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Abstract 

The majority of seizures recorded in humans and experimental animal models can be 
described by a generic phenomenological mathematical model, The Epileptor. In this model, 
seizure-like events (SLEs) are driven by a slow variable and occur via saddle node (SN) and 
homoclinic bifurcations at seizure onset and offset, respectively. Here we investigated SLEs 
at the single cell level using a biophysically relevant neuron model including a slow/fast system 
of four equations. The two equations for the slow subsystem describe ion concentration 
variations and the two equations of the fast subsystem delineate the electrophysiological 
activities of the neuron. Using extracellular K+ as a slow variable, we report that SLEs with 
SN/homoclinic bifurcations can readily occur at the single cell level when extracellular K+ 
reaches a critical value. In patients and experimental models, seizures can also evolve into 
status epilepticus (SE) and depolarization block (DB), activities which are also parts of the 
dynamic repertoire of the Epileptor. Increasing extracellular concentration of K+ in the model to 
values found during experimental SE and DB, we show that SE-like events and DB can also 
occur at the single cell level. Thus, seizures, SE and DB, which have been first identified as 
network events, can exist in a unified framework of a biophysical model at the single neuron 
level and exhibit similar dynamics as observed in the Epileptor. 
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Author Summary 

Epilepsy is a neurological disorder characterized by the occurrence of seizures. Seizures have 

been characterized in patients in experimental models at both macroscopic and microscopic 

scales using electrophysiological recordings. Experimental works allowed the establishment 

of a detailed taxonomy of seizures, which can be described by mathematical models. We can 

distinguish two main types of models. Phenomenological (generic) models have few 

parameters and variables and permit detailed dynamical studies often capturing a majority of 

activities observed in experimental conditions. But they also have abstract parameters, making 

biological interpretation difficult. Biophysical models, on the other hand, use a large number of 

variables and parameters due to the complexity of the biological systems they represent. 

Because of the multiplicity of solutions, it is difficult to extract general dynamical rules. In the 

present work, we integrate both approaches and reduce a detailed biophysical model to 

sufficiently low-dimensional equations, and thus maintaining the advantages of a generic 

model. We propose, at the single cell level, a unified framework of different pathological 

activities that are seizures, depolarization block, and status epilepticus. 

 

Introduction 

Seizures are part of the repertoire of built-in activities of neuronal networks as they can 

be triggered in most brain regions from most species [1]. Several conceptual frameworks have 

been proposed to explain seizure dynamics [2–8]. The predominant framework assumes that 

the majority of seizure onsets and offsets correspond to bifurcations in the electrophysical 

variables [1,9], although there exist other non-bifurcation types [10]. This framework has been 

generalized by Saggio and col. [11,12]. A phenomenological mathematical model, called The 

Epileptor, describes the dynamics of a majority of seizures recorded in drug-resistant patients, 

and most seizures recorded in experimental models [1,12]. A qualitative analysis of the 

Epileptor reveals that seizures, SE and DB co-exist, and that multiple types of transitions from 
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one type of activity to the other are possible, as verified experimentally [11,13,14]. Since it is 

phenomenological, the Epileptor model does not provide direct insight regarding underlying 

biophysical mechanisms. The phenomenological model imposes strong constrains in terms of 

dynamics. Numerous neuronal network models, including biophysically realistic ones, have 

been developed to study seizures, SE or DB mechanisms [2,4,15–21]. These models contain 

too many parameters to perform a detailed bifurcation analysis, thus preventing bridging the 

gap between phenomenological and biophysical approaches. However, with the guidance of 

phenomenological modeling, design of neuronal spiking network including several biophysical 

features has been performed [3]. In this work, transitions between states of the neuronal 

network are ensured by slow variable representing extracellular environmental fluctuation.  

Although seizures and DB are generally observed at the neuronal network scale, their 

dynamical equivalence can be found at the single cell level [22–29], which can be used to 

study human epilepsy [30–32]. Moreover, previous works [3,33,34] show that dynamical 

features are preserved when going from the network to the single cell level. It therefore seems 

appropriate to consider a biophysical model at the single cell scale exhibiting dynamic 

properties identified in the generic model and in which the transitions between the different 

states are provided by a slow variable describing the variations within the extracellular milieu. 

Bursting activity in neurons can be described in terms of bifurcations [35,36], and different 

single cell biophysical models have been proposed, which can model SLE and DB, but not SE-

like events [22,25,26,29,37–41], although, to the best of our knowledge, these activities have 

not been observed experimentally in isolated neurons. They are slow/fast systems, where a 

slow subsystem drives the fast subsystem between different states. In such models, the 

studied fast subsystem delineates the neuronal membrane electrophysiological activities. The 

slow subsystem can be represented by variations of different slow variables including ion 

concentration [22,25,26,29,37–40], oxygen level [38,42], volume [37,40] and interaction with 

glial cells [29,40]. These models provide mechanistic insights, in particular how the slow 

variable influences neuronal activity, including the transitions from “healthy” regimes to 
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“pathological” ones like SLEs and DB. However, none of these models, including the 

extracellular slow variations, could be reduced to four variables, while presenting a bursting 

pattern corresponding to the most common ones encountered at the network level, i.e. the 

SN/homoclinic pair [1]. Since SLEs, SE and DB pertain to the dynamic repertoire of The 

Epileptor and of biological neuronal networks [11,13], biophysical models should be able to 

reproduce all three types of activities. The goal of the present study is to identify candidate 

mechanisms from physiology robustly leading to the time scale separation and trajectories in 

SLEs. We will take guidance from the careful dynamic analyses performed in previous works. 

In generic models, the dynamics is well understood [1,11] but these models rarely offer 

direct biophysical insight as they use abstract parameters. Important works have been done 

to understand the link between phenomenological and biophysical models [3,43]. In order to 

explore the dynamics repertoire, the high dimensionality of detailed biophysical models must 

be reduced. A minimal model of interictal and SLEs has been introduced as Epileptor-2, using 

increase in [K]o to trigger burst discharges and restoration of the K+ gradient via the sodium-

potassium pump to stop SLEs [22]. The work of Saggio et al. [11] is a generalization of the 

dynamics found in Epileptor and Epileptor-2. However, Epileptor-2 does not produce the 

SN/homoclinic bifurcation consistently found experimentally, and the model does not generate 

SE or DB. Moreover, when the fast discharges stop, the slow variables of Epileptor-2 continue 

oscillating, whereas that of Epileptor 1 do not. This can be understood on the basis of the 

results of Saggio et al.[11]. In the present reduction, we used a Hodgkin-Huxley-like single cell 

model, and we imposed several constraints: SLE, SE and DB [13], as well as the 

SN/homoclinic bifurcation must be present. We have thus generated a minimal slow/fast 

system preserving biophysical representation and satisfying these constraints. A variable 

acting on a slow time scale is necessary to drive the system through different activities (e.g. 

from SLE to DB). In a cell, numerous processes can occur on a slow time scale and act as a 

slow variable, including changes in ion concentration, metabolism, phosphorylation levels, and 

transcription. Ion homeostasis regulation is critical to maintaining neuron function, and many 
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sub-cellular mechanisms are involved in this process [44]. Fluctuations of ion concentrations 

in the extracellular space modulate the electrophysiological activity of a single neuron [26,42]. 

The present work focuses on extracellular potassium ([K]o) concentration because it increases 

during seizures [45–49], even in the absence of synaptic activities [50,51]. Augmentation of 

[K]o is also observed in head injury [52,53], which can be a starting point for epilepsy [54]. 

Computational simulations show that potassium could be responsible for local synchronization 

[55] and is an important parameter in neural dynamics [26,39,41,42]. In addition, in 

experimental models, the transition to DB correlates with a much larger increase of [K]o as 

compared to SLEs [13,56]. We here consider the slow modulatory effects of [K]o variations. In 

our model, the slow sub-system describes ionic concentration variations. The fast subsystem 

characterizes the dynamics of trans-membrane ion flows through voltage-gated and the 

sodium-potassium pump, and so allows tracing the membrane potential. We report that this 

single cell model accounts for the SN/homoclinic bifurcation pair and that it reproduces SLEs, 

SE and DB, reproducing patterns found in single neurons recorded experimentally during 

seizures. 

 

Results 

Our goal was to construct a biophysical single neuron model that can reproduce the 

different firing patterns recorded when extracellular potassium is experimentally increased, 

while keeping it sufficiently simple to allow a bifurcation analysis. The model is schematized in 

Fig.1 (see methods section for the equations). It is a simplification of the classical Hodgkin-

Huxley formalism, which includes three compartments (external bath, extracellular space, 

intracellular space).  
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Figure 1: Diagram of characteristics and mechanisms described by the model. Three 
compartments are represented. A passive diffusion of potassium exists between the external 
bath and the extracellular space. Na+, K+ and Cl- ions can be exchanged between the 
extracellular and intracellular compartments via the Na/K-pump and voltage-gated channels. 
This model can reproduce the typical patterns of the membrane potential Vm, shown in the 
bottom left subplot, including tonic firing, bursting, seizure like events (SLE), status epilepticus 
(SE) and depolarization block (DB).  

 

Numerous experiments show that seizures and SLEs are associated with an increase 

in [K]o [45,47] and that increasing of external [K] can trigger SLEs [57,58]. The model presented 

here takes into account the regulation of potassium, via the possible diffusion towards the 

external bath compartment and its associated potassium concentration [K]bath. Changing [K]bath 

parameter will strongly influence the regulation of extracellular potassium by allowing or not 
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the removal of excess potassium from the extracellular compartment. When [K]bath is low, the 

bath compartment can pump out the extracellular potassium; but it fails to do so when it is 

saturated by potassium. We thus explored the response of the model as the concentration of 

[K]bath was increased. The gradual increase in potassium led to 7 sequential qualitative firing 

patterns: Resting State (RS), Spike Train (ST), Tonic Spiking (TS), Bursting, seizure like events 

(SLE), status epilepticus (SE)-like event, and Depolarization Block (DB). The corresponding 

changes of membrane potential for all these patterns are shown in Fig.2.  

The number of firing patterns is higher than in the original Hodgkin-Huxley model. This 

is due to the fact that the model takes into account the variations of concentration, as 

evidenced by the variation of the Nernst potentials. The changes in Nernst potentials for 

sodium and potassium ion species are shown in Fig.2. In some cases, the Nernst potentials 

display a transient change before reaching a steady-state, as observed during RS, TS, SE-like 

event and DB. During periodic events, (ST, Bursting, SLE), oscillations are observed in Nernst 

potentials. These oscillations are directly linked to the observed oscillations in the slow 

variables of the model (Eq.(3) and Eq.(4)) describing concentration changes. The rate of 

oscillation of the slow variables thus explain the duration of periodic events, in line with the 

assumed essential role of ionic homeostatic regulation.  

Each of the firing patterns can be associated to a different behavior, observable 

experimentally at different scales. The correspondence is established on the basis of their 

shape and their order of appearance as [K]bath is increased. Tonic and bursting patterns are 

prototypical. We consider the activity shown on Fig. 2d as SLE at the neuronal scale, as it is 

similar to the activity typically recorded in individual neurons [59], in particular the transient 

episode of depolarization block, in different experimental preparations during SLEs at the 

network scale (e.g. Fig. 6 in [60]; Fig. 1 in [23] or Fig. 8 in [1]). Although it is possible to generate 

SE-like events in vitro [61], the corresponding intracellular activity is not known, however the 

sustained firing pattern in the model cell resembles the regular field activity recorded during 

SE-like events in vitro [61]. The sustained DB at the single cell level corresponds to what is 
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observed experimentally during network spreading depolarization when [K]o reaches high 

levels [62].  

 Increasing [K]bath leads to different regimes of variation of external potassium (Fig.3). 

These different regimes are associated with a specific dynamic (i.e. type of bifurcation) of the 

excitability of the membrane. It is therefore possible to link the membrane potential to the 

variations in extracellular potassium, because of exchanges existing between compartments 

(i.e. via the slow variable), as shown in Fig.4. In the next subsection, we detailed these 

dynamical interactions for the different patterns of activity, following the order of appearance 

when [K]bath increase. 
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Figure 2: qualitative mode of behavior of the membrane potential and Nernst potentials. 
In blue: time series of the membrane potential Vm for the following patterns of activity: (a) Spike 
train, (b) Tonic spiking (TS), (c) Bursting, (d) Seizure-like event (SLE), (e) Status epilepticus 
(SE)-like event, (f) Depolarization Block (DB). In red: Nernst potential of sodium, in green: 
Nernst potential of potassium with specific Y axis on the right side. If the value of [K]bath stays 
below 6 mM, the system remains in resting state around -72 mV. Specific patterns of activities 
start to appear with a diminution of the Nernst potential of sodium and an increase of the Nernst 
potential of potassium. When periodic events are occurring (panels c and d), oscillations can 
also be observed in the Nernst potential of both ions.  
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Resting states, spike train and tonic spiking in low [K]bath 

Resting state is found when [K]bath is around the normal value of [K]o (called [K]0,o , see 

Methods section). If [K]bath is smaller than [K]0,o the membrane potential slowly hyperpolarizes, 

due to a diffusion of potassium in the direction of the external bath. When [K]bath slightly 

increases (> 7 mM), ST appears through a SNIC bifurcation. The offset is also a SNIC 

bifurcation. In this case, the onset and offset bifurcations can be easily identified by their 

characteristic features [11], and confirmed by numerical methods (using SymPy [63] and SciPy 

[64] libraries). With higher value of [K]bath (> 8 mM), TS occurs. In this condition, [K]o stabilizes 

(Fig.3), and the neuron fires at a constant frequency (Fig. 2b). The occurrence of regular 

spiking due to an increase of [K]o through diffusion from the bath is consistent with experiments 

[29]. 

Figure 3: Variation of extracellular potassium concentration as a function of [K]bath. 
Minimal and maximal external potassium [K]o and mean (dash line) concentration observed 
during simulations done for different values of the parameter [K]bath. Due to diffusion from the 
external bath, increasing [K]bath leads to variations in [K]o. Different patterns are observed for 
each range of [K]bath: (a) resting state, (b) spike train, (c) regular spiking, (d) burst, (e) seizure 
like event, (f) status epilepticus like event, (g) depolarization block. The periodic events (spike 
train, burst and seizure-like event) correspond to the range of [K]bath where [K]o periodically 
oscillates.  
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Bursting and Seizure-like events 

Bi-stable behavior occurs when the slow system starts to oscillate when [K]bath is further 

increased. The model (with parameters listed in Table 1) displays bursting and SLE, 

successively. Bursts are square-wave bursts (SN/Homoclinic bifurcations) and SLEs also 

show SN and Homoclinic bifurcations at onset and offset, respectively (See supplementary 

information: S1, S2, S3, S4). Here, the slow subsystem oscillates in a self-sustained manner 

(Fig. 4a-f), generating recurrent bursting or SLEs, with important variations of [K]o, due to 

oscillations in the slow subsystem. The combined effects of oscillations of ∆[K]I and [K]g explain 

the changes in the Nernst potential of potassium (and sodium, which is linked to potassium in 

the model), thus changing neural excitability. During spiking activity, voltage-gated potassium 

channels open increasing potassium current IK. The influence of IK in the equation of ∆[K]I 

(eq.3), explains the decrease of ∆[K]I, hence the increase of [K]o through equations (eq.16) and 

(eq.20). This is consistent with the observations described in [45]. The increase in [K]o starts 

with the occurrence of burst and SLEs. Thus, it is not the cause of the event but a consequence 

of homeostasis dysregulation (i.e. augmentation of [K]bath). 
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Figure 4: Time series of membrane potential, ∆[K]i, [K]g, and [K]o. obtained thanks to 
numerical methods using SciPy library [64], x-axis in millisecond. (a) spike train with [K]bath = 
7.5 mM, (b) spike train with [K]bath = 7.5 mM and γ = 0.04, ε= 0.002, (c) Burst with [K]bath = 12.5 
mM, (d) Burst with [K]bath = 12.5 mM, and γ = 0.06, ε = 0.002, (e) SLE with [K]bath = 16 mM, (f) 
SLE with [K]bath = 16 mM and γ = 0.08, ε = 0.0008, (g) SE with [K]bath = 17.5 mM, (h) DB with 
[K]bath = 20 mM. If not specified, the parameter values used here are the reference parameters 
described in the method section. Variations of ∆[K]I and [K]g induce different patterns of activity. 
The combined effects lead to the observed variations in [K]o. The time scale of the slow 
variables γ and ε influence the shape of Vm allowing the system to exhibit SN or SNIC 
bifurcation at the onset of the events. 

 

Steady states, SE-like events and DB, in high [K]bath conditions 

SE-like events (Fig. 2g) appears for [K]bath around 17.5 mM (Figs. 3 & 4), i.e. above the 

threshold value for SLEs as reported experimentally [13]. If no other mechanisms act to stop 

it, these oscillations remain constant (analogous to refractory status epilepticus). Permanent 

DB occurs for even higher values of [K]bath (> 18.0 mM, Fig. 3) as also reported experimentally 

[13]. In these cases, after a peak value (Fig. 4h), [K]o stabilizes, explaining the short range of 

variation (Fig. 3). These steady-states start like a SLEs (Fig. 2e and 2f), then the slow variables 

stabilize and [K]o remains constant at a high value (Figs. 4g-h).  

We conclude that the model behaves as expected from the biological observations, 

when experimentally increasing of [K]bath. These simulations were obtained when using a 

“healthy” situation, i.e. as if recording a “control” neuron. In the next section, we model a 

"pathological" situation for which where the regulatory mechanisms of neuronal homeostasis 

are affected. 

Influence of other parameters 

We then aimed to identify relevant parameters that could describe “healthy” and 

“pathological” states. Experimental data show that impairment in potassium buffering by glial 

cells leads to pathological behavior [65–68]. Three model parameters correspond to 

homeostasis regulation, involving two mechanisms: the ion exchange capacity between 

compartments (ε and γ parameters in the model), and the maximum capacity of the Na/K pump 

(ρ in the model). A variation of ε corresponds to a degradation of the interaction with glial cells 
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[67,69–71] which normally ensures the regulation of the extracellular concentration of K+. 

Homeostasis of intracellular ions is also critical, and a variation of γ corresponds to an 

impairment of such mechanisms, not detailed in this model, such as co-transporters and 

exchangers [72,73]. Changes in both parameters can also be considered. In the model, they 

are equivalent to a change in volume while keeping the β ratio constant. Varying the time 

constants of the slow subsystem (ε and γ), leads to different bi-stable behaviors. Two examples 

are shown in Fig. 4, (b) with γ = 0.04, ε= 0.002, (d) γ = 0.06, ε = 0.002, and (f) γ = 0.08, ε = 

0.0008, in these situations the shape of the oscillations of potassium concentration are affected 

leading to a change in the duration of the events. For burst and SLE shown in Fig4. d and f, 

the model exhibits a different class of onset bifurcation. For both, a saddle-node on invariant 

cycle (SNIC) bifurcation at the onset and homoclinic bifurcation at the offset can be identified, 

thanks to their specific dynamics and resulting shapes [11,74].  

The other key parameter to consider is the pump rate ρ. The Na/K-ATPase is described 

by Eq. (8) in the model. In a biological neuron, the pump depends on ATP and during SE, the 

ATP concentration augments due to high needs and then decreases [24]. The ATP 

concentration is not taken into account in the model, but the maximal Na/K-pump rate is 

modulated by the parameter ρ. This parameter also influences the shape of Ipump response as 

a function of [Na]i and [K]o (Fig.5a). For large values of ρ, the pump is activated for lower value 

of [Na]i and [K]o (Fig. 5a). We find that burst duration changes with ρ for a fixed [K]bath (Fig. 5b), 

where a faster activation (higher ρ) leads to shorter bursts. The augmentation of ρ does not 

necessary lead to an increase of Ipump; it affects the general dynamics of the whole system (Fig. 

5c).  
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Figure 5: Influence of the activity of the Na/K-pump. (a) Ipump function for ρ= 25 (green), ρ= 
1000 (orange), ρ= 2500 (blue). The initial slope when the system moves away from the 
concentrations at rest is affected, explaining the modification of the influence of Ipump in the 
dynamic of the system. (b) Burst duration as a function of ρ for [K]bath = 14.0 mM. Bursts have 
shorter durations for higher value of ρ. (c) Minimal and maximal pump current, Ipump, observed 
during simulation done with [K]bath = 14.0 mM. The range of Ipump decreases for higher ρ values.   

 

All these observations show that the model presents a behavior consistent with experimental 

observations. Importantly, the biophysical model is able to reproduce general patterns of 

activities (i.e. periodic events) as generated by the phenomenological model [13]. 

Phenomenological models, which present a minimal number of variables and parameters, 

allow an exhaustive study of the dynamics. The biophysical model used here contains too 

many parameters for an exhaustive study of the dynamics, but reducing the number of 
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variables will allow a comparison with the generic model. In the next section, we analyze the 

dynamics of the model. 

Dynamical observations 

The model can be divided into the fast (V, n, respectively Eq.1 and Eq.2) and the slow 

subsystems (∆[K]i, [K]g, respectively Eq.3 and Eq.3). The slow system can oscillate and drive 

the fast system between different behaviors, in particular switching between resting state and 

fast oscillations to obtain bursting-like activity. This type of phenomenon, corresponding to slow 

fast systems, has been extensively studied from a theoretical point of view, in particular for 

neural activity [11,35]. In this subsection, to allow a better correspondence with the theoretical 

framework, we call burster a system allowing these periodic events. To create the oscillation 

in the slow subsystem, theoretical works show that two mechanisms are possible [11,74]: 

Slow-Wave (SW) burster, where the slow subsystem is made of two equations, independent 

of the fast system, or Hysteresis-Loop (HL) burster where the slow subsystem is made of only 

one equation that depends on the fast system. Each has typical onset/offset bifurcation pairs. 

These specific paths for bursting have been identified in the generic model [11], and are 

reproduced in fig.6a.  We first verified if the relations between the equations of the slow and 

fast systems allow the existence of the mechanisms described previously. In our model, two 

equations describe the slow subsystem (Eq.(3), (4)). Because IK (Eq.(6)) depends on V and n, 

the Eq.(3), depends on the fast system. This corresponds to a relation that exists in an HL 

burster. The second equation of the slow subsystem, Eq.(4), also depends on the Eq.(3), 

through the Eq. (20). Thus, there exists a relation between the two equations of the slow 

system, enabling oscillation such as in a SW burster. These relations between the variables of 

our model allow obtaining the two types of bursters previously described.  

We therefore tested for possible correspondences between our model and the generic 

model. We were able to identify the regions in the generic model capturing the dynamics 

reproduced by our model in Fig.6a. The center of the region of interest has been marked with 

a yellow star in fig. 6a. for the generic model and its correspondence in the bifurcation diagram 
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of our model in Fig. 6b. In this bifurcation diagram we show two possible paths of our model, 

for burst behavior (Fig. 6b, top) and for SLE (Fig. 6b, bottom). It crosses regions of stable 

resting state (in white), depolarized (red), and bistable (light red). It is therefore possible to 

establish a non-exhaustive list of the correspondences between the paths of the two models. 

The paths for the periodic events have been listed in Fig. 6c. The spike train, Bursting and SLE 

behaviors correspond to paths, c5, c2 and c10, respectively. The bursting behavior with 

changes in ε and γ (Fig. 4b) that represents the SNIC/SH bifurcation corresponds to the path 

c6. The model proposed here, consistent with biophysics, fits into the framework of the generic 

model.  
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Figure 6: Comparison with the generic model. (a) Paths for bursting activity of the generic 
model proposed by Saggio et al. adapted from [11], for hysteresis-loop burster (left) and slow-
wave burster (right), the yellow star corresponds to the center of the region captured by our 
model. (b) Bifurcation diagram of our model, where the white area corresponds to ‘resting state 
only’ region, the dark red corresponds to a depolarized region, and the light-red region is the 
region of bi-stability. The yellow star corresponds to the point also found in the generic model, 
where the SH, SNIC and SN bifurcations intersect. In the top diagram, the green line 
corresponds to the path taken by the burster, in the bottom one to the path taken by the SLE. 
(c) Classes of bursters found in the model, and the corresponding path in the generic model.  
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Since our biophysical model reproduces the bifurcations of the generic model for 

different types of network activities, it becomes possible to investigate the ionic mechanisms 

underlying the onset/offset bifurcations. The fast subsystem can be described fixing all 

parameters (tables 1 and 2) and considering the two slow variables as parameters. Fixed 

points can thus be found for different values of ∆[K]i and [K]g as shown in Fig. 7. Importantly, 

some parameter values allow a bi-stable behavior. It is thus possible to understand the direct 

relationship between the biophysical variations in potassium concentration and the type of 

bifurcations by observing the trajectory of the membrane potential in this space for periodic 

events identified previously. During periodic oscillatory behavior, the neuron is initially in 

resting state (blue plane). The membrane potential slowly increases due to the rise in 

extracellular potassium, until it reaches a SN (green plane) and then encounters a limit cycle. 

The slow subsystem then drives it to a negative value of ∆[K]i, were the limit cycle meets a SN 

producing homoclinic bifurcation. These bifurcations are observed at the onset and offset of 

bursting and SLE behaviors in the model. To have a better understanding of these trajectories, 

animations with the dynamics of the fast subsystem are available in supplementary material 

(Fig. S1, S2, S3, S4). We therefore have here a means of bringing together the biophysical 

aspects, described previously, with the phenomenological vision of dynamical systems 

approach. 
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Figure 7: Fixed points of the fast subsystem. Fixed point of the fast subsystem (Vm) 
considering the variables from the slow subsystem as parameters. We used a numerical 
methods with SymPy [63] and SciPy [64] libraries, to find the roots and the eigenvalues of the 
Jacobians of the 2D fast subsystem, and thus the stability considering the existence and the 
sign of real and imaginary parts of the eigenvalues of the Jacobians. Blue: stable node, green: 
saddle node, cyan: stable focus, magenta: unstable focus, red: unstable node. Two different 
angles of view are presented, illustrating the manifold that permits bi-stability. 

 

Discussion 

The aim of this work is to develop a minimal biophysical model at single neuron level 

based on time scale separation, where the system is able reproduce the dynamics which have 

been identified in experiments [1,23,60,61,75] and described by generic models [1,11] . For 

this purpose, we developed a three-compartment model: a cell equipped with voltage-gated 

channels to generate action potentials, and Na+/K+ pump to maintain stable ion concentration, 

an extracellular space surrounding the cell and an external bath that can uptake/release 

potassium from/to extracellular space. We managed to describe the interaction between these 

compartments using a system of four differential equations describing two fast and two slow 

variables. The fast variables delineate excitability while the slow ones, outline potassium 

changes from the first and third compartments. The sodium concentration changes are not 

excluded from our model but are linked to potassium through the electroneutrality principle. 

We have shown that despite its simplicity the model was able to mimic six electrophysiological 

behaviors classically recorded in neurons and neuronal networks (SLE and SE-like event), via 
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the variation of only one parameter. All parameter values were within biophysical ranges 

(Table1) [72,73]. The model has two main limitations. The fast system describes only intrinsic 

excitability and does not include synaptic currents. And, the slow system is based (only) on 

potassium concentration. Introducing synaptic inputs would increase the dimension of the 

system. We propose that synaptic inputs would act as a noise generator increasing the 

probability to reach the bifurcation as demonstrated experimentally [1]; including them should 

not change the general behavior of the model. Furthermore, ion homeostasis is not reduced 

solely to potassium. Potassium is just one candidate among many others for the slow system. 

Numerous studies have reported large changes in concentration of Ca2+ [76], Cl- [77,78] and 

neurotransmitters during seizures [79,80]. Likewise, decreasing extracellular Ca2+ leads to 

seizures [50], which are characterized by SN/homoclinic bifurcations [1]. Since it is possible to 

trigger similar SLEs via totally different biophysical mechanisms [1], we propose that the K+-

dependent mechanism we describe, is one among many the possible paths leading to the 

same end point. In our model, changes in potassium constitute the causal factor driving the 

neuron through different types of activities. Although similar changes in potassium are 

measured experimentally when networks (and not cells) undergo such transitions, causality 

has not been demonstrated experimentally, only correlation. Another limitation exists due to 

the formalism used. If [K]bath tends to zero then membrane potential goes to infinite 

hyperpolarization. We reach here the limit of the conductance-based model from Hodgkin-

Huxley formalism. Due to the expression of the Nernst potential, if the ratio [K]o/[K]i approaches 

zero, then the IK current increases towards infinity, which is not physiologically plausible. 

Another factor to consider is that the dynamics of the single cell is driven by slow changes of 

extracellular variables, which, in a biological system, is shared with neighboring cells. So, these 

slow variables can also be responsible for the genesis of network activity [3]. As these 

mechanisms exist both at the network and single neuron level, it would be simplistic to 

conclude that a seizure at the network level is due to the combined expression of seizures at 

the single cell level. Since a neuronal network can be seen as a complex system of many 

components, coupled in a non-linear manner, seizures may just be an emergent property, 
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perhaps taking advantage of the fact that they are already encoded at the single cell level. The 

same consideration applies to other pathological activities such as SE and DB, which 

corresponding pattern have been found in dynamics of our model.   

However, we only studied the dynamics for variations of few chosen parameters based 

on physiological observations identified in previous works. The parameters explored here show 

that the model can produce different combinations of onset/offset bifurcations. Numerous 

studies used ion concentration variations in biophysical models to generate various types of 

activity [21,26,38–40,42,43,81]. Descriptions of ion concentration dynamics for bursting have 

been done by Barreto et al. [39], based on a slow/fast system. In this work, the bifurcations for 

SLEs are SNIC and Hopf. This approach, based on ion concentration dynamics, permits the 

unification of spike, seizure and spreading depression proposed by Wei and al. [37]. As 

different models can lead to similar dynamics [82], this may suggest that different minimalist 

models are possible to obtain a unified framework. In our work, we proposed a conductance-

based model of the neuronal membrane, exhibiting an extended repertoire of behavior and 

introducing status epilepticus-like events in a unified framework. Another difference with 

previous work is that our model can exhibit bi-stable modes saddle-node/homoclinic 

bifurcations, which are the most commonly observed in recordings from patients and 

experimental animal models [1]. Our model does not take into account variation of volume or 

oxygen homeostasis as in [37] but, only variations of ion concentrations, driven by diffusion of 

potassium from EB. It seems intuitive that other biological variables could be considered as 

slow variables to drive the fast subsystem in a reduced biophysical model. The work of 

Øyehauget al.[40] presents interesting dynamical features with saddle-node/homoclinic 

bifurcations for SLEs. However, this model is much more complex as it describes numerous 

biological features and mechanisms. In comparison to previous works [21,38–40], our model 

is reduced to only four equations. We sought to include only a minimal number of mechanisms 

necessary to reproduce neural dynamics. Chizhov et al. [22] proposed a biophysical model 

(Epileptor-2) of ictal activities based on the Epileptor [1], using different differential equations. 
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In high potassium conditions, Epileptor-2 produces bursts of bursts, described as ictal-like 

discharges. However, the most common form of seizure belongs to the saddle-

node/homoclinic form, which starts with low voltage fast activity, and ends with bursts slowing 

down in a logarithmic fashion. The latter was reproduced in the present model, including the 

period during which neurons stop firing (depolarization block) after seizure onset. Another 

difference lies in K+ dynamics. In Epileptor-2, neuronal firing ends when extracellular K+ returns 

to baseline level (see Fig 10. in [22]), whereas in the present model, there is a delay, as 

consistently found experimentally, as a result of glial cell action. This phenomenon in our model 

can be visualized by observing the evolution of [K]o in Fig. 4.  Although the Epileptor-2 is not 

an “intrinsic” Slow/Fast dynamical system, indeed, this model does not describe an 

independent node as it takes in account the influence from synaptic inputs from neuronal 

population. In our model, the observed dynamics, is only due to internal interactions between 

three compartments. 

In conclusion, we developed a biophysical model of a single neuron that, despite its 

simplicity, is able to generate, in a unified framework, many patterns of neuronal network 

activity found in experimental recording as well as in generic mathematical models. We show 

that transition from physiological to paroxysmal activity can be obtained by variation of model 

parameters relating to ion homeostasis while excitability parameters remained constant. Thus, 

we proposed a simple biophysical model comparable to generic models [1,11,13], offering the 

possibility of a biological interpretation of observed dynamics. Neuronal networks increase in 

complexity from flies to humans, but the basic properties of neurons are roughly conserved. 

The present study shows that acting on an external variable allows single neurons to go 

through various patterns of activities, which are also found at the network level in the form of 

seizures, status epilepticus and depolarization block [1,83]. We propose that they constitute 

one of the most primitive forms of activities, appearing as soon as neurons are present. 
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Materials and Methods 

In this project we aim to build a minimal biophysical model that describes different 

electrophysiological states of a single neuron, the model is schematized in Fig.1. The model 

describes three compartments: the intracellular space (ICS), the extracellular (ECS) space and 

the external bath (EB). Parameters chosen correspond to values observed in whole cell 

recording. The ion exchange between the ICS and the ECS is carried out by the current flowing 

through the sodium, potassium, and chloride voltage-gated channels (eq.(5),(6) and (7)), and 

by the sodium-potassium pump generated current (eq.(8)). Parameters values for these 

currents have identified in [72,84,85] and the membrane capacitance in [86]. Passive diffusion 

of potassium exists (eq.(4)), between EB and ECS. The EB is mimicking the K+ buffering of 

vasculature/astrocytes. In ICS and ECS actualization of potassium and sodium concentrations 

are done (eq.(14)-(20)). The γ parameter has the same unit as the inverse of the Faraday 

constant, and it is a scaling parameter that permit to include all the mechanisms not detailed 

in this model which affect the concentration variations (such as co-transporter, exchangers). 

The values of all the parameters used are given in table 1 and physiological reference and 

initial values are given in table 2 and table 3.  

Table 1. Parameters values 

 

 

 

 

 

Parameters Symbol Value 

Membrane capacitance Cm 1 nF 

Gating time constant τn 0.25 ms 

Chloride conductance gCl 7.5 nS 

Maximal potassium conductance gK 22 nS 

Maximal sodium conductance gNa 40 nS 

Potassium leak conductance gK,l 0.12 nS 

Sodium leak conductance gNa,l 0.02 nS 

Intracellular volume ωi 2160 µm3 

Extracellular volume ωo 720 µm3 

Intra/extra cellular volume ratio β=ωi/ωo 3 

Conversion factor  γ 0.04 mmole/C.µm3  

Diffusion time constant ε 0.001 ms-1 

Maximal Na/K pump current ρ 250 pA 
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Table 2. Physiological reference values 

 Ion Concentration 

External bath [K]bath [2-30] mM 

Extracellular [K]0,o 4.8 mM 

[Na]0,o 138 mM 

[Cl]0,o 112 mM 

Intracellular [K]0,i 140 mM 

[Na]0,i 16 mM 

[Cl]0,i 5 mM 

 

 

Table 3. Initial values 

 

 

 

 

 

 

The model is a slow-fast dynamical system based on 4 equations. The fast system 

describes the membrane potential eq.(1) and potassium conductance gating variable eq.(2). 

The slow system describes intracellular potassium concentration variation eq.(3) and 

extracellular potassium buffering by external bath eq.(4). 

(1) 
dV

dt
=  −

1

Cm
(ICl +  INa +  IK +  Ipump) 

(2) 
dn

dt
=

n∞(V)− n

τn
 

(3) 
d∆[K]i

dt
= −

γ

ωi
  (IK −  2 Ipump) 

(4) 
𝑑[𝐾]𝑔

𝑑𝑡
= 𝜀([K]bath − [K]o)  

 

Variable  Initial value 

[K]o [K]0,o 

[Na]o [Na]0,o 

[Cl]o [Cl]0,o 

[K]i [K]0,i 

[Na]i [Na]0,i 

[Cl,i [Cl]0,i 

Δ[K]i 0 

[Kg] 0 

V -70 mV 

n 𝑛∞(-70) 



26 

 

With currents:  

(5)               𝐼𝑁𝑎 = (𝑔𝑁𝑎,𝑙 + 𝑔𝑁𝑎𝑚∞(𝑉)ℎ(𝑛))(𝑉 − 26.64 log(
[𝑁𝑎]𝑜

[𝑁𝑎]𝑖
))  

(6)                   𝐼𝐾 = (𝑔𝐾,𝑙 + 𝑔𝐾𝑛)(𝑉 − 26.64 log(
[𝐾]𝑜

[𝐾]𝑖
)) 

(7)                    𝐼𝐶𝑙 = 𝑔𝐶𝑙(𝑉 + 26.64 log(
[𝐶𝑙]𝑜

[𝐶𝑙]𝑖
)) 

(8)               𝐼𝑝𝑢𝑚𝑝 = 𝜌
1

1+exp (
1

2
(21−[𝑁𝑎]𝑖))

1

1+exp (5.5−[𝐾]𝑜)
 

And conductance variables:  

(9)𝑛∞(V) =
1

1+exp (
1

18
(−19−V))

 

(10)𝑚∞(V) =
1

1+exp (
1

12
(−24−V))

 

(11) ℎ(n) = 1.1 −
1

1+exp (−8(n−0.4))
 

The fast subsystem of the model, (eq. (1)&(2)), is a reduction and simplification of 

conductance-based models, first describe by Hodgkin–Huxley (HH). From the original 

publication [87] the activation variable of K+ channels is determined by the equation (eq.12): 

(12)                  
dn

dt
=  αn(1 − n) − βnn 

Where β(V) and α(V) are the voltage-dependent rate constants determining the probability of 

transitions between, respectively, opened and closed state of the ion channel. To simplify the 

model, we propose to describe the variable n, through the voltage-dependent parameter ninf(V) 

and a constant parameter τn. In our model, ninf(V) is the probability to find a channel at open 

state at a given membrane potential while τn is the fixed time constant that described the speed 

for channels to respond to the change of membrane potential. Based on available data in the 

literature [87,88], and considering that the mean number of channels opened at a given 

potential is constant, we could qualitatively estimate this relationship (eq.9). In the HH model, 
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the time constant is dependent on the membrane potential due to the formalism used (eq.12). 

The HH model has been build thanks to experiments done on the squid giant axon, which 

present differences from on recording of mammalians neurons. We compare the ninf(V) of our 

model and 1/τ(V), and ninf(V) of the HH model in Fig. 8(a). The shape has been kept from the 

HH model but starts to increase for lower values of membrane potential. For the voltage-gated 

sodium channels, variables for opening, m, and for closing, h, have been described[87]. With 

the same logic, we can consider the percentage of all population of channels opened. But 

because this is a very fast mechanism [72], it can be considered as an instantaneous function 

of V [74] (eq.10). Krinskii and Kokoz[89] showed that n(t)+h(t) is almost constant, so h can be 

considered as a function of n. Because of the previous modification, we adapted this fitting to 

obtain the equation of h(n) (eq.11). Due to these simplifications, the interdependence of gating 

variables makes the spiking rate dependent on τ, as shown in Fig.8(b).  

 

Figure 8: modification in gating variables. (a) ninf of our model in blue, and ninf and 1/τ of the 
Hodgkin-Huxley model respectively in dash blue and red, function of the membrane potential. 
(b) Response of the fast subsystem of our model to step current stimulation (red) with three 
different values of τ (0.1, 0.25, 0.5). The value of τ influence the frequency rate spike for a 
same injected current.  

 

To be able to take into account concentration variation limiting the number of equations we 

applied reductions. Inspired by the work of Hübel [29,90], electroneutrality permits the Eq.(12), 

and so to the Eq.(13). The ratio (Cm γ)/ωi is very small (<10-5) and so, the right-hand side of 

Eq.(13) could be considered to be zero. The chloride concentration changes are assumed to 
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be small and regulated by mechanisms which are not described in our model [91]. So, in our 

model, the chloride concentration remains constant. 

(12)
𝑑𝑉

𝑑𝑡
=

ωi

Cmγ
 (

d∆[K]i

dt
 +

d∆[N a]i

dt
+

d∆[Cl]i

dt
)  

(13)∆[K]i +  ∆[N a]i  +  ∆[Cl]i  =
Cmγ

ωi
 (V – V0)  

Thanks to these reductions, concentration variations are calculated as follow:  

(14)∆[N a]i  =  −∆[K]i 

(15)∆[N a]o  =  −β∆[N a]i 

(16)∆[K]o  =  −β∆[K]i 

(17)[K]i =  [K]0,i  +  ∆[K]i 

(18)[N a]i =  [N a]0,i  +  ∆[N a]i 

(19)[N a]o =  [N a]0,o  +  ∆[N a]o 

(20)[K]o  =  [K]0,o  + ∆[K]o  + [K]g 
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