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EXISTENCE OF A TRAVELING WAVE SOLUTION IN A FREE

INTERFACE PROBLEM WITH FRACTIONAL ORDER KINETICS

CLAUDE-MICHEL BRAUNER, ROBERT ROUSSARIE, PEIPEI SHANG, LINWAN ZHANG

Abstract. In this paper we consider a system of two reaction-diffusion equations that models
diffusional-thermal combustion with stepwise ignition-temperature kinetics and fractional reac-
tion order 0 < α < 1. We turn the free interface problem into a scalar free boundary problem
coupled with an integral equation. The main intermediary step is to reduce the scalar problem
to the study of a non-C1 vector field in dimension 2. The latter is treated by qualitative topo-
logical methods based on the Poincaré-Bendixson Theorem. The phase portrait is determined
and the existence of a stable manifold at the origin is proved. A significant result is that the
settling time to reach the origin is finite, meaning that the trailing interface is finite in contrast
to the case α = 1, but in accordance with α = 0. Finally, the integro-differential system is
solved via a fixed-point method.

1. Introduction and Main Results

A flame spreading through a motionless gas may be described by a system of two parabol-
ic nonlinear equations for the normalized temperature, T , and the concentration of deficient
reactant, Y . This system, in non-dimensional form, reads:{

Tt = ∆T +W (T, Y ),

Yt = Λ∆Y −W (T, Y ),
(1.1)

where Λ (the ratio of mass diffusivity and thermal diffusivity) is the inverse of the Lewis number
and W (T, Y ) is the reaction rate.

In this paper, the reaction rate is assumed to be of stepwise ignition type, that is, W (T, Y ) ≡ 0
when the normalized temperature T is below the ignition temperature θ ∈ (0, 1), and W (T, Y )
depends only on the concentration Y when the temperature is above θ. The recent renewed
interest in stepwise ignition temperature kinetics is due to its applicability to the studies of
overall effective chemical kinetics of certain reactive mixtures (see Brailovsky, Gordon, Kagan
and Sivashinsky [8] and references therein).

In [8, Section 2], two classes of stepwise kinetics are considered.

(i) Zero-order stepwise temperature kinetics with reaction rate given by

W0(T, Y ) =

{
1, if T > θ and Y > 0,

0, if T < θ and/or Y = 0.
(1.2)

(ii) First-order stepwise temperature kinetics with reaction rate given by

W1(T, Y ) =

{
Y, if T > θ,

0, if T < θ,
(1.3)
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or, equivalently, W1(T, Y ) = Y H(T − θ) where H is the Heaviside function.

It was shown in [8] that problem (1.1) is equivalent to a free interface problem in both
cases. However, the resulting free interface problems for these two cases are very different.
To clarify this difference, it is convenient to consider problem (1.1) in a two-dimensional strip
R× (−`/2, `/2); the spatial coordinates are denoted by (x, y), t > 0 is the time.

First, in the case of the zero-order kinetics (1.2), there are two free interfaces: the ignition
interface x = f(t, y), also called the flame front, defined by

T (t, f(t, y), y) = θ, (1.4)

and the trailing interface x = g(t, y), g(t, y) > f(t, y), defined by

Y (t, g(t, y), y) = 0. (1.5)

Then, the system for (T, Y ) reads as follows
Tt = ∆T, Yt = Λ∆Y, x < f(t, y),

Tt = ∆T + 1, Yt = Λ∆Y − 1, f(t, y) < x < g(t, y),

Tt = ∆T, Y (t, x, y) = 0, x > g(t, y).

(1.6)

The functions T and Y and their normal derivatives are continuous across the ignition and
trailing free interfaces. As x→ ±∞, the following holds:

T (t,−∞, y) = 0, Y (t,−∞, y) = T (t,+∞, y) = 1. (1.7)

Second, in the case of first-order stepwise kinetics, the system reads:{
Tt = ∆T, Yt = Λ∆Y, x < f(t, y),

Tt = ∆T + Y, Yt = Λ∆Y − Y, x > f(t, y).
(1.8)

Therefore, only the ignition interface is involved, at which T and Y and their normal derivatives
are continuous. As x→ ±∞,

T (t,−∞, y) = Y (t,+∞, y) = 0, Y (t,−∞, y) = T (t,+∞, y) = 1. (1.9)

Such drastic difference in qualitative properties of traveling front solution for zero- and first-
order reaction models raises a natural question: why two free interfaces are generated in the
case of zero-order stepwise kinetics (1.2) and just one in first-order kinetics (1.3). We aim to
understand the role of the reaction rate in the process; to this end, we consider the gamut
of intermediate combustion systems when the order of the reaction (which we will denote by
α) is between 0 and 1. It is important to note that this question is interesting not only from
mathematical viewpoint but also from perspective of applications in combustion. Indeed, as
evident from experimental observation, the overall reaction order can change quite substantially
with the equivalence ratio (i.e. the ratio of fuel and oxidizer in the mixture) as well as pressure.
For example, in the not too extreme case of hydrogen-air flame with equivalence ratio 3, the
overall reaction rate of α = 1 at pressure 20 atm drops to α = 0.3 at 50 atm (see [20, p. 280]).

The main goal of this paper is to understand the role of the reaction order 0 < α < 1
on qualitative properties of planar traveling fronts for free interface problems as well as their
connection with the limiting systems associated with the cases α = 0 and α = 1. Mathematically,
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we fill the gap between the zero-order and first-order kinetics. Mimicking (1.3), we define an
“α-order reaction rate” for 0 < α < 1:

Wα(T, Y ) = Y αH(T − θ). (1.10)

At least formally, we state that Wα(T, Y ) → W0(T, Y ) when α tends to 0+, and W1(T, Y )
obviously is retrieved as α→ 1−.

To facilitate this study, we limit ourselves to a special class of solutions, namely, one-dimensional
(planar) traveling wave solutions (u, v) of the free interface problem which travel at a constant
negative velocity −c; c > 0 is to be determined. In the moving frame coordinate, ξ = x+ ct, the
ignition interface is fixed at ξ = 0, taking advantage of the translation invariance. The trailing
front is at an unknown position, ξ = R, 0 < R < +∞.

In the case of zero-order kinetics, we recall that the one-dimensional free interface problem
for (c,R, u(ξ), v(ξ)) in the moving frame coordinate reads:

uξξ − cuξ = 0, Λvξξ − cvξ = 0, ξ < 0,

uξξ − cuξ = −1, Λvξξ − cvξ = 1, 0 < ξ < R,

uξξ − cuξ = 0, v = 0, ξ > R.

(1.11)

The functions u and v are continuously differentiable on the real line such that, according to
(1.7), u(−∞) = 0, v(−∞) = 1 and u(+∞) = 1. At the interfaces, u(0) = θ and v(R) = 0,
respectively. It is readily seen that u(ξ) = 1 for ξ > R; hence, uξ(R) = vξ(R) = 0. In this
respect, the trailing interface is a degenerate free boundary in the sense of [10] (in contrast
to the ignition interface), which creates further difficulty in the stability analysis (see [9], [1]).
Naturally, solving (1.11) is an elementary exercise; it happens that c = R is the unique strictly
positive solution of the transcendental equation

ec
2

=
1

1− c2θ
, 0 < θ < 1. (1.12)

(Note that c is independent of Λ; see Subsection 8.2 below).
For the first-order kinetics, the system for the triplet (c, u(ξ), v(ξ)) reads:{

uξξ − cuξ = 0, Λvξξ − cvξ = 0, ξ < 0,

uξξ − cuξ = −v, Λvξξ − cvξ = v, ξ > 0.
(1.13)

The functions u and v are continuously differentiable, such that u(−∞) = 0, v(−∞) = 1 and
u(+∞) = 1, v(+∞) = 0. At the ignition interface, u(0) = θ. This time, the speed c is given
explicitly by the formula:

c =

(
θ

1− θ
+ Λ

(
θ

1− θ

)2
)− 1

2

, 0 < θ < 1, Λ > 0. (1.14)

Here, there is no trailing interfaceR. More specifically, the trailing interface is such thatR = +∞
(see [6]).

In the case of a “α-order kinetic” (1.10), the main difficulty arises from the non-Lipschitz
nonlinearity Wα. Similar issues have recently been addressed in the literature, e.g. a non-
Lipschitz modification of the classical Michaelis-Menten law in enzyme kinetics in the analysis of
healthy immune system dynamics from the perspective of Finite-Time Stability (FTS) (see [23]).
In this regard, the theory of FTS of continuous, but non-Lipschitz systems has been part of
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numerous papers particularly associated with optimal control (see, e.g., [3], [22]). It is to be
seen that the free interface R may also be viewed as a finite time.

In this paper, we prove the following result:

Theorem 1.1. Let 0 < α < 1, 0 < θ < 1, Λ > 0 be fixed. There exist c > 0 and 0 < R < +∞
such that the free interface problem

Tt = ∆T, Yt = Λ∆Y, x < f(t, y),

Tt = ∆T + Y α, Yt = Λ∆Y − Y α, f(t, y) < x < g(t, y),

Tt = ∆T, Y (t, x, y) = 0, x > g(t, y),

(1.15)

with (1.4), (1.5) and (1.7), admits a one-dimensional traveling wave solution (c,R, u(ξ), v(ξ)),
ξ = x+ ct, which verifies the free interface problem

uξξ − cuξ = 0, ξ < 0,

Λvξξ − cvξ = 0, ξ < 0,

uξξ − cuξ = −vα, 0 < ξ < R,

Λvξξ − cvξ = vα, 0 < ξ < R,

uξξ − cuξ = 0, ξ > R,

v = 0, ξ > R.

(1.16)

The functions u and v are continuously differentiable on the real line such that

u(−∞) = 0, v(−∞) = 1, u(+∞) = 1. (1.17)

At the ignition and trailing interfaces, respectively, placed at ξ = 0 and ξ = R, it holds

u(0) = θ, v(R) = vξ(R) = 0. (1.18)

Moreover, denoting by Rα the position of the trailing interface at fixed α, we have:

(i) 0 < Rα < +∞, 0 < α < 1;
(ii) as α→ 1, Rα → +∞;

(iii) as α→ 0, Rα → R = c, solution of (1.12).

As is seen, the most significant result is that R is finite for 0 6 α < 1. As a consequence,
the “cut-off” exponent for the existence of a finite trailing interface is α = 1 (see [6] for a
comprehensive study of the case α = 1 and also the case of a n-order reaction rate where n is
an integer greater than 1).

The paper is organized as follows:
Firstly, we point out in Section 2 that the free interface problem (1.16)-(1.18) is equivalent to

the following one-phase free boundary problem:{
uξξ − cuξ = −vα, 0 < ξ < R,

Λvξξ − cvξ = vα, 0 < ξ < R,
(1.19)

with boundary conditions at ξ = 0

u(0) = θ, u′(0) = cθ, v′(0) = − c
Λ

(1− v(0)), (1.20)

and free boundary conditions at ξ = R:

v(R) = v′(R) = 0, u(R) = 1, u′(R) = 0. (1.21)
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The unknowns are: the free boundary R; the velocity c which is a kind of eigenvalue of the
problem; the functions u(ξ) and v(ξ) which are smooth on the interval [0, R), but whose second
derivatives are Hölder continuous at ξ = R. It is immediately apparent that the main quantity in
(1.19)-(1.21) is the value v(0) that we henceforth take as a parameter and denote by v0 ∈ (0, 1).
In Section 3, we formulate a scalar free boundary problem as follows:

Λv′′(ξ)− cv′(ξ) = vα(ξ), 0 < ξ < R,

v(0) = v0, v
′(0) = − c

Λ
(1− v0),

v(R) = v′(R) = 0,

(1.22)

whose study is the main feature of the paper. There are two main results for problem (1.22):
Theorem 3.1 is about the existence and uniqueness of a solution (c(v0), R(v0), v(v0; ξ)); Corollary
3.2 is about the continuous dependence upon v0. Their proofs, based on topological methods,
occupies a large part of this paper, namely Sections 4 to 6.

The scheme is as follows: we reformulate problem (1.22) as a shooting problemΛv′′(ξ)− cv′(ξ) = vα(ξ), ξ > 0,

v(0) = v0, v
′(0) = − c

Λ
(1− v0),

(1.23)

which is equivalent to finding a trajectory tending towards the origin (a stable manifold at the
origin) of a vector field Xc, defined in the quadrant Q = {x > 0, y 6 0}, which means looking
at a solution (x(t), y(t)) of its differential equation:

Xc :

{
x′(t) = y(t),

Λy′(t) = cy(t) + xα(t),
(1.24)

with initial conditions
x(0) = v0, y(0) = − c

Λ
(1− v0). (1.25)

Section 4 is devoted to the topological study of (1.24) for a fixed value of c considered as a
parameter, in the first place the phase portrait (see Subsection 4.1). As the vector field Xc is
not C1 and the origin is not an hyperbolic singularity when α < 1, it is impossible to apply
Hartman-Grobman Theorem; however, the result stated in Proposition 4.3 can be compared with
Hartman-Grobman. The proof of Proposition 4.3 is deferred to Appendix B. In the following
Subsections 4.2 to 4.4, we prove the existence and uniqueness of the stable manifold yc(x) of
(1.24). We use primarily the Poincaré-Bendixson Theorem (see a brief introduction in Appendix
A), which places the origin at the boundary of the domain (refer to [25] for a comprehensive
study).

Section 5 is devoted to a series of technical lemmata, which enlightens the dependence of the
stable manifold yc upon parameter c. In particular, we give an asymptotic expression of yc in
Subsection 5.2, which eventually provides the optimal Hölder regularity of v(ξ) (see Lemma 6.5).

In Section 6, we proceed to the proof of Theorem 3.1, per se. At fixed v0, we prove in
Subsection 6.1 the existence of a unique c(v0), such that

yc(v0)(v0) = −c(v0)

Λ
(1− v0).

In Subsection 6.3, we prove that the settling time R(v0), i.e. the time to proceed from the initial
condition (1.25) to the origin on the stable manifold yc(v0) is finite and, based on the asymptotic
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expansion of the stable manifold, we estimate R(v0):

(2(1 + α)Λ)1/2

1− α
v

1−α
2

0 < R(v0) <
2Λ1/2A(α)

1− α
v

1−α
2

0

1− v0
. (1.26)

Not surprisingly, this estimate explodes when α → 1 which is coincident with the result given
in [6]. Eventually, we return to the free boundary problem (1.22) and prove Corollary 3.2.

In Section 7, we revisit the free boundary problem (1.19)-(1.21). For v0 in some interval
I ⊂ (0, 1) to be determined, we reformulate (1.19)-(1.21) as a fixed point problem for the system
(1.22), i.e., 

Λv′′ − cv′ = vα, 0 < ξ < R,

v(0) = v0, v
′(0) = − c

Λ
(1− v0),

v(R) = v′(R) = 0,

(1.27)

coupled with an integral equation which reads:

θ + Λv0 = 1− c(1− Λ)

∫ R

0
e−csv(s)ds or θ + v0 = 1− (1− Λ)

∫ R

0
e−csv′(s)ds. (1.28)

The interval I depends only on Λ and θ, especially whether Λ is smaller or larger than 1 (in
other words, the Lewis number is larger or smaller than unity). We prove the existence of a
fixed point in Theorems 7.4 and 7.5, taking advantage of the continuity of (c(v0), R(v0), v(v0; ξ))
w.r.t. v0.

The last section of the paper is devoted to a gamut of special cases. In particular, we consider
the situation of a solid combustion where the Lewis number is +∞, i.e. Λ = 0. The latter case
is mathematically relevant, because it allows explicit computations that yield the uniqueness
of the solution to the free boundary problem. Finally, we consider the limit cases α → 1 and
α→ 0, which complete the proof of Theorem 1.1.

As already mentioned, the paper has two appendices: Appendix A regarding the Poincaré-
Bendixson Theorem and Appendix B devoted to the proof of Proposition 4.3.

2. Equivalence with a one-phase free boundary problem

For given 0 < α < 1 and Λ > 0, let us examine the free interface problem (1.16)-(1.18): it is
easy to integrate (1.16) for ξ < 0, therefore

u(ξ) = θecξ, v(ξ) = 1− (1− v(0))e
c
Λ
ξ, ξ < 0.

Because we look for u and v continuously differentiable, it comes

u(0) = θ, u′(0) = cθ, v′(0) = − c
Λ

(1− v(0)),

and for the same reason, it follows that u(ξ) = 1 for all ξ > R. This suggests the following
simplification.

Proposition 2.1. Let 0 < α < 1 and Λ > 0 be fixed. The free interface problem (1.16)-(1.18)
is equivalent to the one-phase free boundary problem: find c > 0, a free boundary 0 < R < +∞,
u and v in C∞([0, R)) ∩ C1([0, R]), such that (c,R, u(ξ), v(ξ)) verifies{

uξξ − cuξ = −vα, 0 < ξ < R,

Λvξξ − cvξ = vα, 0 < ξ < R,
(2.1)
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with the following boundary conditions at ξ = 0

u(0) = θ, u′(0) = cθ, 0 < v(0) < 1, v′(0) = − c
Λ

(1− v(0)), (2.2)

and the free boundary conditions at ξ = R

v(R) = v′(R) = 0, u(R) = 1, u′(R) = 0. (2.3)

Moreover, the following integral relation holds

c =

∫ R

0
vα(ξ)dξ. (2.4)

Proof. (i) Assume there exists c > 0, R > 0, u ∈ C1(R), v ∈ C1(R) such that (c,R, u(ξ), v(ξ))
verifies the free interface problem (1.16)-(1.18). It is clear that u is smooth on (−∞, 0)∪ (0, R)∪
(R,+∞), v is smooth on (−∞, 0)∪ (0, R) (recall that v is identically zero on [R,+∞)). Solving
(1.16) for ξ < 0 and taking (1.17) and (1.18) into account, we obtain{

u(ξ) = θecξ, ξ < 0,

v(ξ) = 1− (1− v(0))e
c
Λ
ξ, ξ < 0.

(2.5)

Thus, (2.2) follows immediately. Next, solving uξξ − cuξ = 0 for ξ > R with u(+∞) = 1
yields u(ξ) = 1 for ξ > R. Because u and v are continuously differentiable, the free boundary
conditions (2.3) are verified. Finally, (c,R, u|[0,R], v|[0,R]) satisfies the free boundary problem
(2.1)-(2.3). Note that in (2.3) the conditions u(R) = 1 and u′(R) = 0 are equivalent.

(ii) Now, assume there exist c > 0, R > 0, u and v in C∞([0, R)) ∩ C1([0, R]) such that
(c,R, u(ξ), v(ξ)) is a solution to (2.1)-(2.3). Then, we extend u and v, respectively, by ũ and
ṽ to the whole line as follows: we define ũ and ṽ for ξ < 0 via (2.5); for ξ > R we set ũ ≡ 1,
ṽ ≡ 0. By construction, ũ and ṽ are in C1(R). Finally, it is easy to check that (c,R, ũ(ξ), ṽ(ξ))
is a solution of (1.16)-(1.18).

(iii) We easily obtain formula (2.4) by integrating the equation Λvξξ − cvξ = vα between 0
and R, and taking (2.2) and (2.3) into account. Note that c = R when α = 0 (see (1.11)). �

3. The scalar free boundary problem

It transpires from Proposition 2.1 that the main parameter of the free boundary problem
(2.1)-(2.3) is v(0). We first focus on the scalar problem for v with free boundary R, assuming
v(0) = v0 given in the interval (0, 1). Throughout the next sections, we intend to prove the
following theorem:

Theorem 3.1. Let 0 < α < 1, Λ > 0 be fixed. Then, for each v0 ∈ (0, 1), there exists a unique
solution (c(v0), R(v0), v(v0; ξ)) to the one-phase free boundary problem

Λv′′(ξ)− cv′(ξ) = vα(ξ), 0 < ξ < R,

v(0) = v0, v
′(0) = − c

Λ
(1− v0),

v(R) = v′(R) = 0,

(3.1)

such that c(v0) > 0, 0 < R(v0) < +∞, v ∈ C∞([0, R)) ∩ C2+[β],β−[β]([0, R]), β =
2α

1− α .

Moreover,
v(ξ) > 0, v′(ξ) < 0, v′′(ξ) > 0, ∀ξ ∈ [0, R). (3.2)
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Corollary 3.2. Let 0 < α < 1, Λ > 0 be fixed. Set I = [a, b], 0 < a < b < 1. For v0 ∈ I, let
(c(v0), R(v0), v(v0; ξ)) denote the solution of system (3.1).
(i) There exists a finite Rmax depending only upon α, Λ, a and b such that 0 < R(v0) 6 Rmax
for all v0 ∈ I.
(ii) The mapping v0 7→ (c(v0), R(v0), ṽ(v0)) from I to (R+)2×C1([0, Rmax]) is continuous, where
ṽ(v0; ξ) is the extension by 0 of the function v(v0; ξ) to the interval [0, Rmax].

3.1. Formal a priori estimates for c(v0). At the outset, it is easy to establish a priori
estimates for c > 0, assuming that (c(v0), R(v0), v(v0; ξ)) is a solution to (3.1). Multiplying
formally the equation by v′ and integrating from 0 to R, using the boundary and free boundary
conditions in (3.1), we arrive at

1

2

c2

Λ
(v0 − 1)2 + c

∫ R

0
(v′)2 dξ =

1

1 + α
v1+α

0 . (3.3)

Thus, we immediately achieve the upper bound c < c+ with

c2
+ =

2Λ

1 + α

v1+α
0

(v0 − 1)2
. (3.4)

Likewise, we multiply the equation by v. Integrating from 0 to R and using again the boundary
and free boundary conditions in (3.1), we obtain

−cv0(v0 − 1)− Λ

∫ R

0
(v′)2 dξ +

c

2
v2

0 =

∫ R

0
v1+α dξ, (3.5)

which together with (3.3) gives the lower bound c > c− with

c2
− =

2Λ

1 + α
v1+α

0 . (3.6)

Summarizing, we have the following a priori estimates:

0 < c−(v0) < c(v0) < c+(v0). (3.7)

These bounds are proved via a different method (see Subsection 6.2 below).

3.2. Proof of uniqueness. Here, we give a direct proof of uniqueness in Theorem 3.1. We find
an alternate proof in Section 4 (see Lemma 4.8).

Lemma 3.3. Let v0 ∈ (0, 1) be fixed. There exists a unique solution (c(v0), R(v0), v(v0; ξ)) to
system (3.1).

Proof. Assume that (ci(v0), Ri(v0), vi(v0; ξ)), i = 1, 2, are two different solutions to (3.1), namely
Λv′′i (ξ)− civ′i(ξ) = vαi (ξ), 0 < ξ < Ri,

vi(0) = v0, v
′
i(0) = −ci

Λ
(1− v0),

vi(Ri) = v′i(Ri) = 0.

(3.8)

Without loss of generality, we may assume that c2 > c1.
(i) First, we prove that

R2 < R1 and v2(ξ) < v1(ξ), ∀ξ ∈ (0, R2). (3.9)

Set ϕ = v1 − v2, ϕ(0) = 0. As |v′2(0)| > |v′1(0)|, one has ϕ′(0) > 0, thus ϕ > 0. Assume by
contradiction that the two solutions intersect: let ξ0 ∈ (0, R̄), R̄ = min{R1, R2}, be the first
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point such that ϕ(ξ0) = 0, i.e. ϕ(ξ) > 0,∀ξ ∈ (0, ξ0). Noticing that ϕ ∈ C2([0, R̄]), by Rolle’s
theorem there exists a ξ̄ ∈ (0, ξ0) such that ϕ′(ξ̄) = 0. From (3.8), one has

Λϕ′′ − c1ϕ
′ + v′2(c2 − c1) = vα1 − vα2 . (3.10)

Integrating (3.10) from 0 to ξ̄ and using ϕ′(ξ̄) = ϕ(0) = 0, we obtain

−Λϕ′(0)− c1ϕ(ξ̄) + (c2 − c1)(v2(ξ̄)− v2(0)) =

∫ ξ̄

0
(vα1 − vα2 ) dξ. (3.11)

Thanks to ϕ′(0) > 0, ϕ(x) > 0 and v′2(ξ) < 0, ∀ξ ∈ (0, ξ̄), it is found that the left-hand side of
(3.11) is negative while the right-hand side is positive, thus, a contradiction.
(ii) Next, according to formula (2.4), it holds

c1 =

∫ R1

0
vα1 dξ and c2 =

∫ R2

0
vα2 dξ, (3.12)

hence from (3.9)

c2 =

∫ R2

0
vα2 dξ <

∫ R2

0
vα1 dξ <

∫ R1

0
vα1 dξ = c1,

which contradicts with the assumption c2 > c1; the uniqueness is thus proved. �

3.3. Scheme of the proof of Theorem 3.1. Let 0 < α < 1, Λ > 0, 0 < v0 < 1 be fixed. For
c > 0, we consider the systemΛv′′(ξ)− cv′(ξ) = vα(ξ), ξ > 0,

v(0) = v0, v
′(0) = − c

Λ
(1− v0),

(3.13)

and we look for solution v such that v(ξ) > 0, v′(ξ) < 0. Now, we set:

t = ξ, x(t) = v(ξ), y(t) = v′(ξ). (3.14)

Therefore, problem (3.13) is equivalent to the following differential system in the quadrant
Q = {x > 0, y 6 0}

Xc :

{
x′(t) = y(t),

Λy′(t) = cy(t) + xα(t),
(3.15)

with initial conditions
x(0) = v0, y(0) = − c

Λ
(1− v0). (3.16)

The origin O = (0, 0) is the unique critical point of the vector field Xc given by (3.15). Clearly,
Theorem 3.1 demonstrates the existence of c > 0 and a trajectory (x(t), y(t)) in Q, defined on
[0, R) with initial conditions (x(0), y(0)) given by (3.16), which tends towards O for t → R−.
(It also can be said that O is the ω-limit set of the trajectory; (x(t), y(t)) extends continuously
on [0, R] by (x(R), y(R)) = (0, 0).

We prove Theorem 3.1 by using primarily the Poincaré-Bendixson theorem (see Appendix
A), and, from time to time, by using some other simple qualitative arguments. As mentioned
above, the main difficulty is that the vector field is not of class C1 along the axis {x = 0} when
0 < α < 1. This is overcome by putting the origin at the boundary of the domain.

Section 4 is devoted to the topological study of the differential equation (3.15), for a fixed
value of c, especially the phase portrait and the existence of a stable manifold. The dependence
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on c w.r.t. v0 is studied in Section 5. In Section 6, we approach the proof of Theorem 3.1, per
se. The critical result (see Lemma 6.2) is that the settling time R(v0) to proceed from the initial
condition to the origin is finite. Eventually, we return to the notation of the free boundary
problem (3.1) and prove Corollary 3.2.

4. A topological approach (c fixed)

In this section, the parameter c > 0 is fixed; α is such that 0 6 α 6 1, and we assume v0 > 0
(note that these hypotheses go beyond the physical framework). We intend to study the flow of
the vector field Xc with differential equation (3.15), that reads:

x′ = y,

y′ =
1

Λ
(cy + xα),

(4.1)

in a topological way. We recall that the vector field Xc is a first order differential operator
y ∂
∂x + 1

Λ(cy + xα) ∂∂y . We write Xc · f its action on a function f :

Xc · f(x, y) = y
∂f

∂x
(x, y) +

1

Λ
(cy + xα)

∂f

∂y
(x, y).

This vector field is considered in the quadrant Q = {x > 0, y 6 0}. We denote its flow in Q by
ϕc(t,m). (For convenience, some information about vector fields is given in Appendix A).

In the first subsection, we state a general topological result: the phase portrait of the vector
field Xc, extended to the whole plane, is independent of c, α and λ. The proof of this result
(given in Appendix B), is based in a crucial way on the existence and uniqueness of the stable
manifold. The latter result is established below in Subsections 4.2, 4.3 and 4.4.

4.1. Phase portrait. We extend the vector field Xc to the whole plane by defining:

XE
c (x, y) = y

∂

∂x
+

1

Λ
(cy + sign(x)|x|α)

∂

∂y
. (4.2)

Remark 4.1. To have a non-ambiguous definition, even for α = 0, we consider that sign(0) = 0
(and ±1 otherwise). When α = 0, XE

c is well defined, but discontinuous along the Oy-axis,
outside the origin, which is a singular point.

As XE
c |Q = Xc, this new field is an extension of Xc. It is observed that

XE
c (−x,−y) = −XE

c (x, y).

It follows that the orbits for {x 6 0} are obtained from the orbits for {x > 0} by using
the symmetry (x, y) 7→ (−x,−y) and next changing the time orientation (see Figure 1). The
trajectories of XE

c cross in a regular way the Oy-axis at points different from the origin, and
the origin is an equilibrium point.

In this subsection we present a topological description for the vector field XE
c , based on the

following definition (see [2], [17], [19], [15]):

Definition 4.2. Two vector fields X and Y defined on the same manifold M , are said topologi-
cally equivalent if there exists an homeomorphism H of M , which sends the orbits of X onto the
orbits of Y (preserving time-orientation). To be topologically equivalent is clearly an equivalence
relation (in the space of vector fields on M). An equivalence class for the topological equivalence
is called a phase portrait.
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That is to say, two vector fields are topologically equivalent if they have the same phase
portrait. We have the following global result whose proof is given in Appendix B:

Proposition 4.3. The phase portrait of XE
c is independent of c, α and even of Λ > 0. In other

words, the general vector field XE
c is topologically equivalent on R2 to the linear saddle type

vector field X0 = y ∂
∂x + x ∂

∂y corresponding to Λ = 1, α = 1, c = 0.

O x

y

Figure 1. Phase portrait of XE
c for α < 1. It fulfills some differentiable features

of the flow such as the contact of orbits at the origin.

The result stated in Proposition 4.3 can be compared with the Hartman-Grobman Theorem
(see, e.g. [26]). Of course, as the vector field XE

c is not C1, and the origin is not an hyperbolic
singularity when α < 1, it is impossible to apply the Hartman-Grobman Theorem.1 In Appendix
B we construct directly “by hands” the homeomorphism H of equivalence, beginning with the
construction on quadrant Q on which we consider Xc. Next, H is extended in the whole plane
in a rather direct way. The fact that Xc has a unique stable manifold in Q is crucial for this
construction.

4.2. Existence of a local stable manifold. For c = 0, the vector field X0 is Hamiltonian

with Hamiltonian function H(x, y) =
1

2
y2− 1

Λ(1 + α)
x1+α. This vector field has stable manifold

in Q at the origin O :

L0 :=
{
y = y0(x) = −

( 2

Λ(1 + α)

)1/2
x

1+α
2

}
. (4.3)

For any c > 0, we have that:

Xc ·H(x, y) = − 1

Λ
yxα +

1

Λ
(cy + xα)y =

c

Λ
y2.

1Moreover, the time to proceed from one point on the stable manifold to the origin is infinite for X0 but finite
for XE

c when α < 1, see Subsection 6.3.
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This implies that, for c > 0, the vector field Xc is transverse to L0 and directed downwards all
along L0, outside O.

Now, for any v0 > 0, we consider in R2 the region Tv0 = {0 6 x 6 v0, y0(x) 6 y 6 0}.
This compact region is a curved triangle that we call a trapping triangle for a reason that
will become apparent. This triangle has the following three corners: O, Av0 = (v0, 0) and
Bv0 = (v0, y0(v0)); and three sides denoted as follows: [OAv0 ], [Av0Bv0 ] and [OBv0 ]. The vector
field Xc is transverse and has an upward direction along (OAv0 ] = [OAv0 ] \ {O}. It is transverse
and has a left direction along the open interval (Av0Bv0) = [Av0Bv0 ] \{Av0}∪{Bv0}. As already
mentioned, Xc is transverse and has a downward direction along (OBv0 ] = [OBv0 ] \ {O} (see
Figure 2).

y

xAv0

v0

Bv0

m

O

L0

Tv0

Figure 2. Local stable manifold

The following lemma proves the existence of a local stable manifold contained inside Tv0 :

Lemma 4.4. There exist points m ∈ (Av0Bv0) whose trajectory ϕc(t,m) remains in Tv0 for
all times and tends toward O when t → τ+(m). Let S be the set of points in (Av0Bv0) whose
trajectory tends toward O. Trajectories starting at points (Av0Bv0) \ S cut the side (OAv0 ] or
the side (OBv0 ] after a finite time.

Proof. We consider any point m ∈ (Av0Bv0) and look at its trajectory in Tv0 . More precisely,
to remain in the interior Ωv0 of Tv0 , we start at a point ϕc(Tm,m) for Tm > 0 small enough,
and we consider the positive trajectory of this point inside the open set Ωv0 . The trajectory is
defined on a time interval [Tm, τ

+(m)).
Using Corollary A.4, we know that there exists a sequence (tn) → τ+(m) such that the

sequence of points ϕc(tn,m) tends toward a point p ∈ ∂Tv0 . Clearly, p cannot belong to (Av0Bv0),
as the vector field is repulsive along this side. If p ∈ (OAv0 ], then it is easy to see, using a flow
box centered at p, that the trajectory arrives at p at the finite time τ+(m) and crosses the axis
Ox at the regular point p = ϕ(τ+(m),m). The same remark is valid if p ∈ (OBv0 ]. In this case,
the trajectory reaches a regular point on L0 \ {O} in a finite time.

The set Oup of points m for which the trajectory arrives on (OAv0 ] is open in (Av0Bv0), as the
transversality of this trajectory at each end to [Av0Bv0 ] and Ox respectively is an open condition.
Moreover, Oup is non-empty, as this set contains points near Av0 . In a similar way, it is seen that
the set Odown of points m for which the trajectory arrives on (OBv0 ] is a non-empty open subset
of (Av0Bv0). However, as (Av0Bv0) is connected, it cannot be the union of the two non-empty
and disjoint open sets Oup and Odown. This means that there are points m ∈ (Av0Bv0) for which
the limit point p is the origin O.
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Then, consider such a point m ∈ (Av0Bv0) with the property that there exists a time sequence
(tn) → τ+(m) such that ϕc(tn,m) → O. This means that for each ε > 0 small enough, there
exists a n(ε) such that ϕc(tn(ε),m) ∈ Tε, where Tε is the small triangle obtained by replacing v0

by ε. However, as the vertical side of Tε contained in {x = ε} is repulsive (the vector field is
directed toward the left) and as the trajectory of m remains in Tv0 by definition (we consider
the trajectories only into Ωv0), the trajectory of m is trapped in Tε; hence, the point ϕc(t,m)
belongs to Tε for all t > tn(ε). As the diameter of Tε tends to zero with ε, it is implied that

ϕc(t,m)→ O for t→ τ+(m). Therefore, the trajectory of m is a local stable manifold contained
in Tv0 . �

In the next subsections we use more general trapping triangles:

Definition 4.5. A trapping triangle Tv0 for the vector field Xc is a curved triangle in Q with a
corner at O and two other corners Av0 , Bv0 on a vertical line {x = v0}, for some v0 > 0. The side
[OAv0 ] is contained in a graph Lu := {y = yu(x)}, the side [OBv0 ] in a graph Ld := {y = yd(x)}
and the side [Av0Bv0 ] is a vertical interval in {x = v0}. We assume that Lu is located above Ld,
i.e. yd(x) < yu(x) 6 0 for all x > 0 (and by hypothesis: yd(0) = yu(0) = 0). We also assume
that Xc is transverse in the upward direction all along (OAv0 ] = [OAv0 ] \ {O} and is transverse
in the downward direction all along (OBv0 ]. It is clear that Xc is transverse to (Av0 , Bv0 ] in the
left direction (see Figure 3).

y

x

Av0

v0

Bv0

O

Tv0

Lu

Ld

Figure 3. Trapping triangle

The triangle used in the proof of Lemma 4.4 is obviously a trapping triangle. Any trapping
triangle verifies the statement of Lemma 4.4. As the proof is exactly the same, we state the
result without giving a new proof:

Lemma 4.6. Let Tv0 be a trapping triangle as in Definition 4.5. There exist points m ∈ (Av0Bv0)
whose trajectory ϕc(t,m) remains into Tv0 for all times and tends toward O for t → τ+(m).
Trajectories starting at other points of (Av0Bv0) cut the side (OAv0 ] or the side (OBv0 ] after a
finite time.

4.3. Existence of global stable manifold. In this subsection we see how to extend a local
stable manifold found in Subsection 4.2 into a global one. Such a global stable manifold is
a trajectory contained in the quadrant Q and converging toward the origin. We use again
Corollary A.4, but now in an easier way, as the vector field Xc is analytic in a neighborhood of
the domain under consideration.
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Lemma 4.7. There exists a global stable manifold at the origin, given by a trajectory of Xc

in Q converging toward the origin in the positive direction of time. The orbit defined by this
trajectory (its geometrical image) is the graph of a function y = y(x) with x ∈ (0,+∞). This
function is analytic for x > 0 and extends continuously at 0 with the value y(0) = 0. Its graph
is located above L0, more precisely, y0(x) < y(x) < 0 for all x > 0 (y = y0(x) is the equation of
the curve L0 defined by (4.3)).

Proof. We start with a local stable manifold found in Lemma 4.4, which is defined by a graph
{y = y(x)} for 0 6 x 6 v0 where v0 > 0. As v0 can take any positive value, the idea might
be to make v0 go to +∞. But the problem is that local stable manifolds may depend on v0.
Therefore, we proceed differently to obtain the desired global manifold, using again Corollary
A.4.

A value v0 > 0 being chosen, we consider the sequence vn = nv0. For each n ∈ N, we
consider the curved square Sn defined by Sn = {(x, y) vn 6 x 6 vn+1, y0(x) 6 y 6 0}.
Sn has four corners: An = (vn, 0), Bn = (vn, y0(vn)), Bn+1 = (vn+1, y0(vn+1)) and An+1 =
(vn+1, 0); and four sides: the horizontal linear segment [AnAn+1], the two vertical linear segments
[AnBn], [An+1Bn+1] and the curved segment [BnBn+1] located on the curve L0. The vector field
Xc is analytic and without singularities in a neighborhood of Sn. Moreover, the vector field is
transverse along each side, with an entering direction along the side [An+1Bn+1] and a leaving
direction along the three over sides (see Figure 4).

Now, applying Corollary A.4 in a neighborhood of Sn to the vector field −Xc, we have that if
mn is a point in the interior of the segment [AnBn] (i.e., mn = (vn, yn) with y0(vn) < yn < 0),
then there exists a t̄n < 0 such that ϕ(t̄n,mn) belongs to the interior of the segment [An+1Bn+1].

Let m0 = (v0, y0) be the endpoint of a local stable manifold founded by Lemma 4.4 in the
trapping triangle Tv0 . We have that m0 belongs to the interior of [A0B0]. Now, using the
above result as an induction step in the construction of a global stable manifold, we find a
decreasing sequence of times t0 = 0 > t1 > t2 > · · · > tn · · · , in the time interval of the
trajectory ϕc(t,m0) of Xc, such that the segment of trajectory ϕc([tn, tn+1],m1) connects inside
Sn a point mn ∈ (AnBn) to a point mn+1 ∈ (An+1Bn+1). As the vector field Xc has a norm
greater than a positive value if x > v0, the time sequence (ti) tends to −∞ (this means that
τ−(m0) = −∞). Now, as the vector field Xc has a negative horizontal component in the interior
{x > 0, y < 0} of the quadrant Q, the orbit of m0 has a regular projection onto the positive axis
Ox+ = {x > 0} (the orbit is a covering of Ox+). As Ox+ is simply connected, this covering
must be a diffeomorphism. The orbit is a graph of a function y = y(x) defined for x > 0. As Xc

is analytic, the trajectory is analytic and also the function y(x) for x > 0. Taking into account
the properties of the local stable manifold, we already know that y(x) has a continuous extension
at 0 by y(0) = 0. Finally, we have by construction that y0(x) < y(x) < 0 for all x > 0. �

4.4. Uniqueness of the stable manifold. Consider any stable manifold in Q, i.e. any tra-
jectory in Q converging toward the origin. As seen above, such a stable manifold exists, and we
want to prove that only one exists.

Lemma 4.8. There exists a unique trajectory in Q which converges toward the origin in positive
times.

Proof. Let Γ1 and Γ2 be two such orbits. With the same arguments as those used in Lemma
4.7, it is easily seen that there exists a v0 > 0 such that these orbits are the graphs of two
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Figure 4. Construction of a global invariant manifold

functions y1(x) and y2(x) respectively, defined on the same interval (0, v0], verifying y1(x) < 0
and y2(x) < 0 for 0 < x 6 v0 and with a continuous extension y1(0) = y2(0) = 0. We want to
prove that these two functions coincide on [0, v0], which implies that Γ1 and Γ2 also coincide
globally.

Assume on the contrary, for instance, that y1(v0) < y2(v0). As the two graphs are different
half-orbits, this inequality persists for any x ∈ (0, v0], which means that y1(x) < y2(x) < 0 for

any x ∈ (0, v0]. Moreover, each function is a solution of the differential equation
dy

dx
=

c

Λ
+

1

Λ

xα

y
.

Then, we have the following differential equation:

d

dx
(y2 − y1) =

1

Λ

( 1

y2
− 1

y1

)
xα. (4.4)

As y1(x) < y2(x) < 0, we have that
1

y2(x)
− 1

y1(x)
< 0 for all 0 < x 6 v0. It follows from (4.4)

that the function x 7→ (y2 − y1)(x) is decreasing and, in particular:

(y2 − y1)(x) > (y2 − y1)(v0) > 0

for all x ∈ (0, v0]. This contradicts the fact that (y2 − y1)(x)→ 0 when x→ 0. �

The unique stable manifold is the one obtained in Lemma 4.7. This manifold is the graph of a
unique well-defined function we denote by yc(x). More specifically, we call it the stable manifold
of Xc at the origin and write it in the form {y = yc(x)}. We recall that yc(x) is analytic for
x > 0, continuous at 0 with value yc(0) = 0; it is located in Q above the curve L0, i.e., it verifies
y0(x) < yc(x) < 0 for all x > 0. The new definition of y0(x) as the function yc(x) for c = 0,
coincides with the former one.

5. Some technical lemmata

In Section 4, we defined a c-family of analytic functions yc(x). Now, considering c > 0 as a
parameter, we study how this family depends on c and prove some useful technical lemmata.

5.1. Dependence of the stable manifold on parameter c. The vector field Xc rotates in
function of the parameter c, in the sense of Duff (see [14]). We take advantage of this property
in the following lemma:

Lemma 5.1. For each x > 0, the map c 7→ yc(x) is increasing.
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Proof. We consider two values of the parameter: c0 < c1. The stable manifolds are Lc0 := {y =
yc0(x)} and Lc1 := {y = yc1(x)}, respectively. Take any value x > 0; then, the vector

Xc1(x, yc1(x)) =
(
yc1(x),

c1

Λ
yc1(x) +

1

Λ
xα
)

is tangent to Lc1 at the point (x, yc1(x)) for all x > 0. At the same point (x, yc1(x)), the value
of the vector field Xc0 is :

Xc0(x, yc1(x)) =
(
yc1(x),

c0

Λ
yc1(x) +

1

Λ
xα
)
.

As c0
Λ yc1(x) > c1

Λ yc1(x), the vector field Xc0 is, for any x > 0, transverse to the curve Lc1 and is
directed upward. Then, we construct trapping triangles for any v0 (see Definition 4.5), by using
the curves Ld = L0 and Lu = Lc1 . As a consequence of Lemma 4.6, the unique stable manifold
for the vector field Xc0 , i.e. Lc0 , is located strictly between L0 and Lc1 meaning that, for any
x > 0, y0(x) < yc0(x) < yc1(x). �

Now look at the continuity of the stable manifold with respect to c.

Lemma 5.2. For each x > 0, the map c 7→ yc(x) is continuous.

Proof. As the map c 7→ yc(x) increases, left- and right-hand limits exist at any c̄, namely y−c̄ (x) =
limc→c̄− yc(x) and y+

c̄ (x) = limc→c̄+ yc(x), with the property that y−c̄ (x) 6 yc̄(x) 6 y+
c̄ (x). To

prove that the function yc is continuous at c̄, we must check that y−c̄ (x) = y+
c̄ (x).

We claim that the positive half-orbit of Xc̄ by y−c̄ (x) is a local stable manifold. If this is not
the case, it follows from Lemma 4.4 that the trajectory must cut (transversally) L+

0 = L0 \ {O}
or Ox+ = Ox \ {O} after a finite time t0. Choosing some t1 > t0, we apply Theorem A.2 at the
segment of trajectory ϕ([0, t1], (x, y−c̄ ), c̄). Theorem A.2 implies that the map c 7→ {t ∈ [0, t1] 7→
ϕ(t, (x, yc(x)), c)} from (c̄− δ, c̄] to C1([0, t1],R2) exists and is continuous at the endpoint c̄ if δ
small enough. Then, the orbit of Xc by the point (x, yc(x)) for c ∈ (c̄− δ, c̄) and δ small enough,
cuts also L+

0 or Ox+. However, this is impossible because {y = yc(x)} is the stable manifold of
Xc. Then, the only possibility for the trajectory through the point (x, y−c̄ (x)) is the invariant
manifold of Xc̄. A similar argument proves that the trajectory through the point (x, y+

c̄ (x)) has
also to be the invariant manifold of Xc̄. As the invariant manifold of Xc̄ is unique, we obtain
y−c̄ (x) = y+

c̄ (x). �

Finally, the family of maps yc(x) enjoys the following global properties:

Lemma 5.3. The mapping (x, c) ∈ [0,+∞)× [0,+∞) 7→ yc(x) ∈ R is continuous as a function
of two variables and for all c, one has yc(0) = 0. For all c, the function x 7→ yc(x) is analytic
for x > 0. Recall that, for all x > 0, the map c 7→ yc(x) increases continuously.

Proof. Consider a fixed value x0 > 0 and write y0 = yc0(x0). The trajectory Xc0 by the point
(x0, y0) cuts transversally the vertical line dx passing by any (x, 0) with x > 0, at the point
(x, yc0(x)). Then, if (x1, y1, c) is near (x0, y0, c0), the trajectory of Xc by the point (x1, y1) cuts
also dx transversally. This defines a local function y = F (x1, y1, x, c) in a neighborhood of the
point (x0, y0, x, c) ∈ R4. Using Theorem A.2 and the Implicit Function Theorem we have F
is analytic. Now, we observe that yc(x) = F (x0, yc(x0), x, c), where x0 is fixed. By Lemma
5.2, the function c 7→ yc(x0) is continuous. Then, the composed function (x, c) 7→ yc(x) is also
continuous. This proves the continuity at (x, c) for any x > 0. As y0(x) 6 yc(x) < 0, the
function yc(x) converges uniformly in c toward 0 when x→ 0+.
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The function x 7→ yc(x) = F (x0, yc(x0), x, c) is analytic as a partial function of F. �

5.2. An asymptotic expression for yc(x).

Lemma 5.4. For all c > 0 and x > 0, the following holds:

−
( 2

(1 + α)Λ

)1/2
x

1+α
2 < yc(x) < −

( 2

(1 + α)Λ

)1/2
x

1+α
2 +

c

Λ
x. (5.1)

Then, yc has the following asymptotic expansion at the origin:

yc(x) = −
( 2

(1 + α)Λ

)1/2
x

1+α
2 +O(x), (5.2)

where the term O(x) is uniform in c when c belongs to some compact subset of [0,+∞).

Proof. We claim that along the curve

lc := {y = ỹc(x) = −
( 2

(1 + α)Λ

)1/2
x

1+α
2 +

c

Λ
x}, (5.3)

the vector field Xc is transverse, with an upward direction. To prove this claim, we consider the
field N1(x) obtained by rotating the tangent field to the graph of lc at the point (x, ỹc(x)) by
the angle π/2:

N1(x) =
((1 + α

2Λ

)
x
α−1

2 − c

Λ
, 1
)
,

and we compute its scalar product with the vector Xc(x) = Xc(x, ỹc(x)) which is equal to:

X1(x) =
(
−
( 2

(1 + α)Λ

)1/2
x

1+α
2 +

c

Λ
x,− c

Λ

( 2

(1 + α)Λ

)1/2
x

1+α
2 +

c2

Λ2
x+

1

Λ
xα
)
.

We obtain

< X1(x), N1(x) >=
c

Λ

(1 + α

2Λ

)1/2
x

1+α
2 ,

which implies the upward transversality all along lc \ {0}.

Notice that the curve lc cuts the Ox-axis at the value x1(c) =
(

2Λ

(1 + α)c2

) 1
1−α

> 0 and remains

in the quadrant Q only for x ∈ [0, x1(c)]. Nevertheless, we can construct trapping triangles, using
the curves L0 and lc, with a vertical side in {x = v0} when 0 < v0 6 x1(c). It follows from
Lemma 4.6 that yc(x) verifies (5.1) for 0 < x 6 x1(x). As the graph of lc is above the Ox axis,
(5.1) is trivially verified if x > x1(c).

The asymptotic formula (5.2) follows directly from (5.1). �

5.3. Estimate from below. The following estimate is significant in view of Lemma 6.6.

Lemma 5.5. The stable manifold is located above the curve {y = −1
cx

α}. This means that for

all x > 0 it holds yc(x) > −1
cx

α.

Proof. Along the curve {y = −1
cx

α}, the vector field Xc is equal to y ∂
∂x : it is horizontal and

directed toward the left for all x > 0. As the tangent vector field to the curve {y = −1
cx

α} has

a non-zero vertical component equal to −αxα−1 for all x > 0, it follows that Xc is transverse
to the curve {y = −1

cx
α} and directed downward all along it. Then, for any v0 > 0, we can

construct a trapping triangle Tv0 , by using the curves Ld = {y = −1
cx

α} and the Ox-axis as Lu.
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By Lemma 4.6, it follows that the stable trajectory is trapped inside Tv0 for any v0 > 0. This
concludes the proof. �

6. Proof of Theorem 3.1

We are now in the position of proving Theorem 3.1. Let 0 < α < 1, Λ > 0 be fixed, 0 < v0 < 1
according to the physical framework.

6.1. Existence of c(v0). Recall that the initial condition (3.16) reads

x(0) = v0, y(0) = − c
Λ

(1− v0). (6.1)

With the notation of Section 4, fulfilling the initial condition (6.1) is equivalent to the existence
of a c = c(v0) such that

yc(v0)(v0) = −c(v0)

Λ
(1− v0). (6.2)

The difficulty seems to be that c(v0) appears in both sides of the equation (6.2), i.e., in the
expression of the stable manifold and in the initial condition itself. However, taking into account
the above properties of yc(x), this is not really an issue, as we will see below.

Lemma 6.1. For any v0, 0 < v0 < 1, there exists a unique value c(v0) such that

yc(v0)(v0) = −c(v0)

Λ
(1− v0).

Moreover, the functions v0 7→ c(v0) and v0 7→ yc(v0)(x) are continuous on (0, 1).

Proof. For simplicity, we denote y(c) = yc(v0) and ȳ(c) = − c
Λ(1 − v0) for a fixed v0. At c = 0

it holds y(0) = y0(v0) = −
(

2

(1 + α)Λ

)1/2
v

1+α
2

0 < ȳ(0) = 0. When c increases, y(c) increases and

ȳ(c) decreases. When ȳ(c) reaches the value y0(v0), y(c) is larger than y0(v0).
Consider the function

ψ(v0, c) = yc(v0) +
c

Λ
(1− v0).

To prove the existence and uniqueness of c(v0), we just need to apply the Intermediate Value
Theorem to the increasing map c 7→ ψ(v0, c), which rises from a negative value for c = 0 to a
positive one when c is large enough.

We also use the function ψ to prove the continuity of the map v0 7→ c(v0). To this end, we
take any v0

0 ∈ (0, 1) and any ε > 0 such that [c(v0
0)− ε

2 , c(v
0
0) + ε

2 ] ⊂ R+. We have that

ψ
(
v0

0, c(v
0
0)− ε

2

)
< ψ

(
v0

0, c(v
0
0)
)

= 0 < ψ
(
v0

0, c(v
0
0) +

ε

2

)
.

As the map v0 7→ ψ(v0, c) is continuous by Lemma 5.3, a δ(ε) > 0 exists, such that, if |v0−v0
0| <

δ(ε), we have that ψ
(
v0, c(v

0
0)− ε

2

)
< 0 and ψ

(
v0, c(v

0
0)− ε

2

)
> 0. Then, as a consequence of the

Intermediate Value Theorem, the unique solution c(v0) of the equation ψ(v0, c) = 0 is contained
in the open interval (c(v0

0)− ε
2 , c(v

0
0)+ ε

2). As ε can be taken arbitrarily small, this completes the

proof of the continuity of c(v0) at the point v0
0. The continuity of the map v0 7→ yc(v0)(v0) follows

from the continuity of the map c(v0) and the continuity of the map (c, v0) 7→ yc(v0) proved in
Lemma 5.3. �
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6.2. Estimate of c(v0). To estimate c(v0), it is interesting to introduce the control line lc
defined by (5.3) which we have already used in the previous subsection. We now consider the
motions of the three points y(c) = yc(v0), ỹ(c) = ỹc(v0) and ȳ(c). We have that y(c) < ỹ(c).
Recall that ȳ(c) is decreasing and y(c), ỹ(c) are increasing, with y(c) < ỹ(c) for c > 0 .

At c = 0 we have the inequality y(0) = ỹ(0) < ȳ(0) = 0. Subsequently, ȳ(c) crosses ỹ(c) at
a value c = c−(v0) at which it holds y(c−(v0)) < ỹ(c−(v0)) = ȳ(c−(v0)). When c eventually
reaches the value c+ where ȳ(c+) = y0(v0), we have the inequality ȳ(c+) < y(c+) < ỹ(c+). This
yields the following bounds for c(v0):

c−(v0) < c(v0) < c+(v0), (6.3)

where c+ = c+(v0) is given by

−c+

Λ
(1− v0) = −

( 2

(1 + α)Λ

)1/2
v

1+α
2

0 , (6.4)

and c− = c−(v0) by

−c−
Λ

(1− v0) = −
( 2

(1 + α)Λ

)1/2
v

1+α
2

0 +
c−
Λ
v0. (6.5)

We find that c+(v0) =
(

2Λ
1+α

)1/2 v
1+α

2
0

1−v0
and c−(v0) =

(
2Λ

1+α

)1/2
v

1+α
2

0 . These values coincide with

the a priori estimates (3.4) and (3.6) obtained by a different method in Subsection 3.1.
Finally, we observe that Lemma 5.5 provides us with the following new estimate:

c

Λ
(v0 − 1) > −1

c
vα0 or equivalently c(v0) <

( Λ

1− v0

)1/2
v
α
2
0 . (6.6)

It is readily seen that
(

Λ

1− v0

)1/2
v
α
2
0 > c−(v0) =

(
2Λ

1 + α

)1/2
v

1+α
2

0 , because it holds v0(1− v0) <

(1+α)/2 as 0 < v0 < 1 and 0 < α < 1. Therefore, combining (6.6) with the bounds (6.3) reveals
that

c−(v0) < c(v0) < min

(
c+(v0),

( Λ

1− v0

)1/2
v
α
2
0

)
. (6.7)

6.3. Estimations for the time R(v0). Taking into account the existence and uniqueness of
the stable manifold Lc := {y = yc} obtained in Subsection 5.1 (see Lemma 5.3), it remains
to prove that the settling time R(v0), along the stable manifold, to proceed from the initial
condition (v0, yc(v0)(v0)) to the origin is finite.

We first consider the settling time T (x, c) to go from (x, yc(x)) to the origin, along the stable
manifold Lc of Xc.

Lemma 6.2. The settling time T (x, c) is finite for any (x, c) ∈ R2
+ = [0,+∞) × [0,+∞).

Moreover, T (x, c) is continuous on R2
+ and such that T (0, c) = 0. In the interval 0 < x <

x1(c) =
(

2Λ

(1 + α)c2

) 1
1−α

, we have the following bounds for T (x, c)

(2(1 + α)Λ)1/2

1− α
x

1−α
2 < T (x, c) <

(2(1 + α)Λ)1/2

1− α
x

1−α
2

(
1− c

(1 + α

2Λ

)1/2
x

1−α
2

)−1
, (6.8)
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which gives the following asymptotic expansion at (0, c):

T (x, c) =
(2(1 + α)Λ)1/2

1− α
x

1−α
2 +O(cx1−α), (6.9)

where the remainder is uniform in c when c is restricted to a compact subset of [0,+∞).

Proof. The settling time T (x, c) is obtained by integrating the equation dt =
dx

yc(x)
from x to 0.

Changing the sense of integration, we arrive that T (x, c) =
∫ x

0

ds

|yc(s)|
. This integral is improper

at x = 0, but as by (5.2) the function |yc(x)| is equivalent to
(

2

(1 + α)Λ

)1/2
x

1+α
2 , with

1 + α

2
< 1,

the integral converges and is continuous in x. To have continuity in (x, c), we require the above
equivalence to be uniform in c when c belongs to a compact subset of [0,+∞).

We have that ( 2

(1 + α)Λ

)1/2
s

1+α
2 − c

Λ
s < |yc(s)| <

( 2

(1 + α)Λ

)1/2
s

1+α
2 . (6.10)

Moreover, if s 6 x < x1(c) =
(

2Λ

(1 + α)c2

) 1
1−α

, we have:( 2

(1 + α)Λ

)1/2
s

1+α
2 − c

Λ
s >

( 2

(1 + α)Λ

)1/2
s

1+α
2

(
1− c

(1 + α

2Λ

)1/2)
x

1−α
2

)
.

As
∫ x

0 s
− 1+α

2 ds =
2

1− αx
1−α

2 , the last inequality and (6.10) implies the estimates (6.8). The

asymptotic expansion follows directly from (6.8). �

We now consider the time R(v0) = T (v0, c(v0)) corresponding to the initial conditions (6.1). A
direct consequence of Lemma 6.2 and the continuity of the mapping v0 7→ c(v0) is the following:

Lemma 6.3. The time R(v0) to proceed from
(
v0,−

c

Λ
(1 − v0)

)
to the origin, along the stable

manifold of Xc(v0), is finite for any v0 ∈ [0, 1). Moreover, R(v0) is continuous on [0, 1) and
R(0) = 0.

Proof. As c(v0) < c+(v0) =
(

2Λ
1+α

)1/2 v
1+α

2
0

1−v0
, we have that c(v0) = O

(
v

1+α
2

0

)
. Then, c(v0) is

continuous on [0, 1) with c(0) = 0. It follows that R(v0) is continuous on [0, 1) with the value
R(0) = 0. �

As the curve Lc is above the curve L0, the inequality (2(1+α)Λ)1/2

1−α x
1−α

2 < T (x, c) in (6.8) is in

fact true for all x > 0. Then we have the following lower bound for R(v0) :

R(v0) >
(2(1 + α)Λ)1/2

1− α
v

1−α
2

0 (6.11)

for 0 < v0 < 1 and 0 6 α < 1.
To obtain an upper bound for R(v0) which would be valid for any 0 < v0 < 1, it would be

better to replace the curve lc(v0) by one which remains below {y = 0}. The simplest solution is a
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curve dk := {y = ȳk = −kx
1+α

2 }, with k = k(v0) chosen so that the vector field Xc(v0) is upward
transverse to dk, at least for x ∈ (0, v0]. A first condition on k is clearly dk above L0, i.e.

k2 <
2

(1 + α)Λ
. (6.12)

To express the transversality condition, we write the vector field Xc along dk :

X(x) = (−kx
1+α

2 ,−k c
Λ
x

1+α
2 +

1

Λ
xα),

and the orthogonal vector field to dk in the upward direction, given by :

N(x) = (
1 + α

2
kx

α−1
2 , 1).

Then, we compute their scalar product :

< X(x), N(x) >=
( 1

Λ
− 1 + α

2
k2
)
xα − k c

Λ
x

1+α
2 .

Upon factoring, it comes:

< X(x), N(x) >=
( 1

Λ
− 1 + α

2
k2
)
xα
[
1− k c

Λ

( 1

Λ
− 1 + α

2
k2
)−1

x
1−α

2

]
.

The condition (6.12) implies that the factor
(

1
Λ −

1+α
2 k2

)
is positive. Then, for the scalar

product to be positive for c = c(v0) < c+(v0) and x 6 v0, it is sufficient that the following
condition be fulfilled:

k
c+(v0)

Λ

( 1

Λ
− 1 + α

2
k2
)−1

v
1−α

2
0 < 1.

Taking into account the expression of c+(v0) this condition reads as follows:

k
( 2Λ

1 + α

)1/2
<

1− v0

v0

(
1− (1 + α)Λ

2
k2
)
. (6.13)

From now on, we also assume that

k 6
( 1

(1 + α)Λ

)1/2
, (6.14)

which implies the condition (6.12). As 1
v0
> 1, to have (6.13), assuming that condition (6.14) is

fulfilled, it suffices to have the following condition:

k 6
1

2

(1 + α

2Λ

)1/2
(1− v0). (6.15)

As

A(α) =
23/2

(1 + α)1/2
> (1 + α)1/2, (6.16)

it is easy to see that conditions (6.14) and (6.15) are verified if

k =
1− v0

A(α)Λ1/2
. (6.17)

For this value of k, the vector field Xc(v0) is transverse in the upward direction along the curve
dk for all x ∈ (0, v0]. Accordingly, we construct a trapping triangle, which implies that, for all
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x ∈ (0, v0], it holds yc(v0) < ȳk(x) = −kx
1+α

2 . This implies that R(v0) has an upper bound equal

to 1
k

1
1−αv

1−α
2

0 for all v0 ∈ [0, 1). Thanks to (6.11) and (6.17), we have the following bounds:

Lemma 6.4. For 0 < v0 < 1 and 0 6 α < 1, we have that

(2(1 + α)Λ)1/2

1− α
v

1−α
2

0 < R(v0) <
2Λ1/2A(α)

1− α
v

1−α
2

0

1− v0
, (6.18)

where A(α) is defined by (6.16).

6.4. End of the proof of Theorem 3.1 and Corollary 3.2. To complete the proof of
Theorem 3.1, the two following points remain to be established. We return to the original
notation of the free boundary problem (3.1), see (3.14).

Lemma 6.5. For 0 < α < 1, it holds v ∈ C∞([0, R)) ∩ C2+[β],β−[β]([0, R]), β =
2α

1− α .

Proof. It is clear that v is smooth as long as it does not vanish. We need to establish the Hölder
regularity of the function v(ξ) near ξ = R. It follows from Subsection 5.2 that near the origin,
it holds

yc(x) ∼ −
( 2

(1 + α)Λ

)1/2
x

1+α
2 , (6.19)

that is, near ξ = R−,

v′(ξ) ∼ −
( 2

(1 + α)Λ

)1/2
v

1+α
2 (ξ). (6.20)

An elementary integration yields

v(ξ) ∼ 1− α
2

( 2

(1 + α)Λ

)1/2(
R− ξ

) 2

1− α ,
2

1− α = 2 + β. (6.21)

�

Lemma 6.6. The function v(ξ) is decreasing, convex on the interval [0, R).

Proof. On one hand, it follows from Lemma 5.5 that the stable manifold yc never cuts the curve

y = −1

c
xα, that is, y′c does not vanish. In other words, v(ξ) has no inflection points. On the

other hand, Lemma 6.5 yields that v(ξ) is convex near ξ = R, ξ < R, hence the convexity of
v(ξ) on (0, R). �

Finally, we prove Corollary 3.2. Let 0 < a < b < 1, I = [a, b]. According to Lemma 6.1 and
Lemma 6.3, respectively, the mappings v0 7→ c(v0) and v0 7→ R(v0) are continuous from I → R.
Thanks to Lemma 6.4, we have the uniform estimate:

(2(1 + α)Λ)1/2

1− α
a

1−α
2 < R(v0) 6 Rmax =

2Λ1/2A(α)

1− α
b

1−α
2

1− a
. (6.22)

Let ṽ(v0) be the extension by 0 of the function ξ 7→ v(v0; ξ) to the interval [0, Rmax], clearly
ṽ(v0) ∈ C1([0, Rmax]).

Lemma 6.7. The mapping v0 7→ ṽ(v0) is continuous from I to C1([0, Rmax]).
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Proof. The mapping ṽ(v0) can be seen as the function of two variables ṽ(v0; ξ). The mapping
v0 7→ ṽ(v0) is continuous from I → C1([0, Rmax]) if and only if ṽ(v0; ξ) is continuous on the
rectangle T = [0, Rmax] × I, which is cut by the curve lR := v0 → R(v0) into two closed
subsets T1 = {v0 ∈ I, 0 6 ξ 6 R(v0)} and T2 = {v0 ∈ I,R(v0) 6 ξ 6 Rmax}. The function
ṽ(v0; ξ) is continuous on T2 where it is identically 0 and on T1 as it is equal to the x-component
x(ξ, (v0, yc(v0)(v0))) of the trajectory of Xc(v0) with initial conditions (v0, yc(v0)(v0)). These two
definitions have the same value 0 along lR = T1 ∪ T2. Then, they define a continuous function
on T . �

7. The free boundary problem as an integro-differential system

Here, we revisit the one-phase free boundary problem (2.1)-(2.3) that we rewrite in the form
of two coupled subsystems:

Λv′′ − cv′ = vα, 0 < ξ < R,

0 < v(0) < 1, v′(0) = − c
Λ

(1− v(0)),

v(R) = v′(R) = 0,

(7.1)

and 
u′′ − cu′ = −vα, 0 < ξ < R,

u(0) = θ, u′(0) = cθ,

u(R) = 1, u′(R) = 0.

(7.2)

Remark 7.1. A first sight, subsystems (7.1) and (7.2) seem uncoupled because v appears in
the right hand side of (7.2). However, the linkage is through c (see the explicit computation in
Subsection 8.2 when Λ = 0).

7.1. Equivalence with an integro-differential system. We have the following proposition.

Proposition 7.2. Assume there is a solution (c,R, u(ξ), v(ξ)) to system (7.1)-(7.2) such that
c > 0, 0 < R < +∞, u and v in C∞([0, R)) ∩ C1([0, R]). Then, (c,R, v(ξ)) verifies the system
consisting of (7.1) and one of the following integral equations:

θ + Λv(0) = 1− c(1− Λ)

∫ R

0
e−csv(s) ds, (7.3)

θ + v(0) = 1− (1− Λ)

∫ R

0
e−csv′(s) ds. (7.4)

Furthermore, the three systems (7.1)-(7.2), (7.1)&(7.3) and (7.1)&(7.4) are equivalent.

Proof. (i) Let (c,R, u(ξ), v(ξ)) be a solution to (7.1)-(7.2) as above. Set w = u + v, one infers
from system (7.1)-(7.2) that w satisfies{

w′′ − cw′ = (1− Λ)v′′, 0 < ξ < R,

w(R) = 1, w′(R) = 0.
(7.5)

For any ξ ∈ (0, R), we integrate (7.5) from ξ to R. Using the free boundary conditions in (7.1)
and in (7.5), we arrive at

w′ − cw = (1− Λ)v′ − c, w(R) = 1. (7.6)
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It is easy to solve (7.6) and obtain:

w(ξ) = e−c(R−ξ) −
∫ R

ξ
e−c(s−ξ)

(
(1− Λ)v′(s)− c

)
ds. (7.7)

Taking ξ = 0 in (7.7), it is not difficult to recover (7.4) using the boundary conditions in (7.1)
and (7.2). Likewise, setting w̃ = u + Λv, one proceeds in the same manner to obtain (7.3) (or
equivalently we may integrate by part the integral in (7.4)).

(ii) Assume that (c,R, v(ξ)) verifies (7.1), v ∈ C∞([0, R)) ∩ C1([0, R]), and in addition (7.4)
holds. We construct a unique solution to (7.5) as in (7.7). Next, setting u = w − v, u is in
C∞([0, R)) ∩ C1([0, R]) and satisfies the equation in (7.2). From the free boundary conditions
in (7.1) and (7.5), we obtain u(R) = 1, u′(R) = 0. Letting ξ = 0 in (7.7), one has

w(0) =e−cR − (1− Λ)

∫ R

0
e−csv′(s) ds+

∫ R

0
ce−cs ds

=1− (1− Λ)

∫ R

0
e−csv′(s) ds, (7.8)

which together with (7.4) gives u(0) = θ. Finally, we easily retrieve u′(0) = cθ. �

Remark 7.3. w = u + v and w̃ = u + Λv are the only linear relations between u and v
(see [6, Remark 8.5]). The physical meaning of w is the normalized enthalpy (see, e.g., [12]).
In the equidiffusion case, i.e. Λ = 1, w ≡ 1 is a Shvab-Zeldovich variable which eliminates
u = 1− v (see Subsection 8.1).

7.2. Existence of a solution. Based on Proposition 7.2, we need to focus only on system
(7.1)&(7.3) or (7.1)&(7.4) to study system (7.1)-(7.2). More specifically, we will prove the
existence of a solution via a fixed point method.

Let a < b and I = [a, b] ⊂ R. We denote by P the projection from R to I defined by P (x) = x
if x ∈ intI, P (x) = a if x 6 a and P (x) = b if x > b. Obviously, P is a continuous mapping.

7.2.1. Case 0 < Λ < 1. We first consider the case where 0 < Λ < 1 and prove by a fixed point
argument that there exists a solution to system (7.1)&(7.4).

For 0 < θ < 1, 0 < Λ < 1, we set I = [1− θ, 1− Λθ]. For v0 ∈ I, let (c(v0), R(v0), v(v0; ξ)) be
the unique solution of system (3.1) given by Theorem 3.1. We define the mapping Φ : I → I by

Φ(v0) = P

(
1− θ + (1− Λ)

∫ R(v0)

0
e−c(v0)s(−v′(v0; s)) ds

)
, (7.9)

where P is the projection from R to I as above.

Theorem 7.4. Let 0 < θ < 1, 0 < Λ < 1 and I = [1− θ, 1−Λθ]. Then, the mapping Φ : I → I
defined by (7.9) has a fixed point v∗0 which solves (7.1)&(7.4) with v(0) = v∗0.

Proof. It follows from Corollary 3.2 that the mapping Φ : I → I is continuous, hence it has a
fixed point v∗0. We denote by c∗ = c(v∗0), R∗ = R(v∗0) and v∗(ξ) = v(v∗0, ξ) the solution to (3.1)
associated with v∗0. We must prove that (7.4) holds, namely

v∗0 = 1− θ + (1− Λ)

∫ R∗

0
e−c

∗s(−v∗′(s)) ds. (7.10)

From the definition of the projection P on I, there are 3 cases:
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(i) If

1− θ + (1− Λ)

∫ R∗

0
e−c

∗s(−v∗′(s)) ds ∈ (1− θ, 1− Λθ),

then it holds that v∗0 ∈ (1− θ, 1− Λθ) and P is the identity. Therefore, (7.10) is satisfied.
(ii) If

1− θ + (1− Λ)

∫ R∗

0
e−c

∗s(−v∗′(s)) ds 6 1− θ,

it comes obviously

(1− Λ)

∫ R∗

0
e−c

∗s(−v∗′(s)) ds 6 0,

which is in contradiction to Theorem 3.1 which states that v∗′(ξ) < 0, for all ξ ∈ [0, R∗). Then,
case (ii) is ruled out.
(iii) Finally, let us consider the case where

1− θ + (1− Λ)

∫ R∗

0
e−c

∗s(−v∗′(s)) ds > 1− Λθ, (7.11)

hence v∗0 = 1 − Λθ. It follows from Theorem 3.1 that v∗ is decreasing and convex, hence
|v∗′(ξ)| 6 |v∗′(0)|, ∀ξ ∈ [0, R∗), therefore:

θ 6
∫ R∗

0
e−cs(−v∗′(s)) ds 6

∫ R∗

0

c∗

Λ
(1− v∗0)e−c

∗s ds <
1− v∗0

Λ
. (7.12)

It comes Λθ < 1− v∗0 which is in contradiction to v∗0 = 1−Λθ. Then, case (iii) is also ruled out.

�

7.2.2. Case Λ > 1. Likewise, we prove via a fixed point argument that there exists a solution
to system (7.1)&(7.3) in the case Λ > 1. Here, we take I = [(1− θ)/Λ, 1− θ/Λ]. This time, we
define the mapping Ψ : I → I by

Ψ(v0) = P

(
1

Λ

[
1− θ − c(v0)(1− Λ)

∫ R(v0)

0
e−c(v0)sv(v0; s) ds

])
. (7.13)

Theorem 7.5. Let 0 < θ < 1, Λ > 1 and I = [(1−θ)/Λ, 1−θ/Λ]. Then, the mapping Ψ : I → I
defined by (7.13) has a fixed point v∗0 which solves (7.1)&(7.4) with v(0) = v∗0.

Proof. The proof follows the same pattern as the proof of Theorem 7.4. As before, we denote by
(c∗, R∗, v∗) the solution to (3.1) associated with v∗0. This time, we must prove that (7.3) holds,
which is equivalent to

v∗0 =
1

Λ

[
1− θ − c∗(1− Λ)

∫ R∗

0
e−c

∗sv∗(s) ds

]
. (7.14)

(i) If

1

Λ

[
1− θ − c∗(1− Λ)

∫ R∗

0
e−c

∗sv∗(s) ds

]
∈ (

1− θ
Λ

, 1− θ

Λ
),

then it holds that v∗0 ∈ (
1− θ

Λ
, 1− θ

Λ
) and P is the identity. Therefore, (7.14) is satisfied.
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(ii) If

1

Λ

[
1− θ − c∗(1− Λ)

∫ R∗

0
e−c

∗sv∗(s) ds

]
6

1− θ
Λ

,

it comes

c∗(Λ− 1)

∫ R∗

0
e−c

∗sv∗(s) ds 6 0,

in contradiction to Theorem 3.1 which states that v∗(ξ) > 0, for all ξ ∈ [0, R∗). Case (ii) is then
ruled out.
(iii) If

1

Λ

[
1− θ − c(1− Λ)

∫ R∗

0
e−c

∗sv∗(s) ds

]
> 1− θ

Λ
, (7.15)

then it holds v∗0 = 1− θ
Λ . From (7.15), we infer that

c

∫ R∗

0
e−c

∗sv∗(s) ds > 1. (7.16)

On the other hand, noticing from Theorem 3.1 that v∗′(ξ) < 0, for all ξ ∈ [0, R∗), it comes

c∗
∫ R∗

0
e−c

∗sv∗(s) ds < c∗
∫ R∗

0
e−c

∗sv∗(0) ds = c∗
∫ R∗

0
e−c

∗s(1− θ
Λ

) ds = (1− θ
Λ

)(1−e−c∗R∗) < 1,

in contradiction to (7.15).

�

7.3. Final results. We are now in position to summarize the results of Subsections 7.1 and 7.2
for 0 < Λ < 1 and Λ > 1 (see Subsection 8.1 for Λ = 1).

Theorem 7.6. Let 0 < α < 1, 0 < θ < 1 and Λ > 0 be fixed. We define the interval I ⊂ (0, 1)
as: I = [1 − θ, 1 − Λθ] if 0 < Λ < 1, I = [(1 − θ)/Λ, 1 − θ/Λ] if Λ > 1. Then, the one-phase
free boundary problem (2.1)-(2.3) has a solution (c,R, u(ξ), v(ξ)) such that c > 0, 0 < R < +∞,

v(0) ∈ I, u and v in C∞([0, R)) ∩ C2+[β],β−[β]([0, R]), β = 2α/(1− α).

Proof. According to the value of Λ against 1, Theorem 7.4 and Theorem 7.5 provide the existence
of a solution to system (7.1)&(7.4), or to system (7.1)&(7.3), such that v(0) ∈ I. We proved in
Proposition 7.2 that these systems are equivalent to the free boundary problem (2.1)-(2.3).

Next, we apply Theorem 3.1 which gives the (optimal) Hölder regularity of v(ξ) at the free
boundary R. More precisely, this result follows from Lemma 6.5 which is related to the asymp-
totic expansion of the stable manifold near the origin. Thus, the same regularity result holds
for u(ξ). �

Finally, we are able to prove the existence of a solution to the free interface problem (1.16)-
(1.18) thanks to Proposition 2.1. The last part of the proof of Theorem 1.1 concerning the limit
cases where α→ 1 and α→ 0 is deferred to Subsections 8.3 and 8.4.
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8. Limit cases

8.1. Equidiffusion. In the case Λ = 1 (Lewis number equal to unity), equation (7.5) yields
that the normalized enthalpy w = u+ v is equal to 1; hence u = 1− v. The system for v reads
as follows: 

v′′ − cv′ = vα, 0 < ξ < R,

v(0) = 1− θ, v′(0) = −cθ,
v(R) = v′(R) = 0.

(8.1)

It follows from Theorem 3.1, taking v0 = 1−θ, that system (8.1) has a unique solution (c,R, v(ξ)).

8.2. Infinite Lewis number. Here, we consider the limit case Λ = 0, namely an infinite Lewis
number. In this case v(0) = 1. Integrating cv′ + vα = 0 yields explicitly R = c/(1− α) and

v(ξ) =

(
1− ξ 1− α

c

) 1
1−α

.

It comes the formula

θ = 1− c
∫ c

1−α

0
e−cs

(
1− ξ 1− α

c

) 1
1−α

ds, (8.2)

which coincides with (7.3) when Λ = 0.

Example 8.1. (i) In the case α = 0, the formula (8.2) yields (see (1.12))

θ =
1− e−c2

c2
. (8.3)

(ii) In the case α = 1/2, the formula becomes

θ =
1

2
c−4e−2c2 − c−2 +

1

2
c−4. (8.4)

However, for general α ∈ (0, 1), the integral in (8.2) can not be computed explicitly. For
c > 0, 0 < α < 1 and 0 < θ < 1, let us define:

f(c, α, θ) := θ − 1 + c

∫ c
1−α

0
e−cs

(
1− s1− α

c

) 1
1−α

ds. (8.5)

We have

Lemma 8.2. For fixed 0 < α < 1 and 0 < θ < 1, the equation f(c, α, θ) = 0 has a unique
positive root.

Proof. (i) We first look for the existence of a root c > 0. It is easy to check that

lim
c→0+

f(c, α, θ) = θ − 1. (8.6)

Next, let us prove that
lim

c→+∞
f(c, α, θ) = θ. (8.7)

Indeed, with the change of variable y = 1− s(1− α)/c, (8.5) becomes

f(c, α, θ) = θ − 1 +
c2

1− α

∫ 1

0
e−

c2(1−y)
1−α y

1
1−α dy. (8.8)
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Next, let z = c2y/(1− α). It comes:

f(c, α, θ) = θ − 1 +

(
1− α
c2

) 1
1−α

e−
c2

1−α

∫ c2

1−α

0
ezz

1
1−α dz.

By using L’Hospital’s rule, one obtains

lim
c→+∞

(
1− α
c2

) 1
1−α

e−
c2

1−α

∫ c2

1−α

0
ezz

1
1−α dz = 1.

Thus, (8.7) holds.
(ii) Next, to prove the uniqueness of a positive root, we compute the sign of the derivative
fc(c, α, θ). To this end, we make the convenient change of variable z = c2(1−y)/(1−α) in (8.8):

f(c, α, θ) = θ − 1 +

∫ c2

1−α

0
e−z

[
1− (1− α)z

c2

] 1
1−α

dz.

Then,

fc(c, α, θ) =

∫ c2

1−α

0
e−z

[
1− (1− α)z

c2

] α
1−α 2z

c3
dz > 0. (8.9)

�

8.3. Limit α→ 1. Here, Λ > 0 and θ ∈ (0, 1) are fixed. With each α, 0 < α < 1, we associate
a solution (c,R, u(ξ), v(ξ)) of the free boundary problem (2.1)-(2.3). However, we recall that
problem (2.1)-(2.3) is equivalent to the system

Λv′′ − cv′ = vα, ξ > 0,

v(0) ∈ I, v′(0) = − c
Λ

(1− v(0)),

v(R) = v′(R) = 0,

(8.10)

together with

θ + Λv(0) = 1− c(1− Λ)

∫ R

0
e−csv(s)ds, (8.11)

where the interval I = [a, b] is given in Theorem 7.4 or 7.5, according to the value of Λ, and
depends only on Λ and θ.

Lemma 8.3. Let Λ > 0 and 0 < θ < 1 be fixed. Let (αn)n∈N be an increasing sequence such
that 0 < αn < 1, αn → 1 as n → ∞; the corresponding solution of (8.10)-(8.11) is denoted by
(cn, Rn, vn(ξ)). Then, Rn → +∞ as n→∞.

Proof. Assume by contradiction that the sequence (Rn)n∈N is bounded, namely there exists
A > 0 such that Rn 6 A for all n ∈ N. In view of 0 6 vn(ξ) < 1 for all 0 6 ξ 6 Rn and formula
(2.4), it holds

cn =

∫ Rn

0
vαnn (ξ)dξ,

hence cn 6 Rn 6 A. In addition, according to (3.7),

c2
n >

2Λ

1 + αn
v1+αn
n (0),
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vn(0) > a = inf I > 0. Hence, the sequence (cn)n∈N is bounded from below by a
√

Λ.
By abuse of notation, we also denote by vn(ξ) its extension by 0 to the interval [0, A]. The

system for (cn, vn(ξ)) reads
Λv′′n − cnv′n = vαnn , 0 < ξ < A,

vn(0) ∈ I, v′n(0) = −cn
Λ

(1− vn(0)),

vn(A) = v′n(A) = 0.

(8.12)

Then, it is easy to see that the sequence (vn)n∈N is bounded in the space H2([0, A]). We
extract a convergent subsequence (cn′ , vn′)n′∈N such that cn′ → c∞ > 0, vn′ → v∞ in the space
C1([0, A]). We pass to the limit as n′ → ∞, αn′ → 1: there exists a non-negative function χ
such that (vn′)

αn′ ⇀ χ weakly in L2(0, A). At the limit it holds in the distribution sense in the
interval (0, A):

Λv′′∞ − c∞v′∞ = χ.

Moreover, at the limit,

v∞(0) ∈ I, v′∞(0) = −(c∞/Λ)(1− v∞(0)), v∞(A) = v′∞(A) = 0.

We observe that v∞ belongs to C1([0, A]) and is convex, non-increasing: there exists 0 < R∞ 6 A
such that v∞(ξ) > 0 for 0 < ξ < R∞, v∞(ξ) = 0 for R∞ 6 ξ 6 A. At fixed ξ ∈ (0, R∞),
(vn′(ξ))

αn′ → v∞(ξ) as n′ →∞. Therefore, it comes χ(ξ) = v∞(ξ) whenever 0 < ξ < R∞. The
system eventually reads:

Λv′′∞ − c∞v′∞ = v∞, 0 < ξ < R∞,

v∞(0) ∈ I, v′∞(0) = −c∞
Λ

(1− v∞(0)),

v∞(R∞) = v′∞(R∞) = 0,

(8.13)

which has no solution for finite R∞ (see also [6, Lemma 3.6 case (i)]).
As a consequence, the sequence (Rn)n∈N is unbounded when αn → 1. We may extract a

subsequence n′′ → ∞ such that Rn′′ → +∞. Finally, repeating the process, (Rn)n∈N goes to
+∞. �

8.4. Limit α→ 0. As in the previous subsection, Λ > 0 and θ ∈ (0, 1) are fixed. With each α,
0 < α < 1, we associate a solution (c,R, v(ξ)) of the problem (8.10)-(8.11).

Lemma 8.4. Let Λ > 0 and 0 < θ < 1 be fixed. Let (αn)n∈N be a decreasing sequence such
that 0 < αn < 1 and αn → 0 as n → ∞; the corresponding solution of (8.10)-(8.11) is denoted
by (cn, Rn, vn(ξ)). Then, (cn, Rn, vn(ξ))n∈N converges to the unique solution (c,R, v(ξ)) of the
limit system 

Λv′′ − cv′ = 1, 0 < ξ < R,

v(0) ∈ I, v′(0) = − c
Λ

(1− v(0)),

v(R) = v′(R) = 0,

(8.14)

together with

θ + Λv(0) = 1− c(1− Λ)

∫ R

0
e−csv(s)ds, (8.15)

where c = R is uniquely given by (1.12), see Subsection 8.2 (i).
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Proof. The proof follows most of the lines of the proof of Lemma 8.3. This time, we must show
that the sequence (Rn)n∈N is bounded. We take advantage of formula (6.18) which reads:

(2(1 + αn)Λ)1/2

1− αn
a

1−αn
2 < Rn <

2Λ1/2A(αn)

1− αn
b

1−αn
2

1− b
. (8.16)

Here, A(αn) = 23/2/(1 + αn)1/2 < 23/2. For simplicity we assume 0 < αn 6 1/2 for all n ∈ N.
It comes the new definition of A:

(2aΛ)1/2 < Rn < A = 27/2Λ1/2 b
1/4

1− a
. (8.17)

Hence, the sequence (cn)n∈N is also bounded from above and from below, as in Lemma 8.3.
Next, we mimic the proof of Lemma 8.3. By abuse of notation, we also denote by vn(ξ) its

extension by 0 to the interval [0, A]. The system for (cn, vn(ξ)) reads
Λv′′n − cnv′n = vαnn , 0 < ξ < A,

vn(0) ∈ I, v′n(0) = −cn
Λ

(1− vn(0)),

vn(A) = v′n(A) = 0.

(8.18)

The sequence (vn)n∈N is bounded in the space H2([0, A]). We extract a convergent subsequence
(cn′ , vn′)n′∈N such that cn′ → c > 0, vn′ → v in the space C1([0, A]). We pass to the limit as
n′ → ∞, αn′ → 0: there exists a non-negative function χ such that (vn′)

αn′ ⇀ χ weakly in
L2(0, A). At the limit it holds in the distribution sense in the interval (0, A):

Λv′′ − cv′ = χ.

As in the proof in Lemma 8.3, there exists 0 < R 6 A such that v(ξ) > 0 for 0 < ξ < R,
v(ξ) = 0 for R 6 ξ 6 A. The only difference is the following: at fixed ξ ∈ (0, R), (vn′(ξ))

αn′ → 1
as n′ →∞. Therefore, χ(ξ) = 1 whenever 0 < ξ < R. The system eventually reads:

Λv′′ − cv′ = 1, 0 < ξ < R,

v(0) ∈ I, v′(0) = − c
Λ

(1− v(0)),

v(R) = v′(R) = 0.

(8.19)

The next step is to take the limit in the formula

θ + Λvn′(0) = 1− cn′(1− Λ)

∫ A

0
e−cn′svn′(s)ds.

By Lebesgue’s Theorem, it comes:

θ + Λv(0) = 1− c(1− Λ)

∫ R

0
e−csv(s)ds. (8.20)

It follows from the uniform convergence of vn′(ξ) to v(ξ) on the interval [0, A] that Rn′ → R.
Finally, because the system (8.19)-(8.20) has a unique solution, the entire sequence converges
to (c,R, v(ξ)).

The proof is thus complete. �
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Appendix A. About the Poincaré-Bendixson Theorem

There are many textbooks on the qualitative theory of vector fields (see, e.g., Hartman [17],
Lefschetz [21], Arnold [2]). First versions of the Poincaré-Bendixson Theorem were given in
the historical works of Poincaré (see [24]) and Bendixson (see [5]). Here, we state a simplified
modern version of the Poincaré-Bendixson Theorem (see Theorem A.3 below). A more complete
version may be found in [21].

To begin with, for the convenience of the reader, we recall some basic definitions.
Let us consider a topological flow ϕ(t,m) on a manifold M . For each m ∈ M the curve t 7→

ϕ(t,m), parametrized by the time t, is the trajectory by m defined on a maximum open interval
(−τ−(m),+τ+(m)) neighborhood of 0 and such that ϕ(0,m) = m (one may have τ+(m) = +∞
and/or −τ−(m) = −∞). The orbit γm is the oriented geometrical image of the trajectory by m
(the orbit is positively oriented by the time direction but the time parametrization is omitted).
We can also consider the positive half-orbit γ+

m = ϕ([0, τ+(m)),m) and the negative half-orbit
γ−m = ϕ([0,−τ−(m)),m).

The following limit sets have been intensively studied and used in the qualitative theory of
dynamical systems (see, e.g., [21], [2], [4], [13]):

Definition A.1. Let γ = γm be an orbit of a continuous flow ϕ(t,m) on a manifold M . The
ω-limit set of γ is the set ω(γ) of points p ∈M such that, for m ∈ γ, there exists a sequence of
times (ti) → +τ+(m) with the property that ϕ(ti,m) → p, for i → +∞. In a similar way, one
defines the α-limit set α(γ) by considering the sequences (ti) → −τ−(m). One can also write
ω(γ+

m) and α(γ−m) for ω(γ) and α(γ) respectively. These limit sets does not depend on the choice
of a particular point m ∈ γ.

We recall that a vector field X on a n-manifold M is defined, on each open chart Ω with
coordinates x = (x1, . . . , xn), as a first order differential operator:

X(x) = A1(x)
∂

∂x1
+ · · ·+An(x)

∂

∂xn
.

The vector field is said of class Ck if the components Ai(x) are of this class on each chart Ω. A
vector field may depend on a parameter λ, when the components in each chart depend on this
parameter. A family of vector fields Xλ is of class Ck, if the components Ai(x, λ) are of this
class as functions of (x, λ).

We also recall a basic result which is a corollary of the (real) Cauchy Theorem:

Theorem A.2. Let Xλ be a family of vector fields defined on an open set Ω in Rn, with λ ∈W,
an open set of Rp. This family is assumed of class of differentiability Ck, k > 1, or of analytic class
(we mean that it is represented by a map Ω×W → Rn of this given class). We call ϕ(t,m, λ) its
flow and consider (t0,m0, λ0) ∈ R×Ω×W such that the segment of ϕ([0, t0],m0, λ0) is contained
in Ω. Then the flow ϕ(t,m, λ) is defined in a neighborhood U of (t0,m0, λ0) in R× Ω×W and
has on U the same class of differentiability as the family Xλ.
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Theorem A.3. (Poincaré-Bendixson Theorem) One considers a C1 vector field X defined
on an open set Ω of R2. One assumes that a positive half-orbit γ+

m of the flow has a compact
closure in Ω. Then, ω(γ+

m) contains a singular point or is a closed (periodic) orbit. As the
α-limit sets of X are the ω-limit sets of −X, one has a similar result for the negative half-orbits
γ−m of X.

We have the following corollary of the Poincaré-Bendixson Theorem which will be the version
used in this paper:

Corollary A.4. One considers a C1 vector field X defined on an open set Ω of R2, with flow
ϕ(t,m). One assumes that Ω has a compact closure Ω̄ in R2 and we write ∂Ω = Ω̄ \ Ω for its
boundary. One also assumes that Ω is simply connected and that X has no singular point (in
Ω). Let m be any point in Ω. Then there exists a sequence ti → τ+(m) and a point p ∈ ∂Ω such
that ϕ(ti,m)→ p when i→ +∞. A similar result is true for the negative times.

We refer to [25] for a detailed proof of Corollary A.4.

Appendix B. Proof of Proposition 4.3

The vector field XE
c has a unique singular point at the origin O, two trajectories whose ω-limit

and two trajectories whose α-limit set is the origin O. Each other trajectory goes from infinity
to infinity. One can expect that these properties imply that XE

c is topologically equivalent to
an hyperbolic linear saddle vector field. Unfortunately, this is not true in general as that was
already detected by Bendixson in [5]. Then, in the proof given below, we will have to use also
more specific properties of the vector field XE

c .

B.1. Construction of the equivalence on Q. In order to simplify the notation, and as c, α,Λ
are assumed to be fixed, we will write X for the vector Xc. We will denote by L the unique
stable manifold of X and y(x) the function whose graph is L; the latter function reads yc(x)
in Section 4. We also denote by L0 the stable manifold of the linear field X0 = y ∂

∂x + x ∂
∂y ,

restricted to the quadrant Q, which is the graph {y = y0(x) = −x}.
The stable manifold L := {y = y(x)} splits Q into two invariant regions: Q \ L = Q+ ∪ Q−

where Q+ = {x > 0, y(x) < y 6 0} and Q− = {x > 0, y < y(x)}. To begin with, we want to
establish some properties for the orbits of X, which are trivially verified by the orbits of the
linear vector field X0.

Lemma B.1. We consider the vector field X defined on Q.
(1) Any orbit γ contained into Q+ is a graph {y = yγ(x)} over an interval [xγ ,+∞) for some
xγ such that 0 < xγ < x.
(2) Any orbit contained into Q− is a graph {y = yγ(x)} over [0,+∞). Moreover if (x0, y0) ∈ γ,
we have that: y0 − c/Λx0 6 yγ(0) < 0.

Proof. The point (1) follows from the results of Section 4: a trajectory starting at a point
(x, y) ∈ Q+ cannot tend toward O because L is the unique stable manifold in Q by Lemma 4.7;
then, as a consequence of Lemma 4.4, this trajectory must attain a point (xγ , 0) with 0 < xγ < x.
Finally, as in the proof used in Lemma 4.7 for the stable manifold, it is easy to prove that the
corresponding orbit γ is a graph {y = yγ(x)} above [xγ ,+∞).

We now consider the orbits in Q−. We first claim that, in the interior of the whole quadrant
Q, the vector field X is transverse to the direction of the vector Z = (1, c/Λ) and directed toward
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the left. To see this, we consider the orthogonal vector field Z⊥ = (−c/Λ, 1) and compute the
scalar product

< Z⊥, X >= − c
Λ
y +

( c
Λ
y +

1

Λ
xα
)

=
1

Λ
xα,

which is strictly positive if x > 0. The claim follows.
Consider now an orbit γ in Q−. By an argument similar to the one used in Lemma 4.7 it is

easy to see that γ is a graph above some maximal interval I in the Ox-axis. We want firstly
to prove that if (x0, y0) ∈ γ, then [0, x0] ⊂ I (this means that I is closed on the left with 0
as end point). To show this point we consider the curved rectangle R = [O,A,B,C], where
A = (x0, y(x0)), B = (x0, y0) and C belongs to the Oy-axis (observe that necessarily we have
that y0 < y(x0)). The side [O,A] is an arc in L, the three other sides are linear segments and
[B,C] as a direction parallel to the vector Z above, see Figure 5. The vector field X is tangent to
[O,A], transverse toward the left along [A,B], [B,C) and [C,O): this means that X is entering
R along [A,B] ∪ [B,C) and is going out R along [C,O). Now, as in the point (1), we can use
the results of Section 4 to obtain that the trajectory of the point (x0, y0) must reach a point of
[C,O) in a finite time.

This implies that γ is a graph {y = yγ(x)} over a maximal interval [0, x+). Moreover, as the
ordinate of C is equal to y0 − c/Λx0 that is less than yγ(0), we have that yγ(0) > y0 − c

Λx0, as
stated in the Lemma.

We prove now that x+ = +∞ by using the same idea as in the proof of Lemma 4.8. We have

that d
(
y(x) − yγ(x)

)
/dx < 0 on (0, x+), the common domain of existence of y(x) and yγ(x).

This inequality implies that, for all x < x+, we have that the function y(x)−yγ(x) is decreasing
and then that:

yγ(x) > y(x)− y(x0) + yγ(x0).

Passing to the limit x+ this implies that the α-limit set of γ is contained in the closed interval
J = {x+} × [y(x+) − y(x0) + yγ(x0), 0] and then is non-empty and must contain a singular
point, as consequence of the Poincaré-Bendixson Theorem. As X has no singular point in a
neighborhood of J , this is impossible. �

x

y

O

A

x0

L

C

B = (x0, y0)
yγ(0)

γ

Figure 5. Rectangle R
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Lemma B.1 allows to define two transition functions: for (x, y) ∈ Q+, the function Tx(y) which
is the value xγ defined in Lemma B.1 for the orbit γ through the point (x, y); for (x, y) ∈ Q−,
the function Sx(y) where (0, Sx(y)) is the point reached on the axis Oy by the orbit γ through
(x, y) (see Figure 6). Clearly, these functions are analytic on Q+ and Q− respectively. The
following lemma shows that they can be continuously extended on L with the common value 0:

Lemma B.2. Let Q̄+ = Q+∪L = {x > 0, y(x) 6 y 6 0} and Q̄− = Q−∪L = {x > 0, y 6 y(x)}
be the closure of Q+ and Q−. Then Tx(y) and Sx(y) can be continuously extended by 0 on L.

Proof. To prove the continuity along L, we will proceed in three steps.
Step 1. We fix a value x0 > 0 and prove that Tx0(y) and Sx0(y) tends toward 0 when y

tends toward y(x0). We begin with Tx0(y). Let us observe that y 7→ Tx0(y) is decreasing from
Tx0(0) = x0 when y decreases from y = 0. Let xT > 0 be the limit when y → y(x0). We claim
that xT = 0. If not, the orbit of (xT , 0) for the vector field −X reaches the vertical axis {x = x0}
at some point (x0, yT ) with y(x0) < yT < 0. This is clearly in contradiction with the definition
of xT . As a conclusion, the function y 7→ Tx0(y) extends continuously by 0 at y = y(x0). We
have exactly the same proof for Sx0(y).

Step 2. The extensions are continuous on L \ {O} as functions of the two variables (x, y).
Let us prove the continuity of the extension of Tx(y) at a point (x0, y(x0)) ∈ L with x0 > 0.
The idea is that we can compute Tx in terms of Tx0 and the transitions along the flow of X. If
we denote by Σx the vertical section by x (parameterized by y), there is an analytic transition
along the flow of X: y → T x0

x (y) from Σx to Σx0 such that T x0
x (y(x)) = Tx(y(x0)). Moreover it

is clear that
Tx(y) = Tx0 ◦ T x0

x (y).

As the extension of Tx0 is continuous in y at y(x0) and T x0
x (y) is analytic in (x, y) at (x0, y(x0)),

the above formula shows that the extension of Tx(y) is continuous in (x, y) at (x0, y(x0)). Exactly
the same proof can be made for Sx(y).

Step 3. Continuity of the extension at the origin O. The fact that Tx(y)→ 0 for (x, y)→ (0, 0)
in Q̄+ follows from the inequality 0 6 Tx(y) 6 x. For the function Sx(y), we apply the inequality
|Sx(y)| 6 |y|+ c

Λ |x| which is an equivalent form of the inequality states in the point (2) of Lemma
B.1. �

From now on and for simplicity, we will also write Tx(y) and Sx(y) for the continuous ex-
tensions of these functions on Q̄+ and Q̄−, i.e. along the curve L. For each x > 0 and as
it is monotonic, the map y 7→ Tx(y) is an homeomorphism from the interval [0, y(x)] to the
interval [x, 0]. Also, for each x > 0, the map y 7→ Sx(y) is an homeomorphism from the in-
terval (−∞, y(x)] to the interval (−∞, 0]. Moreover we have proved in Lemma B.2 that these
x-families of homeomorphisms are continuous with the limits S0(y) ≡ y and T0(0) = 0 (the
interval [0, y(0)] is reduced to the point {0}. This allows to define the inverse homeomorphisms
T−1
x (z) and S−1

x (z) defined respectively for 0 6 z 6 x and z ∈ (−∞, 0]. These x-families are
clearly analytic for z 6= 0. we prove now that they are continuous in (x, z) at z = 0:

Lemma B.3. The inverse maps T−1
x (z) and S−1

x (z) have a continuous extension for z = 0 by
T−1

0 (0) = 0 and S−1
0 (z) ≡ z.

Proof. The proof is indeed much easier than the one given in Lemma B.2 for the direct maps.
Now, we can take advantage of the contraction property of the vertical direction, along the flow
followed in the x-direction, already proved in Lemma 4.8 and used above in Lemma B.1. This
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property implies that |T−1
x (z)− y(x)| 6 |y(z)| and that |S−1

x (z)− y(x)| 6 |z|. The result follows
directly for z → 0. �

As X0 is just a particular case, we have transition functions T 0
x (y) and S0

x(y) for it, which

verify the statements of Lemmas B.1, B.2 and B.3 (in fact, as T 0
x (y) =

√
x2 − y2 and S0

x(y) =

−
√
y2 − x2, we can verify directly their properties). Using the transitions functions of X0 and

X we can now construct on Q a topological equivalence between these vector fields:

Proposition B.4. We define a function hx(y) on Q by hx(y) = T−1
x ◦T 0

x (y) if (x, y) ∈ Q̄+ and
by hx(y) = S−1

x ◦ S0
x(y) if (x, y) ∈ Q̄− (see Figure 6). Then, the map H(x, y) = (x, hx(y)) is an

homeomorphism of Q, which is the identity on the boundary ∂Q (H(x, 0) = (x, 0) for x > 0 and
H(0, y) = (0, y) for y 6 0). Moreover, H is a topological equivalence between X0 and X, i.e. H
sends the orbits of X0 onto the orbits of X.

Proof. As T 0
x and T−1

x are homeomorphisms from [0, y0(x)] to [x, 0] and from [x, 0] to [0, y(x)]
respectively, the map hx(y) is an homeomorphism from [0, y0(x)] to [0, y(x)]. For similar reasons
we have that hx(y) is an homeomorphism from (−∞, y0(x)] to (−∞, y(x)]. As these two defini-
tions of hx(y) coincide at y0(x), they define a global homeomorphism also denoted by hx(y) from
(−∞, 0] to itself. The continuity on Q of the map (x, y) 7→ hx(y) follows from the continuity
of the transition functions and their inverse in terms of their two variables, proved in Lemmas
B.2 and B.3. As h−1

x (y) = (T 0)−1
x ◦ Tx(y) on Q̄+ and h−1

x (y) = (S0)−1
x ◦ Sx(y) on Q̄−, the same

argument shows that (x, y) 7→ h−1
x (y) is a continuous family of homeomorphisms from (−∞, 0]

to itself. Clearly, the map (x, y) 7→ (x, h−1
x (y)) is the inverse of the map H(x, y) = (x, hx(y)). As

these two maps are continuous, we have that H is an homeomorphism of Q to itself. Moreover
it is clear that H is equal to the identity on ∂Q.

By definition of the transition maps, the homeomorphism H sends each orbit of X0 onto the
orbits of of X (see Figure 6; in particular H sends L0 onto L). We have proved that H is a
topological equivalence on Q. �

xx OO

y = − 1
c
xα

S0
x(y)

Sx(y)

y

y0(x)

y

z = T 0
x (y) z

hx(y) = (Tx)
−1(z)

y(x)

y

L0

L

H(x, y) = (x, hx(y))

Figure 6. The topological equivalence H
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B.2. Extension of the equivalence to R2. We can obtain very similar properties for Xc on
the quadrant Q′ = {x > 0, y > 0} as the ones proved for Xc on Q, in Section 4 and in the above
subsection B.1. A noticeable difference is that the slope of Xc is greater than c/Λ everywhere
in Q′. As a consequence, we can find a unique unstable manifold at the origin which is a graph
x = xc(y) and more generally each orbit γ in Q′ is a graph xγ(y) above an interval [yγ ,+∞)
with yγ > 0.

We can repeat the proof given in Subsection B.1 in order to construct an homeomorphism H ′

ofQ of the form (h′y(x), y) where h′y(x) and (h′y)
−1(x) are continuous families of homeomorphisms

and such that H ′ is equal to the identity on ∂Q′. This homeomorphism can be glued up with
H to give a topological equivalence Ĥ of X0 and Xc on the half-plane {x > 0}, which is equal
to the identity along the Oy-axis.

To extend Ĥ to the whole plane, we use the symmetry property of XE
c , already mentioned

in Subsection 4.1: XE
c (−x,−y) = −Xc(x, y). For each x 6 0, we define Ĥ(x, y) by Ĥ(x, y) =

−Ĥ(−x,−y). This extends Ĥ in the half-space {x 6 0} and the two definitions coincide along

{x = 0} with the identity. Then, this defines a global topological equivalence Ĥ on R2 between
X0 and XE

c (this construction takes into account the fact that the orbits of X0 and XE
c are

crossing the Oy-axis at the points (0, y) such that y 6= 0).
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s://doi.org/10.1016/j.anihpc.2020.01.002.

[12] J.D. Buckmaster and G.S.S. Ludford, Theory of laminar flames, Cambridge University Press, Cambridge,
1982.

[13] Y.N. Dowker and F.G. Friedlander, On limit sets in dynamical systems, Proc. London Math. Soc (3) 4,
(1954), 168–176.

[14] G.F. Duff, Limit cycles and rotated vector fields, Annals of Math. (2) 57, (1953), 15-31.
[15] F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar Differentiable Systems, Universitext,

Springer-Verlag (2006), 15-31.
[16] D. Grobman, Homeomorphisms of systems of differential equations (english translation), Doklady Akademi

Nauk SSSR, vol. 128 (1959), 880-881.



FREE INTERFACE PROBLEM WITH FRACTIONAL ORDER KINETICS 37

[17] P. Hartman, Ordinary Differential Equations, Wiley, New york (1954).
[18] P. Hartman, A lemma in the theory of structural stability of differential equations, Proc. Amer. Math. Soc.,

vol. 11, n◦4 (1960) 610-620.
[19] M. Hirsch and S. Smale, Differential equations, dynamical systems and linear algebra, Pure and Applied

Mathematics, vol. 60, Academic Press, New York London (1974).
[20] C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, 2010.

[21] S. Lefschetz, Differential equations: Geometric theory, 2nd edition, Dover Publications Inc., New York, 1977.
[22] S.G. Nersesov, W. M. Haddad and Q. Hui, Finite-time stabilization of nonlinear dynamical systems via

control vector Lyapunov functions, J. Franklin Institute 345 (2008), 819–837.
[23] H.B. Oza, S.K. Spurgeon and N.V. Valeyev, Non-Lipschitz growth functions as a natural way of modelling

finite time behaviour in auto-immune dynamics, IFAC Proceedings Volumes 47 2014, 11611-11616.
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