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come    

Weighted-CEL0 sparse regularisation for molecule localisation in super-resolution microscopy with Poisson data

INTRODUCTION

In fluorescence microscopy, Single Molecule Localisation Microscopy (SMLM) approaches (among which we mention PALM and STORM) allow to overcome the intrinsic limitations in optical resolution imposed by the light diffraction. SMLM techniques takes advantage of the absorption/emission properties of fluorescent molecules, which are sequentially activated and deactivated at random so as to limit the density of visible molecules in the sample. As a result, SMLM data consist of a stack of noisy and blurred images, whose individual frames represent sparse molecule samples, easier to analyse, which can be re-combined at a final stage to obtain the desired super-resolved image. In terms of localisation precision, the quality of the result strongly depends on the density of the molecules activated at each frame and most of the existing models fail whenever such value is too high (see [START_REF] Sage | Quantitative evaluation of software packages for singlemolecule localization microscopy[END_REF] for a review).

In [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF], the authors considered a 2 -0 -type continuous non-convex and sparsity-promoting variational model for super-resolution of SMLM high-density data. Such model had been previously studied in [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF], where exact relaxation properties were shown to hold w.r.t. to the original, NP-hard, 2 -0 model. The 2 data fidelity term considered in [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF][START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] describes the presence of additive white Gaussian noise, although in [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF] was shown to perform rather well also with Poisson distributed data, a more realistic scenario in biological imaging.

Inspired by [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF], in this work we study a sparsity-promoting weighted 2 -0 -type model, accounting for signal-dependent Poisson noise in SMLM data. Our model approximates the Kullback-Leibler data fidelity functional corresponding to the Poisson negative log-likelihood as a weighted 2 data fidelity with local data intensity weights. Correspondingly, the CEL0-type associated penalty promotes sparsity depending both on the degradation model and local intensity information. To solve the corresponding composite non-convex optimisation problem, we consider an iterative-reweighted 1 algorithm and provide some algorithmic details regarding its (challenging) implementation. We validate our model on the high-density SMLM ISBI 2013 dataset and compare the results with CEL0 [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF] and Deep-STORM [START_REF] Nehme | Deep-STORM: super-resolution single-molecule microscopy by deep learning[END_REF] solutions.

WEIGHTED

2 -0 OPTIMISATION 2.1. Inverse problem formulation Let y ∈ R M 2 >0 a vectorised M × M image acquired by means of a PALM/STORM technique and x ∈ R N 2 ≥0
, with N = LM , the desired N × N image containing precise molecule localisations, defined on a L-times finer grid with L ∈ N. The acquisition process can be described as:

y = P(R L Hx),
where, for z ≥ 0, P(z) denotes the vector of realisations of Poisson random variables with parameters

z i ≥ 0, H ∈ R N 2 ×N 2
is the Block Circulant with Circulant Blocks (BCCB) matrix corresponding to the the two-dimensional periodic convolution with a specific Gaussian Point Spread Function (PSF)

h ∈ R N 2 and R L ∈ R M 2 ×N 2
is the downsampling operator mapping the desired image from the fine grid to the coarser one. For shorthand notation, we further set

A := R L H ∈ R M 2 ×N 2 .
For λ > 0, we consider the following non-convex sparsity-promoting model, for computing a sparse approximation of x given that the data y is Poisson-distributed:

x ∈ arg min

x∈R N 2 D KL (Ax; y) + λ x 0 + i ≥0 (x), (1) 
where D KL denotes the Kullback-Leibler fidelity term, which is derived via standard MAP estimation (see, e.g., [START_REF] Li | A reweighted l 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF]) and is defined for

v ∈ R M 2 >0 as D KL (v; y) := M 2 i=1 d KL (v i ; y i ) with d KL (v i ; y i ) := v i -y i log(v i ).
Note that y is guaranteed to be strictly positive by adding a positive constant background term b = b1 M 2 where 0 < b 1 with 1 M 2 being the vector of all ones. The indicator function i ≥0 (•) forces the desired solution x to be non-negative (since it represents molecule intensities which are indeed non-negative), while the regularisation term • 0 denotes the N 2 -dimensional 0 pseudo-norm defined by:

x 0 = N 2 i=1 |x i | 0 with |x i | 0 := 1 if x i = 0 0 if x i = 0.
Dealing directly with the Kullback-Leibler functional D KL above makes the problem quite challenging. To overcome such difficulties, we follow [START_REF] Li | A reweighted l 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF] and consider here a secondorder Taylor approximation of D KL (•; y) around y which leads to the following, symmetric weighted-2 data term:

1 2 Ax -y 2 W := 1 2 Ax -y, W(Ax -y) = 1 2 M 2 i=1 ((Ax) i -y i ) 2 y i , (2) 
where the weighted norm is defined in terms of the diagonal, positive definite matrix

W = diag(1 M 2 ./ y) ∈ R M 2 ×M 2
and 1 M 2 ./ y denotes the Hadamard element-wise division between 1 M 2 , defined above, and y. This fidelity term can now be used in (1) as an approximation of D KL . It weights locally the least-square discrepancy by the inverse intensity of the given low-resolution data. This choice thus enforces a large/low fidelity whenever low/high signal (corresponding to locally low/high noise) is measured, respectively. Hence, instead of (1), we consider the following simplified weighted 2 -0 problem:

x ∈ arg min x∈R N 2 G w 0 := 1 2 Ax -y 2 W + λ x 0 + i ≥0 (x). (3) 
We remark that due to the presence of the 0 pseudo-norm, problems in the form (3) are known to be NP-hard. Several locally convergent methods can be alternatively used to solve these problems, such as, for instance, the Iterative Hard Thresholding (IHT) or branch and bounds algorithms, which, however, are highly dependent on the initialisation or hard to apply to large-scale data, respectively. To overcome this issue, in recent years a new class of continuous non-convex penalties has been studied (see, e.g., [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF]), based also on the analytical properties of their local/global minimisers studied in [START_REF] Nikolova | Description of the minimizers of least squares regularized with 0 -norm. uniqueness of the global minimizer[END_REF]. The general idea for this type of penalties is to consider continuous non-convex relaxations of the 0 pseudonorm obtained by repeated application of Fenchel conjugation. The continuity of the relaxed functional allows for the use of standard optimisation algorithms, such as, for instance, the iterative reweighted 1 (IRL1) algorithm [START_REF] Ochs | On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision[END_REF]. We proceed similarly and consider a variation of the continuous exact 0 (CEL0) penalty introduced in [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] for the 2 -0 problem, which is better suited to deal with the data term (2).

A weighted-CEL0 (wCEL0) penalty

To derive a continuous approximation of the non-convex functional G w 0 in (3), we follow the computations carried out in [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] to obtain its biconjugate functional by applying twice Fenchel conjugation (see [START_REF] Lazzaretti | Continuous relaxation of sparse 0 optimisation problems in fluorescence microscopy with Poisson data[END_REF] for the details). We attain the following continuous relaxation of G w 0 :

G wCEL0 (x) := 1 2 ||Ax -y|| 2 W + Φ wCEL0 (x; λ) + i ≥0 (x), (4) 
where, for λ > 0, Φ wCEL0 (•; λ) denotes the non-convex nonsmooth continuous penalty defined by:

ΦwCEL0(x; λ) := N 2 i=1 λ - a i 2 W 2 |x i | - √ 2λ a i W 2 1 {|x i |< √ 2λ a i W } ,
and a i = (a j,i ) j ∈ R M 2 denotes the i -th column of the operator A. Here, the computation of the weighted norm a i 2 W contained in the expression of the penalty term Φ wCEL0 encodes the dependence on the data y since, by definition:

a i 2 W = M 2 j=1 a 2 j,i y j . (5) 
Note that by setting D := √ W entry-wise, the fidelity term can be re-written as

Ax -y 2 W = DAx -Dy 2 2 = Ãx -ỹ 2 2 , (6) 
where à = DA and ỹ = Dy. This shows that we can obtain (4) by considering the CEL0 model associated with à and ỹ. Thus, exact continuous relaxation properties of wCEL0 model follow from [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF]. In particular, the global minima of G w 0 are also global minima of G wCEL0 and G wCEL0 eliminates some local minimisers of G w 0 .

Remark (Comparison with CEL0). Compared to the Φ CEL0 penalty considered in [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF][START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] for the standard 2 -0 problem, the new penalty Φ wCEL0 presents an explicit dependence on both the model (i.e. the columns of the operator A, as for CEL0) and the data y. This reflects the intrinsic signaldependence encoded into the considered Poisson modelling and, numerically, leads to the introduction of a threshold which is different for each component x i of the solution (as it involves the i-th column of A) and adapts to any data y.

ALGORITHMIC IMPLEMENTATION

We describe here the implementation of the model-dependent algorithmic parameters required to minimise the functional G wCEL0 in (4). We follow [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF] and consider the IRL1 algorithm whose pseudocode is reported in Algorithm 1. The presence of the weighted norm induced by W makes the numerical solution of (4) quite challenging.

Weighted column norms computation. The computation of the N 2 weighted norms (5) a i W of the M 2dimensional columns of the operator A = R L H is required for the computation of the penalty term Φ wCEL0 . To do so, we proceed as follows. Since the operator R L computes downsampling via the sum of L × L neighbourhood pixel values, it can be viewed as a restriction of the two-dimensional periodic convolution operator with kernel k L ∈ R N ×N defined as

(k L ) i,j = 1, i, j ∈ { M L 2 -L 2 + 1, • • • , M L 2 + L 2 } 0, otherwise,
where L here is assumed even for simplicity. Indeed, by denoting by K L ∈ R N 2 ×N 2 the BCCB matrix corresponding to the kernel k L , we can compute any matrix-vector product with A ∈ R M 2 ×N 2 by means of horizontal and vertical L-equispaced selections of the result of the matrix-vector product with the symmetric BCCB matrix

A E = K L H ∈ R N 2 ×N 2
. In this way, although A E is larger than the original

A ∈ R M 2 ×N 2
, it is fully BCCB, so that its usage only involves the two-dimensional FFTs of the kernels k L and h and a O(N 2 log N ) numerical complexity. The enlarged structured matrix A E allows us to compute the weighted norms a i W . Let us first insert the acquired M × M matrix image Y into the N × N matrix Ỹ as follows

( Ỹ)i,j =      (Y)p+1,q+1 if i = 1 + Lp, j = 1 + Lq, for p, q = 0, • • • , M -1 0 otherwise and let ỹ ∈ R N 2 be the vectorisation of Ỹ. The matrix-vector product v = A E •2 (1 M 2 ./ ỹ)
, where •2 denotes element-wise matrix square, gives the vector v ∈ R N 2 , whose i-th component is just the weighted sum of the square of the elements of the i-th column of A, since the corresponding weights are the values 1 M 2 ./ ỹ. These N 2 quantities just correspond to

a i 2 W , for i = 1, • • • , N 2 .
We stress that the penalty term in [START_REF] Gazagnes | High density molecule localization for super-resolution microscopy using CEL0 based sparse approximation[END_REF] involves the computation of the euclidean norms a i 2 2 , which can be computed by exploiting the structure of A in a straightforward way. When considering the weighted norms a i 2 W = ãi 2 2 the representation of the down-sampling operation as restricted convolution and the described procedure are crucial here for the actual (fast) computation of [START_REF] Li | A reweighted l 2 method for image restoration with Poisson and mixed Poisson-Gaussian noise[END_REF].

Backtracking. As efficient solver for the inner weighted-1 problems of the IRL1 algorithm, we use a FISTA algorithm endowed with an adaptive backtracking strategy of the stepsize τ ∈ (1, 1/L] where

L = A T WA ≤ A 2 W is Algorithm 1 Weighted CEL0 (wCEL0) via IRL1 Require: y ∈ R M 2 , x 0 ∈ R N 2 , λ > 0 repeat update weights ω x k i ∈ ∂ΦwCEL0(x k ; λ) x k+1 = arg min x≥0 1 2 y -Ax 2 W + λ N 2 i=1 ω x k i |xi| until convergence return x
the Lipschitz constant of the gradient of the data term (2), see [START_REF] Calatroni | Backtracking strategies for accelerated descent methods with smooth composite objectives[END_REF]. An accurate estimation of L is indeed required to ensure good convergence properties. However, due to the sub-multiplicative property of • , an estimate of the type A 2 W = L 2 max(F(h)) 2 min(Y) -1 with F(•) being the 2D FFT, tends, typically, to overestimate L due to the possible small values, very close to zero, assumed by y. This thus corresponds to consider extremely small step-sizes, which may badly affect convergence speed. The use of an adaptive backtracking strategy providing at each iteration of the IRL1 inner loop a good estimate τ k avoids this drawback.

Parameters. We initialise the IRL1 algorithm for both CEL0 and wCEL0 models by choosing x 0 = A T y and assess convergence by a joint criterion based on the relative difference between consecutive iterates, the difference of their corresponding function values and a maximum number of iterations for both the inner and the outer loop. Finally, we consider an heuristic tuning of the regularisation parameter λ > 0 for both methods by averaging the parameters optimising the results for 8 randomly chosen temporal frames.

NUMERICAL RESULTS

We test the proposed wCEL0 model on the high-density ISBI SMLM 2013 dataset, composed of 361 images representing 8 tubes of 30nm diameter. The size of each acquisition is 64 × 64 pixels with 100 × 100nm 2 pixels. We localise the molecules on a 256 × 256 pixel image corresponding to a factor L = 4 and a pixel size of 25 × 25nm 2 . The total number of molecules is 81049 and 217 fluorophores are activated on average at each time acquisition. The Gaussian PSF has FWHM = 258.2nm. We report in Fig. 1a the ground-truth image, in Fig. 1b the sum of all acquisitions, and in Fig. 1c an example of a single frame from the dataset. We report in Figure 2 the solution computed by wCEL0 Algorithm 1 in comparison with the ones obtained by CEL0 [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] and by Deep-STORM [START_REF] Nehme | Deep-STORM: super-resolution single-molecule microscopy by deep learning[END_REF], a deep-learning based model for superresolution microscopy whose COLAB notebook 1 was used to generate an ad-hoc training data using the parameters above. For a quantitative assessment of localisation precision, up to some tolerance radius δ > 0 we consider the Jaccard index

J δ := CD CD+FN+FP ∈ [0, 1]
, where the number of correct de- tections is denoted by CD, of false negatives by FN and of false positives by FP, and then we take the average over the frames. We compute J δ for each reconstruction and then we take the average over the frames. We test three different values of δ ∈ {0, 2, 4} corresponding to a tolerance of 0, 50 and 100 nm, respectively. Our results are reported in Table 1, which contains also the values of CD, FN and FP computed for each method for the case δ = 4. We observe that the Jaccard values for wCEL0 are significantly better than the ones computed for both CEL0 and Deep-STORM. We observe that, while in terms of CD Deep-STORM outperforms the other methods, its reconstruction shows a large number of FP, as it can be observed in the close-ups in Figure 2. To solve this drawback (which would of course improve also the performance of CEL0 and wCEL0), post-processing techniques can be used. 

CONCLUSIONS

We proposed a weighted 2 -0 model for sparse superresolution of high-density SMLM data, suited to model the presence of signal-dependent noise. We followed [START_REF] Soubies | A continuous exact 0 penalty (CEL0) for least squares regularized problem[END_REF] and considered its continuous exact relaxation, defined in terms of a weighted-CEL0 penalty depending both on model parameters and observed data. The numerical solution of the weighted problem is challenging due to non-trivial to compute algorithmic parameters. To overcome these issues, we detail suitable estimation strategies allowing to solve the problem efficiently via IRL1 algorithm. Our numerical results show improvements in molecule localisation in comparison with standard CEL0 and Deep-STORM approaches. Future research should address the case of general data fidelities, in order to deal directly with the case of nonsymmetric terms, such as the Kullback-Leibler fidelity. 
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 1 Fig. 1: ISBI SMLM 2013 dataset: (a) Ground Truth data, (b) sum of all acquisitions (x4), (c) single acquisition (x4).

Fig. 2 :

 2 Fig. 2: First-row: (a) wCEL0 result, (b) CEL0 result, (c) Deep-STORM result. Second row: close-up on a detail.
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Table 1 :

 1 Jaccard index for δ ∈ {0, 2, 4} and CD, FN, FP for δ = 4 computed as mean over the frames.

	1 https://github.com/EliasNehme/Deep-STORM
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