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Abstract

In this paper, we advocate the use of setwise contests for ag-
gregating a set of input rankings into an output ranking. We
propose a generalization of the Kemeny rule where one min-
imizes the number of k-wise disagreements instead of pair-
wise disagreements (one counts 1 disagreement each time the
top choice in a subset of alternatives of cardinality at most k
differs between an input ranking and the output ranking). Af-
ter an algorithmic study of this k-wise Kemeny aggregation
problem, we introduce a k-wise counterpart of the majority
graph. It reveals useful to divide the aggregation problem into
several sub-problems. We conclude with numerical tests.

1 Introduction
Rank aggregation aims at producing a single ranking from
a collection of rankings of a fixed set of alternatives. In so-
cial choice theory (e.g., Moulin 1991), where the alterna-
tives are candidates to an election and each ranking repre-
sents the preferences of a voter, aggregation rules are called
Social Welfare Functions (SWFs). Apart from social choice,
rank aggregation has proved useful in many applications, in-
cluding preference learning (Cheng and Hüllermeier 2009;
Clémençon, Korba, and Sibony 2018), collaborative filtering
(Wang et al. 2014), genetic map creation (Jackson, Schnable,
and Aluru 2008), similarity search in databases systems (Fa-
gin, Kumar, and Sivakumar 2003) and design of web search
engines (Altman and Tennenholtz 2008; Dwork et al. 2001).
In the following, we use interchangeably the terms “input
rankings” and “preferences”, “output ranking” and “consen-
sus ranking”, as well as “alternatives” and “‘candidates”.

The well-known Arrow’s impossibility theorem states that
there exists no aggregation rule satisfying a small set of de-
sirable properties (Arrow 1950). In the absense of an “ideal”
rule, various aggregation rules have been proposed and stud-
ied. Following Fishburn’s classification (1977), we can dis-
tinguish between the SWFs for which the output ranking can
be computed from the majority graph alone, those for which
the output ranking can be computed from the weighted ma-
jority graph alone, and all other SWFs1. The majority graph

1Fishburn’s classification actually applies to social choice func-
tions, which prescribe a subset of winning alternatives from a col-
lection of rankings, but the extension to SWFs is straightforward.

is obtained from the input rankings by defining one vertex
per alternative c and by adding an edge from c to c′ if c
is preferred to c′ in a strict majority of input rankings. In
the weighted majority graph, each edge is weighted by the
majority margin. The many SWFs that rely on these graphs
alone take therefore only pairwise comparisons into account
to determine an output ranking. For a compendium of these
SWFs, we refer to the book by Brandt et al. (2016).

The importance of this class of SWFs can be explained
by their connection with the Condorcet consistency prop-
erty, stating: if there is a Condorcet winner (i.e., an alterna-
tive with outgoing edges to every other ones in the majority
graph), then it should be ranked first in the output ranking.
Nevertheless, as shown by Baldiga and Green (2013), the
lack of Condorcet consistency is not necessarily a bad thing,
because this property may come into contradiction with the
objective of maximizing voters’ agreement with the output
ranking. The following example illustrates this point.

Example 1 (Baldiga and Green, 2013). Consider an elec-
tion with 100 voters and 3 candidates c1, c2, c3, where 49
voters have preferences c1 � c2 � c3, 48 have preferences
c3 � c2 � c1 and 3 have preferences c2 � c3 � c1. Can-
didate c2 is the Condorcet winner, but is the top choice of
only 3 voters. In contrast, candidate c1 is in slight minority
against c2 and c3, but c1 is the top choice of 49 voters. This
massive gain in agreement may justify to put c1 instead of c2
in first position of the output ranking.

Following Baldiga and Green (2013), we propose to han-
dle this tension between the pairwise comparisons (lead-
ing to ranking c2 first) and the plurality choice (leading to
ranking c1 first) by using SWFs that take into account not
only pairwise comparisons but setwise contests. More pre-
cisely, given input rankings on a set C of candidates and
k∈{2, . . . , |C|}, the idea is to consider the plurality score of
each candidate c for each subset S⊆C such that 2≤|S|≤k,
where the plurality score of c for S is the number of voters
for which c is the top choice in S. The results of setwise con-
tests for the preferences of Example 1 are given in Table 1
for k=3. Note that the three top rows obviously encode the
same information as the weighted majority graph while the
bottom row makes it possible to detect the tension between
the pairwise comparisons and the plurality choice.



Table 1: Results of setwise contests in Example 1.
set c1 c2 c3

{c1, c2} 49 51 –
{c1, c3} 49 – 51
{c2, c3} – 52 48
{c1, c2, c3} 49 3 48

One can then define a new class of SWFs, those that rely
on the results of setwise contests alone to determine an out-
put ranking. The many works that have been carried out re-
garding voting rules based on the (weighted) majority graph
can be revisited in this broader setting. This line of research
has already been investigated by Lu and Boutilier (2010) and
Baldiga and Green (2013). However, note that both of these
works consider a setting where candidates may become un-
available after voters express their preferences. We do not
make this assumption. We indeed believe that this new class
of SWFs makes sense in the standard setting where the set of
candidates is known and deterministic, as it amounts to gen-
erate an output ranking by examining the choices that are
made by the voters on subsets of candidates of various sizes
(while usually only pairwise choices are considered).

A natural SWF in this class consists in determining an
output ranking that minimizes the number of disagreements
with the results of setwise contests for sets of cardinality
at most k. This is a k-wise generalization of the Kemeny
rule, obtained as a special case for k= 2. We recall that the
Kemeny rule consists in producing a ranking that minimizes
the number of pairwise disagreements (Kemeny 1959).

Example 2. Let us come back to Example 1 and assume that
we use the 3-wise Kemeny rule. Consider the output ranking
r = c1 � c2 � c3. For set S = {c1, c2}, the number of dis-
agreements with the results of setwise contests is 51 because
c2 is the top choice in S for 51 voters (see Table 1) while
it is c1 for r. Similarly, the number of disagreements in-
duced by {c1, c3}, {c2, c3} and {c1, c2, c3} are respectively
51, 48 and 3+48. The total number of disagreements is thus
51+51+48+3+48=201. This is actually the minimum num-
ber of disagreements that can be achieved for these input
rankings, which makes r the 3-wise Kemeny ranking.

The purpose of this paper is to study the k-wise Kemeny
aggregation problem. Section 2 formally defines the prob-
lem and reports on related work. Section 3 is devoted to
some axiomatic considerations of the corresponding voting
rule, and to an algorithmic study of the problem. We then in-
vestigate a k-wise variant of the majority graph in Section 4.
We prove that determining this graph is easy for k = 3 but
becomes NP-hard for k>3, and we show how to use it in a
preprocessing step to speed up the computation of the output
ranking. Numerical tests are presented in Section 5. Due to
lack of space, missing proofs can be found in the long ver-
sion of the paper (Gilbert, Portoleau, and Spanjaard 2019).

2 Preliminaries
Adopting the terminology of social choice theory, we con-
sider an election with a set V of n voters and a set C of m

candidates. Each voter v has a complete and transitive pref-
erence order rv over candidates (also called ranking). The
collection of these rankings defines a preference profile P .

Notations and Definitions
Let us introduce some notations related to rankings. We de-
note byR(C) the set ofm! rankings overC. Given a ranking
r and two candidates c and c′, we write c �r c′ if c is in a
higher position than c′ in r. Given a ranking r and a can-
didate c, rk(c, r) denotes the rank of c in r. For instance,
rk(c, rv) = 1 if c is the preferred candidate of voter v (the
candidate ranked highest in rv). Given a ranking r and a set
S ⊆ C, we define rS as the restriction of r to S and tr(S)
as the top choice (i.e., preferred candidate) in S according to
r. Similarly, given a preference profile P and a set S ⊆ C,
we define PS as the restriction of P to S. Lastly, we denote
by tailk(r) (resp. headk(r)) the subranking compounded
of the k least (resp. most) preferred candidates in r.

We are interested in SWFs which, given a preference pro-
fileP , should return a consensus ranking which yields a suit-
able compromise between the preferences in P . One of the
most well-known SWFs is the Kemeny rule, which selects a
ranking r with minimal Kendall tau distance to P . Denot-
ing by δKT(r, r′) the Kendall tau distance between rankings
r and r′, the distance δKT(r,P) between a ranking r and a
profile P reads as:

δKT(r,P) =
∑
r′∈P

δKT(r, r
′)

where δKT(r, r′) =
∑

{c,c′}⊆C

1tr({c,c′})6=tr′ ({c,c′})

Stated differently, δKT measures the distance between two
rankings by the number of pairwise disagreements between
them. The distance between a ranking and a preference pro-
file is then obtained by summation.

However, the Kendall tau distance only takes into account
pairwise comparisons, which may entail counterintuitive re-
sults as illustrated by Example 1. To address this issue, the
Kendall tau distance can be generalized to take into consid-
eration disagreements on sets of cardinal greater than two.
Given a set S ⊆ C and t ≤ m, we denote by ∆t(S) the
set of subsets of S of cardinal lower than or equal to t, i.e.,
∆t(S) = {S′ ⊆ S s.t. |S′| ≤ t}. When S is not specified, it
is assumed to be C, i.e., ∆t= ∆t(C). For k≥2, the k-wise
Kendall tau distance δkKT between r and r′ is defined by:

δkKT(r, r
′) =

∑
S∈∆k

1tr(S) 6=tr′ (S)

In other words, δkKT measures the distance between two rank-
ings by the number of top-choice disagreements on sets of
cardinal lower than or equal to k.

Note that δkKT has all the properties of a distance: non-
negativity, identity of indiscernibles, symmetry and triangle
inequality. Secondly, as mentioned in the introduction, we
have δ2

KT = δKT. Thirdly and maybe most importantly, we
point out that the distances induced by δkKT(r, r

′) can be com-



puted in O(m3) by using the following formula:

δkKT(r, r
′) =

∑
{c,c′}⊆C

1c�rc′1c′�r′c|∆
k−2(Bc(r) ∩Bc′(r′))|

=
∑

{c,c′}⊆C

1c�rc′1c′�r′c

k−2∑
i=0

(
|Bc(r) ∩Bc′(r′)|

i

)
(1)

where Bc(r) = {x ∈ C s.t. c �r x} is the set of candi-
dates that are ranked below c in r. Let us give some intuition
for this formula. For any pair {c, c′} of candidates such that
c �r c′ and c′ �r′ c, we count the number of sets in ∆k on
which there is a disagreement because the top choice is c for
r while it is c′ for r′. Such sets are of the form S ∪ {c, c′},
where S ∈ ∆k−2(Bc(r)∩Bc′(r′)), otherwise c and c′ would
not be the top choices. Hence the formula.

The distance δkKT induces a new SWF, the k-wise Kemeny
rule, which, given a profile P , returns a ranking r with min-
imal distance δkKT to P , where:

δkKT(r,P) =
∑
r′∈P

δkKT(r, r
′)

Note that this coincides with the rule we used in the intro-
duction, by commutativity of addition:∑

r′∈P

∑
S∈∆k

1tr(S) 6=tr′ (S) =
∑
S∈∆k

∑
r′∈P

1tr(S)6=tr′ (S)

Determining a consensus ranking for this rule defines the
k-wise Kemeny Aggregation Problem (k-KAP for short).

k-WISE KEMENY AGGREGATION PROBLEM
INSTANCE: A profile P with n voters andm candidates.
SOLUTION: A ranking r of the m candidates.
MEASURE: δkKT(r,P) to minimize.

Related Work
Several other variants of the Kemeny rule have been pro-
posed in the literature, either to obtain generalizations able
to deal with partial or weak orders (Dwork et al. 2001;
Zwicker 2018), to penalize more some pairwise disagree-
ments than others (Kumar and Vassilvitskii 2010), or to
account for candidates that may become unavailable after
voters express their preferences (Baldiga and Green 2013;
Lu and Boutilier 2010).

Indeed, despite its popularity, the Kemeny rule has re-
ceived several criticisms. One of them is that the Kendall
tau distance counts equally the disagreements on every pair
of candidates. This property is undesirable in many settings.
For instance, with a web search engine, a disagreement on a
pair of web pages with high positions in the considered rank-
ings should have a higher cost than a disagreement on pairs
of web pages with lower ones. This drawback motivated the
introduction of weighted Kendall tau distances by Kumar
and Vassilvitskii (2010). A more thorough comparison be-
tween our work and theirs can be found in the extended ver-
sion of the paper (Gilbert, Portoleau, and Spanjaard 2019).
Let us illustrate with the following example, that the k-wise

Kendall tau distance is also well suited to penalize more the
disagreements involving alternatives at the top of the input
rankings.
Example 3. Consider rankings r1, r2, r3 defined by c1�r1
c2 �r1 c3, c1 �r2 c3 �r2 c2, and c2 �r3 c1 �r3 c3. We
have δKT(r1, r2) = δKT(r1, r3) = 1 while δ3

KT(r1, r2) = 1 <
2 = δ3

KT(r1, r3) because r1 and r3 disagree on both subsets
{c1, c2} and {c1, c2, c3}. Put another way, δ3

KT(r1, r3) >
δ3
KT(r1, r2) because r1 and r3 disagree on their top-ranked

alternatives whereas r1 and r2 disagree on the alternatives
ranked in the last places.

The two works closest to ours are related to another exten-
sion of the Kemeny rule. This extension considers a setting
in which, besides the fact that voters have preferences over
a set C, the election will in fact occur on a subset S ⊆ C
drawn according to a probability distribution (Baldiga and
Green 2013; Lu and Boutilier 2010). The optimization prob-
lem considered is then to find a consensus ranking r which
minimizes, in expectation, the number of voters’ disagree-
ments with the chosen candidate in S (a voter v disagrees
if trv (S) 6= tr(S)). The differences between the work of
Baldiga and Green (2013) and the one of Lu and Boutilier
(2010) is then twofold. Firstly, while Baldiga and Green
mostly focused on the axiomatic properties of this aggre-
gation procedure, the work of Lu and Boutilier has more of
an algorithmic flavor. Secondly, while Baldiga and Green
mostly study a setting in which the probability P(S) of S is
only dependent on its cardinality (i.e., P(S) is only a func-
tion of |S|), Lu and Boutilier study a setting that can be
viewed as a special case of the former, where each candidate
is absent of S independently of the others with a probability
p (i.e., P(S) = p|C\S|(1 − p)|S|). The Kemeny aggregation
problem can be formulated in both settings, either by defin-
ing P(S) = 0 for |S| ≥ 3, or by defining a probability p that
is “sufficiently high” w.r.t. the size of the instance (Lu and
Boutilier 2010). Lu and Boutilier conjectured that the deter-
mination of a consensus ranking is NP-hard in their setting,
designed an exact method based on mathematical program-
ming, two approximation greedy algorithms and a PTAS.

Our model can be seen as a special case of the model of
Baldiga and Green where the set S is drawn uniformly at
random within the set of subsets of C of cardinal smaller
than or equal to a given constant k ≥ 2. While it cannot be
casted in the specific setting studied by Lu and Boutilier,
our model is closely related and may be used to obtain new
insights on their work.

3 Aggregation with the k-wise Kemeny Rule
In this section, we investigate the axiomatic properties of
the k-wise Kemeny rule, and then we turn to the algorithmic
study of k-KAP.

Axiomatic Properties of the k-wise Kemeny Rule
Several properties of the k-wise Kemeny rule have already
been studied by Baldiga and Green (2013), because their
setting includes the k-wise Kemeny rule as a special case.
Among other things, they showed that the rule is not Con-
dorcet consistent. That is to say, a Condorcet winner may



not be ranked first in any consensus ranking even when one
exists, as illustrated by Example 2.

The authors also show that the k-wise Kemeny rule is neu-
tral, i.e., all candidates are treated equally, and that for k ≥ 3
it is different from any positional method or any method that
uses only the pairwise majority margins (among which is
the standard Kemeny rule). We provide here some additional
properties satisfied by the k-wise Kemeny rule:

• Monotonicity: up-ranking cannot harm a winner; down-
ranking cannot enable a loser to win.

• Unanimity: if all voters rank c before c′, then c is ranked
before c′ in any consensus ranking.

• Reinforcement: let R∗P and R∗P′ denote the sets of con-
sensus rankings for preference profiles P and P ′ respec-
tively. IfR∗P ∩R

∗
P′ 6= ∅ and P ′′ is the profile obtained by

concatenating P and P ′, thenR∗P′′ = R∗P ∩R
∗
P′ .

Besides, the k-wise Kemeny rule does not satisfy Inde-
pendence of irrelevant alternatives, i.e., the relative posi-
tions of two candidates in a consensus ranking can depend
on the presence of other candidates. Let us illustrate this
point with the following example.

Example 4. Considering the preference profile from Exam-
ple 1, the only consensus ranking for δ3

KT is c1�c2�c3. Yet,
without c3 the only consensus ranking would be c2�c1.

Lastly, note that there exists a noise model such that the
k-wise Kemeny rule can be interpreted as a maximum like-
lihood estimator (Conitzer, Rognlie, and Xia 2009). In this
view of voting, one assumes that there exists a “correct”
ranking r, and each vote corresponds to a noisy perception
of this correct ranking. Consider the conditional probabil-
ity measure P onR(C) defined by P(r′|r)∝e−δkKT(r,r′). It is
easy to convince oneself that the k-wise Kemeny rule returns
a ranking r∗ that maximizes P(P |r∗)=

∏
r′∈P P(r′|r∗) and

is thus a maximum likelihood estimate of r.

Computational Complexity of k-KAP
We now turn to the algorithmic study of k-KAP. After pro-
viding a hardness result, we will design an efficient Fixed
Parameter Tractable (FPT) algorithm for parameter m.

While k-KAP is obviously NP-hard for k = 2 as it then
corresponds to determining a consensus ranking w.r.t. the
Kemeny rule, we strengthen this result by showing that it is
also NP-hard for any constant value k≥3. The proof, uses a
reduction from 2-KAP.

Theorem 1. For any constant k ≥ 3, k-KAP is NP-hard,
even if the number of voters equals 4 or if the average range
of candidates equals 2 (where the range of a candidate c is
defined by maxr∈P rk(c, r)−minr∈P rk(c, r) + 1 and the
average is taken over all candidates).

Despite this result, k-KAP is obviously FPT w.r.t. the
number m of candidates, by simply trying the m! rankings
inR(C). We now design a dynamic programming procedure
which significantly improves this time complexity.

Proposition 1. If r∗ is an optimal ranking for k-KAP, then
δkKT(r

∗,P) = dkKT(C), where, for any subset S ⊆ C, dkKT(S)

is defined by the recursive relation:

dkKT(S) = min
c∈S

[dkKT(S \ {c})

+
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

)
] (2)

dkKT(∅) = 0.

Proof. Given S ⊆ C and c ∈ S, let us define Rc(S) as
{r ∈ R(S) s.t. tr(S) = c}. The set ∆k(S) can be par-
titioned into ∆k

c (S) = {S′ ⊆ ∆k(S) s.t. c ∈ S′} and
∆k
c (S) = {S′ ⊆ ∆k(S) s.t. c 6∈ S′}= ∆k(S \ {c}). Given

a preference profile P over C and a ranking r̂∈Rc(S), the
summation defining δkKT(r̂,PS) breaks down as follows:

δkKT(r̂,PS) =
∑
r∈PS

∑
S′∈∆k(S)

1tr̂(S′)6=tr(S′)

= δkKT(r̂S\{c},PS\{c}) +
∑
r∈PS

∑
S′∈∆k

c (S)

1tr̂(S′)6=tr(S′). (3)

Using the same reasoning as in Equation 1 on page 3, the
second summand in Equation 3 can be rewritten as follows:

∑
r∈PS

∑
c′∈S

1c′�rc

k−2∑
i=0

(
|Bc(r̂) ∩Bc′(r)|

i

)
because tr̂(S′) = c for all S′ ∈∆k

c (S). Note that Bc(r̂) =
S\{c} andBc′(r)={c′′∈S s.t. c′�r c′′} ⊆S, thus |Bc(r̂)∩
Bc′(r)|= |S| − rk(c′, r)− 1. Hence, δkKT(r̂,PS) is equal to:

δkKT(r̂S\{c},PS\{c})+
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

)
(4)

Consider now a ranking r∗ ∈ R(S) such that δkKT(r
∗,PS) =

minr∈R(S) δ
k
KT(r,PS). We have:

δkKT(r
∗,PS) = min

c∈S
min

r̂∈Rc(S)
δkKT(r̂,PS)

= min
c∈S

(
( min
r̂∈R(S\{c})

δkKT(r̂,PS\{c}))

+
∑
r∈PS

∑
c′�rc

k−2∑
i=0

(
|S| − rk(c′, r)− 1

i

))
because the second summand in Equation 4 does not depend
on r̂ (it only depends on c, which is the argument of the
first min operator). If one denotes minr∈R(S) δ

k
KT(r,PS) by

dkKT(S), one obtains Equation 2. This concludes the proof.

A candidate c ∈ S that realizes the minimum in Equa-
tion 2 can be ranked in first position in an optimal ranking
for PS . Once dkKT(S) is computed for each S⊆C, a ranking
r∗ achieving the optimal value dkKT(C) can thus be deter-
mined recursively starting from S = C. The complexity of
the induced dynamic programming method is O(2mm2n)
as there are 2m subsets S ⊆ C to consider and each value
dkKT(S) is computed in O(m2n) by Equation 2. The min



operation is indeed performed on m values and the sum∑
c′�rc

∑k−2
i=0

(|S|−rk(c′,r)−1
i

)
is computed incrementally in

O(m), which entails an O(mn) complexity for the second
summand in Equation 2 (the n factor is due to the sum over
all r∈PS). The computation of binomial coefficients

(
p
i

)
for

i ∈ {0, . . . , k − 2} and p ∈ {i, . . . ,m − 2} is performed in
O(mk) in a preliminary step thanks to Pascal’s formula.

4 The k-Wise Majority Digraph
We now propose and investigate a k-wise counterpart of the
pairwise majority digraph, that will be used in a preprocess-
ing procedure for k-KAP.

As stated in the introduction, the pairwise Kemeny rule is
strongly related to the pairwise majority digraph. We denote
by GP the pairwise majority digraph associated to profile P .
We recall that in this digraph, there is one vertex per can-
didate, and there is an arc from candidate c to candidate c′
if a strict majority of voters prefers c to c′. In the weighted
pairwise majority digraph, each arc (c, c′) is weighted by
wP(c, c′) := |{r ∈ P s.t. c �r c′}|−|{r ∈ P s.t. c′ �r c}|.
Example 5. Consider a profile P with 10 voters and 6 can-
didates such that:
– 4 voters have preferences c1 � c2 � c4 � c3 � c5 � c6;
– 4 voters have preferences c1 � c3 � c2 � c4 � c5 � c6;
– 1 voter has preferences c6 � c1 � c2 � c4 � c3 � c5;
– 1 voter has preferences c6 � c1 � c4 � c3 � c2 � c5.
The pairwise majority digraph GP is on the left of Figure 1.

c1

c2c3

c4

c5 c6

c1

c2c3

c4

c5 c6

Figure 1: k-wise majority digraph in Example 5 for k = 2
(left) and k = 3 (right).

From GP , we can define a set of consistent rankings:

Definition 1. Let G be a digraph whose vertices correspond
to the candidates in C. Let B1(G), . . . , Bt(G)(G) be the sub-
sets of C corresponding to the Strongly Connected Compo-
nents (SCCs) of G, and O(G) denote the set of linear orders
<G on {1, . . . , t(G)} such that if there exists an arc (c, c′)
from c∈Bi(G) to c′∈Bj(G) then i<G j. Given <G∈O(G),
we say that a ranking r is consistent with <G if the candi-
dates in Bi are ranked before the ones of Bj when i<G j.

The following result states that, for any <GP∈ O(GP),
there exists a consensus ranking for δKT among the rankings
consistent with <GP .

Theorem 2 (Theorem 16 in reference Charon and Hudry,
2010). Let P be a profile over C and assume that the SCCs
of GP are numbered according to a linear order <GP∈
O(GP). Consider the ranking r∗, consistent with <GP ,
obtained by the concatenation of rankings r∗1 , . . . , r

∗
t(GP)

where δKT(r∗i ,PBi(GP)) = minr∈R(Bi(GP)) δKT(r,PBi(GP)).

We have:
δKT(r

∗,P)= min
r∈R(C)

δKT(r,P)

That is, r∗ is a consensus ranking according to the Kemeny
rule. Furthermore, if O(GP) = {<GP} and wP(c, c′) > 0
for all c ∈ Bi(GP) and c′ ∈ Bj(GP) when i<GP j, then all
consensus rankings are consistent with <GP .

This result does not hold anymore if one uses δkKT (with
k≥3) instead of δKT, as shown by the following example.
Example 6. Let us denote byP the profile of Example 1. The
pairwise majority digraph GP has three SCCs B1(GP) =
{c2},B2(GP) = {c3} andB3(GP) = {c1}. In this example,
O(GP) = {<GP} where 1 <GP 2 <GP 3. The only ranking
consistent with <GP is c2 � c3 � c1 while the only consen-
sus ranking w.r.t. the 3-wise Kemeny rule is c1 � c2 � c3.

In order to adapt Theorem 2 to the k-wise Kemeny rule,
we now introduce the concept of k-wise majority digraph.
Let ∆k

cc′(S) = {S′ ∈ ∆k(S) s.t. {c, c′} ⊆ S′}. If S is not
specified, it is assumed to be C. Given a ranking r, we
denote by ∆k

r (S, c, c′) the set {S′ ∈∆k
cc′(S) s.t. tr(S′) =

c}. Given a profile P , we denote by φkP(S, c, c′) the
value

∑
r∈P |∆k

r (S, c, c′)| and by wkP(S, c, c′) the differ-
ence φkP(S, c, c′)−φkP(S, c′, c). This definition implies that
wkP(S, c′, c) = −wkP(S, c, c′). The value wkP(S, c, c′) is
the net agreement loss that would be incurred by swap-
ping c and c′ in a feasible solution r of k-KAP where
rk(c′, r)=rk(c, r)+1 and S=Bc′(r)∪{c, c′}. If maxS∈∆m

cc′

wkP(S, c, c′)≥0 (resp. minS∈∆m
cc′
wkP(S, c, c′)>0) then, in a

consensus ranking r for δkKT where c and c′ would be consec-
utive, it is possible (resp. necessary) that c �r c′.

The k-wise majority digraph associated to a profileP over
a set C of candidates is the weighted digraph GkP = (V,A),
where V=C and (c, c′)∈A iff:

∃S ∈ ∆m
cc′ s.t. wkP(S, c, c′) > 0.

The weight wkP(c, c′) of this arc is then given by:

wkP(c, c′) := max
S∈∆m

cc′
wkP(S, c, c′).

Note that, if k ≥ 3, we may obtain edges (c, c′) and (c′, c)
both with strictly positive weights (which is impossible in
the pairwise majority digraph). For instance, for the profile
P of Example 5, wkP(c3, c4) = wkP({c2, c3, c4}, c3, c4) = 1
and wkP(c4, c3) = wkP({c3, c4, c5}, c4, c3) = 4. The digraph
G3
P is shown on the right of Figure 1. Besides, for any P ,
G2
P is the pairwise majority digraph as ∆2

cc′(S) = {{c, c′}}
∀S∈∆m

cc′ . Theorem 2 adapts as follows for an arbitrary k:
Theorem 3. Let P be a profile over C and assume that the
SCCs of GkP are numbered according to a linear order<Gk

P
∈

O(GkP). Among the rankings consistent with <Gk
P

, there ex-
ists a consensus ranking w.r.t. the k-wise Kemeny rule. Be-
sides, if O(GkP)={<Gk

P
} and minS∈∆m

cc′
wkP(S, c, c′) > 02

for all c∈Bi(GkP) and c′ ∈Bj(GkP) when i <Gk
P
j, then all

consensus rankings are consistent with <Gk
P

.
2Or, equivalently, maxS∈∆m

cc′
wk

P(S, c
′, c)<0.



B1 = {c1} B2 = {c2} B3 = {c3, c4} B4 = {c5, c6}

Figure 2: The meta-graph of SCCs of G3
P in Example 5.

Example 7. The meta-graph of SCCs of G3
P in Example 5 is

represented in Figure 2. The above result implies that there
exists a consensus ranking among c1 � c2 � c3 � c4 �
c5 � c6, c1 � c2 � c3 � c4 � c6 � c5, c1 � c2 � c4 �
c3 � c5 � c6 and c1 � c2 � c4 � c3 � c6 � c5.

To take advantage of Theorem 3, one could try 1) to index
the SCCs of GkP according to a linear order <Gk

P
∈ O(GkP),

and then 2) to work on each SCC separately, before con-
catenating the obtained rankings. However, for a consen-
sus ranking consistent with <Gk

P
, the relative positions of

candidates in Bi(GkP) depend on the set of candidates in
B>i(GkP) :=Bi+1(GkP)∪ . . .∪Bt(Gk

P)(GkP) (but not on their
order). The influence of B>i(GkP) can be captured in the dy-
namic programming procedure by applying a modified ver-
sion of Equation 2 separately for each subset Bt(Gk

P)(GkP)

downto B1(GkP). Formally, if r∗ is optimal for k-KAP, then:

δkKT(r
∗,P)=

t(Gk
P)∑

i=1

dkKT(Bi(GkP))

where, for any subset S ⊆ Bi(GkP), dkKT(S) is defined by
dkKT(∅) = 0 and (B>i stands for B>i(GkP)):

dkKT(S) = min
c∈S

[dkKT(S\{c})

+
∑

r∈PS∪B>i

∑
c′�rc

k−2∑
i=0

(
|S|+ |B>i| − rk(c′, r)− 1

i

)
]

It amounts to replacing S by S∪B>i in the second summand
of Equation 2 to take into account the existence of a con-
sensus ranking where all the candidates of B>i are ranked
after those of Bi. Let r∗i be a ranking of Bi(GkP) such that
δkKT(r

∗
≥i,PB≥i(Gk

P))=dkKT(Bi(GkP))+. . .+dkKT(Bt(Gk)(GkP)),
where r∗≥i is the ranking obtained by the concatenation of
rankings r∗i , . . . , r

∗
t(Gk) in this order. The ranking r∗≥1 of C

is a consensus ranking w.r.t. the k-wise Kemeny rule. Given
Theorem 3, the k-wise majority digraph thus seems promis-
ing to boost the computation of a consensus ranking. Unfor-
tunately, the following negative result holds.
Theorem 4. Given a profile P and two candidates c and c′,
determining if max

S∈∆m
cc′
wkP(S, c, c′)>0 is NP-hard for k≥4.

Hence, computing GkP from P is NP-hard for k ≥ 4. In
contrast, G3

P can be computed in polynomial time. Indeed,
given a set S⊂C such that {c, c′}⊆S, adding to S an ele-
ment x 6∈S increases φ3

P(S, c, c′) by one for each r∈P such
that c �r c′ and c �r x. Let Pc�c′ := {r ∈ P s.t. c �r c′}.
A set S∗ maximizing w3

P(S, c, c′) is S∗ := {c, c′} ∪ {x ∈
C s.t. | Pc�c′ ∩Pc�x |> | Pc′�c ∩Pc′�x |}.

Note that one can take advantage of the meta-graph of
SCCs to trim the graph GkP if one looks for a consensus
ranking r∗ consistent with a specific order <Gk

P
∈ O(GkP).

It may indeed happen that, for an edge (c, c′), the weight
wkP(c, c′) = wkP(S, c, c′) > 0 corresponds to a set S which
contains candidates that will never be below c in r∗. Con-
versely, the set S may omit candidates that are necessarily
below c in r∗. These constraints can be induced by either
unanimity dominance relations or by <Gk

P
. The following

example illustrates this idea.

Example 8. Let us refine the digraph G3
P previously ob-

tained for the profile P of Example 5. The SCCs are B1 =
{c1}, B2 = {c2}, B3 = {c3, c4} and B4 = {c5, c6} and
O(GkP) = {<Gk

P
}, where 1 <Gk

P
2 <Gk

P
3 <Gk

P
4. A set

maximizing w3
P(S, c3, c4) is S = {c2, c3, c4}. This set con-

tains c2 while it is necessarily above c3 in a consistent rank-
ing. Conversely, candidates c5 and c6 are omitted while they
are necessarily below c3. By taking into account these con-
straints, we obtain that a set maximizing w3

P(S, c3, c4) is
S = {c3, c4, c5, c6}, for which w3

P(S, c3, c4) = −4. Hence,
we can remove the arc (c3, c4) from G3

P . Similarly, it is pos-
sible to show that the arc (c6, c5) can be removed from G3

P .
Thanks to these refinement steps, we can conclude that a
consensus ranking is r∗ = c1 � c2 � c4 � c3 � c5 � c6.

5 Numerical Tests
Our numerical tests3 have three objectives: we evaluate the
computational performance of the dynamic programming
approach of Section 3, we evaluate the impact of parame-
ter k on the set of consensus rankings, and we assess the
efficiency of the preprocessing technique of Section 4.

Generation of preference profiles. The preference pro-
files are generated according to the Mallows model (Mal-
lows 1957), using the Python package PrefLib-Tools (Mat-
tei and Walsh 2013). This model takes two parameters as
input: a reference ranking σ (the mode of the distribution)
and a dispersion parameter φ ∈ (0, 1). Given these inputs,
the probability of generating a ranking r is proportional to
φδKT(r,σ). The more φ tends towards 0 (resp. 1), the more
the preference rankings become correlated and resemble σ
(resp. become equally probable, i.e., we are close to the im-
partial culture assumption). This model enables us to mea-
sure in a simple way how the level of correlation in the input
rankings impacts our results. In all tests, the number n of
voters is set to 50 and the ranking σ is set arbitrarily as the
k-wise Kemeny rule is neutral. For each triple (m, k, φ) con-
sidered, the results are averaged over 50 preference profiles.

Practicability of the dynamic programming approach.
We first evaluate our dynamic programming approach on
instances with different values for m and k. Note that the
computational performance measured here is not impacted
by the level of correlation in the input rankings as it does

3Implementation in C++. All times are CPU seconds on an Intel
Core I7-8700 3.20 GHz processor with 16GB of RAM.



Table 2: Average, max and min wall-clock times in seconds of the dynamic programming approach of Section 3 for varying
values of m and k (Rows 3 to 5). Average number of consensus rankings for increasing values of m and k (Row 6).

m 6 10 14 18
k 2 3 6 2 5 10 2 7 14 2 9 18
Average time <0.01 <0.01 <0.01 0.07 0.08 0.08 2.52 2.54 2.61 70.93 72.26 74.95
Max time <0.01 <0,01 <0,01 0.8 0.08 0.09 2.64 2.60 2.64 71.57 73.57 75.38
Min time <0,01 <0,01 <0,01 0.7 0.07 0.08 2.49 2.49 2.57 70.27 71.91 74.33
|R∗|avg 3.00 1.20 1.05 3.84 1.24 1.10 5.36 2.36 1.16 19.7 4.12 1.47

not change the number of states in dynamic programming
nor the computation time to determine the optimal value in
each state. Hence, we only consider instances generated un-
der the impartial culture assumption, i.e., with φ ≈ 1. Table
2 (Rows 3-5) displays the average, max and min running
times obtained for some representative (m, k) values. As
expected, the running times increase exponentially with m.
Conversely, parameter k seems to have a moderate impact
on the running times. The dynamic programming approach
enables us to solve k-KAP in a time of up to 3 sec. (resp. 76
sec.) for m≤14 (resp. m≤18).

Influence of k on the set of consensus rankings. Second,
we study the impact of k on the set of optimal solutions to
k-KAP. Indeed, one criticism for the Kemeny rule is that
there exists instances for which the set of consensus rank-
ings is compounded of many solutions which are quite dif-
ferent from one another. Thus, we investigate if increasing
k helps in mitigating this issue. For this purpose, we con-
sider the same instances as before and compute the average
number of consensus rankings denoted by |R∗|avg. The re-
sults are displayed in the sixth row of Table 2. Interestingly,
this measure decreases quickly with k. For instance, when
m = 18, |R∗|avg is divided by 5 when k increases from 2
to 9 and is below 2 when k = m. The intuition is that δkKT
becomes more fine-grained as k increases.

Impact of the 3-wise majority graph. Lastly, we study
the impact of the preprocessing method proposed in Sec-
tion 4 for k = 3. This preprocessing uses the k-wise ma-
jority digraph to divide k-KAP into several subproblems
which can be solved separately by dynamic programming.
Hopefully, when voters’ preferences are correlated (i.e., for
“small” φ values), these subproblems become smaller and
more numerous, making the preprocessing more efficient.
The results are shown in Table 3, where the results obtained
without preprocessing are also given in the last column. The
obtained running times are highly dependent on φ. For in-
stance, with m = 18, the average running time for solving
3-KAP is above 1 minute if φ = 0.95 while it is below 1
second if φ≤0.85. This gap is necessarily related to the pre-
processing step, since φ has no impact on the running time
of the dynamic programming approach. To explain this sig-
nificant speed-up, we display in Table 4 the average size of
the largest SCC of the 3-wise majority digraph at the end
of the preprocessing step. Unsurprisingly, this average size
turns out to be correlated with φ: when φ≤ 0.5, the size of

the largest SCC is almost always 1. Hence, the preprocess-
ing step is likely to yield directly a consensus ranking. In
contrast, when φ=0.95, the average size of the largest SCC
is close to m, thus the impact of the preprocessing is low.

Table 3: Average, max and min wall-clock times (in sec-
onds) for the 3-wise Kemeny rule with preprocessing.
m φ 0.5 0.8 0.85 0.9 0.95 w/o

preproc.
Avg time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

6 Max time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Min time <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Avg time 0.03 0.03 0.04 0.07 0.10 0.07

10 Max time 0.03 0.03 0.10 0.15 0.17 0.08
Min time 0.03 0.03 0.03 0.03 0.03 0.07
Avg time 0.09 0.09 0.11 0.94 2.21 2.52

14 Max time 0.09 0.13 0.25 3.14 3.26 2.59
Min time 0.08 0.08 0.09 0.10 0.26 2.49
Avg time 0.20 0.20 0.55 14.87 61.72 71.17

18 Max time 0.31 0.21 8.46 79.87 80.11 71.61
Min time 0.19 0.19 0.19 0.22 6.02 71.02

Table 4: Average size of the largest SCC after preprocessing.
m\φ 0.47 0.81 0.85 0.88 0.95

6 <1.1 1.84 1.88 2.72 3.28
10 <1.1 1.64 3.28 5.32 8.20
14 <1.1 2.68 3.84 9.12 12.91
18 <1.1 2.84 4.27 9.80 17.44

6 Conclusion
In this paper, we advocate using the results of setwise con-
tests between candidates to design social welfare functions
that are less myopic than those only based on pairwise com-
parisons. In this direction, we have studied a k-wise gen-
eralization of the Kemeny rule, and established that deter-
mining a consensus ranking is NP-hard for any k ≥ 3. Af-
ter proposing a dynamic programming procedure, we have
investigated a k-wise variant of the majority graph, from
which we developed a preprocessing step. Computing this
graph is a polynomial time problem for k = 3 but becomes
NP-hard for k ≥ 4. The numerical tests show the practi-
cability of the approach for up to 18 candidates. A natural
research direction is to investigate the complexity of deter-
mining a consensus ranking for δkKT when k = m, because
our hardness result only holds for fixed values of k. Another
avenue to explore is to propose alternative definitions of k-
wise majority graphs that are easier to compute for k > 3.



Finally, other social welfare functions based on the results of
setwise contests are worth investigating in our opinion, both
from the axiomatic and the computational points of view.
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