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In order to assess the precision of simulations of diffusion at arrays based on the Voronoi tessellation approach we investigated two representative types of random arrays involving bands or disk electroactive sites [J. Electroanal. Chem. 147 (1983) 39] and modelled their diffusional patterns when the solution contains only one electroactive species undergoing a simple electron transfer reaction at the active sites under chronoamperometric conditions. On the one hand, the ensuing results establish that in both cases the Voronoi approach produces reasonably good predictions of the total current intensities flowing through the elementary cells of each array. Indeed, the relative error introduced by the Voronoi-based approach, being less than 5% in each case, is acceptable from an experimental point of view owing to many other sources of uncertainties involved for random arrays. On the other hand, this work demonstrates that the current intensities predicted for the individual sites within an elementary cell based on simulations using Voronoi approaches are excessively wrong since they totally neglect the excessive redistributions of flux lines that happen when the diffusion layers expand with time. This hints to possible severe complication when Voronoi approaches are applied to encompass complex kinetics or to predict the outcome of electroanalytical methods that rely on a fine coupling between local concentrations and local fluxes.

Introduction

Many practical micro-and nanoscale systems used presently in heterogeneous catalysis, electrolyzers or electroanalytical sensing can be represented as arrays of active sites distributed randomly on inert surfaces [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Amatore | Electrochemistry at Ultramicroelectrodes[END_REF][START_REF] Nesselberger | The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[END_REF][START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF] since this allows to decrease the amount of expensive materials and often provides even better performances than solid materials owing to enhanced micro-and nanoscale diffusion rates and/or more reactive surface atoms. Those may include partially blocked electrodes, membranes or non-(electro)chemically active substrates with active/catalytic nanosites dispersed on their surface to name a few. As shown previously, these systems can be efficiently addressed theoretically by using a mathematical concept introduced by Voronoi [START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Aurenhammer | Voronoi Diagrams -A Surver of a Fundamental Geometric Data Structure[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF]. Indeed, taking advantage of the local symmetries between pairs of active sites scattered on an inert surface, one may adapt the Voronoi tessellation principle to define independent juxtaposed diffusional domains (named unit cells hereafter) around each active site whose full paving of the substrate and of the solution permits evaluating the global current responses of random arrays [START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF].

Briefly, these approaches consist in identifying around each active site a series of planar surfaces perpendicular to the inert surface positioned in such a way that each point of such plane is equidistant from the considered site and an immediately neighboring one. Thus, a collection of juxtaposed polygonal prisms constructed over each active site paves the whole diffusion domain accessible to the global array. This evidently facilitates the treatment of the random array by allowing to perform a series of parallel independent calculations of the diffusional contribution due to each site through considering individually its unit Voronoi cell followed by a simple summation of their individual current intensities at any given time [START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF][START_REF] Oleinick | Reconstruction of Distributions of Nanoparticles or Electroactive Nano-Components in Electrochemical Arrays Based on Chronoamperometric Data[END_REF]. Interestingly, each of these unit Voronoi cells can be additionally approximated by volumes of simplified regular geometries such as cylinders or blades [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Amatore | Electrochemistry at Ultramicroelectrodes[END_REF][START_REF] Sliusarenko | Validating a central approximation in theories of regular electrode electrochemical arrays of various common geometries[END_REF] with the further huge benefit of considerably decreasing the simulations difficulties, hence their time durations and memory occupancies [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Amatore | Electrochemistry at Ultramicroelectrodes[END_REF][START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF] and even possibly allowing analytical empirical formulations [START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF][START_REF] Oleinick | Reconstruction of Distributions of Nanoparticles or Electroactive Nano-Components in Electrochemical Arrays Based on Chronoamperometric Data[END_REF].

This explains why such approaches based on Voronoi tessellation concept is tempting owing to its simplicity and computational efficiency [START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF] although they evidently idealize the real diffusional contributions to and from each active site. Nonetheless, in a series of previous works we established that they allow evaluating with a reasonable accuracy the arrays global currents under chronoamperometric conditions provided that the substrate concentrations at the surface of each site are identical [START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF][START_REF] Oleinick | Reconstruction of Distributions of Nanoparticles or Electroactive Nano-Components in Electrochemical Arrays Based on Chronoamperometric Data[END_REF]. Hence, in this work we wish to examine this issue in more detail, particularly through investigating if the Voronoi tessellation constructed on the surface of the system remains valid at distances from it that exceed the average distance between active sites. For this we will rely on modelling the diffusional patterns created over two typical ideal arrays consisting of band or disk electrodes [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Amatore | Electrochemistry at Ultramicroelectrodes[END_REF] since they will adequately serve our purpose of evidencing the qualities and the limits of the Voronoi approaches when applied to more genuine experimental situations.

Computational details

Simulations were performed with Comsol Multiphysics 5.5 [START_REF]COMSOL Multiphysics Reference Manual, version 5[END_REF] to solve the system of partial derivative equation and boundary conditions described in Section A of the Supplementary Material (SM). However, in the case of the band array, analytical derivations based on conformal mapping (see Section B of the SM) were performed in order to check the accuracy of Comsol results and to identify more accurately the trajectories of flux lines in the elementary cell (see Figure 3 and Figure SM2). For global simulations of the disk array elementary cell behavior, the flux lines (see Figure 7 or Figure SM2) were obtained through using a specific feature of Comsol Multiphysics 5.5.

Results and Discussion

Hereafter, we consider two representative systems involving active sites of identical widths (array of parallel bands) or radii (array of disks) pseudo-randomly embedded on a conductive non-electroactive flat surface. Each array is assumed to operate under amperometric conditions in a solution containing a single electroactive species, A, prone to undergo a single electron transfer (ET) at each active site surface and diffusion being assumed to be a single transport mode. To simplify the presentation and focus on the important outcomes, the physico-mathematical models used to derive the theoretical responses analyzed hereafter are fully described in section A of the SM.

Pseudo random array composed of parallel band active sites

To simplify the following analysis and the discussion of its results we envision a pseudo-random array consisting of a periodic infinite lattice composed of pairs of parallel bands arranged asymmetrically (i.e., in a mirror-like fashion) with a period P like the one whose cross section is shown in Figure 1a.

Considering an infinite array extending to infinity in each direction allows to neglect any edge effect. Therefore, the symmetry planes between two adjacent couples of bands whose cross-sections are represented by the dashed lines perpendicular to the array surface in Figure 1a delimit individual array components that account for any other one (after a mirror inversion as needed). Each of these components, termed elementary cells hereafter, may then be treated independently to predict the whole array current response after a simple scaling taking into account the number of elementary cells.

To evaluate the performance and possible problems associated with the Voronoi tessellation model represented on Figure 1c, we decided to perform two series of simulations, both using with Comsol ® to solve the proper set of partial derivative equations and boundary conditions (see section A of the SM), either (i) within the whole solution area associated to one elementary cell without considering any physical limit inside it as sketched in Figure 1b, or (ii) independently within each Voronoi unit cell composing the elementary one as shown in Figure 1c. This allowed comparing the two series of results as a function of time in terms of (a) the global elementary cell currents or of (b) those passing through each electrode. For these comparisons we decided to opt for representations of the results on log-log plots since they allow identifying the relevant limiting regimes much better than classical chronoamperograms [START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF].

Figures 2a,b compare the results of simulations performed for (Fig. 2a) the whole elementary cell (shown in Fig. 1b) to those (Fig. 2b) obtained based on two independent simulations performed in each of the Voronoi unit cells displayed in (shown in Fig. 1c), as well as to the different limiting Cottrellian behaviors expected in each case at short and long times. A first conclusion is that the two simulations produced almost identical time-dependence behaviors for the overall currents (green curves in Figs 2a,b). Both reached the expected Cottrell limits at short time (proportional to the sum of each band surface area) when the diffusion layers thicknesses are much smaller than the band widths (i.e., Dt << w 2 [START_REF] Deakin | Electrochemical kinetics at microelectrodes: Part II. Cyclic voltammetry at band electrodes[END_REF]) and long time when the two individual diffusion layers generated at each band fully overlap to generate a planar diffusion layer (in the elementary cell case, Fig. 2a) or when each diffusion layer developing in each Voronoi unit cell became planar (Fig. 2b). However, since the diffusion layers transition towards their planar limits [1-2, 6, 8] in each cell (e.g., the elementary one in Fig. 1b, and the two independent ones in Fig. 1c) did not occur exactly in phase owing to the different ratios between the electrode(s) and solution domain widths in each case, the two global currents exhibited a small discrepancy (at maximum close to 2%, see Figure 2c) over the corresponding time range.

Although such discrepancy between the predictions of two models (Fig. 1b vs. 1c) can be considered tolerable given many other uncertainties related to the position of individual sites in any random array it highlighted as a possible issue of concern related to a systematic use of approaches based on the

Voronoi tessellation concept (see below).

A simple comparison of Figures 2a and2b relating to the individual currents flowing through each electrode according to global or Voronoi based simulations perfectly documents the origin and the importance of this point. Indeed, the two sets of predicted variations differ significantly at moderate and long times as can be seen clearly by comparing the respective Cottrellian limits achieved at large times for each band electrode according to the simulation procedure used (compare the blue and orange curves relative to each case in Figures 2a and2b). These large differences arise from the fact that the solution domains delimiting the two concentration fields generated by each band within the elementary double electrode cell varied with time, which cannot be explained by the constant solution domains corresponding to a Voronoi tessellation pattern. These deviations are negligible at short times because the diffusion layers are then limited to the environment close to each electrode, and they exactly compensate at long times since the global planar diffusion layers which progress into the solution far from the surface of the array are identical in each case. However, the two sets of concentration fields are not progressing in phase towards the solution bulk at intermediate times.

Therefore, a mutual compensation of the error associated with the independent Voronoi-based currents cannot occur as observed at long times. Nonetheless, a maximal error of only ca. 3% is obtained for the predictions based on the Voronoi approach relative to the more exact ones performed for the whole elementary cell (Fig. 2c).

This singular behavior becomes definitely apparent by observing the patterns described by the flux lines issued from each opposite edge of adjacent electrodes at different experimental times as done in Figures 3a-c. To simplify the presentation of these results and avoid complex but less relevant issues we decided to modulate the extension of the global diffusion layer by imposing a convection-like limit at  conv = 10, 40 and 60 µm respectively instead of using a classical  diff (t) = (Dt) 1/2 time-dependent expansion (note that the boundaries of the diffusion layers shown in Figure 3a-c would correspond to classical chronoamperometric experiments of durations of about 10, 160 and 360 ms, respectively, for D = 10 -5 cm 2 s 1 ). Indeed, this approach presented the great advantage of eliminating the effects of residual curvatures around the end of diffusion layers [START_REF] Amatore | The real meaning of Nernst's steady diffusion layer concept under non-forced hydrodynamic conditions. A simple model based on Levich's seminal view of convection[END_REF][START_REF] Pebay | Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments[END_REF][START_REF] Amatore | Monitoring concentration profiles in situ with an ultramicroelectrode probe[END_REF][START_REF] Amatore | Cyclic voltammetry at microelectrodes. Influence of natural convection on diffusion layers as characterized by in situ mapping of concentration profiles[END_REF].

Figure 3 clearly evidences that upon increasing the global diffusion layer thickness the left electrode is progressively "eating" its way across the solution domain that pertains to the right one within a Voronoi framework. In other words, the current density flowing through the left electrode increases with time compared to its Voronoi-predicted time-dependence. The opposite evidently occurs for the right electrode so the two phenomena almost exactly compensate at short or long times (Figure 2c). However, one notice in Fig. 3b that for  conv = 40 µm the concentration fields produced by the left electrode has almost reached a planar behavior near the bulk solution, while that generated by the right electrode still displays marked cylindrical characteristics [START_REF] Deakin | Electrochemical kinetics at microelectrodes: Part II. Cyclic voltammetry at band electrodes[END_REF].

Interestingly, at long diffusion times the concentration gradients near the end of the diffusion layer become linear with the same slope independently of the abscissa. Hence, the lateral driving force that curves the flux lines vanishes so these later ones become perpendicular to the array surface although at a position different from that predicted by the Voronoi approximation. Consequently, the ratio of the current intensities flowing through each electrode becomes constant and each electrode may reach a Cottrellian limit as evidenced in Figure 2a. Nonetheless, these limits differ from those predicted upon using a Voronoi-based approach because they correspond to the surface areas delimited by the edge flux lines at infinite distance from the electrodes (compare Fig. 3c) and not to those delimited by the Voronoi-tessellation of the array surface.

Everything appears as if the diffusional domains featuring the range of action of each band at long times corresponded to unit cells with surface areas that differ from those retained within a Voronoitessellation framework. Figure 4 emphasizes this outcome in a compact form for different positions of the midpoint between the facing edges of the two band electrodes (x m values), by plotting the relative magnitudes of the virtual-surface areas sustaining the action of each band at long times. Since at long times the current at each electrode is proportional to these virtual-surface areas Fig. 4 reflects also relative magnitudes of the individual electrode currents and could thus be measured experimentally if the band electrodes could be connected independently.

The above results (Figs. 3,4) concern systems composed of identical band electrodes, however the main conclusions remain valid even when the bands have different widths as reported in the Supplementary Material (Figure SM2). The important outcome is that the Voronoi approach provides in all cases reasonably correct predictions of the total current time-dependence when the concentration of the electroactive species at each active band surface is the same. Then, Voronoi tessellation approaches offer a great benefit by considerably decreasing simulation costs associated with predicting the behavior of arrays involving much higher numbers of electrodes. This advantage was employed for investigating the global current responses of random nanodisk arrays of electrodes [START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF] and even used for identifying the type of array at hand based on chronoamperometric currents [START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Oleinick | Reconstruction of Distributions of Nanoparticles or Electroactive Nano-Components in Electrochemical Arrays Based on Chronoamperometric Data[END_REF]. However, the present analyses established that Voronoi-based predictions concerning the individual band electrodes current responses are not acceptable at intermediate and long times because the diffusion fields developing far from the electrode network surface do not respect the limits imposed by a Voronoi tessellation framework. Although the ensuing consequences of this intrinsic prejudice are trifling under the conditions investigated here, i.e., when the concentration of the electroactive species is identical at the surface of each electrode, this issue suggests the existence of a potential problem whenever this constraint cannot be maintained as, for example, when ohmic drop or migration phenomena are involved [START_REF] Amatore | Electrochemical kinetics at microelectrodes: Part IV. Electrochemistry in media of low ionic strength[END_REF][START_REF] Amatore | Capacitive and Solution Resistance Effects on Voltammetric Responses at a Disk Microelectrode Covered with a Self-Assembled Monolayer in the Presence of Electron Hopping[END_REF] or when electrodes surface concentrations depend on the local current flux as occurs for slow or quasi-reversible electron transfers or many more complex mechanisms.

Random arrays with disk-like active sites

Random arrays of disk-type active sites are more commonly used in actual experiments so they have been the focus of most theoretical works (see e.g. [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Davies | The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory[END_REF][START_REF] Belding | Diffusional Cyclic Voltammetry at Electrodes Modified with Random Distributions of Electrocatalytic Nanoparticles: Theory[END_REF][START_REF] Oleinick | Nanostructured Electrodes as Random Arrays of Active Sites: Modeling and Theoretical Characterization[END_REF][START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF]). Therefore, the electrochemical behavior of an infinite pseudo-random 2D-array of disk-electrodes whose elementary cell is represented in Figure 5b was investigated. One may construct the full array through an infinite series of recursive mirror-symmetries performed along each side of the squared elementary cell as evidenced in Fig. 5a. Indeed, because of the geometrically exact periodical mirror-symmetries, the 4 planes elevated over each of the elementary cell sides perpendicularly to the array surface into the solution define a squared-based prism in which zero-flux boundary conditions strictly apply at each vertical face. Note that this conclusion is totally independent of any Voronoi-type consideration because it is an intrinsic property of the symmetries and anti-symmetries that define the full array in Figure 5a. Furthermore, since we consider that the array in Fig. 5 is infinite any edge effects are negligible. Hence, the whole array performance can be rigorously anticipated by a simple scaling of the current responses predicted for the elementary cell in Fig. 5b equipped with its vertical insulating walls without the need to consider any of its adjacent elementary cells.

Figure 6a presents the time dependence of the simulated total current response for the whole elementary cell when all three electrodes 1 to 3 are simultaneously active under chronoamperometric conditions, as well as the time-variations of the current intensities evaluated at each of the electrodes.

Conversely, Figure 6b presents the time dependent simulated currents obtained under the same conditions as in Fig. 6a for each Voronoi unit cell 1 to 3 as well as their sum. Comparison of the two sets of data establishes that provided that the concentration of the electroactive species is identical on all disks surfaces the global currents for the elementary cell evaluated through each approach are almost exactly superimposable except over the [10 s, 100 s] time range in which the Voronoi approach yield a maximal error close to 4% relative to more correct simulations considering the elementary cell as a whole (Fig. 6c). Note that over this time range, the three-discs system has almost already reached its longtime limit [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF]. This validates the use of the Voronoi concept when applied to disk electrodes for chronoamperometric conditions whenever this range of error is acceptable. Again, this may only occur because of almost complete mutual compensations of the errors associated at intermediate times to the current intensities evaluated independently for each disc electrode in a Voronoi approach context (see below and compare Fig. 2a-c and Fig. 3).

In strong contrast with this excellent performance of the Voronoi framework for predicting the global time-dependent current intensity of the whole array, the chronoamperometric behavior predicted for each electrode through simulation of the elementary cell as a whole was very different from that simulated in each Voronoi unit cell except at very short times (t < 0.2 s) when they did not yet interact (compare Figures 6a and6b). As observed above for the band electrodes array, at long experimental times, each individual disk reaches a Cottrellian current limit but corresponding to a virtual surface area extremely different from that predicted for the same electrode within a Voronoi-tessellation framework (Fig 5c). In Fig 5c, the surface areas of the Voronoi unit cells 1-3 cross-sections represent respectively 17%, 29% and 54% of the global surface area of the elementary cell. Accordingly [START_REF] Amatore | Charge transfer at partially blocked surfaces. A model for the case of microscopic active and inactive sites[END_REF][START_REF] Amatore | Construction of optimal quasi-conformal mappings for the 2D numerical simulation of diffusion at microelectrodes.: Part 2. Application to recessed or protruding electrodes and their arrays[END_REF][START_REF] Amatore | Numerical simulation of diffusion processes at recessed disk microelectrode arrays using the quasi-conformal mapping approach[END_REF], the long time Cottrellian limits of the three currents obey the same proportions when predicted using a Voronoi framework (Figure 6b). Contrariwise, when the diffusion problem is treated globally within the whole elementary cell, the cross-sections of the diffusion volumes developing from electrodes 1 and 2 located in the smallest Voronoi areas tend to expand well beyond the limits defined by the Voronoi tessellation of the array basal surface with a tendency to equalize the current densities at each electrode. This is readily noticeable in Figure 6a and Table 1 (compare 1 st and 2 nd columns) since long-time Cottrellian limits of the three electrode current intensities equal approximately one third of the global one, viz. contributing to 29%, 34% and 37%.

The origin of this behavior is perfectly understood upon visualizing the development of the diffusion patterns as in Figure 7 by representing the flux lines issued from electrodes 1 and 3 at long time (those issued from electrode 2 are omitted for clarity of the 3D representation). Would the Voronoi approach be valid, each group of flux lines ought to remain confined within the Voronoi boundaries of each unit cells 1 and 3 featured by the green dashed polygon drawn on the bottom and top cross-section of the prismatic diffusion volume of the elementary cell. Contrariwise, one observes that although all flux lines obey this prediction at small distances from the array surface, they rapidly bend farther into the solution, so that those issued from electrode 1 (i.e., the disk electrode associated with the smallest Voronoi domain in Fig. 5c) promptly expand to "invade" the solution volume "reserved" to electrode 3 within a Voronoi-based framework. Conversely, those issued from electrode 3 avoid the solution ranges "invaded" by electrode 1 flux lines. Although not shown for clarity on Figure 7 the same occur for electrode 2 whose flux lines are "compressed" by those of electrode 1 while simultaneously expanding into the Voronoi domain pertaining to electrode 3. Hence, diffusion leads to a progressive homogenization of the cross-section surface areas of the solution domains sustaining the activity of the three electrodes. Accordingly, the three current densities tend to become equal while the experimental time increases. This phenomenology is similar to that noted above in Figure 3 for band arrays (see also Figure SM2 in SM). Nonetheless, in the present case as for the random band array (compare Figs. 2a,b) even if the Voronoi approach does not represent correctly the individual current intensities at each electrode, the global current is almost correctly predicted over the time range that matters [START_REF] Sliusarenko | Development and validation of an analytical model for predicting chronoamperometric responses of random arrays of micro-and nanodisk electrodes[END_REF] because of self-compensation of errors. Indeed, at long diffusion times, flux lines that do not hit the electrode predicted according to the Voronoi-based approach end up anyway onto an adjacent electrode. Hence, the global current intensity is not significantly altered. However, we must point out that this may occur only because diffusion is essentially a zero-order process, since pure-diffusion second Fick's laws are linear and chronoamperometric boundary conditions under ideal conditions on the plateau of a wave are also zero-order for a Nernstian electron transfer. It is expected that this may not be the case when the boundaries at the electrodes surface involve first-order or higher-order conditions coupling fluxes and surfaces concentrations either because of electron transfer kinetics or ohmic drop, or when the Fick's laws involve nonlinear contributions such as migrational transport [START_REF] Amatore | Electrochemical kinetics at microelectrodes: Part IV. Electrochemistry in media of low ionic strength[END_REF][START_REF] Amatore | Capacitive and Solution Resistance Effects on Voltammetric Responses at a Disk Microelectrode Covered with a Self-Assembled Monolayer in the Presence of Electron Hopping[END_REF], or nonlinear chemical kinetics [see, e.g., ref . 21].

To examine this point while remaining within the scope of this work, a Butler-Volmer electron transfer kinetics was considered to apply at the disk electrodes surfaces and the electron transfer rate constant k 0 was decreased while keeping the three electrodes potential poised at a constant value E disk = E 0 + 0.3 V. The corresponding results presented in Table 1 evidence that upon introducing an increasingly severe kinetic constraint on the surface concentrations through decreasing k 0 , the three electrodes perform with practically identical current intensities at long times, passing approximately 1/3 of the overall current flowing through each electrode. This is of course only possible if, in the bulk solution, the surface areas of the cross-sections of the diffusional volumes associated with each electrode are also one third of that of the elementary cell surface area.

Conclusion

The results presented in this work establish that Voronoi approaches produce reasonably good predictions of the current intensities flowing through the elementary cells of random band and disk electrode arrays performing under chronoamperometric conditions for a simple electron transfer mechanism. The relative error introduced by Voronoi-based approaches is less than 5% in each case.

However, this work demonstrated that the current intensities featuring the electrochemical activity of individual sites obtained based on Voronoi approaches are overly wrong as soon as the diffusion layers generated by each electrode activity start to overlap. Fortunately, the ensuing errors nearly compensate each other due to redistributions of the flux lines in the solution far from the array surface. Nonetheless, this discrepancy suggests that Voronoi approaches may afford erroneous results when applied to complex kinetics or for predicting the outcome of electroanalytical methods that rely on a fine coupling between surface concentrations and local fluxes.

Acknowledgements

This work was supported in parts by CNRS, ENS, Sorbonne University and PSL University (UMR 8640 PASTEUR). GP acknowledges CNRS Institute of Chemistry (INC) for the "Emergence" post-doctoral support. AO thanks CNRS INC for the award of the "Emergence@INC2020" grant. CA acknowledges the Sino-French LIA CNRS NanoBioCatEchem for its support, as well as Xiamen University for his Distinguished Visiting Professor position.

Table 1. Dependence of the longtime limits of the relative current intensities experienced by each disk electrode 1,2 and 3 of the disk array in Figure 5b on the magnitude of the electron transfer rate constant for a simple ET oxidation mechanism and a Butler-Volmer kinetic law when the simulations are performed globally in the elementary cell. a

Electrode b

Fractions of the total array current intensity for each electrode

k 0 = 10 2 cm.s -1 k 0 = 10 -3 cm.s -1 k 0 = 10 -5 cm.s -1 1 (17%) 29% 29% 33% 2 (29%) 34% 34% 33% 
3 (54%) 37% 37% 34%

(a) E disk = E 0 + 0.3 V;  = 0.5; C bulk = 1 mM; r d = 10 µm; D = 10 -5 cm 2 s -1 ; other geometrical parameters of the disk electrode array were identical to those given in Fig. 5 caption. (b) The percentages indicated between parentheses are the values of the k 0 -independent current intensity fractions evaluated upon using a Voronoi approach (i.e., as in Fig. 5c). 

Figure captions:Figure 1 .

 1 Figure captions:

Figure 2 .

 2 Figure 2. Simulated currents (solid curves) for (a) the elementary cell shown in (Fig.1b) or (b) the two Voronoi unit cells shown in (Fig.1c) with P = 140 µm, 𝑥 𝛾 𝑃/2 20 μm, w = 10 µm, L = 1 mm (common lengths of the bands) for 𝐶 1 mM and 𝐷 10 cm /s. Green: total current; orange: right band current; blue: left band; dashed lines represent predicted Cottrellian limits: 1,2single and two bands short times limits, correspondingly; 3 -long time limit for the total current in the elementary cell; 4,5 -long time limits for each electrode according to Voronoi unit cells approximation. In (c) the predicted global currents shown in (a) and (b) are superimposed to stress their small difference (orange: current simulated for the global elementary cell; green: sum of the currents of the three Voronoi unit cells); the inset represents the relative error resulting from the use of a Voronoi approach.

Figure 3 .

 3 Figure 3. Concentration fields enforced by the simultaneous operation of the two band electrodes poised at the same potential in the elementary cell (Fig.1b) under different natural convection intensities imposing different limits of the convection layers at: 𝛿 10 (a), 40 (b) and 60 µm (c). The white curves shown in each panel represent marginal flux lines originating at the facing edges of each band, i.e. the lines across which no flux may occur in the perpendicular to them directions, while the dotted black line perpendicular to the substrate surface at the middle point between these edges (𝑥 20 μm) features the constant Voronoi limit. All other parameters are identical to those reported in the Fig. 2 caption.

Figure 4 .

 4 Figure 4. Relative variation of the equivalent (symbols-solid lines) surface areas associated to each band as a function of the position of the middle point 𝑥 of the insulating gap between the two electrodes at long diffusional times. All other parameters are identical to those reported in the Fig. 2
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 5 Figure 5. (a) 2D pseudo-random array of disks of identical radius (rd) arranged asymmetrically used in this work and (b) its representative elementary cell containing 3 electrode labelled 1, 2 and 3. In (c) is shown the three Voronoi unit cells 1, 2 and 3 created by splitting the elementary cell (b) according to the Voronoi tessellation concept (the unit cells are labelled according to the labels of their constitutive electrodes in (b)). In all this work the squared elementary cell has a 100 µm side length and the three electrodes have common radius (𝑟 10 μm), being centered at [x = 20 µm, y = 20 µm] (1), [x = 60 µm, y = 20 µm] (2), and [x = 40 µm, y = 50 µm] (2). The areas of the Voronoi unit cells in (c) are: 1.66 10 (1), 2.90 10 (2) and 5.43 10 (3) µm 2 , i.e., occupy respectively 17% (1), 29% (2) and 54% (3)of the total 10 4 µm 2 surface area of the elementary cell cross-section.
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 6 Figure 6. Red solid curves: currents intensities simulated as a function of time under chronoamperometric conditions for (a) the elementary cell shown in Fig. 5b considered as a whole or (b) obtained through summation of the individual currents intensities simulated for the three Voronoi unit cells 1-3 shown in Fig. 5c. Other solid curves provide the time variations of the current intensities for each of the three electrodes, 1 (blue), 2 (yellow) and 3 (green), obtained in each simulation approach. Dashed lines represent predicted Cottrellian limits: 1,2 -single and three disks short times limits, correspondingly; 3 -long time limit for the total current in the elementary cell; 4,5,6 -long time limits for each electrode according to Voronoi unit cells approximation. In (c) the predicted global currents shown in (a) and (b) are superimposed to stress their small difference (orange: current simulated for the global elementary cell; green: sum of the currents of the three Voronoi unit cells); the inset represents the relative error resulting from the use of a Voronoi approach. The chronoamperometric current intensities were evaluated considering that each electrode potential was poised on the plateau of the redox wave of an electroactive species at a bulk concentration 𝐶 1 mM and a diffusion coefficient of 𝐷 10 cm /s. See Figure 5 caption for the geometry of the array.
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 71 Figure 7. Flux lines issued from electrodes 1 and 3 of the disk-array elementary cell (compare to Fig.5b,c) at t = 1 s. For the sake of clarity of the perspective the flux lines issued from electrode 2 are not represented. The location of the 3 disk electrodes on the elementary cell surface are indicated on the

  Figure 1. (a) Cross-sections of the pseudo-random array of parallel bands of identical widths (w) arranged asymmetrically used is this work and (b) of its representative elementary cell whose width is equal to the halfperiod (𝑃/2) of the array in (a). In (c) is shown the cross-section of the two independent unit cells created by splitting the elementary cell displayed in (b) according to the Voronoi tessellation concept. In (b,c) 𝑥 𝛾𝑃/2is the abscissa of the middle point between the two facing edges of the band electrodes.
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 2 Figure 2. Simulated currents (solid curves) for (a) the elementary cell shown in (Fig.1b) or (b) the two Voronoi unit cells shown in (Fig.1c) with P = 140 µm, 𝑥 𝛾 𝑃/2 20 μm, w = 10 µm, L = 1 mm (common lengths of the bands) for 𝐶 1 mM and 𝐷 10 cm /s. Green: total current; orange: right band current; blue: left band; dashed lines represent predicted Cottrellian limits: 1,2 -single and two bands short times limits, correspondingly; 3 -long time limit for the total current in the elementary cell; 4,5 -long time limits for each electrode according to Voronoi unit cells approximation. In (c) the predicted global currents shown in (a) and (b) are superimposed to stress their small difference (orange: current simulated for the global elementary cell; green: sum of the currents of the three Voronoi unit cells); the inset represents the relative error resulting from the use of a Voronoi approach.
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 3 Figure 3. Concentration fields enforced by the simultaneous operation of the two band electrodes poised at the same potential in the elementary cell (Fig.1b) under different natural convection intensities imposing different limits of the convection layers at: 𝛿 10 (a), 40 (b) and 60 µm (c). The white curves shown in each panel represent marginal flux lines originating at the facing edges of each band, i.e. the lines across which no flux may occur in the perpendicular to them directions, while the dotted black line perpendicular to the substrate surface at the middle point between these edges (𝑥 20 μm) features the constant Voronoi limit. All other parameters are identical to those reported in the Fig. 2 caption.
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 4 Figure 4. Relative variation of the equivalent (symbols-solid lines) surface areas associated to each band as a function of the position of the middle point 𝑥 of the insulating gap between the two electrodes at long diffusional times. All other parameters are identical to those reported in the Fig. 2 caption. The corresponding variations for the Voronoi unit cells are represented by dashed lines. 𝑥 35 μm corresponds to symmetrical electrode configuration within elementary cell and thus to equal relative contributions (50%).
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 5 Figure 5. (a) 2D pseudo-random array of disks of identical radius (r d ) arranged asymmetrically used in this work and (b) its representative elementary cell containing 3 electrode labelled 1, 2 and 3. In (c) is shown the three Voronoi unit cells 1, 2 and 3 created by splitting the elementary cell (b) according to the Voronoi tessellation concept (the unit cells are labelled according to the labels of their constitutive electrodes in (b)). In all this work the squared elementary cell has a 100 µm side length and the three electrodes have common radius (𝑟 10 μm), being centered at [x = 20 µm, y = 20 µm] (1), [x = 60 µm, y = 20 µm] (2), and [x = 40 µm, y = 50 µm] (2). The areas of the Voronoi unit cells in (c) are: 1.66 10 (1), 2.90 10 (2) and 5.43 10 (3) µm 2 , i.e., occupy respectively 17% (1), 29% (2) and 54% (3) of the total 10 4 µm 2 surface area of the elementary cell cross-section.
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 6 Figure 6. Red solid curves: currents intensities simulated as a function of time under chronoamperometric conditions for (a) the elementary cell shown in Fig. 5b considered as a whole or (b) obtained through summation of the individual currents intensities simulated for the three Voronoi unit cells 1-3 shown in Fig. 5c. Other solid curves provide the time variations of the current intensities for each of the three electrodes, 1 (blue), 2 (yellow) and 3 (green), obtained in each simulation approach. Dashed lines represent predicted Cottrellian limits: 1,2 -single and three disks short times limits, correspondingly; 3 -long time limit for the total current in the elementary cell; 4,5,6 -long time limits for each electrode according to Voronoi unit cells approximation. In (c) the predicted global currents shown in (a) and (b) are superimposed to stress their small difference (orange: current simulated for the global elementary cell; green: sum of the currents of the three Voronoi unit cells); the inset represents the relative error resulting from the use of a Voronoi approach. The chronoamperometric current intensities were evaluated considering that each electrode potential was poised on the plateau of the redox wave of an electroactive species at a bulk concentration 𝐶 1 mM and a diffusion coefficient of 𝐷 10 cm /s. See Figure 5 caption for the geometry of the array.
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 7 Figure 7. Flux lines issued from electrodes 1 and 3 of the disk-array elementary cell (compare to Fig.

  5b,c) at t = 1 s. For the sake of clarity of the perspective the flux lines issued from electrode 2 are not represented. The location of the 3 disk electrodes on the elementary cell surface are indicated on the bottom face of the prismatic diffusion volume. Note that the scales are identical for all three directions. The dashed lines in green represented on the top and bottom faces of the prism represent the boundaries separating the three Voronoi unit cells in Fig. 5c.
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A. Description of physico-mathematical equations

We consider here a simple electron transfer (E) mechanism: 𝐴 → 𝐵 𝑒 under amperometric conditions with sufficiently high overpotentials at the working electrode to ensure diffusion limited conditions (except for the simulations whose results are presented in Table 1; see Table 1 caption). It is assumed that only species A is initially present initially in the solution at a concentration C bulk , diffusion coefficients of species A and B are supposed to be equal and supporting electrolyte is present in excess in order to ignore migration and ohmic drop contributions. In this case, the mass transport problem only requires the solution of the second Fick law: 𝜕 𝐴 𝜕𝑡 𝐷Δ 𝐴 associated to the boundary conditions given below; 𝐴 is the concentration of species A, 𝑡 is the time, 𝐷 is the diffusion coefficient, and Δ is the Laplacian operator.

In the main text two kinds of systems are considered so the Laplacian operator is expressed as:

Δ

, for the 2D systems (band-type active sites), or:

Δ

, for the 3D systems (disc-type active sites).

Initial and boundary conditions:

𝑡 0: within all solution 𝐴 𝐶 𝑡 0: 𝑧 0, on electroactive site surface: # 𝐴 0 𝑧 0, on insulator 0 ∀𝑧, symmetry planes

In simulations the condition prevailing at "𝑧 → ∞" was replaced by imposing that 𝐴 𝐶 at the vertical distance 𝑧 6 𝐷𝑡 and the discretized diffusion equation was solved within the volumes (disc array) or the planes (band array) featuring the diffusional volume or area accordingly.

In addition, at any time and any 𝑧 value, a zero-flux condition (𝜕 𝐴 𝜕𝑛 ⃗ ⁄ 0) was applied at each point of the symmetry planes defining the elementary cells (global approach) or at each plane featuring the boundaries of their unit cells (Voronoi approach).

# For Nernstian ET. For non-Nernstian ETs, as in Table 1 of the main text, this condition was replaced by a classical Butler-Volmer condition relating the A surface concentration to its local flux 𝜕 𝐴 /𝜕𝑧.

B. Conformal mapping

Most of the simulations presented in the text were performed with Comsol Multiphysics 5.5 [START_REF]COMSOL Multiphysics Reference Manual, version 5[END_REF] to solve the system of partial derivative equation and boundary conditions described in Section A.

However, in the case of the band array, analytical derivations based on conformal mapping were performed in order to check the accuracy of Comsol results and to identify more accurately the trajectories of flux lines (see Figure 3). This was performed by defining the conformal mapping transformation T relating the complex coordinate 𝜚 𝑥 𝑖𝑧 describing the real space (𝑖 √ 1) to that, 𝜔 𝜉 𝑖𝜂, which defines the conformal space (See Figure SM1):

The other parameters defined as:

where P/2 is the half-pseudo period of the array (Figure 1a), i.e., the total width of the elementary cell (compare Figure 1b in the text and Figure SM1 below). The transformation [T] allows treating a wide variety of experimental situations, in particular those in which the widths of the two band electrodes of the elementary cell may have extremely different widths, it must be emphasized that it is restricted to the cases when 𝜔 𝜔 1 as seen in Figure SM1. In graphical terms this means that it encompasses all the situations leading to diffusional domains with identical widths at infinite distances from the basal array plane (compare Figure SM2).

Indeed, the flux lines separating the elementary cell in the real space are then the image of the vertical straight semi-infinite segment originating at the 𝜔 0; 1/ 𝛾 1 and going to the infinity along the 𝜂-axis as evidenced in Figure SM2. The other main interest of the transformation [T] is that, by construction, it allows a direct tracking of the flux lines in the solution, and to identify immediately those evidencing how the diffusional domains associated to each electrode are reshaping while they advance (Figure SM2a). This property was useful for checking the validity of the results obtained through the more heavy simulations performed with Comsol as proven in Figure SM2b.