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Abstract
The majority of seizures recorded in humans and experimental animal models can be described by a generic phenomeno-
logical mathematical model, the Epileptor. In this model, seizure-like events (SLEs) are driven by a slow variable and occur 
via saddle node (SN) and homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs at 
the single cell level using a biophysically relevant neuron model including a slow/fast system of four equations. The two 
equations for the slow subsystem describe ion concentration variations and the two equations of the fast subsystem delineate 
the electrophysiological activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with SN/
homoclinic bifurcations can readily occur at the single cell level when extracellular K+ reaches a critical value. In patients 
and experimental models, seizures can also evolve into sustained ictal activity (SIA) and depolarization block (DB), activities 
which are also parts of the dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model 
to values found during experimental status epilepticus and DB, we show that SIA and DB can also occur at the single cell 
level. Thus, seizures, SIA, and DB, which have been first identified as network events, can exist in a unified framework of a 
biophysical model at the single neuron level and exhibit similar dynamics as observed in the Epileptor.
Author Summary: Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have been 
characterized in patients in experimental models at both macroscopic and microscopic scales using electrophysiological 
recordings. Experimental works allowed the establishment of a detailed taxonomy of seizures, which can be described by 
mathematical models. We can distinguish two main types of models. Phenomenological (generic) models have few param-
eters and variables and permit detailed dynamical studies often capturing a majority of activities observed in experimental 
conditions. But they also have abstract parameters, making biological interpretation difficult. Biophysical models, on the 
other hand, use a large number of variables and parameters due to the complexity of the biological systems they represent. 
Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the present work, we integrate 
both approaches and reduce a detailed biophysical model to sufficiently low-dimensional equations, and thus maintaining the 
advantages of a generic model. We propose, at the single cell level, a unified framework of different pathological activities 
that are seizures, depolarization block, and sustained ictal activity.

Keywords  Biophysical neuron model · Seizures · Status epilepticus · Depolarization block · Bifurcations · Slow-fast system

1  Introduction

Since seizures can be triggered in most brain regions from 
most species, it has been proposed that simple mathematical 
rules should be sufficient to describe such a basic form of 
physiological activity, particularly their dynamics. Several 
conceptual frameworks have been proposed to explain sei-
zure dynamics (Depannemaecker et al., 2021; Naze, 2015; 
Naze et al., 2015; Soltesz & Staley, 2008; Staley, 2015;  
Stefanescu et al., 2012; Y. Wang et al., 2017; Wendling et al.,  
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2016). The predominant framework posits that the major-
ity of seizure onsets and offsets correspond to bifurcations 
(Jirsa et al., 2014; Saggio et al., 2017), although there exist 
other non-bifurcation types (Blenkinsop et al., 2012). This 
framework has been generalized by Saggio and colleagues 
(Saggio et al., 2017, 2020). A phenomenological mathemati-
cal model, called the Epileptor, describes the dynamics of 
a majority of seizures recorded in drug-resistant patients, 
and most seizures recorded in experimental models (Jirsa 
et al., 2014; Saggio et al., 2020). A qualitative analysis of the 
Epileptor reveals that seizures, sustained ictal activity (SIA) 
and depolarization block (DB) co-exist, and that multiple 
types of transitions from one type of activity to the other 
are possible; predictions that were verified experimentally 
(El Houssaini et al., 2015; Houssaini et al., 2020; Saggio 
et al., 2017). Importantly, the majority of seizures recorded 
in patients and experimental models are characterized by a 
saddle node (SN) bifurcation at the onset and an homoclinic 
bifurcation at the offset (Jirsa et al., 2014). Since it is phe-
nomenological, the Epileptor model does not provide direct 
insight regarding underlying biophysical mechanisms.

Detailed biophysical network models have been devel-
oped to investigate seizure mechanisms (Rodrigues et al., 
2015; Santhakumar et  al., 2005; Tejada et  al., 2014). 
These models contain too many parameters and vari-
ables to perform a detailed analysis of their dynamics 
repertoire. Although seizures have always been identi-
fied experimentally as network events, their equivalent 
in terms of dynamics can be observed at the single cell 
level in biophysical models (Bikson et al., 2003; Bragin 
et al., 1997; Chizhov et al., 2018; Cressman et al., 2009; 
Hübel & Dahlem, 2014; Kager et al., 2000; Lietsche et al., 
2016; McCormick & Contreras, 2001). This suggests that, 
in terms of dynamics, core mechanisms already exist at 
the single cell level to generate SLE and DB. Obviously, 
investigating mechanisms is easier at the single cell level 
with a biophysical model than in a network of hundreds of 
connected neurons. Building on the proposal that bursting 
activity in neurons can be described in terms of bifurca-
tions (E. Izhikevich, 2007; E. M. Izhikevich, 2000), dif-
ferent biophysical single cell models have been proposed 
to study SLE and DB, but not SIA (Barreto & Cressman, 
2011; Chizhov et al., 2018; Cressman et al., 2009; Hübel 
& Dahlem, 2014; Kager et  al., 2000; Øyehaug et  al., 
2012; Ullah & Schiff, 2010; Wei et al., 2014a, b). They 
are slow/fast systems, where a slow subsystem drives the 
fast subsystem between different states. In such models, 
the studied fast subsystem delineates the neuronal mem-
brane electrophysiological activities. The slow subsystem 
can be represented by variations of different slow vari-
ables including ion concentration (Barreto & Cressman, 
2011; Chizhov et al., 2018; Cressman et al., 2009; Hübel 
& Dahlem, 2014; Kager et al., 2000; Øyehaug et al., 2012; 

Wei et al., 2014a, b), oxygen level (Wei et al., 2014a, b), 
volume (Øyehaug et al., 2012; Wei et al., 2014a, b) and  
interaction with glial cells (Hübel & Dahlem, 2014;  
Øyehaug et al., 2012). These models provide mechanistic 
insights, in particular how the slow variable influences 
neuronal activity, including the transitions from “healthy” 
regimes to “pathological” ones like SLEs and DB. How-
ever, none of these models show a bursting pattern with a 
SN bifurcation at the onset and an homoclinic bifurcation 
at the offset of the event. The goal of the present study 
was to find the minimal conditions to account for SLE, 
SIA and DB in a Hodgkin-Huxley-like single cell model, 
constrained by SN and homoclinic bifurcations at onset 
and offset, respectively.

A variable acting on a slow time scale is necessary to drive 
the system through different activities (e.g. from SLE to DB). 
Fluctuations of ion concentrations in the extracellular space 
modulate the electrophysiological activity of a single neuron 
(Cressman et al., 2009; Wei et al., 2014a, b). The present 
work focuses on extracellular potassium concentration ([K]o) 
because it increases during seizures (de Curtis et al., 2018; 
Fisher et al., 1976; Fröhlich et al., 2008; Lux et al., 1986; L. 
Wang et al., 2016), even in the absence of synaptic activi-
ties (de Almeida et al., 2008; Jefferys & Haas, 1982). In 
addition, in experimental models, the transition to DB cor-
relates with a much larger increase of [K]o as compared to 
SLEs (El Houssaini et al., 2015; Gloveli et al., 1995). Theo-
retical works show that potassium could be responsible for 
local synchronization (Durand et al., 2010) and that it is an 
important parameter controlling neural dynamics (Barreto & 
Cressman, 2011; Cressman et al., 2009; Ullah & Schiff, 2010; 
Wei et al., 2014a, b). We here consider the slow modulatory 
effects of [K]o variations. In our model, the slow sub-system 
describes ionic concentration variations. The fast subsystem 
characterizes the dynamics of trans-membrane ion flows 
through voltage-gated and the sodium–potassium pump, and 
so allows tracing the membrane potential. We report that this 
single cell model accounts for the SN/homoclinic bifurcation 
pair and that it reproduces SLEs, SIA and DB, reproducing 
patterns found in single neurons recorded experimentally dur-
ing seizures.

2 � Results

Our goal was to construct a biophysical model of a sin-
gle neuron that can reproduce the different firing patterns 
recorded when extracellular potassium is increased, while 
keeping it sufficiently simple to allow a bifurcation analysis. 
The model is schematized in Fig. 1 (see methods section for 
the equations). It is a simplification of the classical Hodgkin- 
Huxley formalism, which also includes close surround-
ing environment with three compartments (external bath, 
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extracellular space, intracellular space). The corresponding 
code is available on github at https://​github.​com/​ddepa​nn/​
TheMo​del.

Numerous experiments show that seizures and SLEs are 
associated with an increase in [K]o (Fisher et al., 1976; Fröhlich  
et al., 2008) and that increasing of external [K] can trig-
ger SLEs (S. F. Traynelis & Dingledine, 1988; Stephen F. 
Traynelis & Dingledine, 1989). The model presented here 
takes into account the regulation of potassium, via the pos-
sible diffusion towards the external bath compartment and 
its associated potassium concentration [K]bath. Changing 
[K]bath parameter will strongly influence the regulation of 
extracellular potassium by allowing or not the removal of 
excess potassium from the extracellular compartment. When 
[K]bath is low, the bath compartment can pump out the extra-
cellular potassium; but it fails to do so when it is saturated by 

potassium. We thus explored the response of the model as the 
concentration of [K]bath was increased. The gradual increase 
in potassium led to 7 sequential qualitative firing patterns: 
Resting State (RS), Spike Train (ST), Tonic Spiking (TS), 
Bursting, Seizure-like events (SLE), Sustained Ictal Activ-
ity (SIA), and Depolarization Block (DB) (Note that what 
is called here Spike Train also corresponds to another type 
of burster from a dynamical point of view (E. Izhikevich, 
2007; Saggio et al., 2017)). The corresponding changes of 
membrane potential for all these patterns are shown in Fig. 2.

The number of firing patterns is higher than in the origi-
nal Hodgkin-Huxley model. This is due to the fact that the 
model takes into account the variations of concentration, 
as evidenced by the variation of the Nernst potentials. The 
changes in Nernst potential for sodium and potassium ion 
species are shown in Fig. 2. The simulations are initialized 
with values observed in a "healthy" resting situation. In 
some cases, the Nernst potentials display a transient change 
before reaching a sustained low amplitude oscillations fol-
lowing action potentials, as observed during RS, TS, SIA 
and DB. During periodic events, (ST, Bursting, SLE), larger 
oscillations are observed in Nernst potentials. These oscil-
lations are directly linked to the observed oscillations in the 
slow variables of the model (Eq. (3) and Eq. (4)) describing 
concentration changes. The rate of oscillation of the slow 
variables thus explains the duration of periodic events, in 
line with the assumed essential role of ionic homeostatic 
regulation.

Each of the firing patterns can be associated to a different 
behavior, observable experimentally at different scales. The 
correspondence is established on the basis of their shape and 
their order of appearance as [K]bath is increased. Tonic and 
bursting patterns are prototypical. We consider the activity 
shown on Fig. 2d as SLE at the neuronal scale, as it is simi-
lar to the activity typically recorded in individual neurons 
(Haglund & Schwartzkroin, 1990), in particular the transient 
episode of depolarization block, in different experimental 
preparations during SLEs at the network scale (e.g. Figure 6 
in (Uva et al., 2013); Fig. 1 in (Bikson et al., 2003) or Fig. 8 
in (Jirsa et al., 2014)). Although it is possible to generate 
SIA in vitro (Quilichini et al., 2002), neurons have not been 
recorded in these conditions. However, the sustained firing 
pattern in our model cell resembles the regular field activity 
recorded during SIA in vitro (Quilichini et al., 2002). The 
sustained DB at the single cell level corresponds to what is 
observed experimentally during network spreading depo-
larization when [K]o reaches high levels (Somjen, 2001).

Increasing [K]bath leads to different regimes of variation 
of external potassium (Fig. 3). These different regimes are 
associated with a specific dynamic (i.e. type of bifurcation) 
of the excitability of the membrane. It is therefore possible 
to link the membrane potential to the variations in extra-
cellular potassium, because of exchanges existing between 

Fig. 1   Diagram of characteristics and mechanisms described by the 
model. Three compartments are represented. A passive diffusion 
of potassium exists between the external bath and the extracellular 
space. Na+, K+ and Cl− ions can be exchanged between the extracel-
lular and intracellular compartments via the Na/K-pump and voltage-
gated channels. This model can reproduce the typical patterns of the 
membrane potential Vm, shown in the bottom left subplot, including, 
from top to bottom, spike train, tonic firing, bursting, seizure like 
events (SLE), sustained ictal activity (SIA) and depolarization block 
(DB)

https://github.com/ddepann/TheModel
https://github.com/ddepann/TheModel
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Fig. 2   Qualitative mode of behavior of the membrane potential and 
Nernst potentials. In blue: time series of the membrane potential Vm 
for the following patterns of activity: (a) Spike train, (b) Tonic spik-
ing (TS), (c) Bursting, (d) Seizure-like Event (SLE), (e) Sustained 
Ictal Activity (SIA), (f) Depolarization Block (DB). In red: Nernst 
potential of sodium, in green: Nernst potential of potassium with 
their specific Y axis on the right side of the panels. If the value of 

[K]bath stays below 6 mM, the system remains in resting state around 
-72 mV. Specific patterns of activities start to appear with a diminu-
tion of the Nernst potential of sodium and an increase of the Nernst 
potential of potassium. When periodic events are occurring (panels c 
and d), oscillations can also be observed in the Nernst potential of 
both ions
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compartments (i.e. via the slow variable), as shown in Fig. 4. 
In the next subsection, we detail these dynamical interac-
tions for the different patterns of activity, following the order 
of appearance when [K]bath increases.

2.1 � Resting states, spike train and tonic spiking 
in low [K]bath

Resting state is found when [K]bath is around the normal 
value of [K]o (called [K]0,o, see Methods section). If [K]bath 
is smaller than [K]0,o the membrane potential slowly hyper-
polarizes, due to a diffusion of potassium in the direc-
tion of the external bath. When [K]bath slightly increases 
(> 7 mM), ST appears through a SNIC bifurcation. The 
offset is also a SNIC bifurcation. In this case, the onset and 
offset bifurcations can be easily identified by their char-
acteristic features (Saggio et al., 2017), and confirmed by 
numerical methods (using SymPy (Meurer et al., 2017) and 
SciPy (Millman & Aivazis, 2011) libraries). With higher 
value of [K]bath (> 8 mM), TS occurs. In this condition, [K]o 
stabilizes (Fig. 3), and the neuron fires at a constant fre-
quency (Fig. 2b). The occurrence of regular spiking due to 
an increase of [K]o through diffusion from the bath is con-
sistent with experiments (El Houssaini et al., 2015; Strauss 
et al., 2008).

2.2 � Bursting and seizure‑like events

Bi-stable behavior occurs when the slow system starts to 
oscillate when [K]bath is further increased. The model (with 
parameters listed in Table 1) displays bursting and SLE, 
successively. Bursts are square-wave bursts (SN/Homo-
clinic bifurcations) and SLEs also show SN and Homoclinic 

bifurcations at onset and offset, respectively (See supple-
mentary information: S1, S2, S3, S4). Here, the slow subsys-
tem oscillates in a self-sustained manner (Fig. 4a-f), generat-
ing recurrent bursting or SLEs, with important variations of 
[K]o, due to oscillations in the slow subsystem. The com-
bined effects of oscillations of ∆[K]I and [K]g explain the 
changes in the Nernst potential of potassium (and sodium, 
which is linked to potassium in the model), thus changing 
neural excitability. During spiking activity, voltage-gated 
potassium channels open increasing potassium current IK. 
The influence of IK in the equation of ∆[K]I (Eq. 3), explains 
the decrease of ∆[K]I, hence the increase of [K]o through 
equations (Eq. 16) and (Eq. 20). This is consistent with the 
observations described in (Fisher et al., 1976). The increase 
in [K]o starts with the occurrence of burst and SLEs. Thus, 

Fig. 3   Variation of extracellular 
potassium concentration as a 
function of [K]bath. Minimal 
and maximal external potas-
sium [K]o and mean (dash line) 
concentration observed during 
simulations done for different 
values of the parameter [K]bath. 
Due to diffusion from the 
external bath, increasing [K]bath 
leads to variations in [K]o. 
Different patterns are observed 
for each range of [K]bath: (a) 
resting state, (b) spike train, (c) 
regular spiking, (d) burst, (e) 
seizure like event, (f) sustained 
ictal activity, (g) depolariza-
tion block. The periodic events 
(spike train, burst and seizure-
like event) correspond to the 
range of [K]bath where [K]o 
periodically oscillates

Table 1   Parameters values

Parameters Symbol Value

Membrane capacitance Cm 1 nF
Gating time constant τn 0.25 ms
Chloride conductance gCl 7.5 nS
Maximal potassium conductance gK 22 nS
Maximal sodium conductance gNa 40 nS
Potassium leak conductance gK,l 0.12 nS
Sodium leak conductance gNa,l 0.02 nS
Intracellular volume ωi 2160 µm3

Extracellular volume ωo 720 µm3

Intra/extra cellular volume ratio β = ωi/ωo 3
Conversion factor γ 0.04 mol/C.µm3

Diffusion time constant ε 0.001 ms−1

Maximal Na/K pump current ρ 250 pA
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it is not the cause of the event but a consequence of homeo-
stasis dysregulation (i.e. augmentation of [K]bath).

2.3 � Steady states, SIA events and DB, in high [K]bath 
conditions

SIA events (Fig. 2g) appears for [K]bath around 17.5 mM 
(Figs. 3 and 4), i.e. above the threshold value for SLEs as 
reported experimentally (El Houssaini et al., 2015). If no 
other mechanisms act to stop it, these oscillations remain 
constant (analogous to refractory status epilepticus). Perma-
nent DB occurs for even higher values of [K]bath (> 18.0 mM, 
Fig. 3) as also reported experimentally (El Houssaini et al., 
2015). In these cases, after a peak value (Fig. 4h), [K]o 
stabilizes, explaining the short range of variation (Fig. 3). 
These steady-states start like a SLEs (Fig. 4e-f), then the 
slow variables stabilize and [K]o remains constant at a high 
value (Fig. 4g-h).

We conclude that the model reproduces all the transitions 
between resting state, spike train, regular spiking, burst, 
seizure like event, sustained ictal activity, and depolariza-
tion block as seen experimentally (El Houssaini et al., 2015) 
when external potassium increases. In particular, the single 
cell model reproduces the experimental behavior of neurons 
recorded in networks generating such activities (El Houssaini 
et al., 2015).

These simulations were obtained when using a “healthy” 
situation, corresponding to a neuron recorded in a non-
pathological context. In epilepsy, the regulatory mechanisms 
of neuronal homeostasis are affected (Boison et al., 2013; 
McDonald et al., 2018; Zilberter & Zilberter, 2017). In the 
next section, we model a "pathological" situation to obtain 
insights of what might happen in chronic epilepsy.

2.4 � Analysis of the model in a pathological context

Glial cells normally ensure the regulation of the extracellular 
concentration of K+ (Coulter & Steinhäuser, 2015; Kofuji & 
Newman, 2004; Olsen et al., 2015; Walz, 2000), which is 
impaired in epilepsy (Coulter & Steinhäuser, 2015; Hubbard 

& Binder, 2016; Rangroo Thrane et al., 2013; Scholl et al., 
2009). Our model does not include glial cells but it is sensi-
tive to [K +]o, the parameter that glial cells control. To model 
a pathological context characterized by glial cell dysfunction 
without making the model more complex, we approximate 
potassium buffering by its diffusion between the extracellular 
compartment and the bath, varying the parameter ε. Homeo-
stasis of intracellular ions is also important to consider. The 
parameter γ can be considered biophysically as a conversion 
factor, but also phenomenologically as the parameter that 
links the evolution of ion concentration with the activity of the 
membrane. Thus, the impairment of mechanisms not included 
in the model, such as co-transporters and exchangers (Hille, 
2001; Kandel et al., 1981), which will affect the evolution of 
ion concentration, can be approximated phenomenologically 
by changes of γ. Varying the time constants of the slow sub-
system (ε and γ), leads to different bi-stable behaviors. Two 
examples are shown in Fig. 4(b) with γ = 0.04, ε = 0.002, (d) 
γ = 0.06, ε = 0.002, and (f) γ = 0.08, ε = 0.0008. In these exam-
ples, potassium concentration oscillations are affected leading 
to a change in the duration of the events. For burst and SLE 
shown in Fig. 4. d and f, the model exhibits a different class of 
onset bifurcation. For both, a saddle-node on invariant cycle 
(SNIC) bifurcation at the onset and homoclinic bifurcation at 
the offset can be identified, based on their specific dynamics 
and resulting shapes (E. Izhikevich, 2007; Saggio et al., 2017).

The other key parameter to consider is the pump rate ρ. 
The Na/K-ATPase is described by Eq. (8) in the model. In a 
biological neuron, the pump depends on ATP and during sta-
tus epilepticus, the ATP concentration increases due to high 
needs and then decreases (Lietsche et al., 2016). The ATP 
concentration is not taken into account in the model, but the 
maximal Na/K-pump rate is modulated by the parameter ρ. 
This parameter also influences the shape of Ipump response 
as a function of [Na]i and [K]o (Fig. 5a). For large values of 
ρ, the pump is activated for lower value of [Na]i and [K]o 
(Fig. 5a). We find that burst duration changes with ρ for 
a fixed [K]bath (Fig. 5b), where a faster activation (higher 
ρ) leads to shorter bursts. The augmentation of ρ does not 
necessary lead to an increase of Ipump; it affects the general 
dynamics of the whole system (Fig. 5c).

Thus, changes related to the Na/K-ATPase affect mainly 
the duration of the events, while impairment of mechanisms 
related to the regulation of K+ concentration affects the type 
of pattern (i.e. onset/offset bifurcation types).

The biophysical model is able to reproduce general pat-
terns of activities (i.e. periodic events) as generated by the 
phenomenological model (El Houssaini et al., 2015). How-
ever, it still contains too many parameters for an exhaustive 
study of its possible dynamics. With a reduced number of 
variables, we can make a detailed study of the dynamics for 
a given set of parameters.

Fig. 4   Time series of membrane potential, ∆[K]i, [K]g, and [K]o. 
Numerical integration, with x-axis in millisecond. (a) spike train 
with [K]bath = 7.5  mM, (b) spike train with [K]bath = 7.5  mM and 
γ = 0.04, ε = 0.002, (c) Burst with [K]bath = 12.5  mM, (d) Burst with 
[K]bath = 12.5 mM, and γ = 0.06, ε = 0.002, (e) SLE with [K]bath = 16 mM, 
(f) SLE with [K]bath = 16  mM and γ = 0.08, ε = 0.0008, (g) SIA with 
[K]bath = 17.5  mM, (h) DB with [K]bath = 20  mM. If not specified, the 
parameter values used here are the reference parameters described in the 
method section. Variations of ∆[K]I and [K]g induce different patterns 
of activity. The combined effects lead to the observed variations in [K]o. 
The time scale of the slow variables γ and ε influence the shape of Vm 
allowing the system to exhibit SN or SNIC bifurcation at the onset of the 
events

◂
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2.5 � Dynamics of the model

The previous sections describe biophysical aspects in relation 
to biological observations. In this last section we show how 
the model can make the link with the theoretical framework. 
Since the biophysical model contains few differential equa-
tions, it is possible to use the tools of dynamical systems the-
ory to directly compare its behavior with the generic model.

The model can be divided into the fast (V, n, respectively 
Eq. 1 and Eq. 2) and the slow subsystems (∆[K]i, [K]g, 
respectively Eq. 3 and Eq. 3). The slow system can oscillate 
and drive the fast system between different behaviors, in 
particular switching between resting state and fast oscilla-
tions to obtain bursting-like activity. In this subsection, we 
call burster a system allowing these periodic events. To cre-
ate the oscillation in the slow subsystem, theoretical works 
show that two mechanisms are possible (E. Izhikevich, 2007; 
Saggio et al., 2017): Slow-Wave (SW) burster, where the 
slow subsystem is made of two equations, independent of the 
fast system, or Hysteresis-Loop (HL) burster where the slow 
subsystem is made of only one equation that depends on the 
fast system. Each has typical onset/offset bifurcation pairs. 
These specific paths for bursting have been identified in the 
generic model (Saggio et al., 2017), and are reproduced in 
Fig. 6a. We first verified if the relations between the equa-
tions of the slow and fast systems allow the existence of 
the mechanisms described previously. Because IK (Eq. (6)) 

depends on V and n, the Eq. (3) depends on the fast system. 
This corresponds to a relation that exists in an HL burster. 
The second equation of the slow subsystem, Eq. (4), also 
depends on the Eq. (3), through the Eq. (20). Thus, there 
exists a relation between the two equations of the slow sys-
tem, enabling oscillation such as in a SW burster. These 
relations between the variables of our model allow obtaining 
the two types of bursters previously described.

We therefore tested for possible correspondences between 
our model and the generic model. We were able to identify 
the regions in the generic model capturing the dynamics 
reproduced by our model in Fig. 6a. The center of the region 
of interest has been marked with a yellow star in Fig. 6a. for 
the generic model and its correspondence in the bifurcation 
diagram of our model in Fig. 6b. In this bifurcation diagram 

Fig. 5   Influence of the activity 
of the Na/K-pump. (a) Ipump 
function for ρ = 25 (green), 
ρ = 1000 (orange), ρ = 2500 
(blue). The initial slope when 
the system moves away from 
the concentrations at rest is 
affected, explaining the modifi-
cation of the influence of Ipump 
in the dynamic of the system. 
(b) Burst duration as a function 
of ρ for [K]bath = 14.0 mM. 
Bursts have shorter dura-
tions for higher value of ρ. 
(c) Minimal and maximal 
pump current, Ipump, observed 
during simulation done with 
[K]bath = 14.0 mM. The range 
of Ipump decreases for higher ρ 
values

Fig. 6   Comparison with the generic model. (a) Paths for bursting 
activity of the generic model proposed by Saggio et al. adapted with 
authorization from (Saggio et  al., 2017), for hysteresis-loop burster 
(left) and slow-wave burster (right), the yellow star corresponds to 
the center of the region captured by our model. (b) Bifurcation dia-
gram of our model, where the white area corresponds to ‘resting state 
only’ region, the dark red corresponds to a depolarized region, and 
the light-red region is the region of bi-stability. The yellow star cor-
responds to the point also found in the generic model, where the SH, 
SNIC and SN bifurcations intersect. In the top diagram, the green line 
corresponds to the path taken by the burster, in the bottom one to the 
path taken by the SLE. (c) Classes of bursters found in the model, and 
the corresponding path in the generic model

◂
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we show two possible paths of our model, for burst behav-
ior (Fig. 6b, top) and for SLE (Fig. 6b, bottom). It crosses 
regions of stable resting state (in white), depolarized (red), 
and bistable (light red). It is therefore possible to establish a 
non-exhaustive list of the correspondences between the paths 
of the two models. The paths for the periodic events have 
been listed in Fig. 6c. The spike train, Bursting and SLE 
behaviors correspond to paths, c5, c2 and c10, respectively. 
The bursting behavior with changes in ε and γ (Fig. 4b) that 
represents the SNIC/SH bifurcation corresponds to the path 
c6. The model proposed here, consistent with biophysics, 
fits into the framework of the generic model.

Since our biophysical model reproduces the bifurcations 
of the generic model for different types of network activi-
ties, it becomes possible to investigate the ionic mechanisms 
underlying the onset/offset bifurcations. The fast subsystem 
can be described fixing all parameters (Tables 1 and 2) and 
considering the two slow variables as parameters. Fixed 
points can thus be found for different values of ∆[K]i and 
[K]g as shown in Fig. 7. Importantly, some parameter values 
allow a bi-stable behavior. It is thus possible to understand 

the direct relationship between the biophysical variations 
in potassium concentration and the type of bifurcations by 
observing the trajectory of the membrane potential in this 
space for periodic events identified previously. During peri-
odic oscillatory behavior, the neuron is initially in resting 
state (blue plane). The membrane potential slowly increases 
due to the rise in extracellular potassium, until it reaches a 
SN (green plane) and then encounters a limit cycle. The slow 
subsystem then drives it to a negative value of ∆[K]i, were 
the limit cycle meets a SN producing homoclinic bifurca-
tion. These bifurcations are observed at the onset and off-
set of bursting and SLE behaviors in the model. To have a 
better understanding of these trajectories, animations with 
the dynamics of the fast subsystem are available in supple-
mentary material (Figs. S1, S2, S3, S4). We therefore have 
here a means of bringing together the biophysical aspects, 
described previously, with the phenomenological vision of 
dynamical systems approach.

3 � Discussion

The aim of this work is to develop a minimal biophysi-
cal model at single neuron level based on time scale sepa-
ration, where the system is able reproduce the dynamics 
which have been identified in experiments (Bikson et al., 
2003; Jirsa et al., 2014; Quilichini et al., 2002; Somjen, 
2001; Uva et al., 2013) and described by generic models 
(Jirsa et al., 2014; Saggio et al., 2017). For this purpose, 
we developed a three-compartment model: a cell equipped 
with voltage-gated channels to generate action potentials, 
and Na+ /K+ pump to maintain stable ion concentration, an 
extracellular space surrounding the cell and an external 

Fig. 7   Fixed points of the fast subsystem. Fixed point of the fast 
subsystem (Vm) considering the variables from the slow subsystem 
as parameters. We used a numerical methods with SymPy (Meurer 
et al., 2017) and SciPy (Millman & Aivazis, 2011) libraries, to find 
the roots and the eigenvalues of the Jacobians of the 2D fast subsys-

tem, and thus the stability considering the existence and the sign of 
real and imaginary parts of the eigenvalues of the Jacobians. Blue: 
stable node, green: saddle node, cyan: stable focus, magenta: unstable 
focus, red: unstable node. Two different angles of view are presented, 
illustrating the manifold that permits bi-stability

Table 2   Physiological reference values

Ion Concentration

External bath [K]bath [2–30] mM
Extracellular [K]0,o 4.8 mM

[Na]0,o 138 mM
[Cl]0,o 112 mM

Intracellular [K]0,i 140 mM
[Na]0,i 16 mM
[Cl]0,i 5 mM
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bath that can uptake/release potassium from/to extracellu-
lar space. We managed to describe the interaction between 
these compartments using a system of four differential 
equations describing two fast and two slow variables. The 
fast variables delineate excitability while the slow ones, 
outline potassium changes from the first and third compart-
ments. The sodium concentration changes are not excluded 
from our model but are linked to potassium through the 
electroneutrality principle. We have shown that despite its 
simplicity the model was able to mimic six electrophysi-
ological behaviors classically recorded in neurons and neu-
ronal networks, via the variation of only one parameter. All 
parameter values were within biophysical ranges (Table1) 
(Hille, 2001; Kandel et al., 1981). Recent experimental 
work, using selective ionic pumps to deliver locally K+, 
confirmed observations from the model, the elevation of 
[K+]  modified the spiking profile of a bursting neuron 
in the hippocampal slice (Arbring Sjöström et al., 2021). 
However, the model has two main limitations. The fast 
system describes only intrinsic excitability and does not 
include synaptic currents. The slow system is based (only) 
on potassium concentration. Introducing synaptic inputs 
would increase the dimension of the system. We propose 
that synaptic inputs would act as a noise generator increas-
ing the probability to reach the bifurcation as demonstrated 
experimentally (Jirsa et al., 2014); including them should 
not change the general behavior of the model. Furthermore, 
ion homeostasis is not reduced solely to potassium. Potas-
sium is just one candidate among many others for the slow 
system. Numerous studies have reported large changes in 
concentration of Ca2+ (Heinemann et al., 1986), Cl− (Miles 
et al., 2012; Raimondo et al., 2015) and neurotransmitters 
during seizures (Chapman et al., 1984; During & Spencer, 
1993). Likewise, decreasing extracellular Ca2+ leads to 
seizures (Jefferys & Haas, 1982), which are characterized 
by SN/homoclinic bifurcations (Jirsa et al., 2014). Since 
it is possible to trigger similar SLEs via totally different 
biophysical mechanisms (Jirsa et al., 2014), we propose 
that the K+-dependent mechanism we describe, is one 
among many the possible paths leading to the same end 
point. In our model, changes in potassium constitute the 
causal factor driving the neuron through different types 
of activities. Although similar changes in potassium are 
measured experimentally when networks (and not cells) 
undergo such transitions, causality has not been demon-
strated experimentally, only correlation. Another limitation 
exists due to the formalism used. If [K]bath tends to zero 
then membrane potential hyperpolarize until the Nernst 
potential are is longer defined due to a division by zero. 
We reach here the limit of the conductance-based model 
from Hodgkin-Huxley formalism. Due to the expression of 
the Nernst potential, if the ratio [K]o/[K]i approaches zero, 
then the IK current increases towards infinity, which is not 

physiologically plausible. Another factor to consider is that 
the dynamics of the single cell is driven by slow changes 
of extracellular variables, which, in a biological system, 
is shared with neighboring cells. So, these slow variables 
can also be responsible for the genesis of network activity 
(Naze et al., 2015). As these mechanisms exist both at the 
network and single neuron level, it would be simplistic to 
conclude that a seizure at the network level is due to the 
combined expression of seizures at the single cell level. 
Since a neuronal network can be seen as a complex sys-
tem of many components, coupled in a non-linear manner, 
seizures may just be an emergent property, perhaps taking 
advantage of the fact that they are already encoded at the 
single cell level. The same consideration applies to other 
pathological activities such as SIA and DB, which cor-
responding pattern have been found in dynamics of our 
model.

We only studied the dynamics for variations of few cho-
sen parameters based on physiological observations identi-
fied in previous works. The parameters explored here show 
that the model can produce different combinations of onset/
offset bifurcations. Numerous studies used ion concentration 
variations in biophysical models to generate various types 
of activity (Barreto & Cressman, 2011; Bernard et al., 2014; 
Cressman et al., 2009; Florence et al., 2009; Krishnan et al., 
2015; Øyehaug et al., 2012; Wei et al., 2014a, b). Descrip-
tions of ion concentration dynamics for bursting have been 
done by Barreto et al. (Barreto & Cressman, 2011), based on 
a slow/fast system. In this work, the bifurcations for SLEs 
are SNIC and Hopf. This approach, based on ion concen-
tration dynamics, permits the unification of spike, seizure 
and spreading depression proposed by Wei et al. (2014a, 
b). As different models can lead to similar dynamics (Prinz 
et al., 2004), this suggests that different minimalist models 
are possible to obtain a unified framework. In comparison 
to previous works (Barreto & Cressman, 2011; Cressman 
et al., 2009), our model does not take into account [Ca]2 + , 
and includes a constant leak current for Na+ and K+. We 
reduced the fast subsystem to only two equations. Also, we 
use only differential equation for the evolution [K] + and 
not for [Na] + , we consider the evolution through the inter-
dependence between both. Although a number of similar 
biophysical elements are taken into account, the system of 
equations obtained is different. we have a different model 
and so, a different structure of the phase space. This struc-
tural difference is important because it explains the different 
dynamics that the model can reproduce. This explains why 
we get a different repertoire in terms of types of bifurcations.

Here, we propose a conductance-based model of the 
neuronal membrane, exhibiting an extended repertoire of 
behavior and introducing sustained ictal activity in a uni-
fied framework. Another difference with previous works 
is that our model can exhibit bi-stable modes saddle-node/
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homoclinic bifurcations, which are the most commonly 
observed in recordings from patients and experimental ani-
mal models (Jirsa et al., 2014). Our model does not take 
into account variation of volume or oxygen homeostasis as 
in (Wei et al., 2014a, b) but, only variations of ion concen-
trations, driven by diffusion of potassium from the external 
bath. It seems intuitive that other biological variables could 
be considered as slow variables to drive the fast subsystem 
in a reduced biophysical model. The work of Øyehaug et al. 
(2012) presents interesting dynamical features with saddle-
node/homoclinic bifurcations for SLEs. However, this model 
is much more complex as it describes numerous biological 
features and mechanisms. In comparison to previous works 
(Barreto & Cressman, 2011; Krishnan et al., 2015; Øyehaug  
et al., 2012; Wei et al., 2014a, b), our model is reduced 
to only four equations. We sought to include only a mini-
mal number of mechanisms necessary to reproduce neural 
dynamics. Chizhov et al. (2018) proposed a biophysical 
model (Epileptor-2) of ictal activities based on the Epilep-
tor (Jirsa et al., 2014), using different differential equations. 
In high potassium conditions, Epileptor-2 produces bursts 
of bursts, described as ictal-like discharges. However, the 
most common form of seizure belongs to the saddle-node/
homoclinic form, which starts with low voltage fast activity, 
and ends with bursts slowing down in a logarithmic fashion. 
The latter was reproduced in the present model, including 
the period during which neurons stop firing (depolarization 
block) after seizure onset. Another difference lies in K+ 
dynamics. In Epileptor-2, neuronal firing ends when extra-
cellular K+ returns to baseline level (Fig. 10 in Chizhov 
et al., 2018), whereas in the present model, there is a delay, 
as consistently found experimentally, as a result of glial cell 
action. This phenomenon in our model can be visualized by 
observing the evolution of [K]o in Fig. 4.

In conclusion, we developed a biophysical model of a 
single neuron that, despite its simplicity, is able to gener-
ate, in a unified framework, many patterns of neuronal net-
work activity found in experimental recording as well as 
in generic mathematical models. We show that transition 
from physiological to paroxysmal activity can be obtained 
by variation of model parameters relating to ion homeostasis 
while excitability parameters remained constant. Thus, we 
proposed a simple biophysical model comparable to generic 
models (El Houssaini et al., 2015; Jirsa et al., 2014; Saggio 
et al., 2017), offering the possibility of a biological interpre-
tation of observed dynamics. Neuronal networks increase in 
complexity from flies to humans, but the basic properties of 
neurons are roughly conserved. The present study shows that 
acting on an external variable allows single neurons to go 
through various patterns of activities, which are also found 
at the network level in the form of seizures, sustained ictal 
activity and depolarization block (Cunliffe et al., 2015; Jirsa 
et al., 2014). We propose that they constitute one of the most 

primitive forms of activities, appearing as soon as neurons 
are present.

4 � Materials and methods

In this project we aim to build a minimal biophysical model 
that describes different electrophysiological states of a sin-
gle neuron, the model is schematized in Fig. 1. The model 
describes three compartments: the intracellular space (ICS), 
the extracellular (ECS) space and the external bath (EB). 
Parameters chosen correspond to values observed in whole cell 
recording. The ion exchange between the ICS and the ECS is 
carried out by the current flowing through the sodium, potas-
sium, and chloride voltage-gated channels (Eq. (5),(6) and 
(7)), and by the sodium–potassium pump generated current 
(Eq. (8)). Parameters values for these currents have identified 
in (Hamada et al., 2003; Hille, 2001; Läuger, 1991) and the 
membrane capacitance in (Golowasch et al., 2009). Passive 
diffusion of potassium exists (Eq. (4)), between EB and ECS. 
The EB is mimicking the K+ buffering of vasculature/astro-
cytes. In ICS and ECS actualization of potassium and sodium 
concentrations are done (Eq. (14)-(20)). The γ parameter has 
the same unit as the inverse of the Faraday constant, and it is 
a scaling parameter that permit to include all the mechanisms 
not detailed in this model which affect the concentration vari-
ations (such as co-transporter, exchangers). The values of all 
the parameters used are given in Table 1 and physiological 
reference and initial values are given in Table 2 and Table 3.

The model is a slow-fast dynamical system based on 4 
equations. The fast system describes the membrane potential 
Eq. (1) and potassium conductance gating variable Eq. (2). 
The slow system describes intracellular potassium concen-
tration variation Eq. (3) and extracellular potassium buffer-
ing by external bath Eq. (4).

With currents:

(1)
dV

dt
= −

1

Cm

(

ICl + INa + IK + Ipump
)

(2)
dn

dt
=

n∞(V) − n

�n

(3)
dΔ[K]i

dt
= −

�

�i

(IK − 2Ipump)

(4)
d[K]g

dt
= �([K]bath − [K]o)

(5)INa = (gNa,l + gNam∞(V)h(n))(V − 26.64log(
[Na]o

[Na]i
))
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And conductance variables:

(6)IK = (gK,l + gKn)(V − 26.64log(
[K]o

[K]i
))

(7)ICl = gCl(V + 26.64log(
[Cl]o

[Cl]i
))

(8)Ipump = �
1

1 + exp(
1

2
(21 − [Na]i))

1

1 + exp(5.5 − [K]o)

(9)n∞(V) =
1

1 + exp(
1

18
(−19 − V))

(10)m∞(V) =
1

1 + exp(
1

12
(−24 − V))

(11)h(n) = 1.1 −
1

1 + exp(−8(n − 0.4))

The fast subsystem of the model, (Eq.  (1)&(2)), is a 
reduction and simplification of conductance-based models, 
first describe by Hodgkin–Huxley (HH). From the original 
publication (Hodgkin & Huxley, 1952) the activation vari-
able of K + channels is determined by the equation (Eq. 12):

where β(V) and α(V) are the voltage-dependent rate con-
stants determining the probability of transitions between, 
respectively, opened and closed state of the ion channel. To 
simplify the model, we propose to describe the variable n, 
through the voltage-dependent parameter ninf(V) and a con-
stant parameter τn. In our model, ninf(V) is the probability to 
find a channel at open state at a given membrane potential 
while τn is the fixed time constant that described the speed 
for channels to respond to the change of membrane potential. 
Based on available data in the literature (Bekkers, 2000; 
Hodgkin & Huxley, 1952), and considering that the mean 
number of channels opened at a given potential is constant, 
we could qualitatively estimate this relationship (Eq. 9). In 
the HH model, the time constant is dependent on the mem-
brane potential due to the formalism used (Eq. 12). The HH 
model was constructed using experiments performed on 
the giant squid axon, which differ from mammalian neu-
rons. We compare the ninf(V) of our model and 1/τ(V), and 
ninf(V) of the HH model in Fig. 8(a). The shape has been 
kept from the HH model but starts to increase for lower 
values of membrane potential. For the voltage-gated sodium 
channels, variables for opening, m, and for closing, h, have 
been described (Hodgkin & Huxley, 1952). With the same 
logic, we can consider the percentage of all population of 
channels opened. But because this is a very fast mechanism 
(Hille, 2001), it can be considered as an instantaneous func-
tion of V (E. Izhikevich, 2007) (Eq. 10). Krinskii and Kokoz 

(12)
dn

dt
= �n(1 − n) − �nn

Table 3   Initial values Variable Initial value

[K]o [K]0,o

[Na]o [Na]0,o

[Cl]o [Cl]0,o

[K]i [K]0,i

[Na]i [Na]0,i

[Cl,i [Cl]0,i

Δ[K]i 0
[Kg] 0
V -70 mV
n n∞(-70)

Fig. 8   modification in gating variables. (a) ninf of our model in blue, 
and ninf and 1/τ of the Hodgkin-Huxley model respectively in dash 
blue and red, function of the membrane potential. (b) Response of 

the fast subsystem of our model to step current stimulation (red) with 
three different values of τ (0.1, 0.25, 0.5 ms). The value of τ influence 
the frequency rate spike for a same injected current
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(Krinskii & Kokoz, 1973) showed that n(t) + h(t) is almost 
constant, so h can be considered as a function of n. Because 
of the previous modification, we adapted this fitting to obtain 
the equation of h(n) (Eq. 11). Due to these simplifications, 
the interdependence of gating variables makes the spiking 
rate dependent on τ, as shown in Fig. 8(b).

To be able to take into account concentration variation lim-
iting the number of equations we applied reductions. Inspired 
by the work of Hübel (Hübel, 2015; Hübel & Dahlem, 2014), 
electroneutrality permits the Eq. (13), and so to the Eq. (14). 
The ratio (Cm γ)/ωi is very small (< 10–5) and so, the right-hand 
side of Eq. (14) could be considered to be zero. The chloride 
concentration changes are assumed to be small and regulated 
by mechanisms which are not described in our model (Doyon 
et al., 2016). So, in our model, the chloride concentration 
remains constant.

Thanks to these reductions, concentration variations are 
calculated as follow:

All simulations were obtained thanks to numerical meth-
ods using odeint function from SciPy library (Millman & 
Aivazis, 2011).
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