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Abstract
This article presents a solution to ensure repeatability at
software level when using pseudorandom numbers in paral-
lel computations. This is achieved automatically to ease the
developer, without inducing performance loss compared to
a manual approach thanks to template metaprogramming.

Based on the data flow mechanism proposed in a pre-
vious work to design and execute algorithmic skeletons,
we automate the correct usage of Pseudorandom Number
Generator (PRNG) streams. This mechanism makes it
possible to assign a PRNG stream to any part of an algo-
rithm, and reaching repeatability can be done by providing
the same random number sequence to any parallelizable
task, whether it is in a parallel run, regardless of the de-
gree of parallelism, or in a sequential one. Parallelizable
tasks can easily be identified within algorithmic skeletons
as they provide information about each component of their
structure, accessible at compile-time.

We illustrate our solution on a metaheuristic to solve
an Operational Research (OR) problem that allows several
levels of parallelism.

1 Introduction
Science, and more specifically the current scientific method,
requires, amongst other criteria (refutability and non-
contradiction), experiments to be reproducible [9]. By
reproducing a scientific experiment, one reduces (and aims
to eliminate) variations on the results due to random effects,
errors or even frauds. Hence, the validity of a scientific
result depends on the reproducibility of the work that lead
to it. Having multiple different experiments, with differ-
ent contexts, leading to the same scientific conclusion is
essential for "good science".

For good computer science, we also have a strong need of
repeatability of each different computer experiment. Like

Drummond, we found confusion in research papers between
reproducibility and repeatability [12]: some computer sci-
entists use bitwise reproducibility to mean repeatability.
We want to stick to the general meaning of these terms as
found in epistemology (philosophy of knowledge).

However, it has been observed that numerous publica-
tions in various fields failed to be reproduced [8], to the
point it is currently known as the reproducibility crisis.
Computer science is not spared by this phenomenon, and
another issue is raised by the use of parallelism: the loss
of repeatability, which is key to debugging software and
obtaining reliable output. Repeatability is, in a sense,
stronger than reproducibility: it means that, for identical
input and computing environment, there should be identi-
cal results, whereas reproducibility only requires that the
conclusions based on the results remain similar. Once this
point is acquired, we can rely on the program results. It
is a first step that is supposed granted by many since we
think of computers as deterministic machines.

The problem is that parallelism causes issues in that
respect at multiple levels. There is for example dynamic
execution [1] that can lead to more efficient hardware paral-
lel execution within the processor pipeline by reordering in-
structions. This optimization can change numerical results
when using the non-associative floating point operations,
thus possibly breaking repeatability. This optimization
being done at hardware level, this paper will not address
it.

In contrast, at software level, computer science also
often requires random numbers. While their use in a
sequential program is normally safe, when paired with
parallelism, one must be very careful to the choice of the
generator and its parallelization technique [16]. In addition,
making the program repeatable with results comparable
to a sequential execution is also a key point to validate
a scientific program [21]. This latter problem is hard
in a parallel context because to guarantee repeatability
regardless of the degree of parallelism, one must ensure
that each parallelizable task accesses the same random
number sequence.

Programming parallel software is widely regarded as a



difficult task, and it becomes more complex because of
random numbers. This has led to the production of tools
to relieve developers [16]. For parallel aspects, algorith-
mic skeletons [2] notably provide easy to use patterns,
completed with user code to be executed in parallel.

In this paper, we address the repeatability issue with
random numbers in a parallel setup while limiting run-
time performance loss. We have already proposed our own
solution for algorithmic skeletons [24], and we show here
how to automatically build a repeatable program without
additional work from the developer. Our solution lies on the
use of our algorithmic skeleton library data flow mechanism,
called links, in order to provide each parallelizable task
with its own Pseudorandom Number Generator (PRNG)
stream. We test our method by solving the Operational
Research (OR) Traveling Salesman Problem (TSP) using
the GRASPxELS [13] metaheuristic that allows multiple
levels of parallelization.

The next section presents related work on reproducibility,
repeatability and algorithmic skeletons. Then, this paper
summarizes our algorithmic skeleton library to introduce
links, our mechanism to express data flow of algorithms.
Based on this system, our solution to automatically make
repeatable programs is then explained. Lastly, we show
the performance run-time overhead of our solution: first
the near zero overhead of the skeleton abstraction due to
template metaprogramming, and second, the low overhead
of enabling repeatability.

2 Related work
The non-reproducibility, and furthermore non-repeatability,
in computer science comes from multiple sources [23]. First,
hardware specifications matter as already stated in the in-
troduction: hardware optimizations can induce variations
in produced numerical results. More generally, different
hardware can lead to different results from the same input
program. Then, differences in execution context are also
involved: whether it is a different operating system or even
just a different version of the same operating system. Even-
tually, libraries are another possible source, from standard
libraries provided by the system to user libraries [17]. To
solve these issues, [18] proposes repositories and versioning
to ensure the correct state of each software component for
a given project.

Provided by libraries or by the system, pseudoran-
dom number generators are a potential cause of non-
reproducibility in a parallel context [17]. To avoid misuses,
studies provide some guidelines as well as tools for a proper
manipulation of PRNGs that ensures the statistical valid-
ity of the output and its reproducibility [6, 16, 19, 22].
However, repeatability when PRNGs are involved has not
clearly been addressed, albeit it being of major concern
to be able to debug any parallel software and to provide
reliable outputs. To our knowledge, common frameworks
(e.g. OpenMP, Intel Threading Building Blocks, C++ par-

allel standard library...) that assist developers to produce
parallel code have no built-in mechanism to deal with re-
peatability (i.e. to guarantee a given task is always given
the same random number sequence).

Algorithmic skeletons [2] have been studied for a long
time to help developers writing parallel software. They
consist in providing parallel patterns a program can use
and complete with user code to produce automatically a
parallel implementation of an algorithm. Plenty of solu-
tions have been proposed: some are implemented as new
languages [26] or as compilers [15]. These implementa-
tions offer a Domain Specific Language (DSL) (as opposed
to a General Purpose Programming Language (GPPL))
designed for parallelism. While allowing more flexibility
and usually resulting in better performances compared to
libraries, these solutions constrain the developer to learn
a new language and to dismiss the language he is used to,
and which could better fit the domain requirements. A
library can also offer a better extensibility: adding a new
pattern to it can be as simple as writing a new class in an
object-oriented language, for example.

Thus, there are libraries for various classic GPPLs, in-
cluding C, C++, Java, Python [7, 11, 14, 25]. A library
normally acts during the program execution and causes a
time overhead. However, the C++ language, well-known
for its template mechanism which enables metaprogram-
ming, makes it possible to write active libraries [5]. An
active library acts during the compilation of the program,
and it is possible to take advantage of it to reduce the run-
time overhead such abstraction usually incurs, as demon-
strated by [10]. Moreover, paired with the C++ capabil-
ity of overloading functions (and in particular operators),
it is possible to conceive an Embedded Domain Specific
Language (EDSL) [20], mitigating the low flexibility of
libraries compared to languages by providing the user a
sub-language within the host language.

Many issues have been addressed by the evolution of
algorithmic skeleton implementations, for example nest-
ing parallel patterns or type safety. However, we failed
to observe any proposal that tries to help the developer
in producing a parallel executable which, despite using
random numbers, is guaranteed to be repeatable.

For that reason, we propose a solution that automatically
ensures, when using random numbers, repeatability at
software level of the produced program. To do so, we
extend an existing algorithmic skeletons library by using
one of its inner mechanisms that handles the data flow.

3 Algorithmic skeletons
The main objective of algorithmic skeletons [2] is to pro-
vide tools to help writing parallel code. Using algorith-
mic skeletons is describing an algorithm structure (named
skeleton) using elements that implement specific parallel
patterns, and filling it with user-written code that is fully
sequential (named muscles). In [24], we proposed an al-
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gorithmic skeleton library in C++, built with templates
and metaprogramming. Our work depending on specifics
that this library provides, this section will summarize our
previous paper.

This section will be based on describing a common al-
gorithm in Operational Research (OR), GRASPxELS [13].
This algorithm is actually the composition of two usual
metaheuristics: Greedy Random Adaptive Search Proce-
dure (GRASP) and Evolutionary Local Search (ELS), ELS
being in this case the local search GRASP will use.

GRASP is presented in algorithm 1. Its goal is to find a
solution 𝑆∗ for a given optimization problem 𝑃 by keeping
the best solution of a set built by repeatedly constructing
randomly, then improving, a solution.

Algorithm 1 GRASP
function GRASP(𝑃)

for 𝑖 = 1..𝑁 do
𝑆𝑖 ← constructiveHeuristic(𝑃)
𝑆𝑖 ← localSearch(𝑃, 𝑆𝑖)

end for
𝑆∗ ← select({𝑆1, 𝑆2, ..., 𝑆𝑁 })
return 𝑆∗

end function

ELS, presented in algorithm 2, is a local search and tries
to improve an existing solution. It improves a given solution
𝑆 by generating a set of randomly mutated solutions 𝑆 𝑗 ,
then improving them using another local search. The best
solution 𝑆∗ of all 𝑆 𝑗 is kept as the new reference solution
for next iterations if better than the current one. The best
solution 𝑆 of all 𝑆∗ is returned.

Algorithm 2 ELS
function ELS(𝑃, 𝑆)

for 𝑖 = 1..𝑁 do
for 𝑗 = 1..𝑀 do

𝑆 𝑗 ← mutate(𝑆)
𝑆 𝑗 ← localSearch(𝑃, 𝑆 𝑗 )

end for
𝑆∗ ← select1({𝑆1, 𝑆2, ..., 𝑆𝑀 })
𝑆 ← select2(𝑆, 𝑆∗)

end for
return 𝑆

end function

In our implementation, algorithmic skeletons are com-
posed of three main components: a structure, the muscles
and the links. The muscles are the sequential implementa-
tions of tasks given by the end-developer, implemented as
simple functions or any function-like element (e.g. functor).

3.1 Structure
The structure of a skeleton holds the execution patterns
that will be used to implement the corresponding algorithm.

CH ... CH

LS ... LS

Sel

Figure 1: GRASP skeleton

farmsel

serial

CH LS

Sel

Figure 2: GRASP skeleton
tree

For example, in the GRASP algorithm (cf. algorithm 1),
the iterations do not depend on each other so they all can
be run in parallel. This means a farm pattern [3] is fit to
implement this algorithm. To be correct, it is actually a
farm followed by a selection mechanism that will keep one
of the results from the farm. This can be represented as in
figure 1: a farm will execute independently the iterations of
the loop of GRASP (in sequence, the constructive heuristic
(CH) followed by the local search (LS)), and the output of
the iterations (their solution for 𝑃) will be merged through
the selection Sel of the best solution.

It is possible to similarly process ELS and conclude it is
a composition of an outer iterative loop (with dependent
iterations) where each iteration, the inner loop, is itself a
farm.

The representation in figure 1 is explicit with what will be
parallelized and useful for that matter. However, another
representation, closer to how algorithmic skeletons work
and how they are written, will be used here as in figure 2. In
this tree, leaves are muscles and branch nodes are atomic
structural elements that we call bones. The two used
bones are serial which implements a sequential execution
pattern, and farmsel which implements what is described
above: a farm followed by a selection.

Using the tree representation, GRASPxELS is defined
by replacing the LS from figure 2 by the skeleton tree of
ELS: an iterative loop (bone: itersel) that executes a
farmsel of a mutation M sequenced with a local search LS
(cf. figure 3).

From this, writing the corresponding C++ code using
our library is quite straightforward. Skeletons are modeled
in the form of parameterized types (known as templates).
Even though GRASPxELS can be defined directly as the
tree of figure 3, meaning only one type definition in C++
code, listing 1 presents how to define GRASPxELS by
defining separately the GRASP and ELS structures (the
two first types, respectively starting at lines 1 and 10) and
composing the GRASP definition with the ELS definition
(third type, starting at line 23). C++ template parameters
are used here to abstract the actual types of the muscles
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farmsel

serial

CH itersel

farmsel

serial

M LS

Sel3

Sel2

Sel1

Figure 3: GRASPxELS skeleton tree
Note that Sel1 is the GRASP Sel, and Sel2 and Sel3 are respec-
tively the ELS Sel1 and Sel2.

(a skeleton structure is independent of this information)
and to allow skeleton composition.

The first template represents the GRASP structure: a
farm that executes in series two muscles (CH and LS) then
selects (muscle Sel1) the best result from its independent
iterations. The S template comes from our library and
stores structural information. The second template defines
the ELS structure, that is an iterative loop that executes a
farm of two muscles (M and LS) in sequence. Each level of
loop doing selection of the best output from its iterations.
The last template simply states that the GRASPxELS
structure is the GRASP structure whose local search (the
second argument) actually is an ELS structure.

Listing 1 GRASPxELS skeleton structure definition
1 template<
2 typename CH, typename LS, typename Sel
3 >
4 using GraspStruct =
5 S<FarmSel,
6 S<Serial, CH, LS>,
7 Sel
8 >;
9

10 template<
11 typename M, typename LS,
12 typename Sel1, typename Sel2
13 >
14 using ElsStruct =
15 S<IterSel,
16 S<FarmSel,
17 S<Serial, M, LS>,
18 Sel1
19 >,
20 Sel2
21 >;
22
23 template<
24 typename CH, typename Sel1,
25 typename M, typename LS,
26 typename Sel2, typename Sel3
27 >
28 using GraspElsStruct =
29 GraspStruct<CH, ElsStruct<M, LS, Sel2, Sel3>, Sel1>;

CH

LS

R0

R1

Serial (𝑛 times)

P0

P1

Select

FarmSel

P0

P1

𝑛 times Solution

Problem

PRNG

Figure 4: GRASP data flow

3.2 Links
Our algorithmic skeleton library provides a mechanism
to describe how data will be transferred from one muscle
to another. This feature will prove to be also useful to
make repeatability possible. The listing 2 presents how
to describe the links for GRASP as illustrated by figure 4.
Templates are used again, keeping the same construct as
for the structure template (where S is replaced by L in
the code, and skeleton descriptions are completed with
their function-like signatures, e.g. A(B, C) is a function
with two parameters of types B and C and returning a
value of type A). For example, line 7, the placeholder P<0>
indicates that the first muscle of the Serial bone will have
as argument the first one from its caller. This corresponds
transitively to the first argument given to the overall built
function-like object, that is the instance of a given problem.
Line 6, the placeholder R<1> indicates that the value that
will be returned by this bone will be the one returned by
the second callee.

Listing 2 GRASP skeleton links definition
1 template<
2 typename Problem, typename Solution, typename PRNG
3 >
4 using GraspLinks =
5 L<FarmSel, Solution(Problem const&, PRNG&),
6 L<Serial, R<1>(P<0>, P<1>),
7 Solution(P<0>, P<1>),
8 Solution(P<0>, R<0>, P<1>)
9 >,

10 Solution(Solution const&, Solution const&)
11 >;

The FarmSel bone handles itself which arguments are
given to its second muscle, the selector, hence the usage of
direct types instead of placeholders at line 10. The absence
of placeholders at line 5 is because of two reasons. The
first one is the same as line 10, for the returned value: this
is constrained by the bone. The second one concerns the
parameter list. This is the outer most link, so it will get
its parameters directly from its caller, which is not within
the skeleton: this layer corresponds to the function-like
produced object.
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4 Repeatability
As described in the previous section, GRASPxELS makes
use of random numbers, first to build random initial so-
lutions, then to mutate solutions. This means the results
obtained from executing GRASPxELS will depend on how
the random numbers are obtained. To ensure that the
result will be repeatably the same, even when running
in parallel the program, it becomes essential to correctly
manage random numbers.

For each task requiring random numbers, there are three
possibilities to access a Pseudorandom Number Generator
(PRNG):

1. a global PRNG stream shared by all tasks;
2. one PRNG stream per thread;
3. one PRNG stream per parallelizable task.

The first solution implies that two executions of the
program could (and will highly likely) produce different
results. This is because of the concurrent access to the
PRNG stream by the threads. The figure 5 illustrates the
issue by showing how two different executions will almost
certainly lead to different random number sequences with
a shared PRNG stream.

12 2 34 85 4 91 29 85 98 3 35 65 40 26 39 20

12 2 34 85 4 91 29 85 98 3 35 65 40 26 39 20

thread 0 thread 1

Figure 5: Two possible random number sequences for two
threads sharing the same PRNG stream

The second solution can be repeatable only for a fixed
degree of parallelism (i.e. for a determined number of
threads), and as long as all parallelizable tasks are executed
in the same order in a thread at any run. This depends
on the orchestration of the tasks: with thread pools [4] for
instance, the assignment of a task to a thread is dynamic
and the order of execution of the tasks on a thread is not
guaranteed to be the same between runs. In our solution,
we ensure tasks are always executed on the same thread and
with the same order [24], thanks to algorithmic skeletons
analysis at compile-time, hence ensuring repeatability at
fixed degree of parallelism.

The last solution, where each task that could be run in
parallel gets its own PRNG stream, ensures repeatability
in the case of varying degree of parallelism. However, it
could lead to the issue of non-scientific soundness of the
results. To guarantee the scientific soundness, it is required
to build independent streams [6, 16, 22].

One common way to overcome this issue is, first, to build
independent streams, and then, to manage to distribute
them to the tasks. Functions that use random numbers
have to be designed with a PRNG as parameter that be-
comes their sole source of randomness. With our skeleton

library, this solution can be described with links as we
already did in listing 2.

Note that this solution is not a correct version yet for
repeatability because, as is, the same PRNG is transfered
from the top skeleton to all the muscles, corresponding to
a global PRNG stream shared by all tasks. Our library,
thanks to the analysis of the algorithmic skeletons, can
associate to each task to be executed in parallel a unique
identifier (a number 𝑖𝑑 ∈ È0, 𝑁È where 𝑁 is the total
number of tasks). This is done using the known structure
of the algorithm: when a sequential bone (e.g. Serial)
is encountered, all its tasks are given the same identifier;
contrarily a potentially parallel bone will associate to each
parallelizable subtask a different identifier.

To illustrate our assignment for GRASPxELS, the fig-
ure 6 represents its skeleton tree so that each level of paral-
lelization is explicitly shown with the number of iterations
for each FarmSel.

The root node (farmsel1) is given the identifier 0, which
is transmitted as is to the associated selection task Sel1,
because it will be executed in sequence after the rest of
this bone. To determine which identifiers will be given to
the first parallel task (that is one of the 𝑎 serial1), we
must go through the whole tree from this node to detect
any other parallelizing node inside, which in this case will
be farmsel2. This is required to acquire its number of
iterations (here, 𝑏), and therefore the number of parallel
tasks it can spawn.

If multilevel parallelization was found, i.e. a parallelizing
node 𝑃1 having an offspring 𝑃2 that is also a parallelizing
node, the number of iterations (say 𝑥) of the top-level par-
allelizing node 𝑃1 is multiplied by the number of iterations
(say 𝑦) of the parallelizing node 𝑃2, i.e. 𝑥 × 𝑦.

This result is used to space the identifiers given to the
𝑎 serial1 tasks created by the root node: knowing that
each iteration of farmsel1 can possibly run 𝑏 parallel tasks,
these identifiers thus are {0, 𝑏, 2𝑏, ..., (𝑎 − 1)𝑏}.

All tasks in the second layer (the first parallelization
level) coming from the same instance of serial1 will share
the same identifier because none will be executed simulta-
neously (note that all these tasks are effectively executed
in parallel 𝑎 times, parallel instances of each one of them
have a distinct identifier). Then, for the third layer (the
second parallelization level), the serial2 having no paral-
lelizable bone in its children, the spacing between affected
identifiers will be 1 and will start from its parent identifier.
The farmsel2 identified by 0 will spawn the serial2 tasks
from 0 to 𝑏 − 1, the next one from 𝑏 to 2𝑏 − 1 and so
on. This method ensures that at any time, no identifier is
shared by multiple concurrent tasks.

Depending on this number, it is possible to provide a
unique set of local parameters (including a PRNG stream)
that are hence guaranteed to be accessed only by one
concurrent task at a time. All elements of the set (in
particular all PRNG streams) are constructed beforehand.
By doing this, it is possible to ensure all PRNG streams
to be independent from each other.
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farmsel1

serial1

CH itersel

farmsel2

serial2

M LS

Sel3

Sel2

Sel1

× 𝑎

× 𝑏

Figure 6: GRASPxELS tree highlighting parallelizable
levels

With that procedure in mind, what is left to do is pro-
viding a way to give the correct PRNG stream to each
task requiring one. In addition to existing argument place-
holders (P<> and R<>), the library now supports a third,
independent, category to handle passing other arguments.
This includes a PRNG stream by using the new placeholder
PRNG.

The correct implementation will be generated when us-
ing the links description shown in listing 3. The differences
with listing 2 are quite subtle: the tasks making use of a
PRNG stream are now using the placeholder PRNG instead
of P<1>. This is because now, the actual PRNG stream will
be provided directly by the library to guarantee repeata-
bility. In consequence, the Serial no longer has to know
about passing a PRNG stream (so the P<1> placeholder
has been removed), neither does FarmSel.

Listing 3 GRASP skeleton links definition for automatic
PRNG stream management
1 template<typename Problem, typename Solution>
2 using GraspLinks =
3 L<FarmSel, Solution(Problem const&),
4 L<Serial, R<1>(P<0>),
5 Solution(P<0>, PRNG),
6 Solution(P<0>, R<0>, PRNG)
7 >,
8 Solution(Solution const&, Solution const&)
9 >;

This solution is totally invisible for the muscles imple-
mentations as they will continue to obtain as usual some
PRNG stream as argument. The only difference is that
now, they will always receive one that makes the execu-
tions repeatable, whether it is mono- or multi-threaded,
regardless of the degree of parallelism.

The actual type of the PRNG is left to be defined by the
developer, with a sensible default value. Serious PRNGs are
repeatable and statistically sound parallelization methods
can be found in [16].

1 2 4 6 8 10 12 14 16 18
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Figure 7: Execution time with varying number of cores for
handwritten and automatically generated programs (on a
single processor)

5 Performance results
One objective of our implementation is that it is com-
petitive with handwritten solutions, because losing perfor-
mances in exchange for programming ease is better avoided.
The run-time overhead of the original algorithmic skeleton
library has already been showed negligible [24]. However,
to validate that ensuring repeatability automatically does
not lead to increased overhead, we compared handwritten
repeatable GRASPxELS with the automatically generated
counterpart, both applied to the same Traveling Salesman
Problem (TSP) instance (graph with 194 nodes, 24 GRASP
iterations, 20 ELS outer iterations and 20 ELS inner it-
erations). All tests have been performed using an Intel
Xeon E7-8890 v3 CPU at 2.5 GHz, with 72 physical cores
(4×18). Both programs were compiled by g++ 8.2.0 using
the same flags, amongst them the O2 optimization pack.
All results are produced by means of 20 runs each using
a different initialization status for each PRNG. For each
tested method (handwritten and automatically generated)
the same 20 random initialization statuses are used.

Figure 7 shows results obtained when running a sequen-
tial and a parallel version (from 2 to 18 allotted cores) of
both the handwritten and automatically generated pro-
grams. The first version has required meticulous devel-
opment from the end-developer to ensure repeatability,
whereas the algorithmic skeletons automatically produce
a repeatable and parallel code from the muscles provided
by the end-developer. Despite this abstraction, we observe
no significant overhead (less than 3%, see figure 8). It was
expected because the main work on algorithmic skeletons
is done during compile-time using template metaprogram-
ming. Templates also help generating code that is really
similar to the fine tuned handwritten version.

It is important to notice that a metaheuristic like
GRASPxELS makes use of random numbers to move in
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Figure 8: Overhead of automatically generated program
compared to its handwritten counterpart (on a single pro-
cessor)

the solution space so the quantity of visited solutions by
the inner local search can vary with changes on random
number sequences. Hence differences in execution time
appear when the random initialization status is changed
or when the repeatability is disabled. In our instance, we
measured a standard deviation of 3.8 s with a mean time
of 195 s for a sequential run.

6 Conclusion
In this paper, we presented our solution to automatically
ensure repeatability with algorithmic skeletons. We summa-
rized the functioning of our algorithmic skeletons library
and we explained how we use its data flow mechanism
to automatically provide each parallelizable task with its
own Pseudorandom Number Generator (PRNG) stream
so that, independently of the degree of parallelism, it runs
identically and produces the same output to reach our
repeatability goal.

From the structure of the algorithm described by algo-
rithmic skeletons, we were able to detect parallelization
possibilities (e.g. multilevel parallelization) and to dis-
tribute PRNG streams to muscles so that repeatability
is guaranteed. Template metaprogramming is used to do
most of the work on algorithmic skeletons at compile-time.
Moreover, templates makes it possible to generate code
close to a handwritten and dedicated one, nearly cancelling
the possible abstraction overhead.

Our strategy is to assign a PRNG stream to each task
that could be independently run in parallel. It could use
much more streams than what is actually necessary to en-
sure repeatability in a known specific context. Considering
the capabilities of available machines and the scenarios of
parallelization that are setup to run applications, we are
studying a solution to automatically control the number

of distributed streams as future work.
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