
HAL Id: hal-02979845
https://hal.science/hal-02979845

Submitted on 9 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian preference elicitation for multiobjective
combinatorial optimization

Nadjet Bourdache, Patrice Perny, Olivier Spanjaard

To cite this version:
Nadjet Bourdache, Patrice Perny, Olivier Spanjaard. Bayesian preference elicitation for multiobjec-
tive combinatorial optimization. DA2PL 2020 - From Multiple Criteria Decision Aid to Preference
Learning, Nov 2020, Trento, Italy. �hal-02979845�

https://hal.science/hal-02979845
https://hal.archives-ouvertes.fr

Bayesian preference elicitation for multiobjective
combinatorial optimization

Nadjet Bourdache1 and Patrice Perny1 and Olivier Spanjaard1

Abstract. We introduce a new incremental preference elicitation
procedure able to deal with noisy responses of a Decision Maker
(DM). The originality of the contribution is to propose a Bayesian
approach for determining a preferred solution in a multiobjective
decision problem involving a combinatorial set of alternatives. The
preferences of the DM are represented by an aggregation function
whose parameters are unknown. The uncertainty about these param-
eters is represented by a density function on the parameter space.
Pairwise comparison queries are used to reduce this uncertainty by
Bayesian revision. The query selection strategy is based on the so-
lution of a mixed integer linear program with a combinatorial set of
variables and constraints, which requires to use columns and con-
straints generation methods. Numerical tests are provided to show the
practicability of the approach.

1 Introduction

The increasing complexity of problems encountered in applications is
a permanent motivation for the development of intelligent systems for
human decision support. Among the various difficulties to overcome
for decision making in complex environments we consider here three
sources of complexity that often coexist in a decision problem: 1)
the combinatorial nature of the set of feasible alternatives 2) the fact
that multiple points of view, possibly conflicting, about the value of
solutions may coexist, 3) the need of formulating recommendations
that are tailored to the objectives and preferences of users and that take
into account the uncertainty in preference elicitation (due to possible
mistakes in the responses of users to preference queries).

The first difficulty occurs as soon as the solutions to be compared
are characterized by the combinations of elementary decisions. This
is the case for instance for the selection problem of an optimal sub-
set within a reference set under a budget constraint (a.k.a. knapsack
problem), where a solution is characterized by elementary decisions
concerning items of the reference set. This difficulty prevents the
explicit evaluation of all solutions and the determination of the best
option requires implicit enumeration techniques. The second difficulty
appears in multiagent decision contexts when the agents have different
individual value systems or objectives leading to possibly conflicting
preferences. It also appears in single-agent decision contexts when
the alternatives are assessed w.r.t. different criteria. Finally, it appears
in decision under uncertainty when several scenarios that have dif-
ferent impacts on the outcomes of the alternatives are considered. In
all these situations, preference modeling requires the definition of
multiple objectives to be optimized simultaneously. The combination

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France, email:
name.surname@lip6.fr

of difficulties 1 and 2 is at the core of multiobjective combinatorial
optimization [12].

Let us now come to the third difficulty. The coexistence of multiple
objectives makes the notion of optimality subjective and requires addi-
tional preference information to be collected from the users in order to
discriminate between Pareto-optimal solutions. In multiobjective de-
cision problems, the “optimal” solution fully depends on the relative
importance attached to the different objectives under consideration
and on how performances are aggregated. A standard tool used to
generate compromise solutions tailored to the decision maker (DM)
value system is to optimize a parameterized aggregation function
summarizing the performance vector of any solution into a scalar
value. This makes it possible to reformulate the initial problem as
a single-objective optimization problem (see e.g., [22]). However, a
precise specification of the preference parameters (e.g., weighting
coefficients), prior to the exploration of the set of alternatives, may be
cumbersome because it requires a significant amount of preference
information. To overcome this problem, incremental decision proce-
dures aiming to integrate and combine the elicitation of preference
parameters and the exploration of the set of feasible solutions are
appealing. They make it possible to focus the elicitation burden on
the information that is really useful to separate competing solutions
during the optimization process, and this significantly reduces the
number of queries asked to the user.

In the fields of operations research and artificial intelligence, nu-
merous contributions have addressed the problem of incrementally
eliciting preferences. A first stream of research concerns preference
elicitation for decision making in explicit sets (i.e., non-combinatorial
problems), to assess multiattribute utility functions [28], weights of
criteria in aggregation functions [4], utility functions for decision
making under risk [10, 26, 16, 19], or individual utilities in collec-
tive decision making [17]. Preference elicitation for decision sup-
port on combinatorial domains is a challenging issue that has also
been studied in various contexts such as constraint satisfaction [13],
matching under preferences [11], sequential decision making under
risk [20, 27, 14, 2], and multiobjective combinatorial optimization
[9, 3, 6].

Almost all incremental elicitation procedures mentioned above
proceed by progressive reduction of the parameter space until an
optimal decision can be identified. At every step of the elicitation
process, a preference query is asked to the DM and the answer induces
a constraint on the parameter space, thus a polyhedron including all
parameter values compatible with the DM’s responses is updated
after each answer (polyhedral method [24]). Queries are selected to
obtain a fast reduction of the parameter space, in order to enforce a
fast determination of the optimal solution. However, such procedures
do not offer any opportunity to the DM to revise her opinion about

alternatives and the final result may be sensitive to errors in preference
statements.

A notable exception in the list of contributions mentioned above is
the approach proposed by Chajewska et al. [10]. The approach relies
on a prior probabilistic distribution over the parameter space and uses
preference queries over gambles to update the initial distribution using
Bayesian methods. It is more tolerant to errors and inconsistencies
over time in answering preference queries. The difficulties with this
approach may lie in the choice of a prior distribution and in the
computation of Bayesian updates at any step of the procedure. A
variant, proposed in [15], relies on simpler questions under certainty,
so as to reduce the cognitive load.

Motivation of the paper As far as we know, the works mentioned
in the last paragraph has not been extended for decision making
on combinatorial domains. Our goal here is to fill the gap and to
propose a Bayesian approach for determining a preferred solution
in a multiobjective combinatorial optimization problem. The main
issue in this setting is the determination of the next query to ask to the
DM, as there is an exponential number of possible queries (due to the
combinatorial nature of the set of feasible solutions).

Related work Several recently proposed Bayesian preference elic-
itation methods may be related to our work.
– Sauré and Vielma [21] proposed an error tolerant variant of the poly-
hedral method, where the polyhedron is replaced by an ellipsoidal
credibility region computed from a multivariate normal distribution
on the parameter space. This distribution, and thus the ellipsoidal
credibility region, is updated in a Bayesian manner after each query.
In contrast with their work, where the set of alternatives is explicitly
defined, our method applies on implicit sets of alternatives. Besides,
although our method also involves a multivariate normal density func-
tion on the parameter space, our query selection strategy is based on
the whole density function and not only on a credibility region.
– Vendrov et al. [25] proposed a query selection procedure able to deal
with large sets of alternatives (up to hundreds of thousands) based
on Expected Value Of Information (EVOI). The EVOI criterion con-
sists in determining a query maximizing the expected utility of the
recommended alternative conditioned on the DM’s answer (where
the probability of each answer depends on a response model, e.g.
the logistic response model). However, the subsequent optimization
problem becomes computationally intractable with a large set of al-
ternatives. The authors consider a continuous relaxation of the space
of alternatives that allows a gradient-based approach. Once a query
is determined in the relaxed space, the corresponding pair of fictive
alternatives is projected back into the space of feasible alternatives. In
addition, a second contribution of the paper is to propose an elicitation
strategy based on partial comparison queries, i.e. queries involving
partially specified multi-attribute alternatives, which limits the cog-
nitive burden when the number of attributes is large. We tackle here
another state-of-the-art query selection strategy that aims at mini-
mizing the max expected regret criterion (instead of maximizing the
EVOI criterion), a popular measure of recommendation quality.
– In a previous work [7], we introduced an incremental elicitation
method based on Bayesian linear regression for assessing the weights
of rank-dependent aggregation functions used in decision theory (typ-
ically OWA and Choquet integrals). The query selection strategy we
proposed is based on the min max expected regret criterion, similarly
to the one we use in the present work. However, the method can only
be applied to explicit sets of alternatives and does not scale to combi-

natorial domains. The computation of expected regrets in the provided
procedure (in order to determine the next query) requires indeed the
enumeration of all possible pairs of solutions for each query, which
is impractical if the set of solutions is combinatorial in nature. In
order to scale to such large problems, we propose a method based
on mixed integer linear programming that allows us to efficiently
compute expected regrets on combinatorial domains.

Organization of the paper In Section 2, we describe the incremen-
tal elicitation procedure proposed in [7] for the determination of an
optimal choice over explicit sets of solutions and we point out the main
issues to overcome to extend the approach to combinatorial domains.
Section 3 is devoted to the method we propose to compute expected
regrets on combinatorial domains. Numerical tests are presented in
Section 4 to show the efficiency of the proposed procedure.

2 Incremental elicitation
We first provide a general overview of the incremental Bayesian
elicitation procedure on an explicit set and then discuss the extension
to cope with combinatorial optimization problems.

Let X denote the set of possible solutions. Since we are in the
context of multiobjective optimization, we assume that a utility vector
u(x) ∈ Rn is assigned to any solution x ∈ X . Then we consider
the problem of maximizing over X a scalarizing function of the
form fw(x)=

∑n
k=1 wkgk(u(x)) where wk are positive weights and

gk :Rn→R are basis functions [5] (introduced to extend the class
of linear models to nonlinear ones). For simplicity, the reader can
assume that gk(u(x))=uk(x), i.e., the k-th component of u(x), and
wk is the (imperfectly known) weight of criterion k in the following.
At the start of the procedure, a prior density function p is associated
to the parameter space W = {w ∈ [0, 1]n|

∑
k wk =1}, where the

unknown weighting vector w takes value. Then, at each step, the
DM responds to a pairwise comparison query and, based on this
new preference information, the density function is updated in a
Bayesian manner. The aim is, in a minimum number of queries, to
acquire enough information about the weighting vector w to be able
to recommend a solution x∈X that is near optimal. We present here
the three main parts of the decision process: query selection strategy,
Bayesian updating after each query and stopping condition.

2.1 Query selection strategy
At each step of the algorithm, a new preference statement is needed
to update the density function on W . In order to select an informative
query, we use an adaptation of the Current Solution Strategy (CSS)
introduced in [8] and based on regret minimization. In our probabilis-
tic setting, regrets are replaced by expected regrets. Before describing
more precisely the query selection strategy, we recall some definitions
about expected regrets [7].

Definition 1. Given a set X of solutions and a density function p
on W , the pairwise expected regret of the pair (x, y)∈X 2, the max
expected regret of x∈X and the minimax expected regret over X are
defined by:

PER(x, y, p) =

∫
w∈W

max{0, fw(y)−fw(x)}p(w)dw,

MER(x,X , p) = max
y∈X

PER(x, y, p),

MMER(X , p) = min
x∈X

MER(x,X , p).

In other words, the Pairwise Expected Regret (PER) of x with
respect to y represents the expected utility loss when recommending
solution x instead of solution y, the Max Expected Regret (MER)
of x is the maximum expected utility loss incurred in selecting x
in X , while the MiniMax Expected Regret (MMER) is the minimal
max expected regret value of a solution in X . In practice, PER, MER
and MMER values are approximated using a sample S of weighting
vectors drawn from p. This discretization of W enables us to convert
the integral into an arithmetic mean:

PER(x, y, S) =
1

|S|
∑
w∈S

max{0, fw(y)− fw(x)} (1)

MER(x,X , S) = max
y∈X

PER(x, y, S) (2)

MMER(X , S) = min
x∈X

MER(x,X , S) (3)

We can now describe the adaptation of CSS to the probabilistic
setting. The max expected regret of a solution is used to determine
which solution to recommend inX (the lower, the better) in the current
state of knowledge characterized by p. At a step i of the elicitation
procedure, if the stopping condition (that will be defined below) is met,
then a solution x(i)∈argminx∈X MER(x,X , S) is recommended.
Otherwise, if the knowledge about the value of w needs to be better
specified to make a recommendation, the DM is asked to compare
x(i) to its best challenger y(i)∈argmaxy∈X PER(x(i), y, S) (best
challenger in the current state of knowledge). In the next subsection,
we describe how one uses the DM’s answer to update the density
function p.

Note that we could swap the expectation and the maximization
in the max regret computation, i.e., define an expected max regret
by EMR(x,X , p) =

∫
w∈W max{fw(y)−fw(x) : y ∈ X}p(w)dw

instead of the proposed MER. However, EMR has two main disadvan-
tages: 1) minimizing EMR amounts to maximize the expected value
(and thus does not actually define a regret) while minimizing MER
allows to determine a minimal worst case loss, 2) EMR(x,X , p) does
not allow to identify a feasible best challenger (and thus to define a
strategy to select the next preference query) because it compares x to
a fictive solution ŷ maximizing fw for any value of w.

2.2 Bayesian updating
At step i of the procedure, a new query of the form “x(i) % y(i)?” is
asked to the DM. Her answer is translated into a binary variable a(i)

that takes value 1 if the answer is yes and 0 otherwise. Using Bayes’
rule, the posterior density function p(w|a(i)) satisfies:

p(w|a(i)) ∝ p(w)p(a(i)|w) (4)

where p(w) is assumed to be multivariate Gaussian (the initializa-
tion used for p(w) will be specified in the numerical tests section).
The posterior density function p(w|a(i)) is hard to compute analyt-
ically using Equation 4. Indeed, the likelihood p(a(i)|w) follows a
Bernoulli distribution and no conjugate prior is known for this like-
lihood function in the multivariate case. To overcome this difficulty,
one uses a data augmentation method [1] that consists in introducing
a latent variable z(i) =wT (u(x(i))−u(y(i)))+ε(i) that represents
a noisy scalarized difference between the two compared solutions,
where ε(i)∼N (0, σ) is a Gaussian noise accounting for the uncer-
tainty about the DM’s answer. Using this latent variable, the posterior
distribution p(w|a(i)) is formulated as:

p(w|a(i))=
∫
p(w, z|a(i))dz=

∫
p(w|z)p(z|a(i))dz (5)

If the prior density p(w) is multivariate Gaussian then p(w|a(i)) is
also Gaussian and can be approximated using an iterative procedure
using sampling techniques [23]. As the updating method is not the
main concern of this paper, we will not elaborate more on this topic
here. We refer the reader to a previous work [7] for a more detailed
presentation of the Bayesian updating procedure.

2.3 Stopping condition

The principle of the incremental elicitation procedure is to alternate
queries and update operations on the density p(w) until the uncertainty
about the weighting vectorw is sufficiently reduced to be able to make
a recommendation with a satisfactory confidence level. A stopping
condition that satisfies this specification consists in waiting for the
MMER(X , S) value to drop below a predefined threshold, which
can be defined as a percentage of the initial MMER value.

2.4 Main obstacles for extending the approach

The main obstacles encountered while managing to extend the ap-
proach to a combinatorial setting are related to the computation of
MER and MMER values as they are defined in Equations 2 and 3:

• both values require an exponential number of pairwise comparisons
to be computed (because there is an exponential number of feasible
solutions);

• the use of linear programming to compute these values is not
straightforward because the constraint max{0, .} in Equation 1 is
not linear.

These issues are all the more critical given that the MER and MMER
values are computed at every step of the incremental elicitation proce-
dure to determine whether it should be stopped or not, and to select
the next query.

3 Computation of regrets

While the use of mathematical programming is standard in minmax
regret optimization, the framework of minmax expected regret opti-
mization is more novel. We propose here a new method to compute
MER(x,X , S) and MMER(X , S) by mixed integer linear program-
ming, where X is implicitly defined by a set of linear constraints and
S is a sample drawn from the current density p(w). We consider in
this section that fw(x) is linear in u(x), but the presented approach
is adaptable to non-linear aggregation functions if there exist appro-
priate linear formulations (e.g., the linear formulation of the ordered
weighted average [18]). We also assume that fw(x)∈ [0, 1].

3.1 Linear programming for MER computation

To obtain a linear expression for MER(x,X , S), we replace the func-
tion max{0, fw(y)− fw(x)} in Equation 1 by bw[fw(y)− fw(x)]
for each weighting vector w∈S, where bw is a binary variable such
that bw =1 if fw(y)− fw(x)>0 and bw =0 if fw(y)− fw(x)<0
(the value of bw does not matter if fw(y) − fw(x) = 0, because
bw[fw(y) − fw(x)] = 0 anyway). For this purpose, we need the
following additional constraints:{

bw ≤ fw(y)− fw(x) + 1 ∀w ∈ S (c≤)
bw ≥ fw(y)− fw(x) ∀w ∈ S (c≥)

Proposition 1. Given w ∈ S, x ∈X and y ∈X , if fw is an aggre-
gation function defined such that fw(z)∈ [0, 1] for any z ∈X and
w∈S, and if bw satisfies the constraints (c≥) and (c≤), then:

max{0, fw(y)− fw(x)} = bw[fw(y)− fw(x)].

Proof. Let us denote by dw the value fw(y)− fw(x) for any w∈S.
First note that dw∈ [−1, 1], ∀w∈S, because fw is such that fw(z)∈
[0, 1], ∀z∈X . For any w∈S, three cases are possible: Case 1. w is
such that dw > 0: (c≥) becomes bw ≥ dw > 0, thus bw =1 and we
indeed have bwdw = dw ≥ 0. Case 2. w is such that dw < 0: (c≤)
becomes bw ≤ dw+1< 1 and implies bw = 0 and thus bwdw = 0.
Case 3. w is such that dw =0 then bwdw =0, ∀bw ∈ {0, 1}. In the
three cases we have thus bwdw=max{0, dw}.

The constraints (c≤) and (c≥) are linear as fw(x) is linear in
u(x) = (u1(x), . . . , un(x)). Nevertheless, using variables bw and
their constraints in the formulation of MER(x,X , S) gives a system
of linear constraints with a quadratic objective function:

max 1
|S|
∑

w∈S bw[fw(y)− fw(x)]
bw ≤ fw(y)− fw(x) + 1 ∀w ∈ S
bw ≥ fw(y)− fw(x) ∀w ∈ S
bw ∈ {0, 1} ∀w ∈ S
y ∈ X

The objective function is quadratic because the term bwfw(y) is
quadratic in variables bw and y. To linearize the program, we intro-
duce a positive real variable pw for each w ∈ S, that replace the
product term bwfw(y). Note that the term bwfw(x) does not need
linearization because solution x is fixed in the MER computation. The
obtained linear program is:

(PMER) :

max 1
|S|
∑

w∈S [pw − bwfw(x)]
bw ≤ fw(y)− fw(x) + 1 ∀w ∈ S
bw ≥ fw(y)− fw(x) ∀w ∈ S
pw ≤ bw ∀w ∈ S
pw ≤ fw(y) ∀w ∈ S
pw ≥ bw + fw(y)− 1 ∀w ∈ S
bw ∈ {0, 1} ∀w ∈ S
pw ∈ R+ ∀w ∈ S
y ∈ X

It is easy to see that pw = bwfw(y) for all w ∈ S thanks to the
constraints on pw. We indeed have pw = 0 when bw = 0 thanks to
the constraint pw ≤ bw, and pw = fw(y) when bw = 1 thanks to
constraints pw≤fw(y) and pw≥bw+fw(y)−1=fw(y).

Overall, 2|S| variables are involved in the linearization of the ex-
pression 1

|S|
∑

w∈S max{0, [fw(y) − fw(x)}: |S| binary variables
bw are used to linearize the max{0, .} function, and |S| real variables
pw are used to linearize the product term bwfw(y).

3.2 Linear programming for MMER computation
For computing MMER(X , S), the objective function
minx∈X maxy∈X

1
|S|
∑

w∈S max{0, fw(y) − fw(x)} can be
linearized by using |X | constraints (standard linearization of a
minmax objective function, where the max is taken over a finite set):

min t
t ≥ 1

|S|
∑

w∈S max{0, fw(y)−fw(x)} ∀y ∈ X (∗)
t ∈ R

Note that computing the minmax expected regret over X requires
the introduction of one binary variable byw for each solution y ∈X ,
so that max{0, fw(y) − fw(x)} = byw(fw(y) − fw(x)) for all
y ∈ X (while computing the max expected regret of a given so-
lution x only required the introduction of a single binary variable
bw such that max{0, fw(ŷ)− fw(x)} = bw(fw(ŷ)− fw(x)) for
ŷ∈argmaxy∈X PER(x, y, S)).

Consider the following program that involves quadratic constraints:

(PMMER)

min t
t ≥ 1

|S|
∑

w∈S b
y
w[fw(y)− fw(x)] ∀y ∈ X

byw ≤ fw(y)− fw(x) + 1 ∀w, y ∈ S ×X
byw ≥ fw(y)− fw(x) ∀w, y ∈ S ×X
byw ∈ {0, 1} ∀w, y ∈ S ×X
x ∈ X
t ∈ R

Proposition 2. A solution x∗ ∈X optimizing PMMER is such that
MER(x∗,X , S)=MMER(X , S).

Proof. We denote by t∗ the optimal value of PMMER. We prove
that t∗ is equal to MMER(X , S). For a given instance of x, con-
straint (∗) must be satisfied for any possible instance of y. Thus,
by Proposition 1, we have that t ≥ PER(x, y, S) for all y ∈ X
because 1

|S|
∑

w∈S b
y
w[fw(y)−fw(x)] = PER(x, y, S). It implies

that t ≥ maxy PER(x, y, S) = MER(x,X , S). As the objec-
tive function is min t, for each instance of x, the variable t takes
value MER(x,X , S). The min objective function implies that (1)
t = MER(x,X , S) for a given x. Finally, varying x over X , we
can easily see that t∗ ≤ MER(x,X , S) ∀x ∈ X , and thus (2)
t∗=MMER(X , S). The result follows from (1) and (2).

The quadratic terms bywfw(x) are linearized by introducing |S|×|X |
positive real variables pyw:

(PX) :

min t
t ≥ 1

|S|
∑

w∈S b
y
w[fw(y)− pyw] ∀y ∈ X

byw ≤ fw(y)− fw(x) + 1 ∀w, y ∈ S×X
byw ≥ fw(y)− fw(x) ∀w, y ∈ S×X
pyw ≤ byw ∀w, y ∈ S×X
pyw ≤ fw(x) ∀w, y ∈ S×X
pyw ≥ byw + fw(x)− 1 ∀w, y ∈ S×X
byw ∈ {0, 1} ∀w, y ∈ S×X
pyw ∈ R+ ∀w, y ∈ S×X
x ∈ X
t ∈ R

One comes up with a mixed integer linear program PX involving
|S|×|X | binary variables byw, |S|×|X | positive real variables pyw
and |X |+6×|S|×|X | constraints, hence an exponential number of
variables and constraints due to the combinatorial nature of X . In the
remainder of the section, we propose a method to overcome this issue.

3.3 MMER computation method
The proposed method is based on mixed integer linear pro-
gramming with dynamic generation of variables and con-
straints to compute MMER(X , S), an optimal solution x∗S ∈
argminx∈X MER(x,X , S) and its best challenger ŷS ∈
argmaxy∈X PER(x∗S , y, S).

Let us first define a mixed integer linear program PA that contains
only a subset of variables byw and pyw, and a subset of constraints

of type (∗). Given a subset A ⊆ X of solutions, PA computes the
minimax expected regret MMERA(X , S) defined by:

min
x∈X

MER(x,A, S)=min
x∈X

max
y∈A

PER(x, y, S).

Put another way, MER(x,A, S) is the max expected regret of a
solution x∈X w.r.t. solutions in A. More formally, PA is written:

(PA) :

min t
t ≥ 1

|S|
∑

w∈S b
y
w[fw(y)− pyw] ∀y ∈ A

byw ≤ fw(y)− fw(x) + 1 ∀w, y ∈ S×A
byw ≥ fw(y)− fw(x) ∀w, y ∈ S×A
pyw ≤ byw ∀w, y ∈ S×A
pyw ≤ fw(x) ∀w, y ∈ S×A
pyw ≥ byw + fw(x)− 1 ∀w, y ∈ S×A
byw ∈ {0, 1} ∀w, y ∈ S×A
pyw ∈ R+ ∀w, y ∈ S×A
x ∈ X
t ∈ R

Note that PA only involves |S|×|A| variables byw , |S|×|A| variables
pyw and |A|+6×|S|×|A| constraints.

The algorithm we propose consists in alternatively solving PA

and PMER. Let xA (resp. ŷ) denote the optimal solution returned by
solving PA (resp. PMER for x = xA). The algorithm starts with a
small set A of feasible solutions (see Section 3.5 for initialization
details), and then iteratively grows it by adding the best challenger ŷ
of xA to A. Convergence is achieved when PMER returns a solution
ŷ that already belongs to A, which implies that MMERA(X , S)=
MMER(X , S). Algorithm 1 describes the procedure.

By abuse of notation, MMERA(X , S) is viewed in the algorithm
as a procedure returning the optimal value mmerA of PA and the
corresponding optimal solution xA. Similarly, MER(xA,X , S) is
viewed as a procedure returning the optimal value mer xA of PMER

and the corresponding optimal solution ŷ. At the termination of the
algorithm, mmerA corresponds to MMER(X , S), xA is the MMER
solution and ŷ its best challenger.

Proposition 3. Algorithm 1 terminates and returns a minmax ex-
pected regret solution and its best challenger.

Proof. First, it is easy to see that Algorithm 1 always terminates.
Indeed, at every step of the algorithm, if the stopping condition is not
satisfied then a new solution ŷ 6∈A is added to A and a new iteration
is performed. In the worst case, all the solutions of X are added to the
set A and the stopping condition is trivially satisfied.

Algorithm 1: MMER(X , A, S)
Input: X : combinatorial set of feasible solutions;

A ⊆ X : subset of challengers;
S: sample of weighting vectors.

Output: MMER value, MMER solution and its best
challenger for the considered sample

1 ŷ ← null
2 repeat
3 if ŷ 6= null then A← A ∪ {ŷ};
4 (mmerA, xA)←MMERA(X , S) (using PA)
5 (mer xA, ŷ)← MER(xA,X , S) (using PMER)
6 until ŷ ∈ A;
7 return mmerA, xA, ŷ

We now prove the validity of Algorithm 1, i.e. MMERA(X , S)=
MMER(X , S) if ŷ∈A. Assume thatA(X (ifA=X the equality is
trivially true). On the one hand, at any step of the algorithm, we have
(1) mmerA≤ mer xA because MER(xA, A, S)≤MER(xA,X , S).
On the other hand, if ŷ∈A then the constraint t≥ 1

|S|
∑

w∈S [fw(ŷ)−
fw(xA)] is satisfied for t= mmerA, i.e., mmerA≥PER(xA, ŷ, S).
As PER(xA, ŷ, S)=MER(xA,X , S) by definition of ŷ, it implies
that (2) mmerA ≥MER(xA,X , S) = mer xA. By (1) and (2), we
conclude that mmerA = mer xA.

Finally, mmerA minimizes 1
|S|
∑

w∈S bw[fw(ŷ) − fw(x)] for
x ∈ X , thus mmerA minimizes PER(x, ŷ, S) over X . Conse-
quently, mer xA ≤ PER(x, ŷ, S) for all x ∈ X and then mer xA
≤ MER(x,X , S),∀x ∈ X . Thus, by definition of the MMER, we
have mer xA = MMER(X , S) and thereby mmerA = mer xA =
MMER(X , S).

3.4 Clustering the samples
To decrease the computation times between two queries, we propose
to reduce the number of variables and constraints in PA by applying a
clustering method on each sample S drawn from p(w). Let C denote
the set of cluster centers. The idea is to replace the |S| weights by the
|C| centers, the formula for the pairwise expected regret becoming:

PER(x, y, C) =
∑
c∈C

ρc max{0, fc(y)− fc(x)} (6)

where ρc is the weight of the cluster center c∈C and represents the
proportion of weighting vectors of S that are in the cluster of center c.
The formulas for MER(x,X , C) and MMER(X , C) are adapted in
the same way.

3.5 Incremental decision making approach
As detailed in section 2, the MMER computation is used to determine
which query to ask at each step as well as to trigger the stopping
condition. The whole incremental decision making procedure is sum-
marized in Algorithm 2. The setA is heuristically defined as the set of
fw-optimal solutions for w in C (Line 5) but can be defined otherwise
without any impact on the result in proposition 3. The variable mmer
(Line 6) represents the current minmax expected regret value and is
computed using Algorithm 1 by replacing the sample S by the set of
cluster centers C.

4 Experimental results
Algorithm 2 has been implemented in Python using the SciPy, Scikit-
Learn and gurobipy libraries for, respectively, Gaussian sampling,
clustering2 and solving the mixed integer linear programs. The numer-
ical tests have been carried out on 50 randomly generated instances
of the multi-objective knapsack problem. For all tests we used an
Intel(R) Core(TM) i7-4790 CPU with 15GB of RAM.

Multi-objective Knapsack Problem (MKP) This vector op-
timization problem is formulated as max z = Ux subject to∑p

i=1 αixi ≤ γ, where U is an n×pmatrix of general term uki repre-
senting the utility of item i∈{1, . . . , p} w.r.t objective k∈{1, . . . , n},
x=(x1, . . . , xp)

T is a vector of binary decision variables such that
xi=1 if item i is selected and xi=0 otherwise, αi is the weight of

2 We used k-means clustering.

Algorithm 2: Incremental Decision Making
Input: X : combinatorial set of feasible solutions;

p0(w): prior density function.
Output: x∗ : recommended solution.

1 p(w)← p0(w); i← 1
2 repeat
3 S ← sample drawn from p(w)
4 C ← cluster centers of S
5 A← {argmaxx∈X fw(x)|w ∈ C}
6 (mmer, x(i), y(i))← MMER(X , A, C)

7 Ask the DM if x(i) is preferred to y(i)

8 a(i) ← 1 if the answer is yes and 0 otherwise
9 p(w)← p(w|a(i)) (see Algorithm 2 in [7])

10 i← i+ 1

11 until mmer stabilizes
12 return x∗ selected in argminx∈X MER(x,X , C)

item i and γ is the knapsack’s capacity. The set of feasible knapsacks
is X = {x∈ {0, 1}p|

∑p
i=1 αixi ≤ γ}, and the performance vector

z∈Rn associated to a solution x is z=Ux.
To simulate elicitation sessions, we consider the problem

maxx∈X fw(x) where fw(x) =
∑

k wk

∑
i ukixi. The weighting

vector w in W = {w ∈ [0, 1]n :
∑

k wk =1} is initially unknown.
We generated instances of MKP for n= 5 objectives and p= 100
items. Every item i has a positive weight αi uniformly drawn in
{1, . . . , 20}, and γ= 1

2

∑100
k=1 αk. Utilities uki are uniformly drawn

in [0, 1
p
] to make sure that fw(x)∈ [0, 1], ∀x∈X .

Simulation of the DM’s answers In order to simulate the interac-
tions with the DM, for each instance, the hidden weighting vectors w
are uniformly drawn in the canonical basis of Rn (the more vector w
is unbalanced, the worse the initial recommendation). At each query,
the answer is obtained using the response model given in Section 2.2,
i.e., for query i, the answer depends on the sign of z(i)=wT d(i)+ε(i),
where ε(i)∼N (0, σ2). We used different values of σ to evaluate the
tolerance of the approach to wrong answers. We set σ=0 to simulate
a DM that is perfectly reliable in her answers. The strictly positive
values are used to simulate a DM that may be inconsistent in her an-
swers. Setting σ=0.01 led to 16% of wrong answers, while σ=0.02
led to 24% of wrong answers.

Parameter settings in algorithms The prior density in Algo-
rithm 1 is set to N ((10, . . . 10)T , 100I5), where I5 is the identity
matrix 5×5, so that the distribution is rather flat. At each step of
Algorithm 2, a new sample S of 100 weighting vectors is generated;
the vectors w ∈ S are normalized and partitioned into 20 clusters.
This number of clusters has been chosen empirically after preliminary
numerical tests: considering the entire sample or using more than 20
clusters led to higher computation times and did not offer a significant
improvement on the quality of the recommendations. Last but not
least, we stopped the algorithm after 15 queries if the termination
condition was not fulfilled before.

Illustrative example Before coming to the presentation of the
numerical results, let us first illustrate the progress of the elicitation
procedure on the following example: we applied Algorithm 2 on a
randomly generated instance of MKP with 3 objectives, 100 items,
a hidden weighting vector w=(0, 1, 0), and we set σ=0.02, which
led to an error rate of 20%. Figure 1 illustrates the convergence of

Query 0 Query 3 Query 10

Figure 1: Evolution of the samples toward the hidden weight.

the generated samples of weighting vectors (Line 3 of Algorithm 2)
toward the hidden weight during the execution of the algorithm. As
the weighting vectors are normalized, two components are enough to
characterize them. Every graph shows the sample drawn at a given
step of the algorithm.

Analysis of the results We first evaluated the efficiency of Al-
gorithm 2 according to the value of σ. We observed the evolution
of the quality of the recommendation (the minimax expected regret
solution) after every query. The quality of a recommendation x∗ is
defined by the score swh(x

∗)=fwh(x
∗)/fwh(xh), where wh is the

hidden weighting vector and xh is an optimal solution for wh. The
obtained curves are given in Figure 2. We observe that the quality
of the recommendation (measured by the score function swh) is of
course negatively impacted when σ increases. However, the score of
the recommendation at the termination of Algorithm 2 is ≥ 0.98 for
σ∈{0, 0.01}, and ≥0.96 for σ=0.02. Regarding the computation
times, the mean time between two queries over the 50 instances was
around 4 seconds.

We next compared the performances of Algorithm 2 to the perfor-
mance of a deterministic approach that does not take into account the
possible errors in responses [6] (approach based on the systematic
reduction of the parameter space by minimizing the minimax regret
at each step). The aim was to evaluate how much the DM’s inconsis-
tencies in her answers impact the two procedures. In this purpose, we
set σ=0.02. The obtained results are given in the box plots of Figure
3 for Algorithm 2, and of Figure 4 for the deterministic algorithm. In
these figures, the box plots give, for any given question, the score of
the recommendation for every considered instance (the bottom and
top bands of the whiskers are the minimum and maximum scores over
the 50 instances, the bottom and top bands of the boxes are the first
and third quartiles, the band in the box is the median, the dotted band
is the average, and the circles are isolated values). The histogram
gives the number of observed values for every query; the bin i indeed
gives the number of instances for which query i is reached before the
stopping condition is fulfilled.

Figure 2: Mean score vs. queries

Figure 3: Algorithm 2 - Score vs. queries Figure 4: Deterministic algorithm [6] - Score vs. queries

Figures 3 and 4 show the interest of considering our Bayesian elici-
tation procedure in comparison with a deterministic approach. Indeed,
the deterministic approach converges quickly and requires less queries
than Algorithm 2; however, the score of the current recommendation
at every step of the algorithm does not exceed 0.94 for any consid-
ered instance and is ≤0.9 for 75% of the instances. In contrast, for
Algorithm 2, the score of the current recommendation is ≥ 0.95 in
75% of the instances from query 6.

5 Conclusion

We introduced in this paper a Bayesian incremental preference elicita-
tion approach for solving multiobjective combinatorial optimization
problems when the preferences of the decision maker are represented
by an aggregation function whose parameters are initially unknown.
The proposed approach deals with the possibility of inconsistencies
in the decision maker’s answers to pairwise preference queries. Our
approach uses a columns and constraints generation solution method
for the computation of expected regrets. The approach is general and
can be applied to any problem having an efficient mixed integer linear
programming formulation. An interesting research direction would be
to refine the approach in the case of non-linear aggregation functions.
The approach is indeed compatible with such functions provided they
can be linearized (e.g., the linearization of ordered weighted aver-
ages [18]), but the subsequent linear formulations often involve many
additional variables and constraints, thus the need for an optimization.

REFERENCES

[1] J. H. Albert and S. Chib, ‘Bayesian analysis of binary and polychoto-
mous response data’, J. Am. Stat. Assoc., 88(422), 669–679, (1993).

[2] Nawal Benabbou and Patrice Perny, ‘Adaptive elicitation of preferences
under uncertainty in sequential decision making problems’, in IJCAI-17,
pp. 4566–4572, (2017).

[3] Nawal Benabbou and Patrice Perny, ‘Interactive resolution of multiobjec-
tive combinatorial optimization problems by incremental elicitation of
criteria weights’, EURO J. on Decision Proc., 6(3-4), 283–319, (2018).

[4] Nawal Benabbou, Patrice Perny, and Paolo Viappiani, ‘Incremental
elicitation of Choquet capacities for multicriteria choice, ranking and
sorting problems’, Artificial Intelligence, 246, 152–180, (2017).

[5] Christopher M Bishop, Pattern recognition and machine learning,
Springer, 2006.

[6] Nadjet Bourdache and Patrice Perny, ‘Active preference elicitation based
on generalized Gini functions: Application to the multiagent knapsack
problem’, in AAAI 2019, pp. 7741–7748, (2019).

[7] Nadjet Bourdache, Patrice Perny, and Olivier Spanjaard, ‘Incremental
elicitation of rank-dependent aggregation functions based on Bayesian
linear regression’, in IJCAI-19, pp. 2023–2029, (2019).

[8] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans,
‘Constraint-based optimization and utility elicitation using the minimax
decision criterion’, Artif. Intelligence, 170(8-9), 686–713, (2006).

[9] Juergen Branke, Salvatore Corrente, Salvatore Greco, Roman Słowiński,
and Piotr Zielniewicz, ‘Using Choquet integral as preference model
in interactive evolutionary multiobjective optimization’, EJOR, 250(3),
884–901, (2016).

[10] Urszula Chajewska, Daphne Koller, and Ronald Parr, ‘Making rational
decisions using adaptive utility elicitation’, in AAAI-00, pp. 363–369,
(2000).

[11] J. Drummond and C. Boutilier, ‘Preference elicitation and interview
minimization in stable matchings’, in AAAI-14, pp. 645–653, (2014).

[12] Matthias Ehrgott, Multicriteria optimization, Springer Science & Busi-
ness Media, 2005.

[13] Mirco Gelain, Maria Silvia Pini, Francesca Rossi, K Brent Venable, and
Toby Walsh, ‘Elicitation strategies for soft constraint problems with
missing preferences: properties, algorithms and experimental studies’,
Artif. Intelligence, 174(3), 270–294, (2010).

[14] Hugo Gilbert, Olivier Spanjaard, Paolo Viappiani, and Paul Weng, ‘Re-
ducing the number of queries in interactive value iteration’, in ADT-15,
pp. 139–152, (2015).

[15] Shengbo Guo and Scott Sanner, ‘Multiattribute Bayesian preference
elicitation with pairwise comparison queries’, in NIPS-10, pp. 396–403,
(2010).

[16] Greg Hines and Kate Larson, ‘Preference elicitation for risky prospects’,
in AAMAS-10, pp. 889–896, (2010).

[17] Tyler Lu and Craig Boutilier, ‘Robust approximation and incremental
elicitation in voting protocols’, in IJCAI-11, pp. 287–293, (2011).

[18] Włodzimierz Ogryczak and Tomasz Śliwiński, ‘On solving linear pro-
grams with the ordered weighted averaging objective’, EJOR, 148(1),
80–91, (2003).

[19] Patrice Perny, Paolo Viappiani, and Abdellah Boukhatem, ‘Incremental
preference elicitation for decision making under risk with the rank-
dependent utility model’, in UAI-16, pp. 597–606, (2016).

[20] Kevin Regan and Craig Boutilier, ‘Eliciting additive reward functions
for Markov decision processes’, in IJCAI-11, pp. 2159–2164, (2011).

[21] Denis Sauré and Juan Pablo Vielma, ‘Ellipsoidal methods for adaptive
choice-based conjoint analysis’, Oper. Res., 67(2), 315–338, (2019).

[22] Ralph E Steuer, Multiple criteria optimization: theory, computation, and
application, volume 233, Wiley New York, 1986.

[23] Martin A Tanner and Wing Hung Wong, ‘The calculation of posterior
distributions by data augmentation’, J. Am. Stat. Asso., 82(398), 528–
540, (1987).

[24] Olivier Toubia, John R. Hauser, and Duncan I. Simester, ‘Polyhedral
methods for adaptive choice-based conjoint analysis’, Journal of Mar-
keting Research, 41(1), 116–131, (2004).

[25] I. Vendrov, T. Lu, Q. Huang, and C. Boutilier, ‘Gradient-based optimiza-
tion for Bayesian preference elicitation’, in AAAI-20, (2020).

[26] T. Wang and C. Boutilier, ‘Incremental utility elicitation with the mini-
max regret decision criterion’, in IJCAI-03, pp. 309–316, (2003).

[27] P. Weng and B. Zanuttini, ‘Interactive value iteration for Markov decision
processes with unknown rewards’, in IJCAI-13, pp. 2415–2421, (2013).

[28] C. C. White III, A. P. Sage, and S. Dozono, ‘A model of multiattribute
decision making and trade-off weight determination under uncertainty’,
IEEE Trans. on Systems, Man, and Cyb., 14(2), 223–229, (1984).

