N

N

Leakage Assessment through Neural Estimation of the
Mutual Information

Valence Cristiani, Maxime Lecomte, Philippe Maurine

» To cite this version:

Valence Cristiani, Maxime Lecomte, Philippe Maurine. Leakage Assessment through Neural Estima-
tion of the Mutual Information. ACNS 2020 - International Conference on Applied Cryptography and
Network Security, Oct 2020, Rome, Italy. pp.144-162, 10.1007/978-3-030-61638-0_9 . hal-02980501

HAL Id: hal-02980501
https://hal.science/hal-02980501
Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02980501
https://hal.archives-ouvertes.fr

Leakage Assessment through Neural Estimation
of the Mutual Information

Valence Cristiani', Maxime Lecomte' and Philippe Maurine?
1 CEA, France
2 LIRMM, France

Abstract. A large variety of side-channel attacks have been developed
to extract secrets from electronic devices through their physical leakages.
Whatever the utilized strategy, the amount of information one could gain
from a side-channel trace is always bounded by the Mutual Information
(MI) between the secret and the trace. This makes it, all punning aside,
a key quantity for leakage evaluation. Unfortunately, traces are usually
of too high dimension for existing statistical estimators to stay sound
when computing the MI over full traces. However, recent works from the
machine learning community have shown that it is possible to evaluate
the MI in high dimensional space thanks to newest deep learning tech-
niques. This paper explores how this new estimator could impact the
side channel domain. It presents an analysis which aim is to derive the
best way of using this estimator in practice. Then, it shows how such a
tool can be used to assess the leakage of any device.

Keywords: Side channel analysis, Mutual information, Deep learning

1 Introduction

Side Channel Analysis (SCA) could be defined as the process of gaining infor-
mation on a device holding a secret through its physical leakage such as power
consumption [11] or Electromagnetic (EM) emanations [16]. The secret is usu-
ally a cryptographic key but could be as well basic block execution, assembly
instructions, or even the value of an arbitrary register. The basic assumption
is that the secret and the side-channel data are statistically dependent. Many
techniques have been developed to extract part of these dependencies such as
DPA [11], CPA [3], MIA [15], and profiling attacks [6]. This diversity makes
it hard for designers and evaluators to draw an objective metric in order to
assess leakage. Testing all the existing attacks is a possible strategy but the in-
centives to develop a leakage assessment protocol can be found in a couple of
works [4,13,18].

From an information theory point of view, the maximum amount of infor-
mation one could extract from a side-channel trace is bounded by the mutual
information, Z(S, X') between the secret S and the trace X, seen as random vari-
ables. This quantity is, indeed, central in the side-channel domain. The goals of
the different actors could be summarized as follows:

2 Valence Cristiani, Maxime Lecomte and Philippe Maurine

— Designers aim at implementing countermeasures to decrease as far as pos-
sible Z(S, X), with computational, spatial and efficiency constraints.

— Evaluators aim at estimating Z(S, X) as closely as possible to assess leak-
ages in a worst-case scenario.

— Attackers aim at developing strategies to partially or fully exploit Z(S, X)
in order to recover a secret.

The main problem for designers and evaluators is that Z(.S, X) is known to
be hard to estimate from drawn samples when the variables live in a high di-
mensional space, which is generally the case of X. Indeed, computing Z(.S, X)
usually requires an estimation of the conditional density Pr(S|X) which is hard
because of the well-known curse of dimensionality. This explains why conven-
tional leakage assessment tools [18] (Signal to Noise Ratio (SNR), T-tests) and
classical attack strategies such as CPA and MIA typically focus on one (or a few)
samples at a time in the trace. As a result, the amount of information effectively
used may be significantly lower than Z(S, X).

Latest deep learning attacks have proved that neural networks are a very
interesting tool able to combine information from many samples of the traces
without any prior knowledge on the leakage model. For instance, [14] recently
proposed a way to derive an estimation of Z(.S, X') from the success rate of their
attacks and showed that in a supervised context, neural networks are close to
optimal at extracting information from traces.

In a completely unrelated context, Belghazi et al. [1] lately introduced a
Mutual Information Neural Estimator (MINE) which uses the power of deep
learning to compute mutual information in high dimension. They have proposed
applications in a pure machine learning context but we argue that this tool might
be of great interest in the side-channel domain. Indeed, being able to efficiently
compute Z(S, X) in an unsupervised way (no profiling of the target needed), no
matter the target, the implementation, or the countermeasures used, would be
highly relevant for all the different parties.

Paper organization. For this paper to be self-contained, the general method
and the mathematical ideas behind MINE are recalled in section 2. Section 3
proposes an in-depth analysis of MINE in a side-channel context supported with
synthetic traces, and suggests ways of dealing with the overfitting problem. Sec-
tion 4 provides some real case applications. It shows how this estimator con-
stitutes a reliable leakage assessment tool that can be used to compare leakage
from different implementations and devices. This section also shows that such
an estimator can be used as a guide for an evaluator/attacker to maximize the
MI captured from different hardware side-channel setups.

2 Background and theory behind MINE

Notations. Random variables are represented as upper case letters such as X.
They take their values in the corresponding set X depicted with a calligraphic
letter. Lower case letters such as = stand for elements of X'. Probability density
function associated to the variable X is denoted by px.

Leakage Assessment through Neural Estimation of the Mutual Information 3

Background. The entropy H(X) [19] of a random variable is a fundamental
quantity in information theory which typically tells how much information one
would get in average by learning a particular realization x of X. It is defined as
the expectation of the self-information logs(1/px). In a discrete context:

HX) = 3 px(a) - logs (pxl(x)> 1)

reEX

In a side-channel environment where X represents the acquired data, one is
not interested in the absolute information provided by X but rather in the
amount of information revealed about a second variable such as a secret S. This
is exactly what is measured by the mutual information Z(S, X). It is defined as:
Z(S,X)=H(S)— H(S|X) where H(S|X) stands for the conditional entropy of
S knowing X:

H(SIX) = 3 px(a) - H(SIX = 2) (2)

reX

The most common ways to estimate MI are the histogram method and the kernel
density estimation both described in [15]. There also exists a non parametric es-
timation based on k-nearest neighbors [12]. This paper is interested in MINE [1],
a new estimator based on deep learning techniques, which claims to scale well
with high dimensions. Technical details about MINE are given hereafter.

MINE. A well known property of Z(S, X) is its equivalence with the Kullback-
Leibler (KL) divergence between the joint probability ps x = Pr(S, X) and the
product of the marginals ps ® px = Pr(S) - Pr(X):

(S, X) = Dk r(ps,x || ps ® px) (3)

where Dk, (p, q) is defined as follow:

Dicslrll0) = Byftog (2) ()

whenever p is absolutely continuous with respect to ¢q. This property guarantees
that when ¢ is equal to 0, p is also equal to 0 and there is no division by 0 in the
logarithm. By definition, pg x is absolutely continuous with respect to ps ® px.

The key technical ingredient of MINE is to express the KL-divergence with
variational representations, especially the Donsker-Varadhan representation that
is given hereafter. Let p and ¢ be two densities over a compact set 2 € R%.

Theorem 1. (Donsker-Varadhan, 1983) The KL-divergence admits the follow-

ing dual representation:

Drr(pllq) = Loup By (7] — log(Eq[e"]) ()

where the supremum is taken over all functions T such that the two expectations
are finite.

4 Valence Cristiani, Maxime Lecomte and Philippe Maurine

A straightforward consequence of this theorem is that for any set F of functions
T : 2 — R satisfying the integrability constraint of the theorem we have the
following lower bound:

Dicr(p|lq) > sup Ey[T] - log(Eq[e"]) (6)
TeF
Thus, using (3), one have the following lower bound for Z(S, X):
I(Sa X) > ;1611])__ IE;vs,x [T] - lOg(E,’l)s@px) [eT]) (7)

How to compute Z(S, X). To put it short, the idea is to define F as the set of
all functions Ty parametrized by a neural network with parameters # € © and
to look for the parameters maximizing the loss function £ : @ — R:

L(0) = Epg » [To] — 1og(Epsep[e"]) (8)

This loss function is itself bounded by Z(S, X). The universal approximation
theorem for neural networks guarantees that this bound can be made arbitrarily
tight for some well-chosen parameters 6. The goal is then to find the best 6,
potentially using all the deep learning techniques and, more generally, all the
tools for optimization problem-solving. The expectations in (8) can be estimated
using empirical samples from pg x and ps®px and the maximization can be done
with the classical gradient ascent. A noticeable difference with a classical deep
learning setup is that the trained network is not used for any kind of prediction.
Instead, the evaluation of the loss function at the end of the training gives an
estimation of Z(S, X). We give hereafter the formal definition of the estimator
as stated in the original paper [1].

Definition 1. (MINE) Let A = {(s1,21),...,(8n,2n)} and B = {(51,21),...,
(Sn,n)} be two sets of n empirical samples respectively from ps.x and ps @px .
Let F = {Tp}oco be the set of functions parametrized by a neural network. MINE
1s defined as follows:

Z(S,X),, = sup E4[T] — log(Eg[e”]) (9)

TeF

n

where Eg[-] stands for the expectation empirically estimated over the set S.
The main theoretical result proved in [1] is that MINE is strongly consistent.

Theorem 2. (Strong consistency) For all € > 0 there exist a positive integer N
such that: -
Vn >N, |I(5,X)-ZI(5,X),| <e (10)

In practice one often only have samples from the joint distribution: A =
{(s1,21),-..(Sn,xn)}. Samples from the product of the marginals can be arti-
ficially generated by shuffling the variable X using a random permutation o:

Leakage Assessment through Neural Estimation of the Mutual Information 5

B = {(51,%5(1)),- -+ (Sn;To(n))}. We provide hereafter an implementation of
MINE that uses minibatch gradient ascent. Note that B is regenerated after
each epoch. Thus, this algorithm is not strictly implementing MINE as defined
in (9) because B is fixed in this definition. Theoretical arguments are provided
in section 3.4 to explain why this regeneration limit overfitting in practice and
is therefore mandatory.

Algorithm 1: Mine implementation

Input: A= {(s1,21),...(Sn,2n)}
0 < Initialize network parameters
Choose b a batch size such that b|n
repeat
Generate B = {(s1,%5(1));- - -5 (Sn, To(n))} With a random permutation o

Divide A and B into 7 packs of b elements: Ay, ... ,A% and Bi,... ,B%

for i=1;i= % do

L(0) < Ea,[Ts] — log(Eg,[eT0]), Evaluate the loss function

G(8) < VoL(0), Compute the gradient

0 < 0+ pG(0), Update the network parameters (u is the learning rate)
end

until convergence of L(6)

3 Analysis of MINE in a side-channel context

MI has found applications in a wide range of disciplines and it is not surprising
that it is also of great interest for side-channel analysis. Unlike Pearson coeffi-
cient, it detects non-linear dependencies and thus does not require any assump-
tions on the leakage model. Another key property of the MI is that it is invariant
to bijective transformations of the variables. This is of interest for side-channel
as S usually represents the state of an internal variable (ex: S = K @ P for an
AES) and is therefore unknown but bijectively related to a known variable such

as the plaintext P. In that case, there exists a bijective function f such that
S = f(P) and:

I(S,X) = Z(f71(8), X) = (P, X) (11)

Thus, one may estimate Z(S,X) with only the knowledge of P and X and
therefore quickly get the amount of leakage an attacker could potentially exploit.

In what follows, we consider that we are granted n samples (s1,21),. .., (Sn, Zn)
of traces associated to the sensitive variable being processed in the device (or
as stated above, to any bijection of this variable). These samples will be either
generated on simulation or measured from real case experiments. The goal is to
derive the best way to use MINE in a side-channel context in order to compute
a reliable estimation of Z(P, X).

6 Valence Cristiani, Maxime Lecomte and Philippe Maurine

3.1 Simulated traces environment

In order to assess the capabilities of MINE experiments on synthetic traces were
first conducted. These traces have been generated using a leakage model which
may seem awkward since the whole point of conducting MI analysis is to avoid
any assumption on the leakage model. But we argue that as a first step, it brings
a valuable advantage: the environment is perfectly controlled, thus the true MI
is known and can be used to evaluate the results and compare different settings.

Trace generation. To generate traces, featuring n; 4+ n, independent sam-
ples, a sensitive byte 0 < s < 255 was first drawn uniformly. The leakage was
spread over the n; samples drawn from a normal distribution centered in the
Hamming Weight (HW) of s and with noise o ~ N (HW (s), o). The n, remain-
ing samples are random points added to the trace to artificially increase the
dimension and be closer from a real scenario. Each of the n, samples is drawn
from a normal distribution centered in ¢ and with noise o ~ N(c, o), where c is
an integer itself drawn uniformly between 0 and 8. A very simple yet informative
case is to set n; = 1,n,, = 0 and o = 1. In that case, the true mutual information
Z(S,X) is equal to:

(S, X) = H(S) — H(S|X)

255 o0 1
=8— Z/ Pr(s,z) - loga (Pr(sx))dm
s=0"7~>
255 255 e,%@,Hw(s’))?

1 1 1 2 S
Q. - —5(x—HW (s))* . s’=0
=8 ZO /_OO 58 7271-6 2 logg(G HWE))dx
~ 0.8 bits

(12)

As a first step, we applied MINE to a set of 10k synthetic traces gener-
ated with these parameters. The network was set to be a simple Multi Layer
Perceptron (MLP) with two hidden layers of size 20. The Exponential Linear
Unit (ELU) was used as the activation function. The input layer was composed
of two neurons, representing the value of the sensitive variable S and the one-
dimensional trace X. The output was a single neuron giving the value of the
function Ty. The batch size was set to 500. The value of the loss function £(6)
over time is plotted in Fig. 1. An epoch represents the processing of all the data
so the parameters are updated 20 times per epoch.

As shown, the results are mixed. On one hand, the loss function is always
under the true MI and it seems that the limit superior of MINE is converging
over time towards 0.8, i.e. the true MI. On the other hand, the loss function
experiences a lot of drops and the convergence is very slow (above 200k epochs).
Drops may be due to the optimizer used (ADAM [10]) and happens when the
gradient is very close to 0. Increasing the size/number of hidden layers did not
produce any significantly better results. In that state MINE is clearly not of
any use for side-channel: the convergence is not clear and a classical histogram
method would compute the MI faster and better for one-dimensional traces.

Leakage Assessment through Neural Estimation of the Mutual Information 7

0.8 ———
04 [!
2
m—l 1 —— True Mutual Information
MINE loss
-2

T T T T T T T T . 1e3
0 25 50 75 100 125 150 175 200

Epochs

Fig. 1: Evolution of MINE’s loss function over time

3.2 Input decompression

Trying to gain intuition about the reasons causing the network to perform poorly
in this situation, we hypothesized that the information in the first layer, espe-
cially the value of s, could be too condensed in the sense that only one neuron
is used to describe it. Intuitively, the information provided by s about the cor-
responding trace x is not continuous in s. The meaning of this statement is that
there is no reason that two close values of s induce two close values of x. For ex-
ample, in a noise-free Hamming weight leakage model, the traces corresponding
to a sensitive value of 127 and 128 would be very different since HW (127) = 7
and HW(128) = 1. Since neural networks are built using a succession of linear
and activation functions which are all continuous, approximating functions with
quick and high variations may be harder for them. Indeed, building a neural
classifier that extracts the Hamming weight of an integer is not an easy task.
However, if the value of this integer is split into multiple neurons holdings its
binary representation, the problem becomes trivial as it ends up being a simple
sum.

This observation led us to increase the input size to represent the value
of s in its binary form, thus using 8 neurons. However, computing Z(S, X) in
that case gives an unfair advantage to the arbitrarily chosen Hamming weight
model. Indeed, the value of X would be closely related to the sum of the input
bits. So we decided to compute Z(S @ k, X) instead of Z(S, X), with a fixed k.
As stated above this bijective transformation does not change the MI anyway
and removes a possible confusion factor in the analysis. Results with the same
parameters as before (n; = 1,n, =0, 0 = 1) are presented in Fig. 2. They bear
no comparison with the previous ones. With this simple trick, MINE quickly
converges toward the true MI. The estimation seems robust as restarting the
training from different initializations of the network always produces the same
results. The order of magnitude of the computational time for the 500 epochs is
around two minutes.

Remark 1. Note that any constant function Ty would produce a loss function of
0. We argue that this could explain the knee point around 0 bit in the learning
curve: it is indeed, easy for the network to quickly reach 0 tuning the parameters
towards a constant function, before learning anything interesting.

8 Valence Cristiani, Maxime Lecomte and Philippe Maurine

0.8 1 e A A wa'w o
0.6 -

@ 0.4+

m 0.2 - —— True Mutual Information
0.0+ —— MINE loss

_02) T T T T T T
0 100 200 300 400 500
Epochs

Fig. 2: MINE with input decompression

Before testing this method for higher dimension traces, we propose to analyze
more in-depth this Input Decompression (ID). The goal is to understand if this
result was related in any way to our simulation setup or if ID could be applied
to more generic cases. As a first step, we tried to decompress X instead of S,
binning the value of X to the closest integers, then using its binary representation
as input neurons. As expected, it did not work: results looked like Fig. 1, as
X is by essence a continuous variable. If there is no interest in splitting into
multiple neurons an intrinsically continuous variable, our hypothesis is that, for
categorical variables, the greater the decompression, the faster the training.

Learning random permutations In order to test this hypothesis in a more
generic case, this section proposes to build a neural network Py which goal is to
learn a random permutation P of {0,...,n—1} and to analyze its performance in
terms of ID. Permutations have been chosen because they are arbitrary functions
with no relation between close inputs. For an integer m < n the network returns
a float Py(m) which has to be as close as possible to P(m). The loss function
was defined as error: £(6) = |Py(m) — P(m)|. Network architecture was again a
simple MLP but with 3 hidden layers of size 100. To study the effect of ID the
input layer was defined to be the representation of m in different bases, with one
neuron per digit. For example, with n = 256, all bases in 256, 16,7, 4, 3,2, 1 were
considered resulting in a first layer of respectively {1,2,3,4,6,8,256} neurons
(base 1 is actually the One Hot Encoding (OHE)). The training dataset was a
list of 10k integers uniformly drawn from {0,...,n —1}. Loss functions in terms
of ID are depicted in Fig. 3. At the end of the training, plots are exactly ordered
in the expected way: greater decompression leads to faster and better training.

In a recent analysis, Bronchain et al. [5] have shown that it was hard for
a MLP to learn the Galois multiplication in GF(2") when n > 8. As Galois
multiplication suffers from the same non-continuity than random permutations,
we argue that blue plots confirm this result. With no ID our MLP did not show
the beginning of a convergence towards 0. But we do think their network may
have been successful with ID. Pink plots show that the best choice is to use
the OHE. The problem with OHE is that the number of neurons (and therefore
the computational time) scales linearly with n (the number of categories of the

Leakage Assessment through Neural Estimation of the Mutual Information 9

underlying problem), where it only scales logarithmically with any other base.
In side-channel, one mostly deals with bytes (256 categories) and will therefore
use the OHE. However, section 4.3 presents a scenario where using base 2 is a

better choice, when computing the MI with assembly instructions.

Base/Input layer le3l Base/Input layer
120 -+ 30 4
—256/1 —3/6 —21%/1 —3/11
100 - —16/2 —2/8 254 | —16/4 —2/16
—7/3 1/256 —7/6 1/2%
&80_ —4/4 20+ —4/8
360 -
40 -+
20 A
O L T T T T T T
0 1000 2000 3000 4000 5000 0 2000 4000 6000 8000 10000
Epochs Epochs
(a) n =28 (b) n =216

Fig. 3: Impact of input decompression on learning random permutations

Remark 2. Note that the constant function Py = 5 would result in an average

loss function of %, which explains the knee point around 7 observable in most

of the curves: quickly converging towards this function is an efficient strategy

for the network to minimize its loss at the beginning of the learning phase. We

verified this statement by looking at the predictions of the network which were
n

all close from 7 in the early stage of the training.

3.3 MINE in higher dimension

This section presents results of simulations in higher dimension and compare
MINE estimation to that provided by the classical histogram and KNN meth-
ods. The histogram estimator has been implemented following the description
from [15] and Steeg’s implementation [21] has been utilized for KNN. Network
architecture described in 3.1 has been used with OHE to encode the S variable.
We have kept n; = o = 1 so the true MI is still around 0.8 bits but n, was
no longer set to 0 in order to increase the traces dimension. Fig. 4 shows the
results for n, = 1 and n, = 9. In both case MINE correctly converges toward
the true MI. The histogram method tends to overestimate the MI (as explained
n [23]) while KNN method underestimates it. With dimension greater than 10
these methods are not reliable anymore. One could argue that any dimension
reduction technique applied in the above experiments would allow to compute
the MI with classical estimators. While this is true in this case it may result
in a loss of information in a real case scenario where the information could be
split into multiple samples of the traces. We have conducted many experiments
with different parameters and MINE always returned reliable estimations even
in very high dimension (ex: Fig. 5b with n; = 5 and n,. = 1000).

10 Valence Cristiani, Maxime Lecomte and Philippe Maurine

1.0 ~ L 5 -
0.5 - ’ 4 - —— True Mutual Information
Histogram
2004 — - 2 31 —— KNN estimation
[a) — MINE
—— True Mutual Information 2 1
—0.5 1 Histogram 14
—— KNN estimation o
_1.0 7 —— MINE 0 _ /—/_/-JW‘N

0 100 200 300 400 500 O 100 200 300 400 500

Epochs Epochs
(a) Trace dimension = 2 (b) Trace dimension = 10
(ni=1,n,=1,0=1) (ni=1,n,=9,0=1)

Fig. 4: Comparison of MINE with classical estimators in higher dimension

3.4 Analysis of the overfitting problem

Results of simulations are encouraging as they seem accurate with a lot of dif-
ferent parameters but one problem still has to be solved before testing MINE on
real traces: when to stop the training ? Until now, training has been manually
stopped when the loss had converged towards the true MI. No such threshold
value will be granted in real cases. One could argue that since the loss function
is theoretically bounded by the true MI, a good strategy would be to let the
training happen during a sufficiently long time and to retain the supremum of
the loss function as the MI estimation. We argue that this strategy is not viable:
in practice the bound does not hold as expectations in the loss are not the true
expectations but are only estimated through empirical data. Thus, MINE can
still produce output above the true MI. Fig. 5 shows this phenomenon: training
has been intentionally let running for a longer time in these experiments and
MINE overestimates the MI at the end of the training. In other terms, MINE is
no exception to the rule when it comes to the overfitting problem: the network
can learn ways to exploit specificities of the data it is using to train, in order to
maximize its loss function. We propose hereafter a detailed analysis of this prob-
lem and answer to the following question: is it possible to control (for example
to bound with a certain probability) the error made by the network ?

Let us return to the definition of MINE estimator:

(8, X), = sup EA[T)] Log (Es[T7]) (13)

The problem comes from the fact that the two expectations are estimated over
the set of empirical data A and B. The error can not be controlled in the classical
way with the central limit theorem because there is a notion of order that is
important: the two sets A and B are selected before the network tries to find
the supremum over @. Thus, the network can exploit specificities of A and B in

Leakage Assessment through Neural Estimation of the Mutual Information 11

2.0 2.0 A |
1.5 WYMNW Jlkd
1.5 \ll
1.0 - }Y‘
2104 2 |
3 1.0 5 0.5 J'
] 0.04 A4
05 —— True Mutual Information — True Mutual Information
—— MINE —0.57 —— MINE
0.0
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Epochs Epochs
(a) Trace dimension = 15 (b) Trace dimension = 1005
(ni =5,n, =10,0 =1) (ni = 5,n, = 1000,0 = 1)

Fig. 5: Over estimation of MINE at the end the training (overfitting)

its research. We show in theorem 3 that given two sets A and B, the supremum
may not even be bounded.

Theorem 3. Let X, Y be two random variables over 2. Let x = (x1,...,2,) €
2" andy = (y1,...,Yyn) € 27 be two samples of n realizations of respectively X
and Y. Then,

sup Eg[T(X)] — log(Ey[eT™)]) < 0o < Vi, 3j such that x; =y,
T: 2—R

Proof. Let us introduce two new random variables, X’ and Y defined as follows:

1 1
Ve 2, B(X' =w) = [z =w} and P(Y' =w)=—|{y; =w}|

The samples x and y are perfect samples of X’ and Y’ (by definition of X’
and Y’), thus, the estimated expectations are equal to the true expectations
computed over this new variables:

sup E,[T(X)] ~ log(Ey[e™™)]) = sup Ex/[T(X")] ~ log(Ey-["™"))
T: 2—R T: 2—R

Now let us assume the right part of the equivalence. This condition means
that there is no isolated w;, or in other words: Yw,Pr(Y’ = w) = 0 = Pr(X' =
w) = 0. This guarantees the absolute continuity of px: with respect to py and
thus, that Dgr(px-|| py’) exists. Therefore, using Th. 1:

T: 2—R

12 Valence Cristiani, Maxime Lecomte and Philippe Maurine

If, on the other hand, this condition is false: 3¢ such that Vj, z; # y;. For
any given function T one can exploit this isolated x; modifying T'(z;) without
influencing the second expectation. In particular, if T'(z;) tends towards infinity:

lim &[T(X)]—log@y[eﬂwp]‘ 3k [1Zwm)—zog(iZykeTW]
k=1 k=1

T(z;)—o00 _T(zl)ﬂoo ﬁ —
_ 1w I 1)
=T(£§2Jn2m<xk> Hoa(3 ke)
k=1 k=1

= 00

So in that case:
sup Eg[T(X)] — log(Ey[eT™)]) = 00
T: 2—R 0

This theorem means that most of the time (and especially for high dimensional
variables) the supremum is infinite and MINE is not even well defined. The
natural question that comes now is: why does MINE seem to work in practice?

We claim that this is due to the implementation and especially to the ran-
domization of the set B evoked in section 2: after each epoch a new permutation
o is drawn to generate samples from ps @ px: B = {(51,%5(1))s- -+ (Sn, Tom)) }-
Thus, the isolated samples from A are not always the same at each epoch which
does not leave time for the network to exploit them. To verify that this was a key
element, MINE was run without this randomization process. The loss function
diverged towards infinity, as predicted by theorem 3.

In the long run, the network can still learn statistical specificities of the
dataset such as samples from A that has a greater probability of being isolated,
and exploit them. This explains why MINE may overfit when it has a long time
to train. That is why we suggest to add a validation loss function.

Validation loss function. A validation loss function is a common tool when
it comes to detect overfitting and stop the training at the right time. The idea is
to split the dataset A into a training dataset A; and a validation one A, and to
only use A; for the training. At the end of each epoch, the loss function is com-
puted both on A; and A,. As the data from A, are never used during training,
MINE can not overfit on them. Thus, it is safe to take the supremum of the loss
computed over A, as our MI estimation. It also provides a useful condition to
stop the training as the decrease of the validation loss function is usually a sign
of overfitting. Fig. 6a shows an example where the true loss function and the
validation one (computed on 80% and 20% of the data) respectively increase and
decrease after a while. Training could have been stopped after the 500" epoch.

Fill the holes. Th. 3 states that there is still a case where the supremum is
bounded: when Va € A, 3b € B such that ¢ = b, or in other words, when there
is no isolated value in A. An alternative solution to prevent overfitting is thus to

Leakage Assessment through Neural Estimation of the Mutual Information 13

force this condition to be true instead of regenerating B after each epoch. Naively
filling the holes by adding to B all the isolated values is not a good idea because
the resulting set would be biased, not containing stricto sensu samples drawn
from ps ® px. However, with A = {(s1,21),...(Sn,zn)}, As = {s1,...,8,} and
Ay = {x1,...,2,} one can define B’ as the Cartesian product® B’ = Ag x A,
which is by definition a non-biased dataset that covers all the elements of A.
The problem is that its size is no longer n but n? which drastically impacts the
computational time of MINE as the network has to compute Ty (b) for all b € B’
at each epoch. However, the number of network evaluations can be reduced to
c-n where c is the cardinality of the set & made up of all the possible values
taken by the sensitive variable S. For example, if S is a byte, ¢ = 256. The idea
is to evaluate Ty on the c¢-n elements of the set S x A, which is sufficient to cover
all the couples from B’ as elements from Ay x A, can all be found in S x A,.

With this implementation MINE is fundamentally bounded by a quantity
denoted Maxmi equal to the KL-divergence between the empirical distributions
associated to A and B as stated in the proof of Th. 3. Fig. 6b shows an example
of MINE with this implementation applied to the already considered case (n; =
1,n, = 0,0 = 1). One may observe that the loss function is a lot smoother and
is effectively bounded by Maxmi (we tried to let the network train for more
than 100k epochs) which is another empirical confirmation of Th. 3.

However, when the dimension of the variables increases samples tend to be
more and more unique. At the limit, they hold the full information about the cor-
responding secret s which means that Maxmi will tends towards H (S). Knowing
if the network will always converge towards his supremum or will stabilize to a
value close to the true MI is an open question. We do think that the randomiza-
tion proposed in the precedent strategy may help to that aim and that is why we
will stick to the validation method for our real-life experiments, which is faster
anyway.

3.0]
0.8 —
2.5 1 0.71
0.6 -
2.0 1
" 05
2154 S04
o 1.5 = 0.4
1.0 1 031 i
: —— True Mutual Information
—— True Mutual Information 0.2 A MINE loss
05 —— MINE loss 01d ,
—— MINE Validation Maxmi
0.0 0.04 /
0 250 500 750 1000 1250 1500 1750 2000 0 500 1000 1500 2000 2500 3000
Epochs Epochs
(a) Validitaion strategy (b) Fill the holes strategy
(ni =10,n, = 0,0 =1) (ni=1,n, =0,0 =1)

Fig. 6: Two possible strategies against overfitting

3 These sets are actually multisets as they may contains repetitions of a single ele-

ments but the Cartesian product can be canonicaly extended to multisets.

14 Valence Cristiani, Maxime Lecomte and Philippe Maurine
4 Application of MINE in an evaluation context

This section provides real case examples where MINE could be useful especially
in an evaluation context. Its most straightforward utilization is probably to assess
the quantity of information leaking from a device when it computes a crypto-
graphic algorithm. It can be seen as a first security metric, easy to compute
whatever the target and the implementation, with low expertise required. How-
ever, MINE only returns an upper bound on the amount of leakage potentially
usable. In practice, an attacker may not be able to fully exploit this information,
depending on his strategy, and that is why classical evaluation methods still have
to be performed.

That being said, MINE is also a great comparison tool. Indeed, its output
is an interpretable number that allows to objectively rank different devices or
implementations in terms of their leakage. It can be used to analyze the effect
of a countermeasure or even to compare different hardware setup in order to
maximize the MI for future attacks or evaluations.

4.1 Leakage evaluation of an unprotected AES

As a first real case experiment, our target was an unprotected AES implemented
on a cortex M4 device. 20k EM traces centered on the first round of the AES
have been acquired through a Langer probe (RF-B 0,3-3) linked to an LNA and a
Tektronix oscilloscope (MSO64, 2.5GHz) with a sample rate of 1GS/s. Resulting
traces had a length of 50k samples. They have been labeled with the first byte
of the corresponding plaintext which was drawn randomly for each computation
of the AES.

The main goal of this first experiment was to demonstrate how adding more
samples to the analysis, which is the purpose of MINE, increases the amount of
information one can recover. To this end, only the n samples with the maximum
SNR were kept in the traces, with » in {1, 5,500}. Network architecture was the
same as in the simulated experiments. Results are presented in Fig. 7. The thick
blue plot shows that if one only uses one sample in his analysis (for example
with a CPA or histogram-based MIA) he would be able to extract at most 1.15
bits about the secret, per trace. While it is a huge amount of information (it
is an unprotected AES) it is possible to extract almost 4 times more using 500
samples. For clarity reasons, only the validation loss has been plotted. Training
has been stopped after epoch 500 as these validations (especially the green one)
started to decrease. Going further with n > 500 did not produce better results
as it seems that the remaining samples were absolutely not informative about
the secret.

ADC comparison. The oscilloscope used in the former experiment offers the
possibility to set the ADC precision to either 8 or 15 bits. This is a good oppor-
tunity to show MINE comparative interest and its ability to answer questions
such as "Is it really worth it to buy the newest scope with the enhanced ADC

Leakage Assessment through Neural Estimation of the Mutual Information 15

precision?” in a quantitative and objective way. 10k traces instead of 20k (so
that the occupied memory stayed constant) were thus acquired with the 15 bits
precision. Results are represented by the thin plots on Fig. 7. In this case, the
answer is that there is a slight improvement (around 10%) working with the 15
bits precision rather than the 8 bits one.

4.2 Leakage evaluation of a masked AES from the ASCAD database

One of the main difficulties of side-channel analysis is to extract information even
when the target algorithm has been masked. Indeed, masking removes all the
first-order leakage and thus, obliges one to combine samples together to detect
a dependency with the secret. This is usually very long as all the couples of
samples (or n-tuple) have to be tested.

It is thus a great challenge for MINE to see if it is able to automatically
perform this recombination, and detect higher-order leakages. For that purpose,
the public dataset ASCAD [2] (with no jitter) has been used. It provides a
database of 50k EM traces of 700 samples each, of an AES protected with a
Boolean masking. A MI estimation, derived from deep learning attack results,
has already been done on this dataset [14]. They reported a MI of 0.065 bit
between the traces and the third key byte (the first two were not masked) which
provides a reference point.

At first, MINE was not successful: the loss function increased but the val-
idation started to decrease very early which is a direct sign of overfitting. In-
tuitively, when the underlying problem is more complex, it may be easier for
the network to learn properties of the empirical data before the true structure
of these data. Then, classical solutions against overfitting have been applied to
MINE. These include Batch Normalization (BN) layers, dropout, and regular-
ization techniques. While the last, did not impact performances significantly, the
combination of BN and dropout greatly improved the results. A BN layer has
been applied to the inputs in order to normalize them. This is known to make
the loss function smoother and thus the optimization easier [17]. Dropout was
activated with p = 0.2 so that each neuron has a probability p of being set to
0 when an output of the network is computed (except when the validation is
computed). This is also known to reduce overfitting and make the training more
robust [20].

Results are presented in Fig. 8: validation loss reached a value of 0.2 bits
which is about three times bigger than the MI reported in [14]. Due to how
validation is computed this value can not be an overestimation of the MI. Our
MLP structure may be a little more adapted than the CNN used in [14] as there
is no jitter in that case. We also suggest that the input decompression technique,
only usable with MINE, could help the network to learn, especially for complex
problems such as when the algorithm is masked. This may explain why MINE
was able to extract more information in that case. One can observe that it took
100 epochs for the network to start to learn something. It may seem random but
this period of 100 epochs was surprisingly repeatable across experiments.

16 Valence Cristiani, Maxime Lecomte and Philippe Maurine

f w\M"‘\.’;"t"'v""“’"ﬂfw”‘““""““""‘*""“""’l‘“‘“‘*"1""'*‘P\“ ko
44 0.2
3 -
a5 007
5 ’MW‘WWW‘W\ZW’*W“WWMWWV:‘*:’ZWW‘Wwﬁ CE
1+ ' B —-0.2
bl B — MINE loss
0 - —— dim=500 validation MINE validation
ADC:— 8 bits —15 bits _04 -
0 100 200 300 400 500 0 50 100_150, 200 250 300
Epochs Epochs
Fig. 7: Leakage evaluation of an Fig. 8: Leakage evaluation of a masked
unprotected AES AES (ASCAD)

4.3 Instructions leakage

Another advantage of MINE is that it cannot only compute MI for high dimen-
sional traces but also for secrets with a high number of classes. This is the case if
one is interested in recovering information about the raw assembly instructions
that are being executed. This branch of SCA is called Side Channel Based Dis-
assembling (SCBD) [7-9,22] and the main difficulty in this domain is the size
of the attacked variable, generally the couple (opcode, operands) which is no
longer a simple byte. For example the target device in [7,8,22] is a PIC16F from
Microchip which encodes its instruction on 14 bits. Even though some opcodes
are not valid, the number of possible couples (opcode, operands) is around 2'2.
It is even worse for more complex processors encoding their instruction on 16
or 32 bits. MINE treats the attacked variable as an input and the number of
neurons used to encode it can be adjusted with ID as stated in section 3.2. Using
base 2, one only need 14 neurons to encode an instruction in the PIC example.

In order to test MINE in this context, we have generated a program with 12k
randoms instructions for the PIC. Using the same experimental setup described
in section 4.2 of [7], an EM trace of the whole execution has been acquired (it
was averaged on 500 traces as the program is repeatable). This trace has then
been separated into 12k sub-traces of 2000 samples each. Each sub-trace was
labeled with the executed instruction. As it has been shown in [7] that the
probe position may be very important, MINE has been applied at 100 different
positions (using a (10 x 10) grid) resulting in the MI cartography given in Fig. 9.
The value at each position is the mean of the network’s validation computed
over the 100 last epochs of the training (all the training lasted 500 epochs and a
Gaussian filter has been applied to the figure). Up to 8 bits of information have
been found for the best positions which is a high amount if one compares to the
full entropy of an instruction which is approximately 12 bits. This shows that
MINE stays sound even when the target variable has a high number of classes.

Leakage Assessment through Neural Estimation of the Mutual Information 17

Coil comparison. Similar to what has been done regarding the selection of the
oscilloscope precision, another hardware comparative experiment was conducted.
Two probes with two different coil orientations (Langer ICR HH and HV 100-
27) have been used. While the "hot” zones are globally the same, one may
observe that the coil orientation may have a significant impact on the captured
information for some specific positions. This experiment suggests that MINE
could be used to guide the positioning of EM probes during evaluations.

Horizontal coil Vertical coil Bits

e

Fig.9: Cartography of the MI between instructions and traces estimated by
MINE on a PIC16F

2 mm

N W A~ U1 OO N

2 mm

5 Conclusion

This paper suggests ways MINE, a new deep learning technique to estimate
mutual information, could constitute a new tool for side-channel analysis. The
main advantage is its ability to estimate MI between high dimensional variables.
Indeed, being able to consider full (or large part of) traces as a variable, allows
to exploit all potential leakage sources with no a priori on the leakage model
neither on the implementation. It seems that MINE could be used as a very
simple tool to obtain an objective leakage evaluation from traces. Thus, it may
be employed for massive and quick evaluations for designers in their development
process as well as for evaluators as a first leakage metric.

These suggestions result from a theoretical and practical analysis of MINE
in a side-channel context. MINE’s overfitting problem has been deeply inves-
tigated as well as the way input representation may have a huge impact on
performances. Our upcoming works will aim at investigating possible usages of
MINE for extracting secrets in an unsupervised way i.e. in an attack context.

References

1. Belghazi, M.I., Baratin, A., Rajeswar, S., Ozair, S., Bengio, Y., Courville, A.,
Hjelm, R.D.: Mine: Mutual information neural estimation (2018)

18

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Valence Cristiani, Maxime Lecomte and Philippe Maurine

. Benadjila, R., Prouff, E., Strullu, R., Cagli, E., Dumas, C.: Study of deep learning

techniques for side-channel analysis and introduction to ascad database. ANSSI,
France & CEA, LETI, MINATEC Campus, France. (2018)

Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.J. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2004. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)
Bronchain, O., Hendrickx, J.M., Massart, C., Olshevsky, A., Standaert, F.X.: Leak-
age certification revisited: Bounding model errors in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2019/132 (2019)

Bronchain, O., Standaert, F.X.: Side-channel countermeasures’ dissection and the
limits of closed source security evaluations. Cryptology ePrint Archive (2019)
Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: International Workshop on
Cryptographic Hardware and Embedded Systems (2002)

Cristiani, V., Lecomte, M., Hiscock, T.: A Bit-Level Approach to Side Channel
Based Disassembling. In: CARDIS 2019. Prague, Czech Republic (Nov 2019),
https://hal.archives-ouvertes.fr/hal-02338644

Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Transactions on computational science (2010)

Goldack, M., Paar, 1.C.: Side-channel based reverse engineering for microcon-
trollers. Master’s thesis, Ruhr-Universitat Bochum, Germany (2008)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014)
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Annual International
Cryptology Conference (1999)

Kraskov, A., Stogbauer, H., Grassberger, P.: Estimating mutual information. Phys-
ical Review (Jun 2004)

Macé, F., Standaert, F.X., Quisquater, J.J.: Information theoretic evaluation of
side-channel resistant logic styles. vol. 2008, p. 5 (01 2008)

Masure, L., Dumas, C., Prouff, E.: A comprehensive study of deep learning for side-
channel analysis. ITACR Transactions on Cryptographic Hardware and Embedded
Systems 2020 (2019)

Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information
based side channel analysis. pp. 499-518 (01 2009)

Quisquater, J.J., Samyde, D.: Electromagnetic analysis: Measures and counter-
measures for smart cards (2001)

Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization
help optimization? (2018)

Schneider, T., Moradi, A.: Leakage assessment methodology. In: International
Workshop on Cryptographic Hardware and Embedded Systems (2015)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379-423 (1948)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(56), 1929-1958 (2014)

Steeg, G.V.: Non-parametric entropy estimation toolbox (2014),
https://github.com/gregversteeg/NPEET

Strobel, D., Bache, F., Oswald, D., Schellenberg, F., Paar, C.: Scandalee: a side-
channel-based disassembler using local electromagnetic emanations. In: Proceed-
ings of the Design, Automation & Test in Europe Conference & Exhibition (2015)
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. Journal
of Machine Learning Research 11(95), 2837-2854 (2010)

