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ABSTRACT

We consider a variational model for Single Molecule Local-
isation Microscopy (SMLM) super-resolution. More specif-
ically, we study a generalization of the Continuous Exact `0
(CEL0) penalty, recently introduced to relax the `2− `0 prob-
lem, where a weighted-`2 data fidelity now models signal-
dependent Poisson noise. For the numerical solution of the
associated non-convex minimisation problem, we propose an
iterative reweighted `1 (IRL1) algorithm, for which efficient
parameter computation strategies are detailed. Both quali-
tative and quantitative molecule localisation results are re-
ported, showing that the proposed weighted-CEL0 (wCEL0)
model for Poisson noisy data improves the results obtained
by CEL0 and state-of-the art deep-learning approaches for the
high-density SMLM ISBI 2013 dataset.

Index Terms— Super-resolution, SMLM, `0-optimisation,
Poisson noise, weighted-CEL0 relaxation.

1. INTRODUCTION

In fluorescence microscopy, Single Molecule Localisation
Microscopy (SMLM) approaches (among which we mention
PALM and STORM) allow to overcome the intrinsic limita-
tions in optical resolution imposed by the light diffraction.
SMLM techniques takes advantage of the absorption/emis-
sion properties of fluorescent molecules, which are sequen-
tially activated and deactivated at random so as to limit the
density of visible molecules in the sample. As a result,
SMLM data consist of a stack of noisy and blurred images,
whose individual frames represent sparse molecule samples,
easier to analyse, which can be re-combined at a final stage to
obtain the desired super-resolved image. In terms of locali-
sation precision, the quality of the result strongly depends on
the density of the molecules activated at each frame and most
of the existing models fail whenever such value is too high
(see [1] for a review).

In [2], the authors considered a `2 − `0-type continu-
ous non-convex and sparsity-promoting variational model for
super-resolution of SMLM high-density data. Such model
had been previously studied in [3], where exact relaxation
properties were shown to hold w.r.t. to the original, NP-hard,

`2 − `0 model. The `2 data fidelity term considered in [2, 3]
describes the presence of additive white Gaussian noise, al-
though in [2] was shown to perform rather well also with
Poisson distributed data, a more realistic scenario in biologi-
cal imaging.

Inspired by [3], in this work we study a sparsity-promoting
weighted `2−`0-type model, accounting for signal-dependent
Poisson noise in SMLM data. Our model approximates the
Kullback-Leibler data fidelity functional corresponding to
the Poisson negative log-likelihood as a weighted `2 data fi-
delity with local data intensity weights. Correspondingly, the
CEL0-type associated penalty promotes sparsity depending
both on the degradation model and local intensity infor-
mation. To solve the corresponding composite non-convex
optimisation problem, we consider an iterative-reweighted
`1 algorithm and provide some algorithmic details regarding
its (challenging) implementation. We validate our model on
the high-density SMLM ISBI 2013 dataset and compare the
results with CEL0 [2] and Deep-STORM [4] solutions.

2. WEIGHTED `2 − `0 OPTIMISATION

2.1. Inverse problem formulation

Let y ∈ RM2

>0 a vectorised M ×M image acquired by means
of a PALM/STORM technique and x ∈ RN2

≥0 , withN = LM ,
the desired N ×N image containing precise molecule local-
isations, defined on a L-times finer grid with L ∈ N. The
acquisition process can be described as:

y = P(RLHx),

where, for z ≥ 0, P(z) denotes the vector of realisations
of Poisson random variables with parameters zi ≥ 0, H ∈
RN2×N2

is the Block Circulant with Circulant Blocks (BCCB)
matrix corresponding to the the two-dimensional periodic
convolution with a specific Gaussian Point Spread Func-
tion (PSF) h ∈ RN2

and RL ∈ RM2×N2

is the down-
sampling operator mapping the desired image from the fine
grid to the coarser one. For shorthand notation, we further set
A := RLH ∈ RM2×N2

.



For λ > 0, we consider the following non-convex
sparsity-promoting model, for computing a sparse approx-
imation of x given that the data y is Poisson-distributed:

x̂ ∈ arg min
x∈RN2

DKL(Ax;y) + λ‖x‖0 + i≥0(x), (1)

whereDKL denotes the Kullback-Leibler fidelity term, which
is derived via standard MAP estimation (see, e.g., [5]) and is
defined for v ∈ RM2

>0 as DKL(v;y) :=
∑M2

i=1 dKL(vi; yi)
with dKL(vi; yi) := vi − yi log(vi). Note that y is guaran-
teed to be strictly positive by adding a positive constant back-
ground term b = b1M2 where 0 < b � 1 with 1M2 being
the vector of all ones. The indicator function i≥0(·) forces
the desired solution x to be non-negative (since it represents
molecule intensities which are indeed non-negative), while
the regularisation term ‖ · ‖0 denotes the N2-dimensional `0
pseudo-norm defined by:

‖x‖0 =

N2∑
i=1

|xi|0 with |xi|0 :=

{
1 if xi 6= 0

0 if xi = 0.

Dealing directly with the Kullback-Leibler functional DKL

above makes the problem quite challenging. To overcome
such difficulties, we follow [5] and consider here a second-
order Taylor approximation of DKL(·;y) around y which
leads to the following, symmetric weighted-`2 data term:

1

2
‖Ax− y‖2W :=

1

2
〈Ax− y,W(Ax− y)〉

=
1

2

M2∑
i=1

((Ax)i − yi)2

yi
, (2)

where the weighted norm is defined in terms of the diagonal,
positive definite matrix W = diag(1M2 ./ y) ∈ RM2×M2

and 1M2 ./ y denotes the Hadamard element-wise division
between 1M2 , defined above, and y. This fidelity term can
now be used in (1) as an approximation of DKL. It weights
locally the least-square discrepancy by the inverse intensity
of the given low-resolution data. This choice thus enforces a
large/low fidelity whenever low/high signal (corresponding to
locally low/high noise) is measured, respectively.

Hence, instead of (1), we consider the following simpli-
fied weighted `2 − `0 problem:

x̂ ∈ arg min
x∈RN2

Gw`0 :=
1

2
‖Ax− y‖2W + λ‖x‖0 + i≥0(x). (3)

We remark that due to the presence of the `0 pseudo-norm,
problems in the form (3) are known to be NP-hard. Sev-
eral locally convergent methods can be alternatively used to
solve these problems, such as, for instance, the Iterative Hard
Thresholding (IHT) or branch and bounds algorithms, which,
however, are highly dependent on the initialisation or hard
to apply to large-scale data, respectively. To overcome this

issue, in recent years a new class of continuous non-convex
penalties has been studied (see, e.g., [3]), based also on the
analytical properties of their local/global minimisers studied
in [6]. The general idea for this type of penalties is to con-
sider continuous non-convex relaxations of the `0 pseudo-
norm obtained by repeated application of Fenchel conjuga-
tion. The continuity of the relaxed functional allows for the
use of standard optimisation algorithms, such as, for instance,
the iterative reweighted `1 (IRL1) algorithm [7]. We proceed
similarly and consider a variation of the continuous exact `0
(CEL0) penalty introduced in [3] for the `2 − `0 problem,
which is better suited to deal with the data term (2).

2.2. A weighted-CEL0 (wCEL0) penalty

To derive a continuous approximation of the non-convex
functional Gw`0 in (3), we follow the computations carried
out in [3] to obtain its biconjugate functional by applying
twice Fenchel conjugation (see [8] for the details).

We attain the following continuous relaxation of Gw`0 :

GwCEL0(x) :=
1

2
||Ax−y||2W +ΦwCEL0(x;λ)+ i≥0(x), (4)

where, for λ > 0, ΦwCEL0(·;λ) denotes the non-convex non-
smooth continuous penalty defined by:

ΦwCEL0(x;λ) :=

N2∑
i=1

λ−
‖ai‖2W

2

(
|xi| −

√
2λ

‖ai‖W

)2

1
{|xi|<

√
2λ

‖ai‖W
}
,

and ai = (aj,i)j ∈ RM2

denotes the i -th column of the oper-
ator A. Here, the computation of the weighted norm ‖ai‖2W
contained in the expression of the penalty term ΦwCEL0 en-
codes the dependence on the data y since, by definition:

‖ai‖2W =

M2∑
j=1

a2j,i
yj
. (5)

Note that by setting D :=
√
W entry-wise, the fidelity term

can be re-written as

‖Ax− y‖2W = ‖DAx−Dy‖22 = ‖Ãx− ỹ‖22, (6)

where Ã = DA and ỹ = Dy. This shows that we can obtain
(4) by considering the CEL0 model associated with Ã and
ỹ. Thus, exact continuous relaxation properties of wCEL0
model follow from [3]. In particular, the global minima of
Gw`0 are also global minima of GwCEL0 and GwCEL0 elimi-
nates some local minimisers of Gw`0 .

Remark (Comparison with CEL0). Compared to the ΦCEL0

penalty considered in [2, 3] for the standard `2 − `0 prob-
lem, the new penalty ΦwCEL0 presents an explicit dependence
on both the model (i.e. the columns of the operator A, as
for CEL0) and the data y. This reflects the intrinsic signal-
dependence encoded into the considered Poisson modelling
and, numerically, leads to the introduction of a threshold
which is different for each component xi of the solution (as it
involves the i-th column of A) and adapts to any data y.



3. ALGORITHMIC IMPLEMENTATION

We describe here the implementation of the model-dependent
algorithmic parameters required to minimise the functional
GwCEL0 in (4). We follow [2] and consider the IRL1 algorithm
whose pseudocode is reported in Algorithm 1. The presence
of the weighted norm induced by W makes the numerical
solution of (4) quite challenging.

Weighted column norms computation. The compu-
tation of the N2 weighted norms (5) ‖ai‖W of the M2-
dimensional columns of the operator A = RLH is required
for the computation of the penalty term ΦwCEL0. To do so, we
proceed as follows. Since the operator RLcomputes down-
sampling via the sum of L×L neighbourhood pixel values, it
can be viewed as a restriction of the two-dimensional periodic
convolution operator with kernel kL ∈ RN×N defined as

(kL)i,j =

{
1, i, j ∈ {ML

2 −
L
2 + 1, · · · , ML

2 + L
2 }

0, otherwise,

where L here is assumed even for simplicity. Indeed, by de-
noting by KL ∈ RN2×N2

the BCCB matrix corresponding
to the kernel kL, we can compute any matrix-vector prod-
uct with A ∈ RM2×N2

by means of horizontal and verti-
cal L-equispaced selections of the result of the matrix-vector
product with the symmetric BCCB matrix AE = KLH ∈
RN2×N2

. In this way, although AE is larger than the original
A ∈ RM2×N2

, it is fully BCCB, so that its usage only in-
volves the two-dimensional FFTs of the kernels kL and h and
a O(N2 logN) numerical complexity. The enlarged struc-
tured matrix AE allows us to compute the weighted norms
‖ai‖W. Let us first insert the acquired M ×M matrix image
Y into the N ×N matrix Ỹ as follows

(Ỹ)i,j =


(Y)p+1,q+1 if i = 1 + Lp, j = 1 + Lq,

for p, q = 0, · · · ,M − 1

0 otherwise

and let ỹ ∈ RN2

be the vectorisation of Ỹ. The matrix-vector
product v = AE

·2(1M2 ./ ỹ), where ·2 denotes element-wise
matrix square, gives the vector v ∈ RN2

, whose i-th compo-
nent is just the weighted sum of the square of the elements
of the i-th column of A, since the corresponding weights are
the values 1M2 ./ ỹ. These N2 quantities just correspond to
‖ai‖2W, for i = 1, · · · , N2. We stress that the penalty term
in [2] involves the computation of the euclidean norms ‖ai‖22,
which can be computed by exploiting the structure of A in a
straightforward way. When considering the weighted norms
‖ai‖2W = ‖ãi‖22 the representation of the down-sampling op-
eration as restricted convolution and the described procedure
are crucial here for the actual (fast) computation of (5).

Backtracking. As efficient solver for the inner weighted-
`1 problems of the IRL1 algorithm, we use a FISTA algorithm
endowed with an adaptive backtracking strategy of the step-
size τ ∈ (1, 1/L] where L = ‖ATWA‖ ≤ ‖A‖2‖W‖ is

Algorithm 1 Weighted CEL0 (wCEL0) via IRL1

Require: y ∈ RM2

,x0 ∈ RN2

, λ > 0
repeat

update weights ωxk

i ∈ ∂ΦwCEL0(x
k;λ)

xk+1 = arg min
x≥0

1
2
‖y −Ax‖2W + λ

N2∑
i=1

ωxk

i |xi|

until convergence
return x

the Lipschitz constant of the gradient of the data term (2),
see [9]. An accurate estimation of L is indeed required to
ensure good convergence properties. However, due to the
sub-multiplicative property of ‖ · ‖, an estimate of the type
‖A‖2‖W‖ = L2 max(F(h))2 min(Y)−1 with F(·) being
the 2D FFT, tends, typically, to overestimate L due to the
possible small values, very close to zero, assumed by y.
This thus corresponds to consider extremely small step-sizes,
which may badly affect convergence speed. The use of an
adaptive backtracking strategy providing at each iteration of
the IRL1 inner loop a good estimate τk avoids this drawback.

Parameters. We initialise the IRL1 algorithm for both
CEL0 and wCEL0 models by choosing x0 = ATy and as-
sess convergence by a joint criterion based on the relative dif-
ference between consecutive iterates, the difference of their
corresponding function values and a maximum number of it-
erations for both the inner and the outer loop. Finally, we
consider an heuristic tuning of the regularisation parameter
λ > 0 for both methods by averaging the parameters optimis-
ing the results for 8 randomly chosen temporal frames.

4. NUMERICAL RESULTS

We test the proposed wCEL0 model on the high-density ISBI
SMLM 2013 dataset, composed of 361 images representing
8 tubes of 30nm diameter. The size of each acquisition is
64 × 64 pixels with 100 × 100nm2 pixels. We localise the
molecules on a 256 × 256 pixel image corresponding to a
factor L = 4 and a pixel size of 25× 25nm2. The total num-
ber of molecules is 81049 and 217 fluorophores are activated
on average at each time acquisition. The Gaussian PSF has
FWHM = 258.2nm. We report in Fig. 1a the ground-truth
image, in Fig. 1b the sum of all acquisitions, and in Fig. 1c
an example of a single frame from the dataset. We report
in Figure 2 the solution computed by wCEL0 Algorithm 1
in comparison with the ones obtained by CEL0 [3] and by
Deep-STORM [4], a deep-learning based model for super-
resolution microscopy whose COLAB notebook1 was used to
generate an ad-hoc training data using the parameters above.
For a quantitative assessment of localisation precision, up to
some tolerance radius δ > 0 we consider the Jaccard index
Jδ := CD

CD+FN+FP ∈ [0, 1], where the number of correct de-

1https://github.com/EliasNehme/Deep-STORM



J0 J2 J4 CD FN FP
wCEL0 0.057 0.552 0.659 151 67 14
CEL0 0.042 0.467 0.552 121 96 3
Deep-STORM 0.025 0.037 0.038 217 1 8157

Table 1: Jaccard index for δ ∈ {0, 2, 4} and CD, FN, FP for
δ = 4 computed as mean over the frames.

tections is denoted by CD, of false negatives by FN and of
false positives by FP, and then we take the average over the
frames. We compute Jδ for each reconstruction and then we
take the average over the frames. We test three different val-
ues of δ ∈ {0, 2, 4} corresponding to a tolerance of 0, 50
and 100 nm, respectively. Our results are reported in Table
1, which contains also the values of CD, FN and FP com-
puted for each method for the case δ = 4. We observe that
the Jaccard values for wCEL0 are significantly better than the
ones computed for both CEL0 and Deep-STORM. We ob-
serve that, while in terms of CD Deep-STORM outperforms
the other methods, its reconstruction shows a large number of
FP, as it can be observed in the close-ups in Figure 2. To solve
this drawback (which would of course improve also the per-
formance of CEL0 and wCEL0), post-processing techniques
can be used.

(a) GT (b) y (c) Single frame

Fig. 1: ISBI SMLM 2013 dataset: (a) Ground Truth data, (b)
sum of all acquisitions (x4), (c) single acquisition (x4).

5. CONCLUSIONS

We proposed a weighted `2 − `0 model for sparse super-
resolution of high-density SMLM data, suited to model the
presence of signal-dependent noise. We followed [3] and con-
sidered its continuous exact relaxation, defined in terms of a
weighted-CEL0 penalty depending both on model parameters
and observed data. The numerical solution of the weighted
problem is challenging due to non-trivial to compute algorith-
mic parameters. To overcome these issues, we detail suitable
estimation strategies allowing to solve the problem efficiently
via IRL1 algorithm. Our numerical results show improve-
ments in molecule localisation in comparison with standard
CEL0 and Deep-STORM approaches.

Future research should address the case of general data
fidelities, in order to deal directly with the case of non-
symmetric terms, such as the Kullback-Leibler fidelity.

(a) wCEL0 (b) CEL0 (c) Deep-STORM

(d) GT (e) wCEL0 (f) CEL0 (g) DeepStorm

Fig. 2: First-row: (a) wCEL0 result, (b) CEL0 result, (c)
Deep-STORM result. Second row: close-up on a detail.
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