variation) and random within-
die variations (e.g., random dopant fluctuation) [6]. Evidently,
random defects affecting a device do not necessarily affect
simultaneously the PCMs. To detect such defects, one could
rely, for example, on Iddq measurements or on dedicated on-
chip, compact, non-intrusive temperature sensors [7], [8]; yet
it is unlikely that such defect-oriented tests can cover the entire
design. Thus, similarly to the simulation-based methods, the
proposed methods do not concern yield loss due to random
defects. On the other hand, there exist numerous PCMs that
provide e-tests which can capture effectively both inter-die
and within-die variations [9]–[11]. Multiple copies of such
PCMs are typically dispersed across a wafer, in order to
reflect the spatial aspects of process variation, and, collectively,
offer valuable information so that process engineers may
monitor and adjust the fabrication process. E-test data contain
various types of measurements reflecting physical, electrical,
and mismatch characteristics of simple layout components
(i.e., transistors, resistors, capacitors, etc.) and basic circuits
(i.e., ring oscillators, current mirrors, etc.). Thus, as is the case
with the simulation-based methods, the focus of the proposed
methods is to expose the yield loss component that is due to
process variations. Finally, existence of correlation between
e-tests and yield should be verified on a case-by-case basis
before the methods can be applied. This can be done based
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on high-volume silicon data from the source fab or based on
a previous-generation device.

The remainder of this paper is organized as follows.
In Section II, we briefly review state-of-the-art simulation-
based yield estimation methods. In Section III, we discuss
a regression-based approach for predicting yield based on the
e-test profile of a wafer. In Section IV, we briefly present
the method used herein for learning regression functions.
In Section V, we discuss a feature selection method based
on a Genetic Algorithm (GA), which helps in reducing the
dimensionality of the problem and improving the overall
accuracy of the learned regression models. In Sections VI and
VII, we present the proposed yield forecasting methods for the
fab-to-fab production migration scenario and the transition to
a new design generation scenario, respectively. Experimental
results using industrial data are presented in Section VIII and
conclusions are drawn in Section IX.

II. SIMULATION-BASED YIELD PREDICTION METHODS

In this section, we provide a brief overview of well-known
simulation-based techniques for yield estimation.

A. Monte Carlo

Monte Carlo (MC) simulation [12], [13] has been the most
popular technique for yield estimation. In the MC method,
a large number of random circuit samples are generated
based on expected process variations defined in the PDK;
thereafter, these circuit samples are simulated to estimate yield
based on relative frequencies. Simplicity and generality are
the advantages of the MC method. However, it is a time-
consuming procedure which makes it prohibitive for large and
complex circuits, as well as for circuits with long simulation
times. Even for circuits with reasonable simulation times, MC
ends up being too slow or inaccurate, especially when yield
is very high. Furthermore, its accuracy is often limited due to
insufficient process variation modeling in the PDK. Therefore,
the MC method is not always practical for yield estimation.

B. Monte Carlo with speed enhancement

Several methods can be used to speed up MC, including
Latin hypercube sampling (LHS) [14], quasi-Monte-Carlo
(QMC) [15], and importance sampling [16], [17]. Compared
to MC, which is purely random and requires many samples to
cover the design space, LHS and QMC produce quasi-random
sequences of samples that cover the design space much faster,
thus allowing expedited and more accurate estimation of
yield. However, LHS and QMC may still not produce enough
samples at the tails of the design distribution where yield
loss events typically occur. By focusing precisely on these
distribution tails, importance sampling can produce better yield
estimates with smaller variance. However, importance sam-
pling requires definition of an optimal sampling distribution
which, in general, is very challenging.

C. Statistical Blockade

Statistical blockade is a method that also offers significant
speedup, as compared to the classical MC simulation, by
focusing the simulation effort on the tails of the design
distribution [18]. Unlike importance sampling, however, it
only relies on the PDK and does not impose any a priori
assumptions on the form of process parameter statistics, device
models, or performance metrics. The underlying observation
is that sampling a circuit instance is not time-consuming.
What is time-consuming is performing an actual electrical
simulation of the circuit instance. Statistical blockade is, in
essence, a MC method, wherein simulation is blocked for
circuit instances that are unlikely to exhibit performances far
from the nominal design point and, thereby, are unlikely to lie
at the tails of the design distribution. This decision of whether
to block a simulation or not is taken based on a classifier
which is trained in the space of process parameters. In the
end, the simulated “extreme” circuit instances can be used to
estimate yield probabilistically based on extreme value theory
[18]–[20]. In [21], a recursive strategy is proposed to further
accelerate the simulation effort.

D. Response surface and symbolic performance modeling

Another popular method for yield estimation is based on
performance modeling [22]–[25]. The underlying idea is to
approximate the mappings between circuit performances and
process parameters. These mappings can, then, replace elec-
trical simulations. In particular, the process parameter space is
sampled, with each sample corresponding to a circuit instance.
Then, the mappings are used to predict the performances of
these circuit instances instead of directly simulating them.

E. Behavioral modeling

For circuits such as data converters, phase locked loops
(PLLs), complete RF transceivers, etc., a single transistor-
level simulation may take hours or days to complete. In
this case, none of the above methods is practical since they
require simulating at least hundreds of circuit samples at the
transistor level. For circuits with long simulation times, yield
estimation is typically carried out by first developing a behav-
ioral model that captures effectively the circuit functionality
and then applying any of the above methods by considering
the behavioral-level description of the circuit instead of the
transistor-level or layout-level description [26], [27]. A be-
havioral model is constructed by decomposing the circuit into
independent sub-circuits, creating a separate behavioral model
for each sub-circuit to reflect its functionality, and then linking
these behavioral models and manipulating the data flow so as
to compute the circuit performances. The key is to capture the
correlation amongst the behavioral parameters that correspond
to sub-circuit performances, such that this correlation draws
upon the correlation that exists amongst the low-level process
parameters, as these are expressed in the PDK.

III. YIELD/E-TEST CORRELATION

Before attempting to use e-tests as a yield predictor when
migrating production across fabs and when transitioning to
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new design generations, we first discuss the use of e-tests as
a yield predictor for a specific device fabricated in a specific
fab. Given the nature of e-tests, whose role is to reflect process
variations that lead to yield loss and to drive yield learning,
our conjecture is that they are correlated with and can serve
as an accurate predictor of parametric yield and wafer yield.
Such correlations are intricate, and do not have known closed-
form mathematical expressions. Therefore, we will learn how
to approximate them by training regression functions.

Let us consider a device that is currently in production.
Assume that we have at hand the e-test measurements from
w wafers that contain this device and the probe-test mea-
surements from all n devices contained in each of these
wafers. Let ET i = [ET i

1, · · · , ET i
l ] denote the l-dimensional

e-test measurement pattern of the i-th wafer, where ET i
k

denotes the k-th e-test measurement in the i-th wafer. Let
PT ij = [PT ij

1 , · · · , PT
ij
d ]T denote the d-dimensional probe-

test measurement pattern obtained on the j-th device contained
in the i-th wafer, where PT ij

k denotes the k-th probe-test
measurement on the j-th device in the i-th wafer. Let also
PT i = [PT i1 · · ·PT in] denote the d × n matrix of probe-
test measurements on the i-th wafer.

By knowing the specification limits for the k-th probe-test
measurement, we can compute the parametric yield of the k-th
probe-test measurement for the i-th wafer, denoted by yik, as
the percentage of devices in the i-th wafer that comply with
these limits. Let yi = [yi1, · · · , yid] denote the d-dimensional
parametric yield vector of the probe-test measurements for the
i-th wafer. yi is directly computed from PT i in conjunction
with the specifications of the probe-test measurements. Let
us also consider the wafer yield for the i-th wafer, denoted
by Y i, which is defined as the percentage of die on a wafer
that comply with the specification limits for all probe-tests. In
summary, the information available on this device includes

waferi = [ET i,yi, Y i], i = 1, · · · , w (1)

The training data in (1) is used to learn the regression functions
which predict the parametric yield of the k-th probe-test
measurement or the wafer yield for the i-th wafer from its
e-test measurement pattern.

yik ≈ fk
(
ET i

)
(2)

Y i ≈ f
(
ET i

)
. (3)

Once the regression functions are learned and their gen-
eralization accuracy is validated, we can readily use them
to estimate the parametric yield ŷi and the wafer yield Ŷ i

for future wafers, i.e., i > w, based solely on their e-
test profile. We will show that these estimates approximate
accurately the ground truth values yi and Y i, respectively.
Accordingly, significant cost savings can be obtained when
computing parametric or wafer yield, since we only need
to obtain the e-test measurements rather than all probe-test
measurements for all devices on a wafer.

IV. REGRESSION MODELS

Several methods exist in the literature for multivariate
regression, including Multivariate Adaptive Regression Splines
(MARS), Least-Angle Regression Splines (LARS), Projection
Pursuit Regression, Feed-Forward Neural Networks (FFNN),
and Support Vector Machines [28], [29]. In this work, we use
MARS [29], which has also been successfully used in several
other test cost reduction methods in the past [30], [31].

MARS is a non-parametric regression method which is
capable of modeling complex non-linear relationships and
considers interactions between variables during model con-
struction. MARS builds the regression using basis functions as
predictors in place of the original input variables. Generally,
it fits the data to the following model.

f̂(X) = a0 +

M∑
m=1

am ·Bm(X), (4)

where a0 is the intercept, am denotes the slope parameter, and
Bm(X) represents the m-th basis function which may include
the interaction effect between the original input variables X .
The basis function transformation enables MARS to blank out
certain regions of data and focus on specific sub-regions. When
the number of predictors is very high and disproportional to
the size of the training set, this capability is used to select a
subset of predictors to improve the quality of the regression
model. MARS constructs the regression in two phases. In
the forward phase, MARS starts with an empty model and
enhances it by adding basis functions to overfit the data.
Then, in the backward phase, MARS removes basis functions
associated with the smallest increase in generalized cross-
validation error. We build MARS models using e-tests as input
variables and yield vectors as the dependent output variables.
We use piecewise-cubic basis functions, the maximum number
of which is set to half of the number of input variables.

V. MODEL IMPROVEMENT THROUGH FEATURE SELECTION

While typically many e-tests are performed, not all of them
may be necessary for learning the regression models that
estimate yield. In fact, for many of e-tests, there may exist
no physical underlying reason why they should be correlated
with some probe-test outcomes. Therefore, including them in
the model will not only offer no additional value but may
even deteriorate its quality due to the curse of dimensionality.
Indeed, learning a model in a low dimensional space improves
its robustness.

Selecting a subset of e-tests that best correlates to probe-
tests and, thereby, to parametric and wafer yield values, is
essentially a feature selection problem. Since the number of
possible subsets of a set of n features (i.e., e-tests) is 2n − 1,
exhaustive search is not feasible even for a moderate number
of features. In general, as explained in a review presented in
[32], feature selection methods are categorized into greedy and
heuristic. In the context of semiconductor testing, solutions
from both categories have been employed for test compaction
[33], [34] and machine learning-based test [35].

In this work, we employ a heuristic-based technique to
select a subset of e-test parameters. More specifically, we use
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a multi-objective GA, called NSGA-II [36]. GAs are evolu-
tionary algorithms attempting to emulate the biological natural
selection. The GA starts with an initial random population of
solutions (i.e., feature subsets). Mating and mutation opera-
tions are repeatedly applied to the current population in order
to generate a new population which, hopefully, contains better
solutions. In each iteration, the fitness of every instance of
the population is evaluated using two objective functions and
the best solutions are retained. These two objective functions
reflect our goals of employing the smallest possible number
of features while achieving the highest possible prediction
quality. Evidently, these can be competing objectives, hence
the NSGA-II algorithm explores the trade-off space.

Fig. 3 depicts an overview of our GA-based feature selec-
tion method. A bit-string specifies the corresponding e-test
subset that will be included in the correlation model (i.e.,
“1” indicates inclusion, whereas “0” indicates exclusion). The
fitness of an e-test subset is assessed by constructing the
MARS model using a training dataset and, then, evaluating
its prediction accuracy on an independent validation dataset.
Fitness, in this case, is the prediction error on the validation
dataset, computed as the average difference between true yield
values and predicted values by the correlation model. Yield, in
this context, could be either the parametric yield for a specific
probe-test or the overall wafer yield. We point out that different
optimal e-test subsets may be selected for each probe-test. The
algorithm stops when there is no significant improvement in
the fitness values of a population over a window of the last
five generations. We also note that, in each iteration of the
GA, the same settings are used in the MARS models.

VI. YIELD PREDICTION DURING PRODUCTION MIGRATION

Let us now consider a device which is currently being
fabricated in HVM in fab A and whose production is planned
to be migrated to fab B. Our goal is to build a model that
predicts the HVM parametric yield of each probe-test and of
the overall wafer yield in fab B. To this end, different methods
will be discussed, exploring a trade-off between simplicity,

required input data, and accuracy. Without loss of generality,
the formulation considers only parametric yield; overall wafer
yield is dealt with in a similar fashion. Each method may make
use of one or more input data sources among the ones listed
below.
• E-test and probe-test measurements from wA wafers

fabricated in fab A, containing the device whose produc-
tion is being migrated. Following similar notation as in
Section III, the available information from fab A includes:

waferiA = [ET i
A,y

i
A, Y

i
A], i = 1, · · · , wA. (5)

• E-test and probe-test measurements from the first wB

wafers (wB � wA) fabricated in fab B, containing the
device whose production is being migrated. In short,
information from fab B includes:

waferiB = [ET i
B ,y

i
B , Y

i
B ], i = 1, · · · , wB . (6)

• E-test from a large number, w0, of wafers fabricated in
the same technology node in fab B, containing a prior
device, different than the one whose production is being
migrated from fab A to fab B. The only assumption
for this prior device is that, since it is fabricated in the
same technology, its wafers contain the same e-test PCM
structures as the wafers of the device being migrated. We
denote the e-test profile of the i-th fabricated wafer of
this prior device as ET ′i

B , i = 1, · · · , w0.

A. Model migration

A straightforward approach for predicting yield in fab B is
model migration. In this method, a model is first trained in
fab A to express parametric yield of a wafer as a function
of its e-test profile, yiA,k ≈ fA,k

(
ET i

A

)
. Then, the trained

regression function is applied directly to the e-test profile of
wafers produced in fab B containing the prior device, in order
to predict HVM parametric yield as

ˆ̄yB,k =
1

w0

w0∑
i=1

fA,k

(
ET ′i

B

)
. (7)

Model migration success relies on two assumptions:
1. E-tests in the source fab A and target fab B must come

from the same distribution.
2. If a wafer from fab A and a wafer from fab B have

the same parametric yield, then they must also have
similar e-test profiles, i.e., pA(yi

A | ET i
A) = pB(yj

B |
ET j

B)⇒ ET i
A ≈ ET j

B .
As these assumptions may not necessarily hold true in a
semiconductor manufacturing context, the accuracy of model
migration is expected to be limited.

B. Predictor calibration

Another approach, which does not rely on any of the
two aforementioned assumptions, is predictor calibration.
The distribution of each e-test (i.e., predictor) in fab B is
calibrated based on the distribution of the same e-test in
fab A, ˆET ′

B,j = hj(ET ′
B,j ,ETA,j), where ETA,j =
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[ET 1
A,j , · · · , ET

wA

A,j ] and ET ′
B,j = [ET 1

B,j , · · · , ET
′w0

B,j ]
represent the profile of the j-th e-test in fab A and fab B,
respectively. A simple way of achieving this would be mean
calibration, which subtracts the mean shift ∆(µj)

ˆET ′
B,j = ET ′

B,j −∆(µj), (8)

∆(µj) = µ(ET ′
B,j)− µ(ETA,j). (9)

However, in order to achieve better precision, other pa-
rameters of the distribution, such as variance, skewness and
kurtosis, also need to be calibrated. To accomplish this, we
employ a two-step procedure. First, using the cumulative
distribution function (CDF) of the j-th e-test in fab B, FB,j , we
find the cumulative probability associated with each sample,
xij = FB,j(ET

′i
B,j). Then, using the inverse CDF of fab

A, we determine the e-test value associated with cumulative
probability xij , ˆET ′

i

B,j = F−1A,j(x
i
j), where F−1A,j is the inverse

CDF of the j-th e-test for fab A. We employ the kernel density
estimation (KDE) [37] to estimate the CDF of each e-test.

This procedure is applied to all instances of the e-test profile
of fab B (i.e., for i = 1, · · · , w0), and to all e-tests for each
instance (i.e., for j = 1, · · · , l).

In order to utilize predictor calibration in yield prediction
during production migration, a regression function is trained
to express parametric yield in fab A as a function of the e-test
profile, i.e., yiA,k ≈ fA,k

(
ET i

A

)
. Then, the trained regression

model is applied to the calibrated e-test profile of wafers
produced in fab B containing the prior device, in order to
predict HVM parametric yield as

ˆ̄yB,k =
1

w0

w0∑
i=1

fA,k

(
ˆET ′i

B

)
. (10)

Since predictor calibration does not make any of the two
assumptions stated earlier, it is expected to outperform model
migration. This method is very successful in mapping the
distribution of fab B into that of fab A and is capable of
predicting yield without requiring probe-test measurements
from fab B.

C. Early learning

Model migration and predictor calibration were developed
in the context of yield prognosis when migrating a device
from fab A to fab B, while assuming that no probe-tests are
available for this device from fab B. We now consider the
scenario where we have access to probe-tests from a small
number wB of early silicon wafers from fab B, containing this
device. This enables us to train a regression model to express
parametric yield as a function of the e-test profile, relying
only on the information from fab B, i.e. yiB,k ≈ fB,k

(
ET i

B

)
.

Subsequently, this model can be applied to the available e-test
profile from the prior device produced in fab B, in order to
predict HVM parametric yield as

ˆ̄yB,k =
1

w0

w0∑
i=1

fB,k

(
ET ′i

B

)
. (11)

D. Bayesian Model Fusion (BMF)

The accuracy of the early learning method may be limited
because the regression model is trained using limited, possibly
not representative, data from a few initial wafers in fab B.
Another more elaborate technique is BMF, which intelligently
fuses the limited data from fab B with the rich readily available
data from fab A, in order to enhance the prediction accuracy of
the early learning method. BMF is a very powerful technique
which has been used successfully for model improvement in
various contexts [38]–[43].

The training data in (5) allow us to learn an accurate
regression function for predicting parametric yield of the k-th
probe-test in fab A

ŷiA,k ≈ fA,k

(
ET i

A

)
=

M∑
m=1

aA,k,m · bk,m
(
ET i

A

)
. (12)

We have relied on a general expression of a regression function
based on M basis functions, where bk,m is the m-th basis
function for the k-th probe-test and aA,k,m corresponds to the
coefficient of the m-th basis function for the k-th probe-test,
m = 1, · · · ,M . This general expression can accommodate
any regression approach mentioned in Section IV.

For small wB , given the limited training data in (6), our
objective is to learn an accurate regression function for fab B

ŷiB,k ≈ f
′

B,k

(
ET i

B

)
=

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)
, (13)

where aB,k,m is the coefficient of the m-th basis function for
the k-th probe-test corresponding to fab B.

The conventional learning procedure is to use a fraction
of the data in (6) for training and the rest for assessing the
generalization ability of the regression function on previously
unseen wafers. However, since we are interested in learning
the regression function based on the very first few wafers, the
data in (6) is not representative enough to learn a regression
function that accurately predicts the parametric yield of future
wafers. The aim of the BMF technique is to learn the regres-
sion function in (13) by leveraging information from the data
in (5), which was produced in fab A.

The BMF learning procedure consists of solving for the
coefficients aB,k = [aB,k,1, · · · , aB,k,M ] that maximize the
posterior distribution pdf(aB,k|waferB), that is,

max
aB,k

pdf(aB,k|waferB), (14)

where waferB = [wafer1B , · · · ,waferwB

B ]. In this way, we
maximize the “agreement” of the selected coefficients with
the limited observed data from fab B.

By applying Bayes’ theorem, we can write

pdf(aB,k|waferB) ∝ pdf(aB,k) · pdf(waferB |aB,k). (15)

Thus, the problem boils down to

max
aB,k

pdf(aB,k) · pdf(waferB |aB,k). (16)
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Next, we will develop expressions for the prior distribution
pdf(aB,k) and the likelihood function pdf(waferB |aB,k).

Assuming that the coefficients aB,k,m are independent, we
can write

pdf(aB,k) =

M∏
m=1

pdf(aB,k,m). (17)

We define the prior distribution pdf(aB,k,m) by involving
the prior knowledge from fab A. Specifically, pdf(aB,k,m) is
assumed to follow a Gaussian distribution with mean aA,k,m

and standard deviation λ|aA,k,m|

pdf(aB,k,m) =
1√

2πλ|aA,k,m|
·exp

[
− (aB,k,m − aA,k,m)

2

2λ2a2A,k,m

]
.

(18)
This approach accounts for the fact that aB,k,m is expected
to be similar to aA,k,m and deviate from it according to the
absolute magnitude of aA,k,m.

The likelihood function pdf(waferB |aB,k) is expressed in
terms of the data in (6). Specifically, since the data from each
wafer is independent, we can write

pdf(waferB |aB,k) =

wB∏
i=1

pdf
(
waferiB |aB,k

)
. (19)

Furthermore,

pdf
(
waferiB |aB,k

)
= pdf(εi), (20)

where εi is the prediction error introduced by the regression
for the i-th wafer in fab B

εi = yiB,k − fB,k

(
ET i

B

)
. (21)

This error is a random variable that is assumed to follow a
zero-mean Gaussian distribution with some standard deviation
σ0

pdf(εi) =
1√

2πσ0
· exp

(
−
(
εi
)2

2σ2
0

)
. (22)

Therefore, combining (20), (21), (22), and (13), we can write

pdf
(
waferiB |aB,k

)
=

1√
2πσ0

·

· exp

− 1

2σ2
0

·

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2 .

(23)

By combining (17), (18), (19), and (23), we obtain an
expression of pdf(aB,k) · pdf(waferB |aB,k). By taking the
natural logarithm of this expression, the maximization problem
in (16), after eliminating constant terms, becomes

max
aB,k

−
(σ0
λ

)2 M∑
m=1

(aB,k,m − aA,k,m)
2

a2A,k,m

−

wB∑
i=1

[
yiB,k −

M∑
m=1

aB,k,m · bk,m
(
ET i

B

)]2
. (24)

The optimal values of σ0 and λ are determined by k-fold
cross-validation [28], [29].

Finally, the HVM parametric yield of each k probe-test is
computed as

ˆ̄yB,k =
1

w0

w0∑
i=1

f
′

B,k

(
ET ′i

B

)
. (25)

VII. YIELD PREDICTION ACROSS DESIGN GENERATIONS

Consider a device N, which is the new generation of a
previously designed device P, introducing slight modifications
and improvements, and let us assume that device N is planned
to be produced in HVM in the same technology node and
fabrication facility where device P was produced. Finally,
suppose that for device P we have access to the e-test and
probe-test data from wP wafers. Using similar notation as in
Section III, information from device P includes

waferiP = [ET i
P ,y

i
P , Y

i
P ], i = 1, · · · , wP . (26)

Let us also assume that we have at hand the e-test mea-
surements from the first wn wafers which contain device N as
well as the probe-tests from all devices contained in each of
these wafers. This information includes

waferiN = [ET i
N ,y

i
N , Y

i
N ], i = 1, · · · , wn. (27)

Given the above information, we discuss below four solutions
to the problem of yield prediction across design generations.
Without loss of generality, we will focus on estimating wafer
yield, accounting for the fact that devices N and P may not
necessarily have the exact same probe-tests.

A. Averaging

A simple and straightforward approach is to compute the
average yield of the wn early wafers and use it as an estimation
of HVM wafer yield of device N

ˆ̄YN =
1

wn

wn∑
i=1

Y i
N . (28)

B. Early learning

Another approach is to use the data in (27) as a training
set and learn a regression model to express wafer yield as a
function of the e-tests for device N

Y i ≈ fN
(
ET i

N

)
. (29)

The HVM wafer yield of device N can, then, be predicted by
employing the e-test profile of device P

ˆ̄YN =
1

wP

wP∑
i=1

fN
(
ET i

P

)
. (30)
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C. Naive mixing of data

A third approach is to naively mix data in (26) and (27),
use the combined data as a training set, and learn a regression
model to express wafer yield as a function of the e-tests

Y i ≈ fPN

(
ET i

)
. (31)

The HVM wafer yield of device N can, then, be predicted as

ˆ̄YN =
1

wP

wP∑
i=1

fPN

(
ET i

P

)
. (32)

D. Bayesian Model Fusion

Finally, similar to Section VI-D, we can intelligently com-
bine the information from the prior generation device P with
the new generation device N using BMF. In particular, for
devices P and N we can learn regression models

Ŷ i
P ≈ fP

(
ET i

P

)
=

M∑
m=1

aP,m · bm
(
ET i

P

)
(33)

and

Ŷ i
N ≈ f

′

N

(
ET i

N

)
=

M∑
m=1

aN,m · bm
(
ET i

N

)
, (34)

respectively. These regression models are based on M basis
functions, where bm is the m-th basis function, and aP,m

and aN,m correspond to the coefficient of the m-th basis
function for devices P and N, respectively. The coefficients
aP = [aP,1, · · · , aP,M ] of regression model fP can be learned
accurately based on the rich dataset in (26). The coefficients
aN = [aN,1, · · · , aN,M ] of regression model f

′

N are learned
by maximizing the posterior distribution

max
aN

pdf(aN |waferN ), (35)

where pdf(aN |waferN ) ∝ pdf(aN )pdf(waferN |aN ),
pdf(aN ) is the prior distribution, pdf(waferN |aN ) is the
likelihood function, and waferN = [wafer1N , · · · ,waferwn

N ].
Similar steps as in Section VI-D can be applied to refine the
regression functions for the new-generation device N.

The HVM wafer yield of device N can now be predicted as

ˆ̄YN ≈=
1

wP

wP∑
i=1

f
′

N

(
ET i

P

)
. (36)

VIII. EXPERIMENTAL RESULTS

A. Case study and datasets

In order to experimentally evaluate the various yield pre-
diction methods during fab-to-fab production migration and
during transition to a new design generation, we use actual
HVM production datasets from two consecutive design gener-
ations of a Texas Instruments 65nm RF transceiver1. We will
refer to these two design generations as device P and device N,
respectively, emphasizing that device N is the new-generation

1Details regarding the devices may not be released due to a binding NDA.

of device P with slight enhancements. Our datasets originate
from two geographically dispersed fabs, which we will refer
to as fab A and fab B. Device P is produced only in fab B,
while device N is produced in both fabs. The dataset for device
N from both fabs and the dataset for device P from fab B
will be used for yield prediction during fab-to-fab production
migration. The dataset of device N from fab B and the dataset
from device P from fab B will be used for yield prediction
across design generations.

As illustrated in Fig. 4, the dataset for device N from fab
A includes l=54 e-tests and d=200 probe-tests from a total
of wA=500 wafers. Each wafer has 5 e-test measurement sites
and approximately 1500 dies per wafer. The dataset for device
N from fab B includes the same e-tests and probe-tests from
a total of WB=1600 wafers, with the only difference being
that e-tests are obtained on 9 instead of 5 e-test measurement
sites. These two datasets were obtained from the two fabs at
approximately the same time period. The dataset for device P
from fab B includes l =54 e-tests (i.e., the same as for device
N) and dP =160 probe-tests (i.e., fewer and different than those
for device N) from a total of wP =700 wafers. Each wafer has
9 e-test sites and approximately 1500 dies per wafer.

Since several e-test measurement sites are available across
each wafer (i.e., 5 e-test measurement sites across wafers
produced in fab A and 9 e-test measurement sites across wafers
produced in fab B), we use as its e-test signature the means
and standard deviations of the 54 e-tests, as computed across
all the available e-test measurements sites. Thus, in all cases,
the e-test signature of a wafer has a total of 108 features.

Probe-tests include both structural tests (i.e., open/short
circuit, IDDQ, input voltage threshold, etc.) and functional
tests (i.e., BER, EVM, CMMR, etc.). E-test measurements
include gate-oxide quality, leakage current, threshold voltage,
effective channel length, etc. The specification limits for the
probe-tests are also available, hence for each of the two fabs
we can compute the parametric yield of each probe-test on
every wafer, as well as the overall yield of each wafer.

Using these datasets, we seek to:
• Quantify the accuracy of predicting parametric yield

of probe-tests and overall wafer yield from the e-test
signature of the wafer.

• Demonstrate that this prediction accuracy is improved
when employing dimensionality reduction through a GA-
based feature selection algorithm.

• Quantify the accuracy of the discussed methods for
predicting yield during fab-to-fab production migration.

• Quantify the accuracy of the discussed methods for
predicting yield across design generations.

B. Predicting yield from the e-test signature of the wafer

In order to quantify the accuracy of predicting parametric
yield of probe-tests based solely on e-tests collected on the
wafer, we use the entire datasets of device N from both fab A
and fab B to perform two independent experiments, one for
each fab. The regression models are trained using MARS and
we use 5-fold cross validation to report robust prediction error
values. Specifically, for a given fab, the dataset is divided into
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Fig. 4: Datasets from fab A and fab B.

5 folds, where 4 folds are used for training and the remaining
fold is used for validation. The procedure is repeated such that
all folds are left out once as a validation set and, in the end,
we report the average prediction error across the 5 iterations.

We use the following expression for calculating the error in
predicting the parametric yield of the k-th probe test

δk = 100 · 1

w

w∑
i=1

|ŷik − yik|
yik

, (37)

where w is the number of wafers in the validation set, while
ŷik and yik are the predicted and the actual parametric yield
values of the k-th probe-test on the i-th wafer, respectively.

Figs. 5(a)-(b) present the parametric yield prediction results
for the datasets of device N from fab A and fab B, respectively.
In this experiment, we consider all 108 e-test features. In
each histogram, the horizontal axis is the prediction error,
while the vertical axis shows the percentage of probe-tests
that are predicted within a given error range. For example, the
first bar of Fig. 5(a) shows the percentage of probe-tests for
which the parametric yield prediction error is below 2.75%,
with the corresponding value being 5%. As may be observed
for both fabs, the parametric yield of the majority of probe-
tests can be predicted using e-tests with an error of less than
3%, corroborating that parametric yield can be predicted very
accurately from the e-tests of a wafer.

Figs. 5(c)-(d) present the same results as in Figs. 5(a)-(b),
but this time using only the subset of e-test features that are
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Fig. 5: Average parametric yield prediction error for fabs A
and B. In (a) and (b) all e-test features are used while in (c)
and (d) a subset of e-tests are selected by GA prior to building
regression models.

selected by the GA-based feature selection method of Section
V. Feature selection is performed individually for each probe-
test, thus each probe-test has its own subset of e-tests to
build a regression model from. Figs. 5(c)-(d) show that, for
both fabs, most of the weight of the histograms is further
towards the left side, i.e., towards smaller prediction errors,
as compared to the histograms of Figs. 5(a)-(b). These results
corroborate that, by reducing the dimensionality of the e-test
signature, feature selection improves significantly the quality
of predictions. We note that the MARS algorithm does have its
own internal feature selection method, which picks a subset of
the most relevant e-tests; nevertheless, performing an a priori
feature selection using a GA appears to be improving further
the quality of the prediction models.

Next, we examine the use of e-tests for predicting wafer
yield. As before, the regression models are trained using
MARS, we employ 5-fold cross validation to report robust
prediction errors values, and we use a similar expression for
evaluating the prediction error of the overall wafer yield

δ = 100 · 1

w

w∑
i=1

|Ŷ i − Y i|
Y i

(38)

where w is the number of wafers in the validation set, while
Ŷ i and Y i are the predicted and the actual wafer yield
values of the i-th wafer, respectively. Table I presents the
wafer yield prediction error for both fabs, first when training
regression models using all e-test features, and then when
training regression models using only the subset of e-tests
chosen by the GA-based feature selection method. As may
be observed, the prediction error for both fabs is very low and
confirms that e-tests of a wafer carry sufficient information
regarding quality of the fabricated silicon, thus, they can
be successfully used for wafer yield prediction. Similar to
parametric yield prediction, incorporating the feature selection
method to reduce the cardinality of the e-test signature results
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TABLE I: Wafer yield prediction error

Parameter All e-tests Subset of e-tests improvement (∆ε)

Fab A (device N) 6.12% 5.41% 12%

Fab B (device N) 4.9% 4.05% 17%

in lower prediction error. In order to quantitatively demonstrate
this improvement, we use the metric ∆ε, defined as

∆ε = |All e-tests error - Subset of e-tests error
All e-tests error

× 100|.
(39)

Using this metric, the GA-based feature selection method
reduces the wafer yield prediction error by 12% and 17% for
fab A and fab B, respectively.

Since GA-based feature selection improves the quality of
the regression models, as demonstrated in Fig. 5 and Table I,
for the rest of experiments all regression models are trained
with the subset of e-tests selected by this method.

C. Yield prediction during migration from fab A to fab B

In order to quantify yield prediction accuracy during fab-
to-fab production migration using the methods discussed in
Section VI, we performed the following experiment using fab
A as the source fab and fab B as the target fab. The model
migration and predictor calibration methods assume access to
both e-tests and probe-tests of device N in fab A, as well as
to the e-tests of device P in fab B. In other words, device P is
used as the prior device in these methods. The BMF and early
learning methods assume, in addition, access to both e-tests
and probe-tests for device N in fab B from a small number
of wB early engineering wafers, where wB � WB . We vary
wB in the range [10, 50], in order to study the influence of
the size of this training set on BMF and early learning.

Since wB is small, the results for the BMF and early
learning methods may vary with respect to the subset of wB

out of WB wafers that is being used. For this reason, we
use bootstrapping to report robust prediction errors, smoothen
them, and assist with the interpretation of the overall results. In
total, we perform 10 bootstrap iterations and, in each iteration,
we sample wB wafers uniformly at random from the WB

wafers and we perform 5-fold cross validation. The reported
prediction errors are averaged over these 50 iterations. In each
iteration, we use the following expressions for evaluating the
prediction error of the HVM parametric yield of the k-th
probe-test and the HVM wafer yield

δk = 100 ·
|ˆ̄yB,k − ȳB,k|

ȳB,k
, (40)

δ = 100 · |
ˆ̄Y B − ȲB |
ȲB

, (41)

where ˆ̄yB,k and ȳB,k are the predicted and actual HVM
parametric yield values of the k-th probe-test, respectively,
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Fig. 6: Yield prediction error during production migration.

while ˆ̄YB and ȲB are the predicted and actual HVM wafer
yield values in fab B, respectively.

The accuracy of the yield prediction methods of Section VI
is demonstrated in Figs. 6(a) and (b), for one randomly-chosen
probe-test and for the overall wafer yield, respectively. These
plots show the prediction error as a function of the training
set size wB . The model migration and predictor calibration
methods do not utilize any information from fab B for training
purposes. They only rely on the e-tests of the prior device P
in fab B. Therefore, the corresponding curves for these two
methods are flat and independent of wB .

As may be seen in Fig. 6, model migration shows the worst
performance, which is expected since it naively uses the model
that is learned on data from fab A for predicting yield in
fab B. Early learning strongly depends on the size of the
training set. The prediction error is small for large wB and
increases exponentially as the training size becomes smaller.
This is expected, since the information available for training is
weakened and our ability to extrapolate the regression towards
the tails of the distribution deteriorates, resulting in large
prediction error on the validation set. Predictor calibration
outperforms model migration and, in the case of small wB ,
it also outperforms early learning, despite the fact that it does
not use any information from fab B.

BMF outperforms all other methods regardless of the size of
training set wB . It shows a remarkably stable behavior, main-
taining nearly constant prediction error even when the training
set size is very small. This implies that, by incorporating prior
knowledge from fab A, BMF is capable of generating accurate
prediction models for fab B based only on a few early wafers
from fab B. Thus, BMF can be used to quickly estimate yield
from a few engineering wafers or from the first few wafers in
HVM, without having to wait until a large volume of data is
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Fig. 7: Yield prediction error across all 200 probe measurements during fab A to fab B production migration with wB = 30.

collected. This result, showing that the BMF method reduces
the burden of collecting large datasets for yield estimation, is
consistent with the outcome of other studies that employ the
BMF method in different contexts [38]–[43].

Finally, in Fig. 7, we compare the cumulative results for all
200 probe-tests, in the scenario where production is migrated
from fab A to fab B and wB = 30. Individual histograms
are provided for each method. For comparison purposes, we
also include a “lower bound” result where we apply the early
learning method by employing all available WB wafers. This
corresponds to having sufficient statistics for the distribution
of e-tests and probe-tests in the target fab, hence the quality
of prediction depends only on the correlation between e-tests
and probe-tests and the ability of the regression functions to
capture it. In these histograms, each bar shows the percentage
of probe-tests that have a yield prediction error within a
specific range. As may be seen, the histogram of the BMF
method has most of its weight on the left side, i.e. towards
smaller prediction errors, as compared to the histograms of the
other three methods. The yield prediction results for the BMF
method are also closer to the lower bound results. Therefore,
the BMF method provides the best option for predicting para-
metric yield, provided that a few early characterization wafers
are available. If such wafers are not readily available, then
between the two applicable methods, i.e., model migration and
predictor calibration, the latter provides the best parametric
yield prediction results.

D. Yield prediction across design generations

In order to quantify yield prediction accuracy across design
generations using the methods discussed in Section VII, we
performed the following experiment using the datasets of
devices N and P from fab B. The averaging method assumes
access only to wn �WB early characterization wafers of the
next-generation device N; in our case, we used wafers from
the first two lots in our dataset. In addition, the rest of the

methods assume access to the entire dataset of the previous-
generation device P. We perform 10 bootstrap iterations and,
in each iteration, we sample wB wafers uniformly at random
from the available wn wafers and we perform 5-fold cross
validation. The reported prediction errors are averaged over
these 50 iterations. We repeat the experiment by varying wB

in the range [10, 50]. We use the following expression for
evaluating prediction error of the HVM overall wafer yield of
device N

δ = 100 · |
ˆ̄YN − ȲN |
ȲN

, (42)

where ˆ̄YN and ȲN are the predicted and actual HVM wafer
yield values for device N, respectively.

Fig. 8 shows the yield prediction error as a function of the
number of available wafers wB in the training set. As may be
seen, BMF again outperforms the other methods, regardless
of the training set size. It shows a remarkably stable behavior,
maintaining steady HVM yield prediction error even when
the training set size is as small as 10 wafers. This shows
that, by statistically fusing prior knowledge from the previous-
generation device P, BMF is capable of providing a very
accurate HVM yield prediction model for the new-generation
device N, based on only a few early characterization wafers.
Therefore, BMF can be used for fast and precise forecasting of
HVM wafer yield, without having to wait until a large volume
of data is collected. The second best method is the averaging
method. Its stable behavior implies that the wafer yield in the
first two lots that are included each time in the training set
is very similar. Averaging is outperformed by BMF, since the
wafers in the first two lots are not necessarily representative
of HVM statistics. Success of early learning depends strongly
on the size of the training set. The prediction error is low
for large wB and exponentially increases as wB becomes
smaller. This is anticipated, since the information content
of the training set is weakened, becoming biased and non-
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Fig. 8: Error in predicting device N yield from early wafers.

representative of HVM, and the regression model is unable to
extrapolate towards the tails of the distribution, resulting in
large prediction error. The accuracy of naive mixing improves
slightly as the number of training samples from device N
increases. The fact that the accuracy of this method is inferior
implies that the datasets from devices P and N do not exhibit
strong similarity and/or that the rich dataset from device P
overshadows the limited dataset from device N.

To gain better insight, we consider wB = 20 and we
illustrate, in Fig. 9, the distribution of wafer level prediction
error for all wafers in the validation set for the BMF and early
learning methods. The prediction error is expressed as

δi = 100 · |Ŷ
i
N − Y i

N |
Y i
N

, (43)

where Ŷ i
N and Y i

N are the predicted and actual wafer yield
values for the i-th wafer, respectively. In each histogram,
the horizontal axis represents the prediction error range and
the vertical axis represents the percentage of the wafers in
the validation set whose wafer yield is predicted within a
given error range. As may be seen, for the BMF method the
histogram is skewed to the left, showing that the wafer yield
of the majority of the wafers is predicted accurately, whereas
for the early learning method the histogram is skewed to the
right, showing that the wafer yield of about half of the wafers
is predicted with error greater than 12%.

IX. CONCLUSION

We introduced and compared several methods for yield pre-
diction during fab-to-fab production migration and during tran-
sition to a new design generation. In these two yield prediction
scenarios, plenty of silicon data is already at our disposal,
therefore making the use of simulation-based methods, which
may be time-consuming and of limited accuracy, unnecessary.
The proposed methods span a range of sophistication levels
and make use of increasingly rich datasets, including HVM
silicon data from the source fab or the previous-generation
device, as well as silicon data from a few early charac-
terization wafers from the target fab or the new-generation
device, respectively. All methods, except for the simplest ones,
capitalize on the existence of correlation between the e-test
profile of a wafer and its yield. Effectiveness of the proposed
methods was evaluated using large datasets obtained from two
different fabs which produced two generations of a Texas
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Fig. 9: Wafer yield prediction error of device N with wB = 20.

Instruments 65nm RF transceiver device. Among the options
discussed, the most advanced BMF method which intelligently
combines data from the source and target fab or from the
previous-generation and next-generation devices, outperforms
all other more straightforward methods and offers a highly
accurate yield prediction solution during production migration
and design generation transition, respectively.
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