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ABSTRACT

Super-resolution light microscopy overcomes the physical
barriers due to light diffraction, allowing the observation of
otherwise indistinguishable subcellular entities. However,
the specific acquisition conditions required by state-of-the-art
super-resolution methods to achieve adequate spatio-temporal
resolution are often very demanding. Exploiting molecules
fluctuations allows good spatio-temporal resolution live-cell
imaging by means of common microscopes and conven-
tional fluorescent dyes. In this work, we present the method
COL0RME for COvariance-based `0 super-Resolution Mi-
croscopy with intensity Estimation. It codifies the assumption
of sparse distribution of the fluorescent molecules as well as
the temporal and spatial independence between emitters via
a non-convex optimization problem formulated in the covari-
ance domain. In order to deal with real data, the proposed ap-
proach also estimates background and noise statistics. It also
includes a final estimation step where intensity information is
retrieved, which is valuable for biological interpretation and
future applications to super-resolution imaging.

Index Terms— Super-Resolution, Sparse Non-Convex
Optimization, Fluorescence microscopy, SOFI, SRRF.

1. INTRODUCTION

Fluorescence microscopy is an imaging technique that allows
the investigation of living cells and their organelles. How-
ever, due to light diffraction, structures smaller than half the
emission wavelength (typically, around 250 nm) cannot be
resolved. As many entities of biological interest have a size
smaller than such a barrier, it is therefore fundamental to con-
sider approaches which are able to provide a super-resolved
version of the acquired data. Techniques such as Single
Molecule Localization Microscopy (SMLM) [1] and STimu-
lated Emission Depletion (STED) [2] can achieve nanometric
spatial resolution at the cost of low temporal resolution and
need of special (often costly) equipment. On the other side,
Structured Illumination Microscopy (SIM) [3] has fast acqui-

sition rates but relatively low spatial acquisition.

To overcome these limitations, different super-resolution
approaches taking advantage of the independent stochas-
tic temporal fluctuations of standard fluorescent dyes were
considered during the last decade. These methods take as
an input a temporal stack of images acquired by common
microscopes and produce a super-resolved image on a finer
grid. In Super-resolution Optical Fluctuation Imaging (SOFI)
[4], for instance, fluctuations are exploited by mapping the
acquired image data into the covariance domain. While
SOFI can drastically improve the temporal resolution of the
acquired images, its spatial resolution is still limited in com-
parison to SMLM and STED. Better results can be achieved
by Super-Resolution Radial Fluctuations (SRRF) [5] mi-
croscopy, where a degree of local symmetry is computed for
each frame. Recently, a SPARsity-based super-resolution
COrrelation Microscopy (SPARCOM) [6] approach has been
proposed to exploit the lack of correlation between different
emitters as well as the sparse distribution of the fluorescent
molecules via the use of a sparsity-promoting `1-type regu-
larization of the emitters’ autocovariance.

In the same spirit as SPARCOM, we propose a method
for COvariance-based `0 super-Resolution Microscopy with
intensity Estimation (COL0RME) where signal sparsity is en-
forced in the covariance domain. Differently from SPAR-
COM, we use in our work an `0-type penalization instead of
the `1 norm of the signal temporal variance. Furthermore, a
joint estimation of the noise variance is performed for a more
precise modeling. Our approach further incorporates a sec-
ond step which allows for both signal intensity and constant
background estimation, in order to deal with realistic exper-
imental conditions. The retrieval of real image intensity in-
formation is particularly relevant for biological interpretation.
To the best of our knowledge, COL0RME is the only super-
resolution method exploiting temporal fluctuations which is
capable of retrieving this information. Simulated and exper-
imental results show that COL0RME performs well in terms
of molecule localization and can retrieve accurate intensity
information.



2. COL0RME: FORMULATION

2.1. Inverse problem formulation

Let Yt ∈ RM×M be the image frame acquired at time t ∈
{1, . . . , T}, with T > 1 and Xt ∈ RL×L, with L = qM , the
desired high-resolution image defined on a q-times finer grid,
with q ∈ N. The discrete model describing the acquisition
process at frame t is given by:

Yt = Mq(H(Xt)) + B + Nt (1)

where Mq : RL×L → RM×M is a down-sampling opera-
tor averaging every q consecutive pixels in both dimensions,
H : RL×L → RL×L is a convolution operator defined by the
PSF of the optical imaging system, B models the spatially
and temporally constant background (due to out-of-focus flu-
orescent molecules) and Nt denotes electronic noise, which
is modeled here as a matrix of independent and identically
distributed (i.i.d.) Gaussian elements, with constant variance
s ∈ R+. We further assume that the molecules are located at
the center of each pixel and that there is no displacement of
the specimen during the imaging period.

In vectorized form the model (1) reads:

yt = Ψxt + b + nt (2)

where now Ψ ∈ RM2×L2

is the matrix representing the com-
position Mq◦H and lower-case letters imply the column-wise
vectorization of the corresponding matrices in (1). Given the
matrix Ψ describing the acquisition process and the frame yt,
the task thus consists in computing a super-resolved image x
from the many yt acquisitions and, if possible, in estimating
b and s. In order to exploit the statistical behaviour of the flu-
orescent emitters we reformulate the model in the covariance
domain in the next section.

2.2. Sparse regularization in the covariance domain

We exploit temporal and spatial independence of the fluores-
cent emitters by computing spatial statistics. This idea was
previously exploited in [4] and was shown to significantly re-
duce the full width at half maximum (FWHM) of the PSF. In
particular, the use of second-order statistics corresponds to a
reduction factor

√
2.

We consider the frames yt as T realizations of a random
variable y whose covariance matrix is defined as:

Ry = Ey{(y − Ey{y})(y − Ey{y})ᵀ} (3)

where Ey{·} denotes the expected value computed w.r.t. to
the unknown law of y. We approximate Ry by its sample
average:

Ry ≈ 1
T−1

∑T
t=1(yt − y)(yt − y)ᵀ

where y = 1
T

∑T
t=1 yt is the empirical temporal mean. From

(2) and (3) we thus have:

Ry = ΨRxΨᵀ + Rn (4)

where Rx ∈ RL2×L2

and Rn ∈ RM2×M2

are the covariance
matrices of xt and nt. As the background is spatio-temporally
constant, the covariance matrix of b is zero. Recalling that the
emitters are uncorrelated by assumption, we deduce that Rx

is diagonal. We thus set rx := diag(Rx). Furthermore, by
the i.i.d. assumption on nt, we have that Rn = sIM2 , where
s ∈ R+ and IM2 is the identity matrix in RM2×M2

. Equation
(4) can thus be re-written as:

ry = (Ψ�Ψ)rx + svI

where � denotes the column-wise Kronecker product, ry is
the column-wise vectorization of Ry and vI = vec(IM2).
In order to estimate rx and the variance s and promote spar-
sity on rx, we introduce the non-convex `0 -type CEL0 reg-
ularizing penalty proposed in [7] and consider the following
minimization problem:

arg min
rx≥0,s≥0

1
2‖ry − (Ψ�Ψ)rx − svI‖22 + ΦCEL0(rx;λ), (5)

where λ > 0 a positive regularisation parameter and the
CEL0 penalty ΦCEL0(·;λ) is defined by [7]

ΦCEL0(rx;λ) =
L2∑
i=1

λ−‖ai‖
2

2

(
|(rx)i| −

√
2λ
‖ai‖

)2

1{|(rx)i|≤
√

2λ
‖ai‖
},

with ai = (Ψ�Ψ)i being the i-th column of Ψ�Ψ.
The functional in (5) is continuous and non-convex,

but has the same minimizers as the corresponding `2 − `0
problem. Compared to SPARCOM [6], solutions of (5) are
sparser. Moreover, the estimation of s is expected to improve
upon the quality of the estimation.

2.3. Intensity and background estimation

Solving (5) provides an estimation of rx from which we
deduce the support of x denoted by Ωx = {i : xi 6= 0} ⊂{

1, . . . , L2
}

as Ωrx = Ωx. We then estimate the intensity
of x only on its support, and at the same time the spatially
constant background b = b1M2 , b ≥ 0, by solving

arg min
x∈R|Ωx|

+ , b≥0

1
2‖y −ΨΩx− b1M2‖22 + µ‖∇Ωx‖22 (6)

where the data term models the presence of Gaussian noise,
µ > 0 is a regularization parameter, ΨΩ ∈ RM2×|Ωx| is a ma-
trix whose i-th column is extracted from Ψ for index i ∈ Ωx

and the regularization term is the squared norm of the discrete
gradient restricted to Ωx, i.e.:

‖∇Ωx‖22 := 1
2

∑
i∈Ωx

∑
j∈N (i)∩Ωx

(xi − xj)2,

where N (i) denotes the 8-pixel neighbourhood of i ∈ Ωx.



3. ALGORITHMIC IMPLEMENTATION

We use alternating minimization to solve (5) (see Algorithm
1). For the estimation of rx, we follow [8] and use the itera-
tively reweighted `1 algorithm (IRL1). A good initialization
rx

0 is the `1- regularized solution. An explicit expression for
s can be obtained from the (unconstrained) optimality condi-
tion. This estimate is then projected onto the set of positive
solutions in a standard way. For solving (6) we use again
alternating minimization (see Algorithm 2) and solve each
subproblem by a standard quadratic programming (QP) algo-
rithm. Here only an initialization for the constant background
value is required: a good choice for it is the median of y.
For both algorithms, we consider stopping criteria based on
the relative difference between consecutive iterates and on a
maximum number of iterations.

Algorithm 1 COL0RME: Support estimation - 1st step

Require: ry ∈ RM4

, rx
0 ∈ RL2

, s0 ∈ R+, λ > 0
repeat

compute weights ωrkx
i ∈ ∂ΦCEL0(r

k
x;λ)

rx
k+1 = arg min

rx∈RL2
+

1
2
‖ry − (Ψ�Ψ)rx − skvI‖22

+λ
L2∑
i=1

ωi
rkx |(rx)i|

sk+1 = arg min
s∈R+

1
2
‖ry − (Ψ�Ψ)rk+1

x − svI‖22

until convergence
return Ωx, s

Algorithm 2 COL0RME: Intensity estimation - 2nd step

Require: yt ∈ RM2

,Ωx, b
0, µ > 0

repeat
xk+1 = arg min

x∈R|Ωx|
+

1
2
‖y −ΨΩx− bk1M2‖22 + µ‖∇Ωx‖22

bk+1 = arg min
b∈R+

1
2
‖y −ΨΩxk+1 − b1M2‖22

until convergence
return x, b

4. RESULTS AND DISCUSSION

4.1. Simulated data

We start by applying COL0RME to images of tubular struc-
tures simulating standard microscope acquisitions with stan-
dard fluorescent dyes. The spatial pattern is taken from the
MT0 microtubules training dataset uploaded for the SMLM
20161, see Fig. 1b. Intensities are obtained by using the
SOFI simulation tool [9]. Namely, we simulate temporal
fluctuations and create videos of T = 100 and T = 700
frames at a frame rate of 100 frames per second (fps). The

1http://bigwww.epfl.ch/smlm/datasets/index.html

simulation parameters are set as follows: 20ms for on-state
average lifetime, 40ms for off-state average lifetime and 20s
for average time untill bleaching. The emitter density is
equal to 10.7 emitters/pixel/frame, while the FWHM of the
PSF is approximately 229nm. We create two different noisy
datasets in order to evaluate the results of COL0RME and
to compare them with the ones obtained by SRRF[5] and
SPARCOM[6], which, similarly, also exploit the temporal
fluctuations of molecules. For the first dataset, we generate
on average 1000 photons/frame per emitting molecule and
b∗ = 100 photons/frame per pixel to simulate the out-of-
focus molecules, which we consider as background (BG).
For the second dataset (which is more realistic), we set these
values to 500 and b∗ = 2500, respectively. For both datasets
we add Gaussian noise of 20dB to simulate the presence of
electronic noise.

As we know the ground truth positions of the emitters,
we can evaluate the localization precision of each method in
terms of the Jaccard index, a quantity in the range [0, 1] com-
puted as the ratio between correct detections (up to some tol-
erance δ > 0) and the sum of correct detections, false posi-
tives and false negatives. Table 1 reports the average Jaccard
index (δ = 40nm) for 20 noise realizations. Note that, in this
table, for both SRRF and SPARCOM the reported results have
been obtained after a thresholding step to eliminate the many
false positives in the reconstructed support, while COL0RME
does not require any post-processing and achieves precise lo-
calization even in hard experimental conditions. In Fig. 1 we
report the final reconstructions before thresholding showing
that COL0RME better preserves the real structure of the tubu-
lin. This is a different feature from SRRF whose reconstruc-
tion is overall visually more pleasant, but which creates arti-
facts as it cannot separate close-by filaments. COL0RME ex-
hibits a more accurate reconstruction than SPARCOM whose
result has many false positives around the tubulin. Thanks
to the intensity estimation step, COL0RME is also able to
estimate the brightness values which correspond to real sig-
nal intensities. The peak signal-to-noise ratio (PSNR) values
w.r.t. to the ground truth intensity image and the estimated
BG value b are provided in Table 2. We remark that the SRRF
and SPARCOM do not actually estimate real signal intensi-
ties. Consequently, we had to adapt the range of their recon-
structions according to the range of the ground truth image
for the line profile graph in Fig. 1f.

4.2. Experimental data

COL0RME can also be applied for high-density acquisitions
obtained by SMLM techniques. Even though in SMLM the
molecules do not have a blinking behaviour, but rather a on-
to-off transition, we can consider as blinking the temporal
behaviour of one pixel in high density videos with many
molecules per pixel. We compared the methods COL0RME
and SRRF on a patch extracted from a real dataset from the
SMLM challenge 2013. The acquired video has T = 500

http://bigwww.epfl.ch/smlm/datasets/index.html


Low BG High BG

Method
T

100 700 100 700

COL0RME (No PP) 0.51 0.66 0.28 0.51
SRRF (PP) 0.5 0.5 0.47 0.47
SPARCOM (PP) 0.32 0.39 0.17 0.31

Table 1: Jaccard index values with tolerance δ = 40nm for the
different datasets. The results obtained by SRRF and SPARCOM
are subject to a post-processing (PP) step to remove false positives.

Low BG, b∗ = 100 High BG, b∗ = 2500
T 100 700 100 700
PSNR 26.6 29.21 23.31 28.37
b 92.3 102 2435 2454

Table 2: COL0RME PSNR values (in dB) and estimated back-
ground b for the four datasets (average over 20 noise realizations).

a

a

b

b

c

c

d

d
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Fig. 1: Results for the simulated ’High Background’ dataset, with
T = 700 before PP: (a) temporal average of the acquired stack (4×
zoom), (b) ground truth, (c) COL0RME, (d) SRRF, (e) SPARCOM,
(f) intensity profiles (SRRF and SPARCOM with adapted range)

a b c

Fig. 2: Results on high-density SMLM data: (a) summation of the
acquired stack (4× zoom), (b) COL0RME, (c) SRRF

frames and a FWHM of 351.8 nm. In Fig. 2 we observe that
SRRF preserves better the broad structure of the specimen,
while COL0RME better separates very close microtubules
and does not create any background artifacts.

5. CONCLUSIONS

We proposed a super-resolution method named COL0RME,
well suited for live-cell imaging and which can be easily

applied to images obtained by common microscopes and
conventional dyes. COL0RME takes advantage of the inde-
pendent stochastic fluctuations of the fluorescent molecules
and by solving a non-convex optimization problem in the
covariance domain localizes the fluorophores with high preci-
sion. Differently from other super-resolution methods (SRRF,
SPARCOM), COL0RME also includes an intensity estima-
tion step, which is a valuable piece of information for bio-
logical analysis. We showed that COL0RME outperforms
competing methods in terms of localization precision on both
simulated and real data, and further computes an estimate of
noise statistics and background information.
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