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INTRODUCTION

Fluorescence microscopy is an imaging technique that allows the investigation of living cells and their organelles. However, due to light diffraction, structures smaller than half the emission wavelength (typically, around 250 nm) cannot be resolved. As many entities of biological interest have a size smaller than such a barrier, it is therefore fundamental to consider approaches which are able to provide a super-resolved version of the acquired data. Techniques such as Single Molecule Localization Microscopy (SMLM) [START_REF] Sage | Quantitative evaluation of software packages for singlemolecule localization microscopy[END_REF] and STimulated Emission Depletion (STED) [START_REF] Hell | Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[END_REF] can achieve nanometric spatial resolution at the cost of low temporal resolution and need of special (often costly) equipment. On the other side, Structured Illumination Microscopy (SIM) [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF] has fast acqui-sition rates but relatively low spatial acquisition.

To overcome these limitations, different super-resolution approaches taking advantage of the independent stochastic temporal fluctuations of standard fluorescent dyes were considered during the last decade. These methods take as an input a temporal stack of images acquired by common microscopes and produce a super-resolved image on a finer grid. In Super-resolution Optical Fluctuation Imaging (SOFI) [START_REF] Dertinger | Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[END_REF], for instance, fluctuations are exploited by mapping the acquired image data into the covariance domain. While SOFI can drastically improve the temporal resolution of the acquired images, its spatial resolution is still limited in comparison to SMLM and STED. Better results can be achieved by Super-Resolution Radial Fluctuations (SRRF) [START_REF] Gustafsson | Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[END_REF] microscopy, where a degree of local symmetry is computed for each frame. Recently, a SPARsity-based super-resolution COrrelation Microscopy (SPARCOM) [START_REF] Solomon | SPARCOM: Sparsity based super-resolution correlation microscopy[END_REF] approach has been proposed to exploit the lack of correlation between different emitters as well as the sparse distribution of the fluorescent molecules via the use of a sparsity-promoting 1 -type regularization of the emitters' autocovariance.

In the same spirit as SPARCOM, we propose a method for COvariance-based 0 super-Resolution Microscopy with intensity Estimation (COL0RME) where signal sparsity is enforced in the covariance domain. Differently from SPAR-COM, we use in our work an 0 -type penalization instead of the 1 norm of the signal temporal variance. Furthermore, a joint estimation of the noise variance is performed for a more precise modeling. Our approach further incorporates a second step which allows for both signal intensity and constant background estimation, in order to deal with realistic experimental conditions. The retrieval of real image intensity information is particularly relevant for biological interpretation. To the best of our knowledge, COL0RME is the only superresolution method exploiting temporal fluctuations which is capable of retrieving this information. Simulated and experimental results show that COL0RME performs well in terms of molecule localization and can retrieve accurate intensity information.

COL0RME: FORMULATION

Inverse problem formulation

Let Y t ∈ R M ×M be the image frame acquired at time t ∈ {1, . . . , T }, with T > 1 and X t ∈ R L×L , with L = qM , the desired high-resolution image defined on a q-times finer grid, with q ∈ N. The discrete model describing the acquisition process at frame t is given by:

Y t = M q (H(X t )) + B + N t (1) 
where M q : R L×L → R M ×M is a down-sampling operator averaging every q consecutive pixels in both dimensions, H : R L×L → R L×L is a convolution operator defined by the PSF of the optical imaging system, B models the spatially and temporally constant background (due to out-of-focus fluorescent molecules) and N t denotes electronic noise, which is modeled here as a matrix of independent and identically distributed (i.i.d.) Gaussian elements, with constant variance s ∈ R + . We further assume that the molecules are located at the center of each pixel and that there is no displacement of the specimen during the imaging period.

In vectorized form the model (1) reads:

y t = Ψx t + b + n t (2) 
where now Ψ ∈ R M 2 ×L 2 is the matrix representing the composition M q •H and lower-case letters imply the column-wise vectorization of the corresponding matrices in [START_REF] Sage | Quantitative evaluation of software packages for singlemolecule localization microscopy[END_REF]. Given the matrix Ψ describing the acquisition process and the frame y t , the task thus consists in computing a super-resolved image x from the many y t acquisitions and, if possible, in estimating b and s. In order to exploit the statistical behaviour of the fluorescent emitters we reformulate the model in the covariance domain in the next section.

Sparse regularization in the covariance domain

We exploit temporal and spatial independence of the fluorescent emitters by computing spatial statistics. This idea was previously exploited in [START_REF] Dertinger | Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[END_REF] and was shown to significantly reduce the full width at half maximum (FWHM) of the PSF. In particular, the use of second-order statistics corresponds to a reduction factor √ 2. We consider the frames y t as T realizations of a random variable y whose covariance matrix is defined as:

R y = E y {(y -E y {y})(y -E y {y}) } (3) 
where E y {•} denotes the expected value computed w.r.t. to the unknown law of y. We approximate R y by its sample average:

R y ≈ 1 T -1 T t=1 (y t -y)(y t -y)
where y = 1 T T t=1 y t is the empirical temporal mean. From ( 2) and (3) we thus have:

R y = ΨR x Ψ + R n (4)
where

R x ∈ R L 2 ×L 2 and R n ∈ R M 2 ×M 2
are the covariance matrices of x t and n t . As the background is spatio-temporally constant, the covariance matrix of b is zero. Recalling that the emitters are uncorrelated by assumption, we deduce that R x is diagonal. We thus set r x := diag(R x ). Furthermore, by the i.i.d. assumption on n t , we have that R n = sI M 2 , where s ∈ R + and I M 2 is the identity matrix in R M 2 ×M 2

. Equation (4) can thus be re-written as:

r y = (Ψ Ψ)r x + sv I
where denotes the column-wise Kronecker product, r y is the column-wise vectorization of R y and v I = vec(I M 2 ). In order to estimate r x and the variance s and promote sparsity on r x , we introduce the non-convex 0 -type CEL0 regularizing penalty proposed in [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] and consider the following minimization problem:

arg min rx≥0,s≥0 1 2 r y -(Ψ Ψ)r x -sv I 2 2 + Φ CEL0 (r x ; λ), (5) 
where λ > 0 a positive regularisation parameter and the CEL0 penalty Φ CEL0 (•; λ) is defined by [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] 

Φ CEL0 (r x ; λ) = L 2 i=1 λ-ai 2 2 |(r x ) i | - √ 2λ ai 2 1 {|(rx)i|≤ √ 2λ a i } ,
with a i = (Ψ Ψ) i being the i-th column of Ψ Ψ.

The functional in ( 5) is continuous and non-convex, but has the same minimizers as the corresponding 2 -0 problem. Compared to SPARCOM [START_REF] Solomon | SPARCOM: Sparsity based super-resolution correlation microscopy[END_REF], solutions of (5) are sparser. Moreover, the estimation of s is expected to improve upon the quality of the estimation.

Intensity and background estimation

Solving (5) provides an estimation of r x from which we deduce the support of x denoted by Ω x = {i :

x i = 0} ⊂ 1, . . . , L 2 as Ω rx = Ω x .
We then estimate the intensity of x only on its support, and at the same time the spatially constant background b = b1 M 2 , b ≥ 0, by solving arg min

x∈R |Ωx| + , b≥0 1 2 y -Ψ Ω x -b1 M 2 2 2 + µ ∇ Ω x 2 2 ( 6 
)
where the data term models the presence of Gaussian noise, µ > 0 is a regularization parameter, Ψ Ω ∈ R M 2 ×|Ωx| is a matrix whose i-th column is extracted from Ψ for index i ∈ Ω x and the regularization term is the squared norm of the discrete gradient restricted to Ω x , i.e.:

∇ Ω x 2 2 := 1 2 i∈Ωx j∈N (i)∩Ωx (x i -x j ) 2 ,
where N (i) denotes the 8-pixel neighbourhood of i ∈ Ω x .

ALGORITHMIC IMPLEMENTATION

We use alternating minimization to solve (5) (see Algorithm 1). For the estimation of r x , we follow [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF] and use the iteratively reweighted 1 algorithm (IRL1). A good initialization r x 0 is the 1 -regularized solution. An explicit expression for s can be obtained from the (unconstrained) optimality condition. This estimate is then projected onto the set of positive solutions in a standard way. For solving [START_REF] Solomon | SPARCOM: Sparsity based super-resolution correlation microscopy[END_REF] we use again alternating minimization (see Algorithm 2) and solve each subproblem by a standard quadratic programming (QP) algorithm. Here only an initialization for the constant background value is required: a good choice for it is the median of y. For both algorithms, we consider stopping criteria based on the relative difference between consecutive iterates and on a maximum number of iterations.

Algorithm 1 COL0RME: Support estimation -1st step

Require: ry ∈ R M 4 , rx 0 ∈ R L 2 , s 0 ∈ R+, λ > 0 repeat compute weights ω r k x i ∈ ∂ΦCEL0(r k x ; λ) rx k+1 = arg min rx∈R L 2 + 1 2 ry -(Ψ Ψ)rx -s k v I 2 2 +λ L 2 i=1 ω i r k x |(rx)i| s k+1 = arg min s∈R + 1 2 ry -(Ψ Ψ)r k+1 x -sv I 2 2
until convergence return Ωx, s Algorithm 2 COL0RME: Intensity estimation -2nd step

Require: yt ∈ R M 2 , Ωx, b 0 , µ > 0 repeat x k+1 = arg min x∈R |Ωx| + 1 2 y -Ψ Ω -b k 1 M 2 2 2 + µ ∇Ωx 2 2 b k+1 = arg min b∈R + 1 2 y -Ψ Ω x k+1 -b1 M 2 2 2 until convergence return x, b

RESULTS AND DISCUSSION

Simulated data

We start by applying COL0RME to images of tubular structures simulating standard microscope acquisitions with standard fluorescent dyes. The spatial pattern is taken from the MT0 microtubules training dataset uploaded for the SMLM 2016 1 , see Fig. 1b. Intensities are obtained by using the SOFI simulation tool [START_REF] Girsault | SOFI simulation tool: A software package for simulating and testing super-resolution optical fluctuation imaging[END_REF]. Namely, we simulate temporal fluctuations and create videos of T = 100 and T = 700 frames at a frame rate of 100 frames per second (fps). The 1 http://bigwww.epfl.ch/smlm/datasets/index.html simulation parameters are set as follows: 20ms for on-state average lifetime, 40ms for off-state average lifetime and 20s for average time untill bleaching. The emitter density is equal to 10.7 emitters/pixel/frame, while the FWHM of the PSF is approximately 229nm. We create two different noisy datasets in order to evaluate the results of COL0RME and to compare them with the ones obtained by SRRF [START_REF] Gustafsson | Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations[END_REF] and SPARCOM [START_REF] Solomon | SPARCOM: Sparsity based super-resolution correlation microscopy[END_REF], which, similarly, also exploit the temporal fluctuations of molecules. For the first dataset, we generate on average 1000 photons/frame per emitting molecule and b * = 100 photons/frame per pixel to simulate the out-offocus molecules, which we consider as background (BG). For the second dataset (which is more realistic), we set these values to 500 and b * = 2500, respectively. For both datasets we add Gaussian noise of 20dB to simulate the presence of electronic noise.

As we know the ground truth positions of the emitters, we can evaluate the localization precision of each method in terms of the Jaccard index, a quantity in the range [0, 1] computed as the ratio between correct detections (up to some tolerance δ > 0) and the sum of correct detections, false positives and false negatives. Table 1 reports the average Jaccard index (δ = 40nm) for 20 noise realizations. Note that, in this table, for both SRRF and SPARCOM the reported results have been obtained after a thresholding step to eliminate the many false positives in the reconstructed support, while COL0RME does not require any post-processing and achieves precise localization even in hard experimental conditions. In Fig. 1 we report the final reconstructions before thresholding showing that COL0RME better preserves the real structure of the tubulin. This is a different feature from SRRF whose reconstruction is overall visually more pleasant, but which creates artifacts as it cannot separate close-by filaments. COL0RME exhibits a more accurate reconstruction than SPARCOM whose result has many false positives around the tubulin. Thanks to the intensity estimation step, COL0RME is also able to estimate the brightness values which correspond to real signal intensities. The peak signal-to-noise ratio (PSNR) values w.r.t. to the ground truth intensity image and the estimated BG value b are provided in Table 2. We remark that the SRRF and SPARCOM do not actually estimate real signal intensities. Consequently, we had to adapt the range of their reconstructions according to the range of the ground truth image for the line profile graph in Fig. 1f.

Experimental data

COL0RME can also be applied for high-density acquisitions obtained by SMLM techniques. Even though in SMLM the molecules do not have a blinking behaviour, but rather a onto-off transition, we can consider as blinking the temporal behaviour of one pixel in high density videos with many molecules per pixel. We compared the methods COL0RME and SRRF on a patch extracted from a real dataset from the SMLM challenge 2013. frames and a FWHM of 351.8 nm. In Fig. 2 we observe that SRRF preserves better the broad structure of the specimen, while COL0RME better separates very close microtubules and does not create any background artifacts.

CONCLUSIONS

We proposed a super-resolution method named COL0RME, well suited for live-cell imaging and which can be easily applied to images obtained by common microscopes and conventional dyes. COL0RME takes advantage of the independent stochastic fluctuations of the fluorescent molecules and by solving a non-convex optimization problem in the covariance domain localizes the fluorophores with high precision. Differently from other super-resolution methods (SRRF, SPARCOM), COL0RME also includes an intensity estimation step, which is a valuable piece of information for biological analysis. We showed that COL0RME outperforms competing methods in terms of localization precision on both simulated and real data, and further computes an estimate of noise statistics and background information. 
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 12 Fig. 1: Results for the simulated 'High Background' dataset, with T = 700 before PP: (a) temporal average of the acquired stack (4× zoom), (b) ground truth, (c) COL0RME, (d) SRRF, (e) SPARCOM, (f) intensity profiles (SRRF and SPARCOM with adapted range) a b c
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Table 1 :

 1 The acquired video has T = 500 Jaccard index values with tolerance δ = 40nm for the different datasets. The results obtained by SRRF and SPARCOM are subject to a post-processing (PP) step to remove false positives.

				Low BG	High BG
		Method	T	100 700 100 700
		COL0RME (No PP) 0.51 0.66 0.28 0.51
		SRRF (PP)		0.5	0.5 0.47 0.47
		SPARCOM (PP)	0.32 0.39 0.17 0.31
	T	100	700		100	700
	PSNR 26.6	29.21		23.31	28.37
	b	92.3	102		2435	2454

Low BG, b * = 100 High BG, b * = 2500

Table 2 :

 2 COL0RME PSNR values (in dB) and estimated back-

ground b for the four datasets (average over 20 noise realizations).
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