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Abstract

This paper introduces a generative model for planar point processes in a square window, built
upon a single realization of a stationary, ergodic point process observed in this window. Inspired by
recent advances in gradient descent methods for maximum entropy models, we propose a method
to generate similar point patterns by jointly moving particles of an initial Poisson configuration
towards a target counting measure. The target measure is generated via a deterministic gradient
descent algorithm, so as to match a set of statistics of the given, observed realization. Our statistics
are estimators of the multi-scale wavelet phase harmonic covariance, recently proposed in image
modeling. They allow one to capture geometric structures through multi-scale interactions between
wavelet coefficients. Both our statistics and the gradient descent algorithm scale better with the
number of observed points than the classical k-nearest neighbour distances previously used in
generative models for point processes, based on the rejection sampling or simulated-annealing.
The overall quality of our model is evaluated on point processes with various geometric structures
through spectral and topological data analysis.

1 Introduction
In order to perform statistical analysis of a random phenomenon of which we only have a single
observation, it is often useful to build a probabilistic model from which we can simulate approxi-
mations of the underlying process. This problem has been previously studied in a wide range of
domains [1, 5, 22,32,35]. A classical method in the point process literature is based on transform-
ing an initial random counting measure by successively replacing a randomly selected atom of the
measure by a new, randomly positioned atom, so as to match some statistical descriptors of the
observed sample [33]. This approach works well on relatively small-scale and simple geometrical
structures, however, when facing complex multiscale geometries formed by the particles in turbu-
lence flows [15,16,25,27] and cosmology [30,31], we need to develop a more efficient and accurate
model. We shall study this problem in the mathematical framework of the classical maximum-
entropy models [21], and propose a particle gradient-descent model, which is adapted from recent
progresses in modeling non-Gaussian ergodic and stationary processes [10,36].

Suggested by statistical physics, maximum-entropy models are distributions of maximal entropy
that match a set of prescribed statistical descriptors. Intuitively, this means that the model is ’as
random as possible’ under certain constraints, in the sense that there are no constraints other
than the ones based on the information captured by the descriptors. Two standard models are the
macrocanonical model, with expectation constraints, and the microcanonical model, with pathwise
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Figure 1: Samples of point processes of various geometries. The number of points range from 1000-
40000 (see a summary in Table 1 in Section 6).

constraints. In the context of point processes, where Shannon’s entropy is not well defined, it is
customary to replace it by Kullback-Leibler (KL) divergence with respect to the reference Poisson
point process distribution, and minimize this latter under the macro- or microcanonical constraints.
In this case, the solutions to both models are (two different) Gibbs point processes (having density
with respect to the reference Poisson distribution). Although mathematically elegant, these Gibbs
point processes are hard to sample from. Variants of rejection sampling, simulated annealing and
MCMC algorithms are suggested in this regard [14], all being extremely time consuming if the
number of points grows large.

In [10], the authors study a gradient descent model as an approximation of the microcanonical
model for ergodic and stationary processes. For processes on the two-dimensional square lattice
(modeling pixel images), it consists in transporting an initial high-entropy probability measure
such as Gaussian white noise through gradient descent on the amplitude of each pixel. Gradient
descent models are very popular in image and time-series modeling ( [5,18,24,28,36]) because they
allow for fast sampling of the model, as opposed to MCMC algorithms. While this approach has
been already applied in [10] to point processes on the plane subjected to the lattice locations, it
is not adapted to the nature of point processes, for which the matter of interest is the positions
of the points in the continuous plane. Thus, optimizing the amplitude of each pixel does not take
advantage of the a priori information that the process is an atomic measure.

The main contribution of this paper is to propose an approach taking advantage of the efficiency
of gradient descent algorithms, while preserving the continuum nature of point processes. We call it
particle gradient descent. Similar to the work [33], all the particles (points) of an initial realization
(of the Poisson point process) are moved continuously on the plane. However, as opposed to using
acceptance-rejection sampling computed in a sequential order, we propose a deterministic and
parallel gradient descent algorithm to make the sampling more efficient. Moreover, we adapt the
descriptors developed from multi-scale wavelet analysis to capture complex geometric structures
formed by a large number of particles.

The choice of the descriptors is essential to generate high-quality samples. Common statistics,
more related to point process theory, such as the nearest neighbour distance distribution, or empty
space distribution, could be used. However, if the number of points in the configuration becomes
large, these statistics will only capture small scale geometric information. In [33], the authors
advocate the use of k-nearest neighbours, which could become intractable for a (necessarily) large k.
Instead, we use the multi-scale wavelet phase harmonic descriptors, which were recently introduced
in [24,36] . To match these descriptors for point processes, we propose a complete numerical scheme
allowing one to perform efficiently the gradient descent of these descriptors with respect to the
positions of all particles. It is based on a differentiable discretization of atomic measures, combined
with multiscale optimization in the gradient descent, meant to avoid undesirable shallow minima.

We evaluate our model on some distributions exhibiting complex geometric patterns, like Cox
point processes on the edges of Poisson-Voronoi tessellations and on the Boolean model with
circular grains, as well as on Mattern hard-core and Mattern cluster processes driven by Poisson
processes with turbulent intensities (see Figure 1 for a few examples). Besides the visual inspection
of the samples from our generative model, which is an important and standard analysis to assess the
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closeness of the model distribution to that of the observation, we evaluate second order correlations
by estimating the Bartlett spectrum for the original samples and the generated approximations. In
order to study in more details geometric structures, we compare the persistent homology diagrams,
as it has been proven useful for topological data analysis [11].

The remaining part of the paper is organized as follows: in Section 2 we recall some basic
notions from the theory of point processes and reformalize the macro and microcanonical models
in this setting . Section 3 presents our generative model. We discuss modeling issues related to
the choice of the descriptor and sampling algorithm, and then state an invariance conservation
property, which extends the result in [10] to the continuous domain. Based on [36], in Section 4 we
present our descriptor to characterize geometric structures of point processes. Section 5 describes
a complete numerical scheme allowing one to perform efficiently the gradient descent of these
descriptors. In Section 6 we evaluate our model numerically. We complete the paper with three
sections in the Appendix: Appendix A details a regularised variant of our gradient descent model.
Appendix B gives a proof of the invariance result of Section 3. Finally Appendix C recalls some
basic notions of Fourier theory for point processes, and presents a brief comparison of spectral and
topological analysis of the data.

2 Point process framework and notations

2.1 General definitions
In this section we define the elementary objects of point process theory and the notations that we
will use in this paper. A more detailed introduction to stochastic geometry and point processes
can be found in [4,13]. In this paper, we focus on 2d point processes. The methodology we propose
can be readily extended to 1d or 3d.

Configurations of points (on the plane) are represented as counting measures on (R2,B), with
B denoting the natural Borel σ-algebra on R2. Recall that counting measures are locally finite
measures taking values in N̄ := N∪{+∞}. Let M denote the space of all such measures on (R2,B),
endowed with the σ-algebraM generated by the mappings µ 7→ µ(B), for B ∈ B. For µ ∈ M, we
will often use the following representation:

µ =
∑

1≤i≤I

δxi , I ∈ N̄, (1)

where δx is the Dirac measure having a unit atom at x. Recall, a push-forward F#µ of a point
measure µ by a (measurable) function F : R2 −→ R2 is simply the displacement of its atoms by
the function F

F#µ =
∑
i

δF (xi).

A counting measure µ ∈ M is called simple if for all x ∈ R2 µ({x}) = 0 or 1 (in other words
all atoms of µ in the representation (1) are distinct). Simple counting measures can be identified
with their supports Supp(µ) := {x ∈ R2 : µ({x}) > 0} and in this regard we shall also write x ∈ µ
if x is an atom of µ, i.e., if µ({x}) > 0.

For µ ∈ M and x ∈ R2, we define the translation Sxµ of µ by x, i.e. Sxµ(B) := µ(B + x).
A point process Φ is a measurable mapping from an abstract probability space (Ω,F ,P) to

(M,M). We will denote by LΦ the distribution of Φ, that is the pushforward of the probability
measure P by Φ on (M,M). We shall denote by D the space of probability distributions on
(M,M). We say that a point process Φ is simple if P(Φ is a simple measure) = 1. Point process Φ
is termed stationary if its distribution LΦ is invariant with respect to all shifts Sx, x ∈ R2. It is
termed ergodic if the empirical averages (of real, measurable functions f on M, integrable with
respect to LΦ) over windows Ws = [−s, s[×[−s, s[ increasing to R2 converge almost surely to the
mathematical expectations

lim
s→∞

1

|Ws|

∫
Ws

f(SxΦ) dx = E[f(Φ)] =

∫
M
f(µ)LΦ(dµ), (2)
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where |Ws| stands for the Lebesgue measure of Ws, see [4, Chapter 8] fore more details.
For a given s > 0, we denote by Ms the set of counting measures on Ws, andMs its induced

σ-algebra. Unless otherwise stated, we will consider Ws with addition and scalar multiplication
modulo Ws. Also we shall denote by S̄x the corresponding shift operator on Ms.

For any integer n ≥ 1 and any z ∈ Cn, we note |z| the Euclidean norm of z.
Let Φ be a point process on R2. One can only observe realizations of Φ on bounded subsets of R2.

For the remaining of this paper, we shall consider realizations of point processes observed on a finite
square window Ws, for some s > 0. We shall note Φ̄ the restriction of Φ to Ws, that is Φ̄ is a point
process onWs such that, ∀n > 0, ∀ (B1, ..., Bn) ∈ B(Ws)

n, (Φ(B1), ...,Φ(Bn)) = (Φ̄(B1), ..., Φ̄(Bn))
in distribution (where B(Ws) stands for the Borel σ-algebra on Ws). A realization of Φ observed
on Ws is therefore a realization of Φ̄, and will be noted φ̄.

2.2 Notes on maximum entropy models for point processes
The notion of entropy is naturally defined only for random objects in discrete state spaces. Even
if a mixture of the differential and discrete entropy can be considered for point processes [3], it is
more natural to consider in this context the Kullback-Leibler (KL) divergence with respect to a
reference distribution. naturally taken to be the homogeneous Poisson point process distribution
( [14]). More specifically, let us denote by L0 the Poisson distribution on Ws. We define the KL
divergence of a point process Φ̄ on Ws with distribution LΦ,

KL(LΦ;L0) :=

∫
Ms

dLΦ

dL0
(µ) log

dLΦ

dL0
(µ)L0(dµ); (3)

provided LΦ is absolutely continuous w.r.t. L0, denoting by dLΦ
dL0

the corresponding density. (Oth-
erwise KL is set to ∞.)
Remark 2.1. In this paper, we shall consider that the number of points of our model inWs is fixed.
In such case it is customary to take homogeneous Poisson point process distribution conditioned
to have exactly n points in Ws as the reference measure, which is equivalent to n points sampled
uniformly, independently in Ws. We will note this distribution Ln0 .

With the KL divergence as a notion of entropy for point processes, we can now define the
macrocanonical and microcanonical models. These models are distributions of maximum entropy
under different types of constraints. When considering these distributions as models for a point
process Φ̄, the constraints are usually built as functions of the distribution of Φ̄, or functions
of samples from Φ̄. Consider a mapping K : Ms −→ Cd, for some d < ∞, the macro- and
microcanonical models are defined as follows:

Macrocanonical model In this model one is looking for a point process Ξ with distribution
L on Ms that minimizes the KL divergence KL(L,L0) under average constraints:

arg min
L

KL(L,L0) (4)

given E(K(Ξ)) = a, (5)

for some vector of constraints a = E(K(Φ̄)). The solution of this problem is the Gibbs (point
process) distribution1 LG on Ms having the density eU(µ)/Z with respect to L0, i.e. such that∫

Ms
f(µ)LG(dµ) = 1/Z

∫
Ms
f(µ)eU(µ) L0(dµ),

with U(µ) = λ∗(K(µ)− a), where the vector λ∗ is given by

λ∗ = arg min
λ

log

∫
Ms
eλ(K(µ)−a) L0(dµ)

and Z =
∫
Ms e

U(µ) L0(dµ). When given only one realization φ̄ of Φ, we take as the vector of
constraints a = K(φ̄). Building an accurate model therefore requires that K(φ̄) concentrates
around E(K(Φ̄)).

1Conditions for the existence of the solution of this form is left for future work. This problem is related to existing
works on Gibbs point processes [14].
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Microcanonical model We define the microcanonical set of level ε, for some ε > 0 and
observation φ̄ such that a = K(φ̄) :

Ωε := {µ ∈ Ms : |K(µ)− a| ≤ ε}. (6)

In the microcanonical model one is looking for a distribution L that minimizes the KL diver-
gence with respect to the reference distribution L0 under a pathwise constraint requiring L to be
constrained to Ωε:

arg min
L

KL(L,L0) (7)

given
∫
Ms

1(µ ∈ Ωε)L(dµ) = 1, (8)

where 1(·) is the indicator function. Here, the solution is again a Gibbs point process distribution,
with the density V (µ)/Z with respect to L0 which being simply the conditioning of L0 to Ωε:
V (µ) = 1(µ ∈ Ωε) and Z = L0(Ωε). 2 If K is defined as spatial averages of integrable functions
(defined in (10)), and if additionally Φ is ergodic and s is large enough such that K(φ̄) ' E(K(Φ))
K(φ̄) ' E(K(Φ̄)) , then the microcanonical model can be considered as a good approximation
of the macrocanonical model, under the Boltzmann equivalence conjecture. We refer the reader
to [10] for more details on this subject.

Sampling from both macro- and microcanonical models is a challenging task. For this reason,
in what follows we consider a different approach based on a Poisson point process transport via
a gradient descent algorithm. It has been argued in [10] that this model may be seen as an
approximation of the microcanonical model.

3 Generative model for point processes
Let Φ be an ergodic stationary point process on R2 with unknown distribution, and φ̄ ∈ Ms be a
realization of Φ observed on a finite window Ws. φ̄ is therefore a realization of a point process Φ̄
on Ws, defined as the restriction of Φ to Ws.

We want to build a generative model for Φ̄, based on our single sample φ̄, so that we can
generate approximate samples from Φ̄. To that end, we shall compute some descriptor K of φ̄ and
build a gradient descent model that will allow us to transport any initial random configuration of
points “towards” φ̄ by minimizing the distance on the space of the descriptor. Since we want to view
this model as an approximation of the microcanonical model (i.e. sample from Ωε while minimizing
the KL divergence w.r.t. Lφ̄(Ws)

0 , see Section 2.2) it is natural to choose as the initial measure
Lφ̄(Ws)

0 . This is in analogy with taking initial distribution with the highest possible entropy, i.e.,
Gaussian white noise, in the lattice model considered in [10]. Note however, that the gradient
descent model is not in general the microcanonical maximum entropy model.

More specifically, from the mapping K : Ms −→ Cd for the given configuration of points
φ̄ ∈ Ms, let us define a mapping from Ms to [0,∞)

Eφ̄(µ) :=
1

2
|K(µ)−K(φ̄)|2. (9)

We can interpret the function Eφ̄ as the energy on Ms expressing the “similarity” of any µ ∈ Ms

with respect to the given configuration φ̄.
Our generative model consists in sampling points of the initial configuration φ̄0 independently,

uniformly inWs, their number being equal to this of φ̄, and calculating a sequence of push-forward
point measures φ̄n+1 = Fn#φ̄n, n ≥ 0, by some function Fn : Ws −→ Ws (which depend on φ̄ and
φ̄n), such that Eφ̄(φ̄n) converges to a (typically local) minimum. The function Fn corresponds to
the one-step gradient descent of Eφ̄(φ̄n−1) with respect to the locations of points of φ̄n, as will be
explained Section 3.1.

In principle, the sequence of the above point processes can be considered for any descriptor K.
However, in order to be able to consider φ̄n, for large n ≥ 0, as an approximate sampling from

2Note (7) can be reduced to (4) with K(µ) = 1(µ ∈ Ωε) and a = 1.

5



the unknown distribution of Φ̄, we make the following, more or less formalized postulates, that we
relate to the classical macro- and microcanonical models assumptions:

(P1) Concentration property : The value of K(Φ̄) should concentrate around its mean, i.e. K(Φ̄) '
E[K(Φ̄)] with high probability. A natural assumption is that the variance of K(Φ̄) is small.

(P2) Sufficiency property : The moment of the descriptor, E(K(Φ̄)), should characterize the un-
known distribution as completely as possible.3 It requires that K has a strong (distributional)
discriminate power. (In the marcroanonical model, it means that we want KL(LG,LΦ) ' 0,
cf. Paragraph 2.2.)

In addition to the above two postulates (P1), (P2) regarding explicitly the descriptor K, we have
to assume the following property of the gradient descent algorithm (which implicitly involves the
descriptor K too):

(P3) The loss of the gradient descent model (i.e., the value Eφ̄(φ̄n)) is small enough for large n with
high enough probability (or frequency) regarding the initial configuration. This assumption
should be understood as making our generative model explore realizations of Ωε.

Given (P3), we do not know if our gradient descent algorithm “explores Ωε uniformly" as
postulated in the microcanonical model. This is our idealized postulate.

A natural framework allowing one to address (P1) and (P2) is this of K = (K1, . . . ,Kd) being
a vector of empirical averages

Ki(µ) =
1

|Ws|

∫
Ws

fi(S̄xµ) dx µ ∈ Ms, (10)

for a sufficiently rich class of functions fi on Ms, and relying on the ergodic assumption (2)
regarding Φ. 4

These properties are necessary in order to have a model that reproduces typical geometric
structures in Φ, and generates diverse samples (i.e. that are distinct from one another). We shall
rather present in Section 4 a specific descriptor meant to satisfy these postulates, and statistically
verify in Section 6 the quality of our generative model in relation to the postulates.

3.1 Particle gradient descent model
Recall that in this section and in what follows, Ws is interpreted as endowed with the addition
and scalar multiplication modulo Ws. Moreover, S̄x deonotes the corresponding periodic shift by
the vector x on Ms.

For µ ∈ Ms and any x ∈ Supp(µ), we define the following functions:

hµx : R2 −→ Ms

y 7−→ µ− δx + δx+y,

Kµ
x : R2 −→ Cd ≡ R2d

y 7−→ K ◦ hµx(y),

Eµx : R2 −→ R+

y 7−→ Eφ̄ ◦ h
µ
x(y).

The function Kµ
x can be complex valued. However, as our energy function is the square

Euclidean norm, it is equivalent to consider that Kµ
x has values in R2d. Moreover, we assume

3Giving a clear mathematical meaning to the statement ’as completely as possible’ is possible, but it is beyond the
scope of this paper.

4Note the boundary problem with respect to the ergodic result (2) due to the fact that we do not observe points
outside Ws. Different boundary conditions can be assumed: extending µ ∈ Ms by setting it null outside Ws or using the
periodic extension (which corresponds to replacing Sx by the periodic shift S̄x in (10)). The latter option will be our
default one. In any case, a proper justification of the corresponding LLN with some specific boundary condition usually
requires stronger, mixing properties for the underlying point process distribution.
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in what follows that the function K is such that for all µ ∈ Ms and all x ∈ Supp(µ), Kµ
x is

differentiable. We can then define, for any µ ∈ Ms and any x ∈Ws

∇xK(µ) :=

{
Jac[Kµ

x ](0) if x ∈ Supp(µ)
0 otherwise (11)

and

∇xEφ̄(µ) :=

{
Jac[Eµx ](0) = (∇xK(µ))t(K(µ)−K(φ̄)) if x ∈ Supp(µ)
0 otherwise, (12)

where Jac[f ] denotes the Jacobian matrix of the function f .

Finally, define the mapping

F : Ms −→ Ms

µ =
∑
i δxi 7−→

∑
i

δxi−γ∇xiEφ̄(µ)

for some gradient step γ > 0.

Remark 3.1 (Pushforwad of the point measures). The measure F (µ) can be seen as the push-
forward Fµ#µ of the measure µ by the mapping

Fµ : Ws −→ Ws

x 7−→ x− γ∇xEφ̄(µ).

Note that the function Fµ depends on the measure µ which is pushed forward.

Remark 3.2 (Pushforward of the point process distributions). The pushforward operation F#µ

on Ms induces the corresponding pushforward operation on the probability measures on Ms, which
are distributions of point processes. We denote this latter by F##: For a probability law L on Ms

F##L(Γ) := L({µ ∈ Ms : Fµ#µ ∈ Γ}) for Γ ∈Ms.

For any initial point measure φ̄0 ∈ Ms we define the successive point measures:

φ̄n := Fφ̄n−1#φ̄n−1, n ≥ 1, (13)

Similarly, for a probability law L0 on Ms we define the successive probability laws

Ln := F##Ln−1, n =≥ 1 (14)

Note Ln = LΦn is the distribution of the point process Φ̄n obtained by n iterations of (13) starting
from Φ̄0 having law L0 = LΦ0 .

Our implicit assumption is that for almost all φ̄0 from distribution Φ̄0 the sequence φ̄n converges
to some φ̄∞ satisfying Eφ̄(φ̄∞) ≈ 0; cf. postulate (P3).

3.2 Leveraging invariances
One can leverage some a priori known invariance properties of Φ (for instance stationarity or
isotropy), by building a descriptor K that satisfy the same invariance properties than Φ.

This requires some explanation, since invariance properties of the distribution of Φ do not, in
general, imply any natural invariance of its truncation Φ̄ to Ws. Indeed, while some invariances
can be observed on the torus for the distribution of Φ on R2 (the most popular being translation
invariance), it does not imply the same for Φ̄ with respect to the translation on Ws. The latter,
called in this paper circular stationarity, requires also Φ to be periodic. However, circular station-
arity of the generated point process on large window Ws (as a distributional approximation of Φ̄)
can be considered as a desirable ersatz of the stationarity of Φ. It can be proved under some nat-
ural assumptions regarding the descriptor K and the distribution of the initial configuration Φ0 of
our generative model. Indeed, in what follows we shall formulate a result saying that, when K and

7



the distribution of Φ0 are invariant with respect to some subset of rigid circular transformations
on Ws, then the resulting model satisfies this property as well.

More specifically, a rigid circluar transformation on Ws is an invertible operator T on Ws of
the form Tx := Ax + x0 for some orthogonal matrix A with entries in {−1, 0, 1}5, and x0 ∈ Ws

(recall that additions and multiplications are modulo Ws here). We say that:

• The initial probability law LΦ̄0
of the model is invariant to the action of T if ∀ Γ ∈

Ms, LΦ0(T−1
# (Γ)) = LΦ0(Γ). 6

• The descriptor K is invariant to the action of T if ∀ µ ∈ Ms, K(T#µ) = K(µ).

Theorem 3.3. Let T be a rigid circular transformation. Let Φ̄0 be a point process on Ws such
that its distribution LΦ̄0

is invariant to the action of T and let K be a descriptor defined on Ms

invariant to the action of T . Then, for all n ∈ N, LΦ̄n defined as the push-forward of LΦ̄0
by (14)

is invariant to the action of T .

A proof of the above result is given in Appendix B . 7 Observe, the invariance of the distribution
of the point process Φ̄n increases the diversity of the generative model samples. Our descriptor
K proposed in Section 4.2 will be invariant with respect to all circular translations. This will be
achieved by computing statistics of Φ̄ in the form of spatial averages (10) with periodic boundary
condition. A drawback is that such a boundary condition introduces some bias to the spatial
average (10) as an estimator of E[K(Φ̄)] in the case of a non periodic Φ. One can expect, however,
that when the window size is large enough and spatial correlation of the pattern are not too large,
this border effect becomes negligible. If it is not the case, other boundary corrections have to
be applied. For more a more detailed discussion on this issue, see the paragraph Non-periodic
integration on page 12.

4 Wavelet phase harmonic descriptors
In this section we present a family of descriptors that we will use, in conjunction with the particle
gradient descent model, to capture and reproduce complex geometries of point processes.

Classical descriptors for spatial point process usually include statistics more or less directly
related to pair correlation function, such as the Ripley’s K or L function, or the radial distribution
function; see [12, Section 4.5]. All of these functions only capture second order correlations of the
process. Other usual functions are the empty space function or the k-nearest neighbors function;
see [12, Section 2.3.4 and 4.1.7]. In [33], the authors advocate the use of the k-nearest neighbors
distance function, with a k significantly larger than 1. It is clear that this function becomes
informative regarding higher order correlations of points as k grows. Ultimately it characterises
the pairwise distance matrix, and thus the point pattern, up to isometries. However, the spatial
range of correlations that this function captures depends on the number of points in the observation
sample, and as it becomes large, it would require a large k to capture enough information. The
number of descriptors would therefore become too large, leading to high computation time and
high variance in the estimators.

For this reason, we choose in this paper to use descriptors for which the spatial range of
structure captured is independent of the intensity of the process, and the computational time is
linear in the number of points. As a result, this method would become much faster for large
samples, as the number of statistics would remain constant. These descriptors, built upon wavelet
transform of a random configuration, are adapted from [36]. They have shown high quality results
in a number of problems including turbulence modelling.

We begin, in Section 4.1, by presenting wavelet transform for counting measures, and their so
called phase harmonics, which are derived from wavelet transforms by applying a multiplication

5These conditions are necessary in order for T to be a well defined invertible operator. It encapsulates translations,
flips, and orthogonal rotations.

6Note, T−1
# (Γ) = {µ ∈ Ms : T#µ ∈ Γ}. For an invertible T (for which T−1 exists) and any µ ∈ M, we shall also write

T−1
# µ := T−1

# {µ} = (T−1)#µ.
7The result itself is inspired by Theorem 3.4 from [36], where the preservation of invariance is proven for the gradient

descent model in the pixel domain.
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operator on their phase. In Section 4.2, we explain how wavelet phase harmonics can be used to
capture dependencies between the wavelet coefficients of the counting measures, and detail the
choice of the descriptors that we use for numerical experiments. We propose in Section 4.2.2
several variants of the model to achieve a good balance between the concentration (P1) and the
sufficiency (P2) of the descriptors.

4.1 Wavelet transforms and their phase harmonics
We review the wavelet transform [23,26] for counting measures and then review the wavelet phase
harmonics [24]. They allow us to define in the next section the descriptors that we propose to use
in conjunction with our generative model described in Section 3.1

4.1.1 Wavelet transform

The wavelet transform is a powerful tool in image processing to analyze signals presenting local
geometric structures of different scales. To capture edge-like structures in a planar point process,
we shall use bump steerable wavelets introduced in [24]. They are defined by the translations,
dilations and rotations of a complex analytic function ψ(x) ∈ C with

∫
ψ(x) dx = 0.

In what follows we first define the wavelet transform for the counting measures in M and then
in Ms. Let us denote the Fourier transform of ψ for ω ∈ R2 by ψ̂(ω) =

∫
ψ(x)e−i〈ω,x〉dx, where

〈a, b〉 denotes the Euclidean inner product between two vectors a ∈ R2 and b ∈ R2. The function
ψ is centered at a frequency ξ0 ∈ R2, and it has a compact support in the frequency domain, as
well as a fast spacial decay. Assume that |ψ(x)| is negligible if |x| > C, for some C > 0.

Let rθ denote the rotation by angle θ in R2. Multiscale steerable wavelets are derived from ψ
with dilations by factors 2j for j ∈ Z, and rotations rθ over angles θ = 2`π/L for 0 ≤ ` < L, where
L is the number of angles between [0, 2π). The wavelet at scale j and angle θ is indexed by its
central frequency λ := 2−jr−θ ξ0 ∈ R2, and it is defined by

ψλ(x) = 2−2jψ(2−jrθx) ⇒ ψ̂λ(ω) = ψ̂(2jrθω).

Since ψ̂(ω) is centered around ξ0, it results that ψ̂λ(ω) is centered around the frequency λ. The
wavelet ψλ at scale j is self-similar to ψ in the spacial domain and its amplitude is thus negligible
for |x| > 2jC.

For a counting measure φ̄ observed inWs, we typically consider only the wavelets having spatial
support (more precisely, where the wavelet norm is non negligible) contained in Ws by limiting
the scale j < J such that 2JC ≤ 2s. Scales equal or larger than J are carried by a low-pass filter
whose frequency support is centered at λ = 0. It is denoted by ψ0. Let Λ be a frequency-space
index set including λ = 2−jr−θξ0 for 0 ≤ j < J , 0 ≤ ` < L, and λ = 0. As we eliminate j < 0 in
Λ to ignore structures smaller than C in Ws, the parameter ξ0 will be adjusted in Section 5.1 for
a suitable choice of C.

The wavelet transform of a counting measure φ ∈ M is a family of functions obtained by the
convolution of φ with {ψλ}λ∈Λ, i.e.

φ ? ψλ(x) =

∫
R2

ψλ(x− y)φ(dy), λ ∈ Λ. (15)

This integral can be interpreted as a shot-noise, which is thus well-defined when
∫
R2 |ψλ(x)|dx <∞.

We denote the wavelet coefficients of φ by {φ ? ψλ(x)}λ∈Λ,x∈R2 .
Regarding wavelet transforms of a counting measure µ ∈ Ms observed in the finite window Ws,

unless otherwise specified, we consider periodic edge connection; i.e., we use periodic wavelets
defined at x = (x1, x2) ∈ Ws with ψsλ(x1, x2) :=

∑
n1∈Z,

∑
n2∈Z ψλ(x1 + 2sn1, x2 + 2sn2). When

there is no ambiguity, for µ ∈ Ms we write

µ~ ψλ(x) =

∫
Ws

ψsλ(x− y)µ(dy), λ ∈ Λ. (16)

We denote the wavelet coefficients of µ ∈ Ms by {µ~ ψλ(x)}λ∈Λ,x∈Ws .
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4.1.2 Wavelet phase harmonics

Phase harmonics [24] of a complex number z ∈ C are defined by multiplying its phase ϕ(z) by
integers k, while keeping the modulus constant, i.e.

∀ k ∈ Z, [z]k := |z|eikϕ(z).

Note that [z]0 = |z|, [z]1 = z, and [z]−1 = z∗ (complex conjugate of z). More generally, ([z]k)∗ =
[z]−k and |[z]k| = |z| for k ∈ Z.

We apply the phase harmonics to adjust the phase of the wavelet coefficients. For all x ∈
R2, λ ∈ Λ, k ∈ Z, let’s denote the wavelet phase harmonics of φ ∈ M by

[φ ? ψλ(x)]k = |φ ? ψλ(x)|eikϕ(φ?ψλ(x)).

The phase of the wavelet coefficient ϕ(φ?ψλ(x)) is multiplied by k, whereas the modulus |φ?ψλ(x)|
remains the same for all k. The wavelet phase harmonics of φ̄ ∈ Ms is defined similarly. Note that
the wavelet phase harmonics at k = 1 are exactly the wavelet coefficients .

As illustrated in [36], when φ is a realization of a stationary process, the frequency support
of φ ? ψλ, which is centered around λ, is shifted and dilated by the phase harmonics. As a
consequence, [φ ? ψλ]k has a frequency support roughly centered around kλ. This non-linear
frequency transposition property is crucial to capture dependencies of the wavelet coefficients
across scales and angles. It is shown numerically in [24] that capturing such interactions allows one
to recover signals with sparse wavelet coefficients. We observe similar reconstruction phenomenon
in some point processes, as we shall illustrate in Section 6.

4.2 Wavelet phase harmonic covariance descriptors
As the wavelet transform is a linear transformation of Φ, it is known that the covariance between
Φ ? ψλ(x) and Φ ? ψλ′(x

′) depends only on the mean intensity and second-order correlations of
a stationary point process Φ, see e.g. [9, Eq. (5.27)], which only gives partial information on the
process distribution. A classical way to capture dependencies between wavelet coefficients is to
compute their higher order moments. However, as the order goes high, so does the variance of
the moment estimator (which may violate (P1)). Based on the frequency transposition property
of the phase harmonics (see Section 4.1.2), we shall explain how to capture dependencies between
the wavelet coefficients at different locations and frequencies by computing the covariance between
wavelet phase harmonics. Note that the wavelet phase harmonics does not increase the amplitude
of the wavelet coefficients with k > 1. This approach may thus significantly reduce the variance
of the descriptor K (to satisfy (P1)) compared to the higher order moments, while still capturing
information beyond second-order correlations (to satisfy (P2)).

Let Cov(A,B) = E[AB∗] − E[A]E[B∗] denote the covariance between two complex random
variables A and B. The wavelet phase harmonic covariance of Φ is defined by

Cov([Φ ? ψλ(x)]k, [Φ ? ψλ′(x
′)]k
′
), (17)

for paris of (x, x′) ∈ R2 × R2, (λ, λ′) ∈ Λ2, and (k, k′) ∈ Z2.
In particular when k 6= 1 or k′ 6= 1, the covariance measures the dependencies between the

wavelet coefficients. As explained in [24], for a stationary process Φ, the overlap between the
frequency support of [Φ ? ψλ]k and that of [Φ ? ψλ′ ]

k′ is necessary for the wavelet phase harmonic
covariance to be large. Due to the frequency transposition property of the wavelet phase harmonics,
it is empirically verified that the covariance at kλ ≈ k′λ′ is often non negligible when the process
is non-Gaussian (i.e. has structures beyond 2nd order correlations). We shall also follow this
empirical rule to select a covariance set ΓH to describe point processes.

Let vλ,k = E([Φ ? ψλ(x)]k), we define the descriptors K(µ) using (10) with the functions fi(µ)
of µ ∈Ws taken from a covariance set ΓH (specified in detail in Section 4.2.1){(

[µ~ ψλ(0)]k − vλ,k
)(

[µ~ ψλ′(−τ ′)]k
′
− vλ′,k′

)∗}
i=(λ,k,λ′,k′,τ ′)∈ΓH

. (18)
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As Φ is stationary, (17) depends only on x − x′, it suffices to use the vectors τ ′ to measure the
differences between x and x′.

Recall from (16), the wavelet transform of the point pattern µ ∈ Ws in (18) is taken with
respect the the periodic variant of the wavelet ψsλ, and taking the spatial average (10) gives the
descriptor in the form 8

K(µ) =

(
1

|Ws|

∫
Ws

(
[µ~ψλ(x)]k − vλ,k

)(
[µ~ψλ′(x− τ ′)]k

′
− vλ′,k′

)∗
dx

)
(λ,k,λ′,k′,τ ′)∈ΓH

(19)

Note K(µ) is invariant with respect to any circular translation S̄x of µ ∈ Ms on x ∈Ws.
In the numerical computation, we shall replace vλ,k in (18) by v̄λ,k = 1

|Ws|

∫
Ws

[φ̄ ~ ψλ(x)]kdx

as a plug-in estimator for the first-order moment vλ,k. The K(φ̄) modified in this way becomes
an empirical estimator of the covariances in (17). This is a good approximation of K(µ) as
the estimation variance of the covariance moments is typically much larger than the first-order
moments.

4.2.1 Choice of the covariance set ΓH

To capture dependencies of the wavelet coefficients across scales, angles and spatial locations, we
are going to select non-negligible wavelet phase harmonic covariances, defined a set ΓH formed by
the pairs of (λ, λ′) and (k, k′), as well as τ ′. Due to the symmetries in the wavelet coefficients [36],
it is sufficient to consider k ≥ 0 and k′ ≥ 0. Different from [36], we propose a more intuitive way
to choose τ ′ so as to capture local structures of edges that we observe in point processes.

Choice of τ ′ When the wavelet coefficient Φ?ψλ(x) has a large amplitude, it detects edges in Φ
oriented in the direction of ψλ near x (in which ψλ oscillates the most). In the orthogonal direction
eθ, the wavelet ψλ has a smooth bump-like shape. More precisely, if ψλ has central frequency rθξ0,
eθ is a vector defined by eθ := C

|ξ0|
rθ+π

2
ξ0 (recall that C is such that |ψ(x)| is negligible if |x| > C).

We shall choose either τ ′ = 0 or τ ′ = 2j
′
eθ. For the non-zero τ ′, it corresponds to a shift of the

wavelet in its smooth direction eθ. This allows us to capture correlations between nearby edges,
one located at x′ = x − τ ′ and the other at x. When θ and θ′ are different, the covariance can
be interpreted as a measure of local curvatures along nearby edges. Empirically, we observe that
including the non-zero τ ′ in the descriptor improves the geometrical structures in the samples of
the model (based on our visual evaluation in Section 6).

Full list of ΓH We specify the ΓH whose total number of elements is at most O(L2J2). For
any τ ′ ∈ {0, 2j

′
eθ}, we include the following set in ΓH for λ = 2−jr−θξ0, λ

′ = 2−j
′
r−θ′ξ0 for

0 ≤ j ≤ j′ < J .
Due to the Hermitian symmetry in any covariance matrix, we also limit 0 ≤ k ≤ k′. In

addition, we include λ = λ′ = 0 (exclusively for j = j′, k = k′ = 1, τ ′ = 0) to capture the
2nd-order correlations at scales equal or larger than J .

For j = j′, we want to capture 2nd-order correlations, as well as wavelet dependencies at
different orientations:

– k = k′ = 0 or k = 0, k′ = 1, for all angle pairs (θ, θ′) ∈ 2π
L

[|0, L − 1|]2. They capture
dependencies between different orientations, without and with phase information.

– k = k′ = 1, with angle pairs restricted to |θ′ − θ| ≤ 4π/L. They capture 2nd-order
correlations of the process Φ.

For j 6= j′, we aim at capturing wavelet dependencies between different scales and orienta-
tions. We limit the scales difference to j′ ≤ j + ∆j , and choose ∆j = 2 9:

8Ideally, we also aim to match the 1st order moments vλ,k. However, it is a hard optimization problem when using
the quadratic energy Eφ̄(µ) in (9), to simultaneously match the 1st and 2nd order moments. This is why we include
them indirectly in the K in (19), as done in [24,36].

9Our choice for the value of ∆j is a trade-off between the variance and the discriminate power of K. For a study of
the impact of ∆j on the latter, we refer the reader to [1].
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– k = 0, k′ = 0, 1, 2, for all angle pairs (θ, θ′) ∈ [0, 2π)2. They capture the dependencies
at different scales and orientations, without and with phase information.

– k = 1, k′ = 2j
′−j , angles |θ′ − θ| ≤ 4π/L for the dependencies at different scales, plus

support superimposition between orientations.

4.2.2 Variants of particle descent models

The choice of K has a direct impact on the model ability to approximate the distribution of Φ.
Two situations must be avoided: 1) K carries too little information about Φ ((P2) does not hold),
or 2) K carries wrong information ((P1) does not hold). In this section, we discuss these situations
in the context of the wavelet phase harmonic covariance descriptor (defined in (19)).

The covariance set ΓH (and hence the descriptor K) depends on the parameter J , which is the
maximal scale of the wavelet transform. Intuitively, the largest structure of the point pattern we
can capture through the descriptor K(µ) in (19) has diameter 2JC. Recall that C is the diameter
of the “effective” support of ψ (so that ψ(x) ' 0 if |x| > C). In other words, K(µ) can capture
interactions of the points of µ within a distance smaller than 2JC.

Ergodic model To avoid situation 1), we must choose the maximal scale parameter J large
enough to capture sufficient structural information about Φ. However, J must not be too large, in
order for all the moments to be well estimated ((P1) must be satisfied, otherwise we fall in situation
2)). A suitable choice for the maximal scale parameter J would be one allowing for a good trade-off
between satisfying the sufficiency of K, while maintaining the concentration property. We call our
descriptor with such a J the ergodic descriptor, and the corresponding model the ergodic model,
as they rely on the ergodic property of the underlying process.

From reconstruction to the regularized model The ergodic descriptor may be too
limited if Φ exhibits structures at scales much larger than the largest parameter J such that K
satisfies (P1). The ergodic model could thus fail to satisfy (P2), and the model would fail to
approximate LΦ in a satisfying way (this would depend on the evaluation method, refer to Section
6 for the evaluation of our models, and Figure 4 for an example of this situation). This motives us
to increase the size of the descriptors, by increasing J up to O(log2 s). However, as J increases,
so does the variance of K, and therefore (P1) would be violated. This problem is well illustrated
in the case of our descriptor (19), where the model can memorize φ̄ (i.e. sampling from the model
amounts to generate translated versions of φ̄).10 Hence, we are facing a problem where increasing
the descriptor size is necessary to have a good distribution approximation, but it will violate (P1).

To address this issue, we propose an alternative model allowing for the use of a J that may not
satisfy (P1). It consists in adding a regularization term to the energy Eφ̄(µ) in (9), so as to prevent
the gradient descent algorithm converge to the global minimum which is φ̄. This can be realized,
for example, using a Wassertein-type distance between the current and the initial configuration of
points, as described in Appendix A. Note that in this regularized model the invariance properties
of Theorem 3.3 still hold.

Non-periodic integration (not evaluated in this paper) Recall that the descriptor
K(µ) defined in (19) applies periodic boundary correction to the data µ ∈Ws by using periodized
wavelets. Thus, it is invariant with respect to any translation S̄x of µ ∈ Ms on x ∈ Ws. By
Theorem 3.3, our model (as described in Section 3 or with regularisation presented in Appendix A)
with Poisson initial condition Φ̄0 (conditioned to have φ̄(Ws) points) generates circular-stationary
point processes Φ̄n on Ws (i.e. having distribution invariant with respect to translation S̄x in
Ws). As already pointed out in Section 3.2, this may be seen as a desirable property of the
generative model (it increases the diversity and may be seen as an ersatz of the stationarity of
the original, approximated distribution). If it is not the case, or if the bias11 introduced by the

10Note that the violation of (P1) does not imply memorizing φ̄. While this is the case for our descriptor when increasing
J , this is for instance not the case when using Fourier spectrum descriptors, as illustrated in C.1

11The bias of the estimator v̄λ,k is non-zero if E([Φ ?ψλ(x)]k) 6= E([Φ̄~ψλ(x)]k) for x being close to the border of the
window Ws.
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periodic boundary correction is too big, one may want to deal with the boundary problem in a
different way, for example considering a non-periodic integrals in (19) over some smaller window.
In particular, we suggest a scale-dependent reduction of the integration window, pertinent when
the wavelet ψ has a compact (or approximately compact) spatial support. Specifically, we consider
a new descriptor K̃ by considering the integrals in (19) with i = (λ, k, λ′, k′, τ ′) ∈ ΓH over smaller
windows Wsi ⊂Ws, such that boundary effects are neglibible.

Note that, while the above scale-dependent reduction of the averaging window removes the bias
related to the periodic integration over the entire observation window Ws, it potentially increases
the variance of K̃(Φ̄). Note also, the descriptor K̃ is no longer translation invariant, so the model
derived by it is not circular stationary. We call this non-periodic integration. It will be not
evaluated in this paper.

5 Numerical scheme with multiscale optimization
In this section we discuss some details of the implementation of the algorithm presented in Section 3
with the descriptor based on the wavelet phase harmonics presented in Section 4. These details
are, in order:

• Discretization for an approximate calculation of the covariance of the wavelet phase harmon-
ics: necessary to accelerate the calculation of the descriptor and the gradients.

• Multiscale optimization: allowing one to avoid shallow local minima in the gradient descent
model.

• Final randomization (blurring): to get rid of some clusterisation (clumping) artifact caused
by the initial discretization.

5.1 Discretization
5.1.1 Differentiable discretization of atomic measures

To compute the descriptor K in (19) for a point measure µ, we need to integrate functions over
the observation window Ws (first for the convolution operators, then for the averages). Compu-
tationally efficient integration requires discretization of the atomic measure. The main difficulty
is to do it in such a way that the (periodic) convolutions of the discretized atomic measures with
wavelets, as in (16), remain differentiable with respect to the positions of the original atoms in µ,
so that we can still perform gradient descent. Classical finite element methods may not achieve
this goal efficiently.

We are going to approximate our atomic measures on Ws by matrices (images) of given size
N × N (the image resolution), and then use an automatic differentiation software [2] to perform
the following operations.12 We first map a given point measure µ on Ws to a continuous function
by the convolution

µσ := µ~ gσ (20)
with a (periodized) Gaussian function gσ of given standard deviation σ. Then we evaluate µσ
on a N × N regular grid inside Ws and denote the resulting matrix µNσ . The convolution with
a Gaussian function makes each entry of µNσ smoothly depends on the atom positions of µ. We
then compute K̄(µNσ ) instead of K(µ), where K̄ is this discrete analogy of the descriptor (19)13

(cf. [36]). The gradient of the energy |K̄(µNσ ) − K̄(φ̄Nσ )| with respect to each atom position of µ
can therefore be computed using the automatic differentiation.

The Gaussian function are low-pass frequency filters. It is needed to cut-off high frequency
information of µ so that µσ can be discretized into an image with negligible alisaing effect. This
means that µσ carries the information on the positions of µ up to some precision which depends
on σ. The subsequent evaluation of µσ on the grid N ×N in µNσ implies that σ cannot be taken
too small. Indeed, we take σmin = s

N
as the lowest value of σ.

12The code to reproduce the results is run on GPU to take advantage of parallel computations.
13This discretization makes our descriptor only invariant to discrete translations, as the value of a pixel continuously

depends on the positions of the atoms.
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Voronoi Small circles Big circles

Figure 2: An attempt of the reconstruction (i.e., a realization generated with the full-scale descrip-
tor) without multi-scale optimization of the Voronoi, Small circle, and Big circle original realization
presented on Figure 4. For the Big Circle case, the loss (the value Eφ̄(φ̄n)) is equal to 3.6269, while
the loss of the reconstruction with multi-scale optimization (also presented on Figure 4) goes down to
0.0241 (a reduction of 99 percent).

5.1.2 Wavelet discretization

As stated in section 4.1.1, the family of wavelets used in our descriptor is constructed by dilating
the mother wavelet ψ in the range of the scales 0 ≤ j < J . Based on the choice of σmin, we set
C = 2s

N
. In this way, the spatial support of ψ has a radius C of one pixel of the image. The choice

of J can be decided based on the visual structures in the observation. For example, if we want to
model structures whose spatial size is close to the size of the window [0, 1/8]2 ⊂ Ws, we shall set
2JC = 1/8, i.e. J = log2(N)− 3− log2(2s).

5.2 Multiscale optimization
Phase harmonic covariance moments of point process images (i.e. point patterns converted into
regular pixel grids, as described above) may have large values at high frequencies (values of λ, λ′

in (19) with small j, j′), due to the fact that the point-images are very sparse and highly discontin-
uous. This implies that these high frequency statistics have an important impact on the gradient
of K, which in turn can lead to the gradient descent model being trapped at shallow local minima,
where only the high frequencies are well optimized to match the observation.

This phenomenon arises in particular when our descriptor K does not satisfy the concentration
property, and characterize the sample φ̄ rather than the underlying distribution (cf. Section
4.2.2). In this case, the particle gradient descent algorithm often fails to reach Ωε, and we observe
that the generated samples fail to match the low frequency elements of K. Figure 2 shows an
attempt to reconstruct samples from 3 different Cox processes (see Section 6.1.1) without multi-
scale optimization, and a reconstruction with it.

This can be overcome by matching the descriptors from low frequency to high frequency in a
sequential order, through an appropriate modulation of the parameter σ ∈ Σ = (σ0, σ1, ..., σJ−1)
of the Gaussian functions used to discretize µ, introduced in Section 5.1.

Indeed, since Gaussian functions are low-pass filters, we can interpret the convolution in (20)
as a blurring, limiting the space localization of Dirac measures. When such smoothing of the
point pattern is done by a Gaussian function that has a large variance, the high frequencies
of the signal function are close to 0 and the same holds true for the phase harmonics, because
wavelets are localized in frequency. Therefore the wavelet phase harmonics are dominated by
the low frequencies. Thus, by smoothing the observed sample and generating the optimal one
with high variance Gaussian function, we create a new objective leading, in the gradient descent
optimization, to a point configuration for which only low frequencies moments are matched with
the ones of our observed sample. We propose thus a multiscale gradient descent procedure that
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Figure 3: Power spectrum plots showing clustering at higher frequencies (k larger than 60) — artefact of
the discretization of the point configurations in the generative model (appearing both in the ergodic and the
regularized version). This effect can be removed by appropriate final blurring, cf. Figure 7.

consists in choosing first a high value for precision parameter σ, run the optimization algorithm,
and then reduce the value of σ to run the optimization again, starting from the result of the
previous run (and repeat this operation several times).

In more details, let N be the resolution of our discretization (in what follows, we shall drop
the dependency in N for notations simplicity). We choose σj := 2J−j−2. Starting with σ0, we
calculate the descriptor K̄(φ̄σ0) of the given point pattern φ̄ and of an initial Poisson configuration
φ̄0 on Ws, conditioned on having φ̄(Ws) points. We denote the corresponding energy Eσ0

φ̄
. For

numerical efficiency, we perform the gradient descent procedure using the L-BFGS optimization
algorithm [20] to optimize the corresponding energy function Eσ0

φ̄
. The obtained optimal solution

are denoted by φ̄1. We then repeat this operation recursively starting from φ̄j using precision σj
for 1 < j < J . The whole, multiscale optimization can be summarized as follows:

- Sample φ̄0 from Poisson distribution on Ws given φ̄(Ws) points.

- For j = 0 . . . , J − 1:

- Run optimization on φ̄j+1 to minimize Eσj
φ̄

:= 1
2
||K̄((φ̄j+1)σj )− K̄(φ̄σj )||2

- Return φ̄J .

Empirical evidence shows that the above multi-scale optimization procedure allows one to re-
construct (modulo translation) the observed sample when using full-scale wavelet phase harmonics,
which is not the case when simultaneously optimizing all frequencies. In order to preserve the abil-
ity to reproduce geometric structures at all scales, we shall apply this multiscale optimization
method to all the variants of our model.

5.3 Final blurring
Note that our discretization µNσ of µ does not make us entirely lose the information at scales
smaller than 1/N (which would be the case if we were approximating µ by (N × N)-pixel image
by counting the number of points within each the pixel square of size 2s/N × 2s/N). Indeed, the
entries (pixels) of µσ,N continuously depend on the exact positions of the points. We are then
able to (at least partially) retrieve information lost by the mapping from positions to images. This
information is of course most significant for the the smallest precision parameter σ = σmin applied
in the last step of our multiscale optimization.

However, we observe that the contrast between the continuous nature of our objects and the
discrete approximation of the moments we use creates undesired artificial clustering structures
at frequencies higher than the image resolution. Furthermore, the model with the regularization
(mentioned at the end of Section 4.2.2 and described in Appendix A) creates yet another clustering
effect where the points tend to cluster in a grid-like structure. We explain this latter phenomenon
by the fact that, while moments computed in a discrete fashion are invariant to small displacement
of points, the regularization function is not. Therefore, when put in an optimal position w.r.t. the
descriptor K, the points are drawn to their corresponding points in the initial configuration, and
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move as close as possible to them (without modifying too much K), that is to the edges of the pixel
squares. We show both clustering effects in Figure 3. For details regarding the power spectrum,
see Section 6.2.

To remove this artificial clustering, which we believe is an artifact of the discretization causing
a loss of high-frequency information, we chose to force these high frequencies to be “as random as
possible”, i.e. to have Poisson-like structure. To this end, we introduce a uniform i.i.d. perturbation
of the positions of points after the last optimization run. It can be viewed as an additional, this time
stochastic, measure transport, following the deterministic one from the particle gradient descent.

This final randomization can be viewed as enforcing a-priori information on high frequency
structures of the process: Poisson-like structure. If we know that this is not the case (e.g. hardcore
repulsive processes), such randomization should not be applied.

6 Numerical experiments
In this section we present some numeral experiments involving our generative model. We begin by
presenting in Section 6.1 our numerical settings, in particular the distributions of point processes
whose samples are used as original point patterns. We next evaluate how well our generative model
with the phase harmonic covariance descriptor can generate samples similar to those given by the
original point processes. In Section 6.2 we first present the reconstruction, ergodic and regularized
models of the original processes, discussed in Section 4.2.2. We first evaluate these models by
comparing samples to original samples, visually as well as by calculating their power spectra.

In order to further evaluate qualitatively how well our model captures visual geometric struc-
tures, and to gain some insight into the ability of our models to produce diverse samples, we shall
use the topological data analysis (TDA), derived from the theory of persistent homology. The
comparison will be done in Section 6.3. The results regarding the regularized version of our model
(cf. Section 4.2.2 and details in Appendix A) are presented as well.

6.1 Numerical settings
We first describe the original point processes that we shall evaluate the particle gradient-descent
model, then specify the parameters of the model in the numerical experiments.

6.1.1 Original point process models

For our experiments, we choose point process distributions that show complex geometric structures,
for which we can easily recognize visual features that are not fully captured by second order
correlations (2nd order correlations basically capture pairwise "interactions" between points e.g.
clustering or repulsion).

We begin by presenting results for Cox (double-stochastic Poisson) processes with Poisson
points living on one dimensional structures generated by two famous stochastic geometric models,
namely edges of the Voronoi tessellation, and the Boolean model with circular grains of fixed radius
considered in [12, Example 10.6]. Both underlying geometric models are generated by a Poisson
parent process within the observation window Ws, and we construct these models in a periodic
way to avoid border effects. We call the respective Cox processes Voronoi and Circle processes.
Note that, for these two processes, Poisson points live on different geometric shapes: polygons for
the Voronoi and possibly overlapping circles for other one. Additionally, we consider two different
radii of circles.

Secondly, we take interest in distributions having turbulent intensity (derived from the simu-
lations of a periodic turbulent flow driven by 2d Navier-Stokes equations [29]). These intensities
exhibit complex mulsticale structures, and are representations of physical phenomena, known to
be difficult to model faithfully. Furthermore, the distributions we consider have much greater
intensities that the previous Cox models. We consider two different turbulent intensities: one with
limited range correlations (cf. Figure 5), and one with larger scale structures (cf. Figure 6). From
the former, we sample a Poisson point process. From the latter, we sample three different pro-
cesses, exhibiting distinct microscopic structures (repulsive, independent or clustering): a Matern
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Cox Turbulent intensity
Voronoi Small circles Big circles Poisson I Poisson II Poisson III Hard core Cluster
1 900 2 500 2 000 40 000 19 000 3 800 1 700 13 000

Table 1: Approximate number of points in realizations from different models.

cluster process, a Poisson point process and a Matern II hard-core process, see [12, Example 5.5
and Section 5.4, respectively]. We study the ability of our model to reproduce simultaneously the
macroscopic (i.e. the turbulent intensity) and microscopic structures (i.e. at small scales) of the
process.

All processes are sampled on Ws = (−1/2, 1/2], i.e. s = 1
2
. Table 1 presents approximate

numbers of points in the respective models. Note that, for comparison, point patterns considered
in [33] have around 400 points.

6.1.2 Image resolution, number of iterations and computation time.

As discussed in Section 5.1, point configurations are convoluted with Gaussian densities and eval-
uated on N × N grid (as images) in order to efficiently compute our descriptors, and move the
particles with gradient descent. The ultimate Gaussian variance (precision) of this mapping is
σmin = 1

2N
. The larger N is, the more information we are able to keep (in high frequencies), but

the larger the computation time. We chose for our experiments a resolution of N = 128. We show
an example where a higher resolution, N = 256, is used to capture most of the high frequency
information. The number of iterations of the algorithm is chosen to be 100 for each σj (a total of
400 iterations for N = 128, and 500 iterations for N = 256).

For the ergodic model, we take J = log(N)−3. For the reconstruction and regularized models,
we take the set ΓH with the largest scale parameter J = log2(N)− 2 . In both cases, the number
of angles in the steerable wavelets is L = 8.

The average computation time on 4 modern GPU14 for a synthesis of the ergodic model for
the turbulent process (having roughly 19 000 points) with resolution N = 256 is between 5 and 10
minutes while the same task at the resolution N = 128 takes between 1 and 2 minutes.

6.2 Visual evaluation and spectrum comparison
We evaluate the ability of our model to capture and reproduce geometric structures exhibited by
realizations of the point processes described in Section 6.1. A natural first method to assess the
sufficiency of a generative model is visual evaluation, which is widely used in image analysis but
subjective. To make the evaluation more objective, we evaluate second order correlations. We
estimate the power spectra of the original processes and that of our models, which are statistics
approximating the Bartlett spectrum of the point processes distributions (cf. Appendix C).

To perform the statistical evaluation, we generate (for each original distribution) 10 i.i.d. syn-
theses from the same model at resolution N = 128 (i.e. from the same observation sample φ̄ , but
with different initial configurations φ̄0). We average the power spectra of the 10 syntheses, and
compare it to the average of 10 i.i.d. samples from the true distribution. All these samples will
also serve in Section 6.3 to compare their geometric similarities.

Figure 4 shows a study of three Cox models. The first line presents samples from the original
distributions. The second line presents samples from the model using the full scale descriptor. As
discussed in Section 4.2.2, K does not concentrate in this setup, and the result is the memorization
of the observation sample φ̄. Indeed, the second line of Figure 4 shows quite faithful approximations
of the original samples subjected to a periodic translation. Observe the reconstruction is accurate
(up to some precision error) including the details (points on the geometric structures).

The third line of Figure 4 shows realizations sampled using the ergodic model for different
original distributions. As discussed in Section 3, in order to get some diversity in our model, we
need to choose a descriptor K that respects (P1). This could be achieved by choosing the maximal

14Hardware: Tesla P100-PCIE-16GB GPU
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Figure 4: Three Cox models; original sample, reconstruction with the full scale descriptor and synthesis with
ergodic descriptor. Power spectrum plots averaged over 10 realisations.

scale J that is adapted to the largest size of the structures that we want to model. Based on
the visual observations and our analysis in Section 5.1.2, we have set J = log2(N) − 3 to model
structures whose spatial size is at most 1/8 of the windowWs, for s = 1/2. Observe, the geometric
shapes (polygons, circles) of larger scales are not so well reproduced as in the reconstruction,
more particularly so in the Big Circles case. This is due to the missing large scale (non-ergodic)
descriptor components.
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Figure 5: Large scale turbulent Poisson I point process (about 40 000 points): original sample, reconstruction
with the full scale descriptor and synthesis with ergodic descriptor.
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Figure 6: Turbulent Poisson II point process (about 19 000 points): original sample and two samples generated
using the ergodic descriptor as well as the full scale descriptor with regularization; cf. Appendix A.

Turbulent Poisson I Turbulent Poisson II

Figure 7: Power spectrum plots averaged over 10 realisations for Turbulent Poisson I and II.

In the last line of Figure 4, we present the power spectrum Ũk(µ), for k ∈ N ∩ [1, 128[ (cf.
Appendix C) from the original distributions and as well as our two models (cf. Appendix A).
Point configurations generated from the regularized model cannot be visually discriminated from
the samples of the ergodic model (as illustrated below in Figure 6 for the Poisson II turbulent
process). Some small differences can be however observed in the spectrum, and via the TDA,
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Figure 8: Synthesis of turbulence images with various microscopic structures and their power spectrum plots
. The spectrum of the cluster model (lower right figure) was analysed when generated at the (standard for
this paper) resolution N = 128 and a higher one N = 256, allowing for higher frequencies reproduction (the
clusters are more concentrated, as in the original image). The presented synthesis of the Cluster model is at
resolution N = 256.

see Section 6.3.) The norm of the largest frequencies captured by our discretized descriptor K̄
(cf. Section 5.1) at the resolution N = 128 equals approximately to k = 50. Observe that for
point processes having sufficient smooth spectrum (e.g. the Voronoi Cox model on Figure 4 and
Turbulent Poisson II model presented on Figures 6) our generative model reproduces relatively well
the spectrum up to this frequency threshold. However, because the wavelet convolutions average
the spectral information over frequency bands [36], our descriptor does not capture fast oscillations
in the power spectrum. This phenomenon is well illustrated in the cases of Small and Big Circles
Cox processes. For the Small Circle model (last line, middle plot of Figure 4) we show also the
theoretical value of the Bartlett spectrum calculated via expression (33) in appendix. It well
matches the power spectrum estimated form the original model realizations thus confirming (32)
in Appendix C.2.

Figure 5 presents a similar analysis (original sample, reconstruction with the full-scale descrip-
tor, ergodic synthesis) for Turbulent Poisson model I. Note that this reconstruction is not due to
an overparametrization of the problem (i.e. we do not impose more constraints than degrees of
freedom) as K has size about 15 000, compared to roughly 80 000 degrees of freedom (the two
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coordinates of each point). Figure 6 presents an original sample, a synthesis from the ergodic
model, and a synthesis from the regularized model for Turbulent Poisson model II (with about
19 000 points). We observe that the two models are visually similar for this distribution. Figure 7
presents the spectrum analysis for the two Turbulent Poisson models presented on Figures 5 and 6.
The smooth elevation of the spectrum of Poisson II model (left plot) around k = 70 in the ergodic
model is (we believe) a discretization artifact (cf. Section 5.3 for more details on this effect).

All models discussed up to now have non-correlated points at the microscopic level. Indeed, they
are Cox processes, with Poisson (hence independent) points sitting on some random macroscopic
structures. Figure 8 presents our analysis of three turbulent point process models having different
microscopic structure: a hard-core, non-correlated (Poissonian) and a clustering one. We see that
our generated samples (both with the ergodic descriptor and the regularized, full-scale one) capture
to some extent this microscopic structure. For the clustering model, the presented synthesis is done
with N = 256. In this case, we present also the spectrum analysis of samples generated using the
resolution N = 128. For N = 256, the power spectrum is well reproduced up to the frequency
about or k = 80?.

6.3 Persistent homology and topology analysis
As previously mentioned, power spectrum evaluation corresponds to the comparison of second
order moments, which only partially capture geometric structures. Visual evaluation can be more
discriminate (cf. Appendix C.1, Figure 11), but is subjective. To evaluate more precisely the
ability of our model to capture the geometric structures of the given distributions, we shall use a
representation of objects derived from persistent homology theory, which is a powerful algebraic
tool for studying the topological structure of shapes, functions, or in our case point clouds. We
shall perform this evaluation by comparing the persistence diagrams of the generated samples to
those of the original ones. Furthermore, this representation allows us to evaluate (to some extent)
how distinct samples from our model are from one another.

We begin by a brief, intuitive presentation of persistence diagrams, and the whole comparison
method that will be simply referred to as topology data analysis (TDA). For more details we refer
the reader to [6, Section 11.5]. We then present the TDA of our point process distributions and
models. TDA can be seen as a complementary tool with respect to the spectrum analysis, being
more consistent with visual perception (see discussion in Appendix C.3).

Persistence diagram Persistent homology theory describes a way to encode the topological
structure of a point cloud through a representation called persistent diagram (PD). It is constructed,
for a given point configuration φ ∈ Ms, from the family (Gr)r≥0 of Gilbert graphs, where the
vertices are the positions of atoms of φ, and the edges are pairs of points closer to each other than
r. (In our case we use the periodic metric.) Then, we fill-in the triangles (triplets of points joined
by edges) of the graph. Points, edges and filled-in triangles constitute the so-called 2-skeleton of
the Vietoris-Rips (VR) complex. For any r ≥ 0, we study two characteristics of the skeleton: its
connected components, and its holes (this latter notion is well formalized in the algebraic topology,
in our case they correspond to the natural idea of a hole). Each connected component “is born”
at time (radius) r = 0 and it “dies” at some time r > 0 when it is merged with another connected
component. Similarly, each hole has a birth time (r > 0) corresponding to the minimal radius at
which it appears, and a (larger) death time corresponding to the minimal radius for which the hole
is completely filled-in by the triangles. The persistence diagram of φ is the collection of pairs of
birth and death times of the connected components and holes. It is hence a point process in the
positive orthant of the plane offering a multiscale (as our wavelet-base descriptor!) description of
the topology of φ. As our descriptor, it is also stable to the small deformations of φ. It is hence
interesting to use this alternative tool to evaluate our generative model.

Topological data analysis Our approach in this matter is inspired by [11], and we refer the
reader to this paper for a more detailed description.

In order to compare the distribution of our models to the original distributions, we compute
the PDs of our samples from each distribution (cf. Section 6.2 for a description of these samples).
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Recall, these PDs can be viewed again as point clouds in two dimensions. Therefore, a distance
between two PDs can be computed, and we use in this regard a periodic version of the Wasserstein
distance 15 between two point clouds on the plane. We obtain in this way a distance matrix
between different PDs (reflecting topological similarities or differences of the point processees
realizations for which PDs were calculated.) We then apply a standard dimension reduction
algorithm (namely Multi Dimensional Scaling) to this distance matrix, to represent every PD (and
hence the corresponding sample) as one point on the plane, and we and visualize the representation
of all samples.

TDA of our experiments In all plots in the first two lines of Figure 9 we study separately
the Cox process and the turbulent models with different microscopic structures. In each plot we
observe 30 dots (having different shapes) each representing one entire configuration of points in
Ws. (The term "dot" is used to avoid confusion with points in Ws.) For each model there are 10
dots representing i.i.d. realizations of the original distribution, 10 representing realizations from
the generative model with the ergodic descriptor, and 10 from this model with the regularized
full-scale descriptor. We see in the case of the turbulent models that all 30 dots are relatively well
mixed up, which can be interpreted as indicating good distributional approximation of both our
generative models in this case. For the Cox point processes, it is easy to discriminate between
the original and approximated point patterns. This is not a surprise, as the visual inspection has
allowed us to state it more directly. The approximations of the Voronoi model exhibits also a
smaller diversity (dots are more concentrated than the original realizations). For the Big Circles
model, the regularized model performs better than the ergodic one (the dots of the regularized
model are closer to the ones of the true distribution). The last line presents the TDA jointly for
all Cox and Turbulent models, showing a good separation between the point processes we have
considered.

We owe the reader the following additional explanation regarding our TDA: We were using R
packages TDAstats [34] to calculate the PDs of our point patterns and TDA [17] to calculate their
Wasserstein distances. None of these two packages allowed us (due to memory constraints) to
treat realisations having significantly more than 2000 points. For this reason our analysis TDA
of the Small circles, Poisson III and Cluster model is in fact done using random thinning of the
given realisations (more precisely, random choice of a subset of 2000 points). This operation
introduces possible artificial improvement of distribution approximation, as random thinning with
small retention probability (and intensity preserving rescaling) makes any process converge in
distribution to the Poisson process. In order to analyse the impact of thinning on our TDA, on
Figure 10 we compare the original distribution and our ergodic model with 10 realisations of the
same (original) point pattern subjected only to independent thinning. Our conclusion is that this
thinning procedure does not significantly perturb the analysis of the concerned models.
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A Regularized particle gradient descent model
In this section we detail the regularized particle gradient descent model introduced in Section 4.2.2.
This model is an alternative to the ergodic model, where the maximal scale parameter J is large
(J = O(log(s))). It consists in adding a regularization term to the objective function, in order to
preserve the diversity of the model.

The regularization that we introduce in this section aims at preventing the successive iterations
of the gradient descent model considered in Section 3.1 to move too far away from its initial
configuration. It is achieved by adding the distance between the initial configuration and optimized
configuration as a penalization term in the objective. It thus forces the model to explore local
minima of Eφ̄(·) around the initial configuration. As all the configurations are measures with equal
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mass, it is natural to consider the Wasserstein distance between them. However, as this distance
is computationally expensive to compute, we choose to replace it with the sliced Wesserstein
distance [7]. For counting measures with same mass, the 2-Wasserstein distance is defined as:

W2(µ, ν) = min
σ∈SN

( N∑
i=1

||xi − yσ(i)||2
) 1

2
,

where the minimum is taken over the set SN of permutations of (1, . . . , N).
The square SW2 distance between two planar counting measures µ and ν is then defined as

follows:

SW2
2(µ, ν) :=

∫
θ∈S1

W2
2 (θ#µ, θ#ν)dθ,

where θ# designates the pushforward by the orthogonal projection operator in the direction θ.
The use of SW2 instead of W2 is motivated by the fact that applying the projection operators

leads us to compute W2 on R instead of R2, which is much faster, as we simply need to sort
the Dirac measures to obtain the optimal matching. It has been shown [8] that SW2 is indeed a
distance, and that it induces the same topology asW2 for compact domains. One can approximate
SW2 by choosing a certain number of fixed directions [7].

We use this distance with respect to the initial configuration φ0 ∈ M as a regularization term in
the minimization of Eφ̄(·) defined in Eq. (9). More precisely, we consider the following optimization
problem

arg min
f∈F(R2)

1

2
||K(f#φ0)−K(φ̄)||2H − λ

1

2
SW2

2(f#φ0, φ0), (21)

where the minimization is done over the set F(R2) of measurable functions from R2 into itself,
and λ ≥ 0 is a regularization parameter.

This new optimization problem implies that we do not try to sample from the microcanonical
set here, as we suppose that it does not contain enough realizations of Φ.

Note, in (21) we optimize the transport f# of a given initial configuration φ0 towards φ̄, by
minimizing the value of the function

Eφ0

φ̄
(f) = Eφ̄(f#φ0)− λ1

2
SW2

2(f#φ0, φ0)

=
1

2
||K(f#φ0)−K(φ̄)||2H − λ

1

2
SW2

2(f#φ0, φ0)

In order to solve this problem we propose the following modification of the previously considered
gradient descent model. For φ0 ∈ M, x ∈ φ0, and any f ∈ F(R2), we define the functions

hφ0
f,x : R2 −→ M

y 7−→ f#µ− δf(x) + δf(x)+y,

and

SW2
φ0
f,x : R2 −→ R+

y 7−→ SW2(hφ0
f,x(y), φ0).

For any x ∈ φ0, and any f ∈ F(R2), SW2
φ0
f,x is differentiable, so we can define a function from

R2 to R2

x 7−→ ∇xSW2(f#φ0, φ0) :=

{
J [SW2

φ0
f,x](0) if x ∈ Supp(f#φ0)

0 otherwise.

We can then, for any initial measure φ0 and any measurable function f , define a function from
R2 to R2

x 7−→ ∇xEφ0

φ̄
(f) := λ∇xSW2(f#φ0, φ0) +∇xEφ̄(f#φ0),

where ∇xEφ̄ is defined in (12).
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The sequence of point-configuration transports induced by gradient descent algorithm is defined
recursively by taking an initial configuration φ0, f0 := Id (identity) and for n ≥ 0{

fn+1 : x 7−→ x− γ∇xEφ0

φ̄
(fn ◦ . . . ◦ f0)

φn+1 = fn+1 #φn = (fn ◦ . . . ◦ f0)#φ0.
, (22)

where γ > 0 is some gradient step size.
In full analogy to (13) and (14), for all n ≥ 1, φn transport the initial distribution L0 (of φ0)

to some Ln. Note Lk = LΦn is the distribution of the point process Φn obtained by n iterations
of (22) started of Φ0 having law L0 = LΦ0 .

B Proof of Theorem 3.3
Proof of Theorem 3.3. We are going to show that for all n ∈ N, LΦ̄n defined as the push-forward
of LΦ̄0

by (14) is invariant to the action of T . The proof also applies to the regularized model.
As the descriptor K is invariant to the action of T , we do not precise the dependency of the

following functions to φ̄, even though Eφ̄ clearly depends on the observation φ̄. The result follows
from the fact (which we shall prove later) that for each n ≥ 0, the function R2 3 x 7−→ fn(x) =
fn(x, φ0) defined in (22) satisfies

fn(Tx;T#φ0) = Tfn(x;φ0), φ0 ∈ MWo (23)

and, by consequence, the same holds for the composition Fn(x, φ0) := fn ◦ . . . ◦ f1(x, φ0).
Indeed, if (23) holds, then for Φn := Fn#Φ0 = Fn(·,Φ0)#Φ0 and Γ ∈MW0

LΦn(T−1
# (Γ)) = LΦ0

{
φ0 : Fn(·, φ0)#φ0 ∈ T−1

# (Γ)
}

(∗) = LΦ0

{
φ0 : Fn(·, T−1

# φ0)#T
−1
# φ0 ∈ T−1

# (Γ)
}

= LΦ0

{
φ0 : T#Fn(·, T−1

# φ0)#T
−1
# φ0 ∈ Γ

}
= LΦ0

{
φ0 : T ◦ Fn(·, T−1

# φ0)#T
−1
# φ0 ∈ Γ

}
(∗∗) = LΦ0

{
φ0 : Fn(T ·, φ0)#T

−1
# φ0 ∈ Γ

}
= LΦ0

{
φ0 : Fn(T ◦ T−1·, φ0)#φ0 ∈ Γ

}
= LΦ0

{
φ0 : Fn(·, φ0)#φ0 ∈ Γ

}
= LΦn(Γ),

where the equality (∗) follows from the above equality (23). and the equality (∗∗) follows from (23)
applied to the composition with Fn. It remains to prove (23).

Proof of (23) follows by induction.
Note f0 = Id trivially satisfies the equality. Assume now that (23) is satisfied for all fk, k = 1, . . . , n
and, consequently, for Fn = fn ◦ . . . ◦ f1. It remains to prove that the function

fn+1(x, φ0) := x−∇xSW2(Fn(·, φ0)#φ0, φ0)−∇xEφ̄(Fn(·, φ0, φ)#φ0) (24)

is equivariant as in (23) (where, for the simplicity of the proof, and without loss of generality, we
have assumed λ = γ = 1).

Proof of (23).
We will frequently use the following relation resulting from the induction assumption

Fn(·, T#φ0)#T#φ0 = Fn(T ·, T#φ0)#φ0 = TFn(·, φ0)#φ0. (25)

Case x 6∈ Fn(·, φ0)#φ0.
In this case fn+1(x, φ0) = x since, by the definition, both gradients are null. Also, by (25), ad
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because T is invertible, Tx 6∈ TFn(·, φ0)#φ0 = Fn(·, T#φ0)#T#φ0 and hence fn+1(Tx, T#φ0) =
Tx, which proves (24) for the considered x.

Case x = Fn(xi, φ0) for some xi ∈ φ0.
In what follows, we shall simplify the notation replacing Fn(·, φ0)#φ0 by Fn and Fn(xi, φ0) by

Fn(xi).
The required equality (24) in this case follows from the following two gradient relations which

we prove later
∇TFn(xi)Eφ̄(TFn) = A∇Fn(xi)Eφ̄(Fn) (26)

and
∇TFn(xi)SW2(TFn, T#φ0) = A∇Fn(xi)SW2(Fn, φ0) . (27)

Indeed, applying (25) and both relations (26), (27) to fn+1(x, φ0) in (25) we have

fn+1(Txi, T#φ0) = Txi −∇TFn(xi)SW2(TFn, T#φ0)

−∇TFn(xi)Eφ̄(TFn)

= Txi −A∇Fn(xi)SW2(Fn, φ0)

−A∇Fn(xi)Eφ̄(Fn)

(∗ ∗ ∗) = T
(
xi −∇Fn(xi)SW2(Fn, φ0)

−∇Fn(xi)Eφ̄(Fn)
)

= Tfn+1(xi, φ0) ,

where in (∗∗∗) we have used again Tx−Ay−Az = T (x−y−z). It remains to prove (26) and (27).
Proof of (26) and (27).
We have

∇TFn(xi)Eφ̄(TFn) (28)

=
(
∇TFn(xi)K(TFn)

)t(
K(TFn)−K(T#φ)

)
and, using the fact that A−1 = At,

∇TFn(xi)K(TFn) = J [KTFn
TFn(xi)

](0)

= J [K ◦ hTFnTFn(xi)
◦A](0)At (29)

with

K ◦ hTFnTFn(xi)
◦A(y)

= K
(
TFn − δTFn(xi) + δTFn(xi)+Ay

)
= K

(
TFn − δTFn(xi) + δT (Fn(xi)+y)

)
= K

(
T#

(
Fn − δFn(xi) + δFn(xi)+y

))
= K

(
Fn − δFn(xi) + δFn(xi)+y

)
= K ◦ hFnFn(xi)

(30)

where the last but one equality follows from the invariance of K with respect to T . Using (29)
and (30) in (28) we obtain

∇TFn(xi)Eφ̄(TFn)

=
(
∇Fn(xi)K(Fn)At

)t(
K(Fn − (T#φ)

)
= A

(
∇Fn(xi)K(Fn

)t(
K(Fn − (T#φ)

)
= A∇Fn(xi)Eφ̄(Fn).
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which proves (26). The proof of (27) follows the same lines, as the gradient of the regularization
function is equivariant to T and the regularization itself is invariant. This concludes the proof of
the equivariance of fn+1 in (24) and thus of Theorem 3.3.

C Fourier analysis and its comparison to TDA
In this section we briefly present descriptors based on Fourier (or power) spectrum of point mea-
sures and remind the relations to Bartlett spectrum of point processes. We also compare spectrum
analysis to TDA.

C.1 Fourier spectrum based descriptors
We define the discrete Fourier transform (DFT) Fm(µ) of a counting measure µ =

∑
u δxu ∈ Ms

on the (square) window [−s, s[2 at integer frequency m ∈ Z2 by

Fm(µ) :=

∫
Ws

e−iπmx/s µ(dx) =
∑
u

e−iπmxu/s.

Observe, Fm(µ) at frequency m = (0, 0) specifies the number of points of the measure µ on Ws.
Fourier spectrum (or power spectrum ) (PS) is often defined by taking the square modulus of the
Fourier coefficients Fm(µ); Um(µ) := |Fm(µ)|2/|Ws|, normalized for convenience by the window
size. Note |Fm(µ)|2, and consequently Um(µ) is invariant with respect to (circular) translations of
µ on Ws. By selecting the frequencies in a limited range m ∈ ΓF ⊂ Z2 one obtains a translation-
invariant Fourier spectrum (or PS) based descriptor. As we shall focus on isotropic point processes,
we further reduce the variance of our descriptor by averaging Fourier coefficients along frequency
orientations. More precisely, let us define Γ̃F := {b|m|c, m ∈ ΓF }. For each k ∈ Γ̃F , we define
Ũk(µ) := 1

#k

∑
m∈ΓF
b|m|c=k

Um(µ), where #k denotes the cardinal of {m ∈ ΓF : b|m|c = k}. We define

our rotation and translation invariant descriptor:

KF (µ) = {Ũk(µ)}k∈Γ̃F
.

This descriptor captures only information about 2nd order correlations between points of µ,
which is not enough for satisfactory reconstruction (and hence synthesis) of point patterns. To
illustrate the above statement, we define a particle gradient descent model over Ms using KF as
follows. To transport the measure µ in the continuous domain Ws efficiently, we choose a normal-
ized Euclidean metric for the logarithm of the descriptors KF in H which makes the optimization
problem well conditioned. It amounts to minimize the energy

EFφ̄ (µ) :=
1

2

∑
k∈Γ̃F

(log(|Ũk(µ)|/|Ũk(φ̄)|))2. (31)

(In case there are zeros in {Ũk(µ)}k∈Γ̃F
, we may add a small constant ε > 0 to both |Ũk(µ)|2

and |Ũk(φ)|2 in Eφ̄(µ).) This problem can be solved numerically, as the gradient of |Ũk(µ)|2 with
respect to each point in µ can be computed analytically. With this descriptor, contrary to wavelet
phase harmonics descriptors (eq. (19)), the procedures of Section 5 are not necessary: the DFT can
be computed directly from the positions of the atoms, so no discretization is needed. This implies
that no final blurring is needed either, as it is used to overcome discretization issues. Furthermore,
we empirically observe that no multiscale procedure is needed. In Figure 11, we evaluate the
particle gradient descent model with this energy with ΓF = [−128, 128[2. We see that the Fourier
descriptors are well matched between the original image, which is the Turbulent Poisson II model
presented on Figure 6, and the samples generated using this Fourier-based descriptor. However,
visually, the geometric structure exhibited by the the generated sample is different form the the
original configuration.

One way to explain this result is that Fm(Φ̄) and Fm′(Φ̄) may still have strong dependencies
which are not respected by the samples µ ∈ Ωε. To capture their dependencies, one may consider
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Figure 11: Left: An attempt to reconstruct a Turbulent Poisson II configuration (see Figure 6 for the original
configuration) using Fourier-based energy (31) with ΓF = [−128, 128[2. Right: (Rotationally averaged) power
spectrum plot of the generated sample exactly matching the original.

using high-order statistics. For example, the bi-spectrum is also a translation invariant descriptor
( [19]) of the form

Fm(µ)Fm′(µ)Fm+m′(µ)∗

They capture partially the dependencies between the Fourier coefficients at (m,m′) ∈ Γ2
F . A major

issue with descriptors based on high-order statistics is their empirical variance, which measures
the sensitivity of a model to outliers in φ̄. That is why we use the wavelet transform and their
phase harmonics to capture dependencies across frequencies without using higher-order statistics.

C.2 Bartlett spectrum of point processes
We now briefly recall the relations of the PS to the Bartlett spectrum of point processes. To this
end, assume that Φ̄ is a realization of a stationary point process Φ truncated to the observation
window Ws. We have E[F(0,0)(Φ̄)] = E[Φ(Ws)]. However, for m ∈ Z2 \ {(0, 0)} E[Fm(Φ̄)] = 0.
(This follows, by the Campbell formula, from the fact that the mean measure of a stationary point
process — which is a constant multiple of the Lebesgue measure — integrates e−iπmx/s over the
square window Ws to zero.) Consequently, by the definition of the Bartlett spectral measure BΦ of
Φ (cf. [9, Definition 5.2.3])

E[Um(Φ̄)] = E[|Fm(Φ̄)|2/|Ws|] = Var(Fm(Φ̄))/|Ws|

=
1

4s2

∫
R2

|1̂Ws(ξ −m/(2s))|
2 BΦ(dξ)

=
1

4s2

∫
R2

G2
s(ξ −m/(2s))BΦ(dξ),

where f̂(ξ) =
∫
R2 f(x)e−2iπξx dx is the Fourier transform of f , 1Ws is the indicator function

of the square (Dirichlet) window Ws, and Gs(ξ) = 4s2 sinc(2sξ1)sinc(2sξ2) with ξ = (ξ1, ξ2),
sinc(t) = sin(πt)/(πt) its Fourier transform; cf. [9, Example 1.1]. In words, the expected spectral
power E[Um(Φ̄)] equals to the convolution of the Bartlett spectral measure of Φ with the window
function G2

s/(4s
2) evaluated at the frequency m/2s. Note the function Gs/(4s

2) integrates to 1
and for s large enough and BΦ admitting continuous density bΦ

E[Um(Φ̄)] ≈ bΦ(m/(2s)). (32)

We can observe that the above approximation is quite accurate for the circle-Cox point process
considered in Section 6, where bΦ can be evaluated explicitly. Indeed, the density of the Bartlett
spectrum is related via the Fourier transform

bΦ = λ+ λ2 ̂(gΦ − 1)
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to the pair correlation function gΦ of Φ. This latter function can be calculated for the Boolean
circle model with Poisson points of linear intensity λ′ on circles of radius R

gBC(x) = 1 +


2λ′

π|x|λ
R√

4R2−|x|2
for |x| ≤ R

0 otherwise,

where x = (x1, x2) ∈ R2, |x| =
√
x2

1 + x2
2, (cf. [12, Example 10.6]) yielding

bBC(ξ) = λ(1 + 2πRλ′J2
0 (2πR|ξ|)), (33)

where J0 is the 0-th Bessel function of the first kind.

C.3 Spectrum evaluation vs TDA
In this section we illustrate some differences between TDA and power spectrum evaluation, by
showing cases where one tool has strong discriminate power while the other does not. Furthermore,
this comparison illustrates the consistence between visual appreciation and TDA.

First, we consider, for the Small circles Cox process, two different models: the one we presented
in Section 6.2, and a model where both DFT and our ’ergodic’ descriptor are used. As we can
see in Figure 12, while the power spectrum of the two models are quite different, one cannot
discriminate them visually, and the TDA visualization of both models are close (compared to the
original distribution).
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Figure 12: Synthesis of small circles model: visual inspection, TDA and the spectrum analysis. Adding
DFT to the (ergodic) descriptor does not improve visual perception despite the fact that it significantly
improves the spectrum matching. TDA seems to corroborate with the visual inspection showing small
distance between patterns generated with the two descriptors.
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Figure 13: Synthesis of the turbulent Poisson II models using DFT moments and DFT+ergodic mo-
ments: visual inspection, TDA and the spectrum analysis. There is no big difference between the
spectrum for the two synthesis methods (the spectrum of all 10 synthesis with DFT perfectly matches
the spectrum of the original pattern, cf. Figure 11, and this is why there is no averaging effect of the
corresponding plot). A clear visual difference is confrmed by the TDA.
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