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Abstract—Over the past few years, high resolution and stealthy
attacks and their variants such as Flush+Reload, Flush+Flush,
Prime+Probe, Spectre and Meltdown have completely exposed
the vulnerabilities in modern computing architectures. Many
effective mitigation techniques against such attacks are also being
proposed that use system’s behavioral parameters at run-time
using Performance Counters (PCs) coupled with machine learning
models. Although PCs, both in hardware and software, have
shown promising results when used in the context of security,
this paper provides experimental evaluation and analysis of the
potential challenges, perils and pitfalls of using these counters in
security.

Keywords—Performance  Counters;  Side-Channel Attacks
(SCAs); Cryptography; Detection; Mitigation; Machine Learning;
Security; Privacy.

I. INTRODUCTION

One of the biggest challenges in modern computing infras-
tructure today is that security is not regarded as a system-wide
issue and, therefore, preventive measures are vulnerability-
specific, limited in scope, and even create new attack surface.
To put things in perspective, the two computing legends of
modern RISC (Reduced-Instruction Set Computing) architec-
ture, David A. Patterson and John H. Hennessy, stated during
their Turing award lecture in 2018 that, “The state of computer
security is embarrassing for all of us in the computing field”
[T]. The primary reason behind these comments is the fact
that, almost everything in modern computing architectures
today —from computational optimizations to storage elements
and interfaces, from end-user applications to the operating
system & hypervisor, and from microarchitecture to underlying
hardware —is leading to the discovery of new attack vectors.
This is a trend getting further momentum, and worse, a
complete attack surface is not known yet. Hardware, which
is often considered as an abstract layer that behaves correctly
—executing instructions and giving a logically correct output,
is leaking critical information as a side effect of software
implementation and execution.

Today, computing systems are going through the trough of
disillusionment related to the prevailing security. The revela-
tions of security and privacy vulnerabilities in microprocessors,
both at software and hardware level, have been appalling.
These vulnerabilities affect almost every processor, across vir-
tually every operating system and architecture. We believe that
the fundamental reason for existence of these vulnerabilities is
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that the evolution of computing architecture under Moore’s
law has been focused almost entirely on the performance
enhancement and optimization over the past many decades.
To this end, the gains are tremendous as many software and
hardware optimization tools and techniques have been pro-
posed to boost performance, such as: hierarchical and shared-
memory architectures, pipelining, out-of-order and speculative
execution, branch prediction, data/instruction de-duplication,
shared libraries, compiler optimizations, use of virtual memory
and use of specialized hardware accelerators etc. Security,
however, has been often an afterthought all along. But the
latest security vulnerabilities, like Spectre and Meltdown along
with a large number of sophisticated and stealthy attacks like
Flush+Reload, Flush+Flush and Prime+Probe, have demon-
strated that security cannot be considered as an afterthought
anymore. These vulnerabilities span across multiple levels,
from execution units to caches, DRAMs (Dynamic Random
Access Memory) and interconnect networks. Thus, security
has earned its position as a first-order design constraint today
alongside performance, area and power consumption.
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Figure 1. An abstract representation of the full computing stack, covering
both software and hardware levels, in a modern general-purpose processor.

Current research in computing architectures is focused on
threat-based design . For instance, novel architectures like
Intel’s SGX [3]l, ARM’s TrustZone [4], Bastion [5], AMD’s
SEV [6] and IBM’s 4758 Secure co-processor are a
few attempts by major vendors to incorporate security in
the design-level specifications. A common characteristic in



these novel architectural designs, however, is that they are
incremental designs built on top of general-purpose processor
architectures, and expand them with new security features.
Thus, they use more or less the same levels of privilege across
various layers of computing stack as illustrated in Figure

While it makes perfect sense that a sustainable security
can only be achieved by removing the vulnerabilities at the
design-time through the proposition of safe software and
hardware, researchers are far from achieving that goal. Recent
research work suggests that no architecture, new and old
alike, is completely immune to information leakage attacks
that target all levels (OS, hypervisor, ISA (Instruction Set
Architecture), microarchitecture, physical etc.) of computing
stacks as shown in Figure[I] In this backdrop, many attempts
have been made in recent years to detect, and subsequently
mitigate, information leakage attacks using various approaches.
The scope of this work, however, is limited to the security
solutions against access-driven cache side- and covert-channel
attacks. Cache side-Channel attacks are strong cryptanalysis
techniques that break cryptographic algorithms by targeting
their implementations [J].

Some of the most promising approaches against side-
channel information leakage in contemporary architectures
to-date are using either hardware and software performance
counters or machine learning or a combination of both. Though
these approaches have shown promising results in detecting
and mitigating a large number of attacks that exploit existing
vulnerabilities, the attack vector is still expanding and these
approaches need to scale every time a new vulnerability is
discovered. Moreover, they rely heavily on the authenticity,
determinism, run-time overheads, precision and availability
of information that is leveraged through hardware/software
performance counters. We believe that, With sophisticated
and stealthy attacks appearing everyday, it is just a matter
of time that these defenses will not be very effective and
the attacker will find a way around such defenses by either
manipulating the PCs’ information or completely by-passing
them undetected.

In this work, we analyze the effectiveness of hardware
and software performance counters in security against side-
channel attacks. We provide analysis on their benefits, lim-
itations, perils and pitfalls when used to perform detection
and mitigation. We validate our analysis with practical results
against a large attack vector. The rest of this paper is organized
as following. Section [[I] provides related work on the use of
HPCsv& SPCs in security. Section |l1I| elaborates various PCs
and their monitoring tools in existing architectures. Section
discusses the core limitations of these counters along with
experimental data. Section |V| concludes this paper.

II. RELATED WORK

This section provides the state-of-the-art on various secu-
rity mechanisms being proposed in recent research work that
utilise PCs to perform real-time detection and mitigation of
side-channel attacks. Side-channel attack detection techniques
are divided into two basic categories; signature-based and
anomaly-based detection. Some techniques use a combined
approach as well, i.e., signature + anomaly-based detection.
Some of the recent research works belonging to the category of
signature-based detection are reported in [9], [10], [11], [12],
[13]. Similarly, in the category of anomaly-based detection

techniques, many recent research works are reported in [14],
(150, [16], (17, [18].

Allaf et al. [9] propose a mechanism to inspect
Prime+Probe and Flush+Reload attacks targeting AES cryp-
tosystem. Their mechanism uses ML models and HPCs. The
proposed mechanism shows good accuracy under isolated
conditions, where the attacker and victim are the only load
on the system. Another work proposed by Mushtaq et al
[10] targets stealthier CSCAs (Cache Side Channel Attacks)
like Flush+Flush (F+F). Authors proposed NIGHTs-WATCH
to detect cache-based side-channel attacks at run-time using
ML models coupled with different hardware performance
counters that are used to profile victim cryptosystems like
RSA (Rivest Shamir and Adleman) and AES (Advanced
Encyption Standard) under attack and no-attack scenarios.
NIGHTs-WATCH being a run-time detection mechanism is
evaluated using a variety of metrics like detection accuracy,
speed and overhead. Evaluation of the proposed detection
technique shows that it can achieve a high detection accuracy
with little performance overhead for both attacks even under
noisy conditions. Later, this work was extended by Mushtaq et
al. [12] to include Prime+Probe and other variant attacks under
both RSA and AES crypto-systems using the same approach.
Their experimental results show consistency for Flush+Flush
attack on different implementations of AES as well. Another
technique named as WHISPER [8] uses multiple machine
learning models in an Ensemble fashion to detect SCAs at
runtime using behavioral data of concurrent processes, that are
collected through hardware and software performance counters
(HPCs & SPCs). WHISPER presents experimental evaluation
against Flush+Reload, Flush+Flush, Prime+Probe, Spectre and
Meltdown attacks and reports high detection accuracy and low
False Positives & False Negatives.

Some of the signature-based detection techniques do not
rely on Machine Learning to learn attack signatures. Rather
they use thresholds of particular PCs to determine if an
attack is in place. One of these works presented in [16],
utilizes the values of cache miss rates and page faults of
processes to detect an attack. Payer et al. in [16] proposed
an attack detection framework HexPADS, which can detect
cache-based side-channel attacks along with Rowhammer [[19]
and CAIN [20] attacks. HexPADS reads status of different
performance counters like total executed instructions, total
LLC (Last Level Cache) accesses and total LLC misses. It
also uses kernel information of processes like total page faults.
The proposed detection mechanism basically continuously
monitors the cache accesses and misses of all processes. If
cache miss rate of a process is found to be higher than 70%,
i.e., greater than 70% of cache accesses results into misses,
and the same process has a low number of page-faults, the
process is reported an attack.

Bazm et al. [21] relied on Intel Cache Monitoring Tech-
nology (CMT) [22]] and hardware performance counters and
used Gaussian Anomaly detection [23]] for detection of cache
based side-channel attacks at the level of VMs in IAAS
(Infrastructure as a Service) Cloud platforms. Briongos ef al.
[14]] proposed CacheShield to detect cache side channel attacks
on legacy software (victim applications) by monitoring hard-
ware performance events during their execution. The proposed
method is implemented at user level and does not require
any help from the OS/hypervisor and would be applicable in



cloud environments. As indicated by the authors, this effort
is motivated by two main problems of the other detection
mechanisms: high detection performance overheads for VMs
and requirement of monitoring of both attacker and victim at
the same time.

Multiple mitigation techniques have also been proposed
against cache-based side-channel attacks in the last decade.
These techniques can be categorized into logical & physical
isolation techniques, noise-based techniques, scheduler-based
techniques and constant time techniques (referring to different
cache levels in the cache hierarchy). For instance, logical
physical isolation techniques include Cache Coloring [24],
CloudRadar [25]], STEALTHMEM [26], NewCache [27] and
Hardware Partitioning [28]]; noise-based techniques include
fuzzy times [29|], bystander workloads [30]; and scheduler-
based techniques include obfuscation [30]] and minimum times-
lice [31]]. Most of these detection and mitigation techniques
rely on the low-level behavioral information of the system
during execution that is being leveraged for a high-level
interpretation and usage through PCs. In Sections |I1I| and
this paper discusses key benefits and challenges associated
with such use of PCs.

III. PERFORMANCE COUNTERS AND THEIR USE IN
SECURITY

Performance counters, both software and hardware, have
been available in modern processors for more than a decade
now with a primary objective to measure the performance of
the software when it’s being written.

Software Performance Counters (SPCs) are bits of code
that monitor, count, or measure events in software, which allow
to see patterns from a high-level view. They are registered
with the operating system during installation of the software,
allowing anyone with the proper permissions to view them.
Performance counters can help measure key parts of the soft-
ware by monitoring the code paths being taken by the software
during execution. Like all software, the reliability of SPCs
depends on the quality of code and environmental factors. In
addition, virtualization in modern computing systems can skew
the measurements of processor related counters not because
of bad code, but due to how threads are scheduled between
the virtual machine, the hypervisor, and the hardware. Almost
all operating systems support SPCs such as; page faults,
major page faults, minor page faults and invalid page faults.
The SPCs are not architecture specific events, but specific to
operating systems.

Hardware Performance Counters (HPCs) are special pur-
pose registers built in the microarchitecture of modern pro-
cessors. HPCs are available as hardware registers that monitor
certain events that take place at the CPU level, like the number
of cycles and instructions that a program has executed, its
associated cache misses and hits, number of accesses to off-
chip memory, total number of CPU cycles, number of retired
instructions, branch predictions, among several other things.
These HPCs are both fixed and programmable in nature. Fixed
HPCs are used to measure only specific native events and they
cannot measure any other types of event. Programmable HPCs,
however, can be programmed to monitor many different events.

Almost all operating systems provide tools to monitor
SPCs. There are many high-level libraries and APIs that
can be used to configure and read HPCs as well such as:

PerfMon [32], OProfile [33], Perf [34], Perftool [35], Intel
Vtune Analyzer [36] and PAPI [37] etc. The research work
in security reported so far in the state-of-the-art in Section
uses these libraries to access performance counters.

The events that can be tracked with these software and
hardware performance counters are usually simple ones, but
combined in the right way, they can provide extremely useful
insights of a program’s behavior and, therefore, constitute a
valuable tool for run-time analysis. This is the primary motiva-
tion behind their recent use in security domain, particularly in
the run-time detection and mitigation against various side- and
covert-channel attacks that target the execution or the imple-
mentation of security-sensitive applications like cryptosystems.
Section [[I] details most of such research works.

As an illustrative example of what kind of useful informa-
tion can be retrieved using performance counters, we consider
the case of Prime+Probe cache-based side-channel attack [38]],
which is a last level cache-based cross-core attack. Like most
of such attacks, as shown in Figure [2| this is a three-phase
attack in which the attacker fills the cache line(s) with its
own content at first, as shown in part (a). This is called
the Prime phase. In the second phase, usually a wait phase,
the attacker lets the victim program to execute and access
whichever memory locations the victim intends to access as
shown in part (b). In the third phase, called the Probe phase,
attacker accesses the same cache line(s) again, only to find out
which particular memory addresses have been touched upon
by the victim program. Since there is a significant difference
in the amount of time taken to process an instruction if it is
supplied to the CPU from cache (i.e., a cache hit) compared
to when it is not found in the cache (i.e., a cache miss) and
therefore being fetched from main memory.
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Figure 2. Working principal of Prime+Probe Cache Side-Channel Attack.
Here, AAS refers to the Attacker Address Space, whereas VAS refers to the
Victim Address Space.

For a computing system under Prime+Probe attack, a care-
ful analysis of the number of total CPU cycles, combined with
the cache misses and hits by using performance counters, can
reveal a lot of useful information about the system’s run-time
behavior under attack. Thus, it can be used to subsequently
protect the system as well as shown in many recent research
works (Section [II).

IV. CHALLENGES IN USING PERFORMANCE COUNTERS
FOR SECURITY

Although performance counters, both SPCs and HPCs,
have shown promising results when used in the context of
security, in this paper, we intend to warn the readers/users



about the potential challenges, perils and pitfalls of using these
counters in security based on our experiments. Information
leakage attacks are becoming stealthy and sophisticated over
time. Moreover, they target all layers in computing stack, from
logical to physical layers. It is only a matter of time that
these attacks will find a way to either bypass such detection
and mitigation mechanisms that are based on performance
counters or find a way to fool their measurements. In this
section, we provide some experimental evidence and analysis
to support this argument. Table [I] lists the attacks against
which we have analyzed the robustness of various performance
counters. We have run these attacks alone as well as in various
combinations and under variable system load conditions on
Intel’s x86 architecture to determine whether the information
reported by the performance counters is still useful from
security perspective. We have experimented with a large set of
performance counters with their application scope all layers of
computing stack. We then shortlisted only the most relevant
counters, as shown in Table with respect to the attacks
mentioned in Table [T for further analysis.

TABLE 1. List of Cache-based SCAs that are used as use-cases for the
analysis of performance counters on Intel’s core i7 machine.

# | Cache SCAs Attack’s Target

1 | Flush+Reload AES & RSA Cryptosystem
2 | Flush+Flush AES & RSA Cryptosystem
3 | Prime+Probe AES & RSA Cryptosystem
4 | Spectre Speculative Execution

5 | Meltdown Out-of-Order Execution

TABLE II. Selected performance counters related to cache-based SCAs
mentioned in Tablem

Scope of | Performance Counter Counter ID
Counter
Data Cache Misses L1-DCM
L1 Caches Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM
Instruction Cache | L2-ICA
Accesses
L2 Caches Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM
Instruction Cache | L3-ICA
L3-Caches Accesses
Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM
Total CPU Cycles TOT_CYC
System-wide Branch Miss-Predictigns BR_MSP
Total Branch Instructions TBI
Page Faults PF

In the following, we provide insights on the discrete
challenges that any security mechanism would face while
using performance counters. Our analysis is based on extensive
experiments that we have performed with a set of PCs being
used in existing state-of-the-art security mechanisms and under
a large attack vector comprising of most recent side- and
covert-channel attacks as shown in Table [}

A. Discernible Information

The PCs allow leveraging a lot of interesting information
for high level visualisation and usage in real-time that cannot
be observed otherwise. However, our experiments show that
their ability to reveal such information gets limited very
quickly. For instance, Figures [3HJ| illustrate the measured
results on the count of L1 data cache misses that were obtained
by running various attack (shown in red) and no attack (shown
in green) scenarios. Figure [3| shows the L1 data cache misses
for P+P attack, while Figure E] shows the same feature for F+F
attack. These two measurements show that, although the PC
provides distinguishable information in case of P+P attack, the
information is not easily discernible in case of F+F attack due
to overlapping behavior despite the same experimental settings.
Thus, stand alone, the same PC does not help determining
whether a system is under attack or not in case of F+F attack
(Figure [). The situation escalates rather quickly if multiple
attacks are running simultaneously, as shown in Figure [3]
where we performed experiments with six attacks running in
parallel. As illustrated in Figure [5] the information collected
on L1 data cache misses is no more discernible and limits the
ability of any detection or mitigation mechanism to report an
attack scenario based on PC’s data alone. Therefore, despite
their availability and ability to leverage low-level execution
information in real-time, the PCs may not always be helpful
in extraction of useful information.

B. Non-deterministic Behavior

Non-determinism is another issue with PCs. Non-
determinism refers to a situation where two identical runs
of the same program with exactly the same inputs may not
produce the same results of monitored events. For applications
that are time- and security-critical, determinism is an essential
property. However, our experiments show that PCs produce
deterministic results only in a strictly controlled environment,
which is not always possible to maintain. Deterministic results
of PCs also depend on the measuring tools. Authors in [39]
report that non-determinism varies the measurements of PCs
from 1 — 10%. Non-determinism is more an issue of HPCs
compared to SPCs. Only few HPCs can produce deterministic
results like retired instruction when measurements are taken
with good tools that can remove sources of contamination from
HPCs measurements. Most potentially deterministic events
on Intel x86 are affected by the hardware interrupt count
[39]. Many important hardware events, such as the ones
which measure cache performance and execution cycle counts,
are not deterministic on modern out-of-order machines. This
severely limits the usefulness of PCs in situations where exact
deterministic behavior is necessary. Our experiments show that
some of the major sources of non-determinism are linked to
the operating system’s activities, context switching between
concurrently running processes, hardware interrupts, perfor-
mance overhead of measurements and the precision of the
measuring tools. Hardware counters like cache accesses, total
execution cycles are non-deterministic on modern out-of-order
processors. Therefore, to use HPCs for security applications,
one needs to find deterministic HPCs from available counters.
In order to avoid false positive and false negatives from the
defense mechanisms in security, the sources of contamination
must be removed or limited to make the tools reliable.
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Figure 3. Experimental results measured through performance counters on
the effect of P+P attack on L1 data cache misses
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Figure 4. Experimental results measured through performance counters on
the effect of F+F attack on L1 data cache misses.
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Figure 5. Experimental results measured through performance counters on
the effect of multiple attacks running simultaneously on L1 data cache
misses.

C. Multiplexing Issues

Although there are hundreds of logical PCs available in
modern computing systems to measure various aspects of
system’s behavior at run-time, physically, there is a limited
number of counters that are used to measure and leverage
low-level information. Multiplexing allows more counters to
be used simultaneously than are physically supported by the
hardware. With multiplexing, the physical counters are time-
sliced, and the counts are estimated from the measurements. In
order to increase the degree of confidence in attack detection
and mitigation, many recent techniques use multiplexing of
features. In our experiments, we observed that multiplexing can
lead to many issues. A naive use of multiplexing could lead to
erroneous results in the measurements of PCs that would not be
detected by the user. Such errors in measurement occur when
the sampling time for these PCs in insufficient to permit the

estimated counter values to converge to their expected values.
Authors in [40] have also reported similar issues. In such
cases, sometimes the PCs do not update their measurement
and keep reporting the last sampled/collected data. Another
issue with the accuracy of measurements done by multiplexed
PCs. Due to lack of sampling granularity under a time-sliced
multiplexing model, sometimes the PCs lack accuracy even
though they measure and report the events. Such inaccurate or
imprecise measurement generate a lot of false positives and
negatives by the security mechanisms using multiplexed PCs.
Thus, based on our experiments, it is highly recommended to
carefully select the minimum number of PCs as features and
avoid multiplexing as much as possible. Authors in [40] also
mention potential sources of inaccuracy in counter measure-
ments. They point out issues such as the extra instructions and
system calls required to access counters, and indirect effects
like the pollution of caches due to instrumentation code, but
they do not present any experimental data.

D. Performance Overhead

One of the key challenges faced by PC-based security
mechanisms is the cost of their sampling/measurement at run-
time. The overhead comes from collecting data of PCs during
their start and stop and reading of data. The PCs’ interface
necessarily introduce overhead in the form of extra instruc-
tions, including system calls, and the interfaces cause cache
pollution that can change the cache and memory behavior
of the monitored application. The cost of processing counter
overflow interrupts can be a significant source of overhead
in sampling-based profiling. A lack of hardware support for
precisely identifying an event’s address may result in incorrect
attribution of events to instruction addresses on modern super-
scalar, out-of-order processors, thereby making profiling data
inaccurate. The performance overhead issue can only be dealt
with at the design level of measuring tools in order to keep
their run-time overhead and memory footprint as small as
possible. Moreover, hardware support for interrupt handling
and profiling should be used if possible. Performance overhead
can be linked to two distinct usage models of the PCs, namely;
counting and sampling. The performance overhead of counting
usage model comprises of costs associated with starting and
stopping of a PC and reading its values. Whereas, the overhead
of sampling usage model comprises of the frequency of
sampling or sampling granularity. Though the overhead varies
on different platforms and under different measuring tools, it is
still a major limitation in the use of PCs in real-time detection
and mitigation tools and techniques. Authors in [41] and [42]]
have reported overheads for various computing architectures.

V. CONCLUSIONS

High resolution & stealthy attacks have completely ex-
posed the vulnerabilities in modern computing architectures
in recent years. Many effective mitigation techniques against
such attacks are being proposed that use Performance Counters
coupled with machine learning models. In this work, we an-
alyze the effectiveness of hardware and software performance
counters in security against side-channel attacks. We provide
analysis on their benefits, limitations, perils and pitfalls when
used to perform detection and mitigation. We validate our
analysis with practical results against a large attack vector.
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