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Meso-scale simulation of liquid feeding in an equiaxed dendritic mushy zone

A 3D meso-scale model is developed to predict the flow of liquid within a semi-solid binary Fe-C alloy with various equiaxed microstructure, ranging from dendritic to globular. The model domain consists of a set of 8000 grains given by a Voronoi tessellation. Solidification of each grain is simulated independently via a volume average approach, providing the semi-solid microstructure for the fluid flow simulation. A single domain Darcy-Brinkman model is then used to calculate the resulting pressure field.

The model results are found to be in good agreement with the Carman-Kozeny equation for two limiting cases of interfacial area concentration S v , demonstrating the model's utility in quantifying permeability of semisolid structures where the fluid flow occurs either in the intra-dendritic (within the envelope enclosed by the dendrite) or extra-dendritic (between dendritic grains) regions. Deviation from Carman-Kozeny behaviour is observed with a transition in microstructure, i.e. when the domain contains a mixture of both dendritic and globular structures or when fluid flow occurs simultaneously in the intra-dendritic and extra-dendritic regions. A permeability-microstructure map is created as a function of grain size, secondary dendrite arm spacing, and cooling rate to show the range where the limiting values of S v are valid and, importantly, where they are not. A comparison of the net volumetric inflow caused by shrinkage and deformation is performed, demonstrating that the shrinkage induced by the peritectic transformation is the dominant factor requiring liquid feeding. The present dendritic fluid flow model is useful in the context of multi-physics modelling of defects in peritectic steel grades and other commercially relevant alloys.

Introduction

Dendrite growth is the most common crystallization mechanism observed during continuous casting of steel. The morphology characterized by the dendrite arms is associated with the formation of secondary phases and casting defects, most notably hot tearing, porosity and segregation [START_REF] El-Bealy | Prediction of dendrite arm spacing 726 for low alloy steel casting processes[END_REF][START_REF] Neumann-Heyme | General evolution equation for the specific interface area of dendrites during 730 alloy solidification[END_REF]. Advanced continuously-cast high strength steel slabs with high levels of alloying elements as well as complex shape castings are quite prone to these defect. The formation of casting defects, especially hot tearing, is a multi-scale problem, and has been shown to be related directly to the flow of liquid through the dendritic network at the microscale [START_REF] Rappaz | A new hot-tearing cri-732 terion[END_REF], due to the concomitant phenomena of solidification induced shrinkage and mushy zone deformation.

The resistance to liquid flow through a semisolid is known as permeability. This important macroscopic parameter is associated with a pressure drop inside the mushy zone of a casting. It bridges the microscale structure with macroscale fluid flow, and is critical for accurate prediction of defect formation. Permeability was initially proposed for transport phenomena in porous media, and has been extensively investigated in various material systems. Measurement of permeability is usually associated with deter-mination of the structure first followed by a prediction of the fluid flow behaviour [START_REF] Khajeh | Physical and numerical characterization of the near-eutectic permeability of aluminum-copper 736 alloys[END_REF]. The challenge when measur-26 ing this quantity in metallic systems lies in controlling the semisolid microstructure during the experiment; reliable 28 data for high temperature alloys remains rare [START_REF] Bernard | Permeability as-738 sessment by 3d interdendritic flow simulations on microtomography mappings of al-cu alloys[END_REF]. Despite the recent application of X-ray tomography in obtaining 30 the complicated topological images for use as templates to construct physical models of the dendritic structure [START_REF] Khajeh | Physical and numerical characterization of the near-eutectic permeability of aluminum-copper 736 alloys[END_REF],

32
the accessibility of accurate experimental apparatuses is limited [START_REF] Takaki | Permeabil-742 ity prediction for flow normal to columnar solidification structures by large-scale simulations of phase-field and lattice boltz-744 mann methods[END_REF].

34

Predictive numerical simulation is a well-studied alternative to experimental investigation of permeability and 36 phenomenological models as detailed in Refs. [START_REF] Bernard | Permeability as-738 sessment by 3d interdendritic flow simulations on microtomography mappings of al-cu alloys[END_REF][START_REF] Khajeh | Numerical determination of permeability 746 of al-cu alloys using 3d geometry from x-ray microtomography[END_REF][START_REF] Khajeh | Permeability of dual structured hypoeutectic aluminum alloys[END_REF][START_REF] Khajeh | Permeability evolution during 752 equiaxed dendritic solidification of al-4.5 wt% cu[END_REF][START_REF] Fuloria | Microtomographic character-756 ization of columnar al-cu dendrites for fluid flow and flow stress determination[END_REF]. Numerical models solve the Stokes equations for a do-38 main representing the liquid phase within the mushy zone. The obvious advantage of using a simulated microstructure 40 is that the evolution of permeability with solid fraction can be easily studied for different grain sizes and morphologies.

42

However, the main challenge with this method is the geometry itself, since permeability is a characteristic that 44 is based on the channel width, surface area and tortuosity of the flow channels [START_REF] Khajeh | Permeability of dual structured hypoeutectic aluminum alloys[END_REF]. Recently, 3D synchrotron equiaxed dendritic [START_REF] Bernard | Permeability as-738 sessment by 3d interdendritic flow simulations on microtomography mappings of al-cu alloys[END_REF] and columnar solidification [START_REF] Fuloria | Microtomographic character-756 ization of columnar al-cu dendrites for fluid flow and flow stress determination[END_REF], and to investigate the effects of intermetallics [START_REF] Puncreobutr | Influence of fe-rich intermetallics on solidification defects in al-si-cu alloys[END_REF]. Although these studies have shown good agreement between calculated permeability and experimental reference data, the availability of high-quality 3D datasets has limited the use of this approach to well defined systems. For industrial applications, there is a need for improved understanding of permeability in a wide range of microstructures.

The recent development of a meso-scale granular model of solidification offers new possibilities for predicting permeability in semi-solid metallic alloys [START_REF] Vernède | A mesoscale granular model for the mechanical behavior of alloys during solidification[END_REF][START_REF] Sistaninia | A 3-d coupled hydromechanical granular model for simulating the constitutive behavior of metallic alloys during solidification[END_REF]. This model can simulate a set of 1000 or more randomly-placed grains within a domain. The grains are individually represented and the flow of liquid between the grains is simulated.

A 2D discrete-element model of fluid flow proposed by Vernède et al. [START_REF] Vernede | A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding[END_REF] described the liquid feeding along the grain boundaries of the mushy zone. This approach was then extended to 3D by Sistaninia et al. [START_REF] Sistaninia | Threedimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding[END_REF], and further modified by Zareie-Rajani and Phillion [START_REF] Rajani | 3d multi-scale multi-physics modelling of hot cracking in welding[END_REF] to investigate phenomena relevant to hot tearing in aluminum alloys during welding. These prior granular solidification models assumed a microstructure consisting of globular equiaxed grains, and modelled the flow between adjacent grain surfaces as Poiseuille flow between two parallel plates. Because of these limitations, they cannot be used to assess the permeability of a dendritic microstructure. In the dendritic case, liquid flow occurs both in the extradendritic region between grains as well as in the intradendritic small-scale structure within a grain. The friction encountered by the flow through intra-dendritic liquid channels could lead to an additional pressure drop thus accelerating the formation of defects.

In the present study, a 3D meso-scale model is proposed to simulate fluid flow during the solidification of a binary Fe-C alloy mushy zone containing both intradendritic and extra-dendritic flow and taking into account shrinkage caused by the peritectic transformation and deformation. The meso-scale simulation domain is created using a Voronoi tessellation; solidification of each grain occurs independently via a volume average approach [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF][START_REF] Tourret | A generalized segregation model for concurrent dendritic, peritectic and eutectic solidification[END_REF].

First, the methodology for creating a semi-solid domain consisting of equiaxed-dendritic grains surrounded by liquid is reviewed. Second, the new liquid flow model is described. Third, the model is applied to investigate permeability in a wide combination of microstructures, alloy compositions and flow configurations during solidification in order to create a map of the resulting permeability. Finally, the results are compared with predictions of previous simple models and assessed in the context of casting defects.

Description of the 3D Meso-scale Fluid Flow

Model for Dendritic Alloys

Generation of the Model Domain

In order to investigate the effects of fluid flow within the semisolid Fe-C alloy, a model domain must be uti-lized that is large enough to capture long-range flow effects 104 while small enough to discretize individual grains -in order words -a domain that contains hundreds (or more) grains.
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This study utilizes the 3D equiaxed-dendritic meso-scale solidification model previously described in [START_REF] Feng | A 3d meso-scale solidification model for metallic alloy using a volume average approach[END_REF] to create 108 an appropriately-sized model domain. An example, containing 1000 grains, is shown in Fig. 1 

Dendritic Solidification Model 120

Although the complete details of the 3D meso-scale dendritic solidification model are given in [START_REF] Feng | A 3d meso-scale solidification model for metallic alloy using a volume average approach[END_REF], the salient 122 points are recalled below for clarity. Given that the microstructure of steels is dendritic, the evolution in solid 124 fraction within each tetrahedron is predicted using a volume average approach [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF][START_REF] Tourret | A generalized segregation model for concurrent dendritic, peritectic and eutectic solidification[END_REF]. The main advantage of 126 this approach is its ability to model solidification using at least three and possibly four phases, extra-dendritic liquid 128 l ed , intra-dendritic liquid l id , delta-ferrite δ and austenite γ, without explicitly tracking the interfaces between the 130 phases. The δ and/or γ phases nucleate from one vertex of the tetrahedron corresponding to the center of the 132 grain in an undercooled liquid and grow in a radial direction until the tetrahedron is fully solidified. The entire 134 tetrahedron is considered to be at uniform temperature. A dendritic grain is defined by its envelope, which controls 136 the solid (δ and γ) phases, the intra-dendritic liquid phase (i.e. the liquid enclosed by the dendrite envelope), and 138 the extra-dendritic liquid phase (i.e. the liquid outside the dendrite envelope). The phases are described by their 140 volume fractions (g ed l , g id l , g δ and g γ ) and average chemical compositions. Upon cooling a solute mass balance is under the assumption of finite diffusion in l ed , l id , and δ or γ. Note that the dendritic morphology indicated in Fig. 1(d) cannot be visualized by the unstructured mesh given in Fig. 1(a); this image shows only the equivalent solid phase fraction in a geometric sense with the empty space including both the intra-and extra-dendritic liquid.

Mushy zone fluid flow model

The 3D semisolid structure created by the solidification model at a given solid fraction for a specified cooling rate and grain size is used as the input geometry for the fluid flow model at the same solid fraction. The two models, solidification and fluid flow, are only one-way coupled. The mesh consists of a set of elements, each made up of two facing tetrahedrons as shown in Fig. 2, that are ultimately reduced to a set of two 3-node 2D triangular elements. The regions enclosed by the dendrite envelopes of each tetrahedron are treated as a uniform porous medium [START_REF] Wang | Multiparticle interfacial drag in equiaxed solidification[END_REF] with an internal liquid fraction given by g l = g id l /(g id l + g δ + g γ ). The extra-dendritic regions of each element, having a width equal to the distance between the facing envelopes, are treated as an extra-dendritic fluid channel. Note that the two facing tetrahedrons are identical due to symmetry [START_REF] Sistaninia | Threedimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding[END_REF]. Flow can occur simultaneously through both the intra-and extra-dendritic regions as shown schematically in Fig. 2 (solid blue line). In the limit of g l = 0, the model is reduced to the model of flow between two globular grains, equivalent to the model of Sistaninia [START_REF] Sistaninia | Threedimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding[END_REF]. In another limit, where the dendrite tips touch and all remaining liquid is intra-dendritic liquid (g ed l = 0, g id l = g l ), the whole structure behaves as a porous medium with a liquid fraction g l and a characteristic length scale given by the secondary dendrite arm spacing. In these two situations, also shown in Fig. 2 The flow in the extra-dendritic region is described as a Poisseuille flow and the flow in the intra-dendritic region is described by the Darcy-Brinkman equation, using a averaged form of the Navier-Stokes equation. The model assumptions include quasi-steady-state as well as irrotational flow that is parallel to the triangular facet high-184 lighted in blue in Fig. 2 where the two tetrahedrons meet. Both gravity and pressure gradients along the length L of 186 the element are neglected. Altogether, this is expressed as,

188 -∇p + µ l d 2 v ed dz 2 = 0, (1) 
-g l ∇p + µ l d 2 v id dz 2 - µ l g l K (g l ) v id = 0, (2) 
where µ l represents the dynamic viscosity, v ed is the fluid velocity in the extra-dendritic region, p is the gauge pres-190 sure, v id is the intra-dendritic fluid velocity vector and K (g l ) is the local permeability within the dendrite enve-192 lope. The reader is referred to [START_REF] Bars | Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification[END_REF] for detailed information of the averaging concepts along with the process of 194 deriving the average form of the master equation. The Carman-Kozeny equation [START_REF] Carman | Fluid flow through granular beds[END_REF][START_REF] Bear | Dynamics of fluids in porous media[END_REF],
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K(g l ) = (g l ) 3 5S 2 v , (3) 
where S v represents the interfacial area concentration is simplified as S v = 2 λ2 with λ 2 representing the secondary 198 dendrite arm spacing, is used to determine K as the scale of an individual element.

200

We assume that ∂ ∂z v ed | z =0 = 0 and v is finite when z → ∞. At the envelope we use the boundary condi-202 tions between the porous medium and a fully liquid zone, proposed by Le Bars and Grae Worster [START_REF] Bars | Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification[END_REF]:

v ed | z =h = 204 v id | z =h and ∂ ∂z v id | z =h = ∂ ∂z v ed | z =h .
Eq. 1 and Eq. 2 can be solved analytically,

206 v ed = z 2 2µ l + C 1 ∇p, (4) 
v id = C 2 e z ξ -C 3 ∇p. (5) 
In Eqs. and extra-dendritic regions must be continuous. Then,

C 1 = - ξh µ l - g l ξ 2 µ l - h 2 2µ l , and, (6) 
C 2 = -ξh µ l e -h ξ , ( 7 
)
where h is the half width of the extra-dendritic region.

214

The controlling equation for the fluid flow problem can be derived through integration based on a mass balance over the two facing tetrahedrons shown in Fig. 2 assuming liquid incompressibility, i.e. ∇ • v l = 0. This region includes both flow as a porous medium within the dendrite envelope and free liquid flow in the extra-dendritic region.

This mass balance also needs to consider both the solidification shrinkage and deformation as factors that would induce liquid flow. The shrinkage induced by solidification due to the density variations in the solid and liquid phase will induce a normal velocity of liquid flow at the solid/liquid interface [START_REF] Dantzig | Solidification: -Revised & Expanded[END_REF],

v l•n = -βv * , (8) 
where v * is the solid/liquid interface velocity predicted by the 3D meso-scale solidification model at the specific solid fraction being used in the fluid flow simulation, and β = (ρ s /ρ l -1) is the shrinkage factor with ρ s and ρ l representing the temperature-dependent solid and liquid densities. For non-peritectic alloys, ρ s = ρ δ . For low carbon steel alloys having a peritectic transformation, ρ s is given by

ρ s = ρ δ g δ + ρ γ g γ g δ + g γ , (9) 
ρ δ = 3.07 × 10 -1 (T δ,start -T ) + 7270, (10) 
ρ γ = 4.8 × 10 -1 (T γ,start -T ) + 7410, (11) 
ρ l = -7.5 × 10 -1 (T -T L,start ) + 7020, (12) 
where ρ δ , and ρ γ represent the densities (kg • m -3 ) of the δ and γ phases given by the expressions in Eqs. [START_REF] Fuloria | Microtomographic character-756 ization of columnar al-cu dendrites for fluid flow and flow stress determination[END_REF][START_REF] Puncreobutr | Influence of fe-rich intermetallics on solidification defects in al-si-cu alloys[END_REF][START_REF] Vernède | A mesoscale granular model for the mechanical behavior of alloys during solidification[END_REF] with different coefficients (kg•m -3 •K -1 ) [START_REF] Mizukami | Generation mechanism of unevenness of ultra low carbon steel at initial stage of solidification[END_REF], T represents the temperature (K) with T i,start being the transformation temperatures of the i phase (i = l, δ or γ), and g δ and g γ are given by the 3D meso-scale solidification model at the specified solid fraction being used in the fluid flow simulation. Note that the shrinkage factor will vary during solidification since the individual densities ρ δ , ρ γ , and ρ l are temperature-dependent.

Deformation of the semi-solid skeleton will also induce liquid flow. Assuming rigid body motion of the grains and deformation localized to the liquid phase, the increase in volumetric flow rate ∆v liq that is required to compensate for deformation at the scale of an individual element can be approximated as

∆v liq = εsv (1 -g s ) * V liq , ( 13 
)
where εsv is the volumetric part of the strain rate applied on the domain, and calculated via εsv = εxx + εyy + εzz , and V liq represents the volume of liquid present in an element. Note that while Eq. 13 simulated the effects of mechanical deformation on fluid flow in a semi-solid, mechanical deformation itself is not directly simulated.

Applying the divergence theorem, the mass balance becomes [START_REF] Vernede | A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding[END_REF] where V e l represents the total volume of the two facing tetrahendrons, S e sl = S v • V e is the dendritic solid/liquid interfacial area, V e represents the total volume of dendrite envelope, and S e l represents the total lateral area of the two tetrahedral elements. Then, by substituting Eq. ( 4) and Eq. ( 5) into the second right term of Eq. ( 14), and assuming that the first right term of Eq. ( 14 

V e l ∇ • v l dV = 2 • S e sl v l • ndS + 2 • S e l v l • ndS + 2 • ∆v liq = 0,
p l = 3 i=1 N i p * i , (16) 
where p * i represents the nodal pressures, and N i repre-270 sents the shape functions of the triangular element that approximate the pressure field within element e in the lo-272 cal (x , y , z ) coordinate system. Applying the Galerkin finite element method to Eq. ( 15), the elemental matrix 274 equation is obtained:

[K] e    p * 1 p * 2 p * 3    = b e + {φ} e , (17) 
where 

Results and Discussions

To study liquid feeding within a semisolid, the microstructure and the solid fraction of individual grain needs to be determined first; the local solid fraction predicted by the solidification model [START_REF] Feng | A 3d meso-scale solidification model for metallic alloy using a volume average approach[END_REF] provides both the local permeability at the grain scale through Eq. 3 and the extradendritic liquid channel width. At the highest cooling rate of 55 K/s, the solidification 300 model predicts a semisolid structure where the dendrite tips touch each other at a solid fraction of 0.45 (i.e where 302 this curve intersects the g s = g s curve). Beyond this solid fraction all the liquid is intra-dendritic, and thus the flow would also be intra-dendritic as illustrated in the "upper right" diagram of Fig. 3. As g s increases, the permeability 306 of the porous medium would correspondingly be reduced. For the low cooling rate of 1 K/s, the grain morphology transitions from dendritic to globular at g s =0.22 as g s → 1. It is at this point that the existing dendrite structure becomes fully solid; the remaining extra-dendritic liquid within the element then solidifies in globular fashion.
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In a globular grain morphology, the permeability within the dendrite envelope is zero, and fluid flow will only take 
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The flow patterns qualitatively described in Fig. 3 can be quantitatively described using the 3D fluid flow model.

324

For these simulations, a domain 6 × 6 × 6 =216 mm 3 with 8000 cubic grains each 300 µm in equivalent diameter 326 (d = 3 V g with V g being the grain volume), assuming a dynamic viscosity of µ l = 7.0×10 -3 Pa • s [START_REF] Zhang | Fluid flow and inclusion removal in continuous casting tundish[END_REF], and neglecting 328 solidification shrinkage and deformation (β=0, εsv =0) was utilized. The secondary arm spacing was kept λ 2 =20 µm.

330

The boundary conditions were set as follows: a constant pressure on the top surface where the fluid is drawn in, i.e. 

. Limiting cases and transition tested

The dendritic fluid flow model can be verified by comparing its predictions of permeability against corresponding predictions from the analytical Carman-Kozeny equation for two scenarios: a dendritic structure with S v = 2 λ2 [START_REF] Wang | Multiparticle interfacial drag in equiaxed solidification[END_REF] (termed Dendritic S v ) and a globular structure with S v calculated as the sum of the grain surface areas assuming globular structure divided by the volume of the whole domain [START_REF] Sistaninia | Threedimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding[END_REF] (termed Globular S v ). For these tests, a series of simulations were performed between 0.5 < g s < 1 under the conditions described previously using uniform cubic grains. The permeabilities predicted by the simulations can then be calculated from the average pressure difference between the top and bottom surfaces,

K = µ l q 1 p1-p0 L dis , (18) 
where L dis is the distance between the two surfaces, p 1 is 368 the averaged pressure on the bottom side of the domain, and q 1 is the flux on the bottom surface. Note that as 370 there is a single grain size and a uniform temperature applied to the entire domain, there can be no variation in 372 the permeability between individual cubic grains. As can be seen, an excellent match is achieved between the simulations with a cooling rate of 55 K/s (green diamonds) and the dendritic-flow analytical solution. In this scenario, v ed is zero and the domain is a porous medium with a uniform v id flowing through the intra-dendritic regions. Further, an excellent match is achieved between the simulations with a cooling rate of 1 K/s (red circles) and the globular-flow analytical solution.

384

In this scenario, flow occurs only in the extra-dendritic regions.

The interesting result occurs for the permeabilities calculated from the simulation using a cooling rate of 5 K/s (blue triangles). As can be seen, there is a significant deviation between the model's predictions and the Carman-390 Kozeny equation using the two limiting values for S v up to a solid fraction of ≈ 0.75. Initially, the dendrite envelope grows into the liquid and g s is relatively low (Fig. 3). Fluid thus flows through both the intra-dendritic and extra-dendritic regions, causing the permeability to fall between the den- 

Influence of grain size on the permeability 406

The assumption made in Fig. 5 was of uniform grain size. However, this is not a realistic description of mi-408 crostructure. Fig. 6(a) shows the relative frequency of grain size in a 3D domain created using the Voronoi tes-410 sellation for an average grain size of 300 µm. Fig. 6(b) shows the corresponding evolution in g s for five different 412 grain sizes each solidified using a cooling rate of 5 K/s. As can be seen, for smaller grains (60 µm), g s quickly ap-414 proaches 1 and thus forms a globular structure due to the constraints of solute enrichment in front of the solid/liquid 416 interface, whereas for coarse grains (722 µm) the dendrite tip is free to move until impingement with neighbouring 418 grains. Thus, at a specific time, which corresponds to a specific bulk solid fraction, fluid flow takes place in the 420 extra-dendritic region for smaller realistic grains, passes through the intra-dendritic region for these grains which 422 are impinging with their neighbours, and has mixed characteristics for grains at intermediate size levels.

424

Given the intrinsic variability in grain size, the permeability within a semisolid will be influenced by this quan-426 tity. Fig. 7 shows the permeability within a domain with 8000 grains, having an average grain size of 300 µm, pre-428 dicted by the fluid flow model containing a mixture of both globular and dendritic grains of realistic geometry.

430

It can be seen that at lower solid fraction, the permeability of the mushy zone neither follows the intra-dendritic flow behaviour (Carman-Kozeny with Dendritic S v ) nor the extra-dendritic flow behaviour (Carman-Kozeny with Globular S v ) but is a mixture of both. Eventually, the permeability approaches the Carman-Kozeny permeability for structure with Globular S v . In this realistic case the Carman-Kozeny equation with Dendritic S v does not provide a good analytical description of permeability until g s = 0.96.

Permeability-Microstructure Map

Referring to Fig. 7, it can be seen that the semisolid It is clear that from Figs. 6 to 8 that the permeability of a semisolid domain containing a mixture of two morphologies cannot be predicted with the Carman-Kozeny equation via a single scaling law for S v throughout the whole solid fraction range. Although this is commonly done in macrosegregation simulations, it makes the permeability assessment less accurate. Utilizing our 3D equiaxed-500 dendritic meso-scale solidification model [START_REF] Feng | A 3d meso-scale solidification model for metallic alloy using a volume average approach[END_REF], it is possible to calculate S v for a domain containing multiple morpholo-502 gies as

S v = N elem i=1 S e sl V domain , (19) 
with tions still exist and the importance of selecting the "right" value of g s is evident since a higher critical value of g s pro-528 vides smaller deviation at higher solid fractions but then under-estimates the permeability at lower solid fraction.

S e sl = 2 λ2 • V env , g s < g critical S globule ,

530

The determination of the critical point of g s requires further investigations both experimentally and numerically.

532

The observed differences could also be due to limitations within the 3D fluid flow model, which is built on the fol- Due to these different morphologies, flow is likely to concentrate in areas with a higher local permeability. To re- grains varies considerably, due to differences in g s and the extra-dendritic liquid channel width. The maximum local 570 permeability at bulk g s = 0.7 is 10730 µm 2 ; the value of 0 µm 2 represents grains that have fully solidified. As the 572 permeability for globular structures is higher than dendritic structures at the same solid fraction (Fig. 7), this variation in local permeability would lead to further localization in liquid feeding. Second, by examining a-2, it 576 can be seen that the fluid selectively flows through areas having larger local permeability, at higher local speeds. At For a non-peritectic alloy, the amount of liquid required to compensate for solidification shrinkage can also be calculated analytically as

Q V = β dg s dt , (20) 
where Q and V represent the volumetric flow rate and total domain volume. For further validation purposes, the 622 shrinkage calculated by this equation for a Fe-0.07wt.%C alloy is also shown in Fig. 11(a). As can be seen, a good 624 match is obtained between the simulation and analytical curves.

626

The amount of liquid required during solidification and peritectic transformation can be linked to the formation of 628 casting defects. Liquid flow that is inadequate to compensate for the solidification shrinkage could result in the for-630 mation of large voids to maintain continuity. At low solid fraction, a high permeability likely allows for adequate liq-632 uid feeding to heal any formed defects. At high solid fraction, Fig. 11(a) shows that for the hyper-peritectic alloy, 634 the jump in fluid required due to the peritectic transformation occurs at a "low-enough" solid fraction where the 636 permeability remains relatively high. Using the same argument, defects would be most prone to occur in the hypo-638 peritectic alloy (Fe-0.12wt.%C) since the peritectic transformation occurs at a very high solid fraction where the 640 permeability is quite low (Fig. 11(a)). Pressure contours of hypo-peritectic alloy are also plotted for different solid 642 fractions to emphasis the influence of peritectic transformation shown in Fig. 11(b). It can be seen that before peri-644 tectic transformation, an increase in solid fraction would result in a minor increase in the pressure drop by com-646 paring Fig. 11(b1) and (b2), while a significant pressure drop occurs after the peritectic transformation as shown 648 in Fig. 11(b3) which is two orders of magnitude greater than Fig. 11(b1) and (b2). The high pressure drop near 650 the end of solidification would accelerate the formation of defects in a hypo-peritectic alloy; a similar finding has also been reported in prior work [START_REF] Presoly | Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations[END_REF].

Liquid feeding can be also induced by the deformation of the mushy zone. If, concurrently, semisolid tensile deformation is too large and liquid feeding is too low, a hot tear will form. Generally, the amount of net inflow of liquid required during solidification is a given by the 658 combination of shrinkage and deformation. In order to investigate the dominant factors that cause hot tearing in hypo-peritectic grades (Fe-0.12wt.%C), known to be mostsensitive to hot tearing [START_REF] Presoly | Identification of defect prone peritectic steel grades by analyzing high-temperature phase transformations[END_REF], a series of simulations were 662 performed that consider both shrinkage and deformation (β = 0 and εsv = 0); the same boundary conditions as for Fig. 11 were utilized. Fig. 12 shows the net flow caused by the combina-666 tion of solidification shrinkage and deformation, and their contributions under two different strain rates of 0.1 s -1 and 0.001 s -1 . Under the strain rate of 0.1 s -1 , the induced liquid feeding mainly comes from deformation at the key factor to cause defects. 

Conclusions

  (a); the empty space 110 within the domain represents the remaining liquid. To create this geometry, a Voronoi tessellation is applied to ap-112 proximate the final grain morphology based on randomlyplaced seeds acting as nuclei for equiaxed-dendritic grains. 114 Each grain, Fig. 1(b), is a polyhedral structure, which is then divided into smaller polyhedrons, Fig. 1(c), and fi-116 nally a tetrahedron, Fig. 1(d). Solidification is simulated within each tetrahedron independently of all others, as de-118 scribed below.

Figure 1 :

 1 Figure 1: (a) Meso-scale simulation domain containing 1000 grains; (b) Single Voronoi grain; (c) Polyhedral structure; (d) Tetrahedron with an illustrative schematic of the equiaxed-dendritic microstructure.

  , the corresponding flow is either Poiseuille flow (red dashed line) or Darcy-Brinkman flow (green dashed line).

Figure 2 :

 2 Figure 2: Schematic diagram of two facing tetrahedrons, the velocity profile of fluid passing through the inter-and extra-dendritic regions, and the corresponding 3-node 2D triangular element. The velocity profiles for the cases with only intra-dendritic and only extradendritic flow are also shown.

4 and 5 ,

 5 C 1 and C 2 represent two unknown constants, C 3 = g l ξ 2 µ l and ξ = K(g l ) g l . The unknown con-208 stants can be further solved with additional constraints at the envelope shown above: all of the fields within the rep-210 resentative volume are continuous, the velocity v and the viscous stress at the interface between the intra-dendritic 212

  ) can be replaced by S e sl • v l•n = -S e sl • βv * , one obtains the master fluid flow equation for dendritic flow, 2 S e l z 2 2µ l + C 1 ∇p • ndS+2 S e l C 2 e z δ -C 3 ∇p • ndS -2v * βS e sl + 2 • ∆v liq = 0. (15) 2.4. Numerical implementation of fluid flow model At the scale of a single element, integration of Eq. (15) 258 over the intra-dendritic and extra-dendritic parts is computed numerically by dividing both the grain envelope 260 length and extra-dendritic liquid channel width into n = 1000 segments along the height of tetrahedral element. By 262 doing the integration and applying Green's theorem over each segment, one obtains the coefficient of the Laplacian 264 of the pressure field, ∇ 2 p. Then, as it has been assumed that the flow direction is parallel to the exterior triangu-266 lar facet of each tetrahedron, the 3D mesh is simplified to a set of 3-node 2D triangular elements. The resulting 268 pressure field is given by

  [K] e represents the element stiffness matrix, b e is 276 the load vector which results from solidification shrinkage and/or deformations exerted on the domain, and {φ} e is 278 related to the external boundary conditions. Once the individual element matrices have been devel-tion provides the pressure throughout the domain. Complete details of the numerical implementation can be found 286 in [15].

Fig. 3

 3 Fig.3shows the evolution in internal solid fraction (g s = 1 -g l ) given by the solidification model under three cooling rates (1, 5, and 55 K/s) for an Fe-0.07 wt.%C grain with a final diameter of 300 µm, along with schematics of 298

Figure 3 :

 3 Figure 3: Internal solid fraction evolution within a single grain with a final diameter of 300 µm under three cooling rates along with the schematic diagrams of intra-dendritic, extra-dendritic and both fluid flow types. The dashed line represents the curve g s = gs.

314

  place in the extra-dendritic region as shown in the "middle right" diagram. At moderate cooling rates, both intra-316 dendritic and extra-dendritic flow can take place as shown in the "lower right" diagram since the grain is dendritic yet 318 the dendrites from adjoining grains have not yet touched. In the case of 5 K/s, this flow pattern is possible until g s ∼ 0.75 at which point the flow would become extradendritic since g s → 1.

332 p 0

 0 = 0 Pa, a constant non-zero average flux on the bottom surface of -20 µm 3 /µm 2 •s -1 and closed lateral boundaries, 334 i.e. q l = 0 µm 3 /µm 2 • s -1 . Due to non-zero fluid flux on the bottom surface and closed lateral surfaces, downward 336 flow inside the domain occurs, drawing fluid in from the top surface.

  338

Fig. 4

 4 Fig.4shows pressure maps for three semisolids, each at g s = 0.60, containing cubic equiaxed grains created under 340

Figure 4 :

 4 Figure 4: Pressure distribution within a domain containing 8000 grains at gs=0.60 solidified under three cooling rates: (a) CR=1K/s, (b) CR=5K/s and (c) CR=55K/s. Note that Fig. 4(a) and (b) share the same color bar.

Fig. 5

 5 compares the permeability predicted by the 3D 374 fluid flow model and the values calculated with the Carman-Kozeny equation utilizing the Dendritic S v and the Glob-376 ular S v .

  dritic and globular cases. As g s → 1, flow becomes pre-396 dominantly extra-dendritic and eventually the permeability follows the Carman-Kozeny equation derived based on 398 the Globular S v . By testing the numerical results against an analytical 400 equation, the present model is shown to be an alternative technique for obtaining the semisolid permeability. The 402 calculated values could also be compared to experimental measurement using the given interfacial surface area 404 concentration to provide additional insight.

Figure 5 :

 5 Figure 5: Validation of permeability predicted by present model with the Carman-Kozeny equation for a uniform network of grains with microstructure solidified under the cooling rate of 1K/s, 5K/s and 55K/s.

Figure 6 :

 6 Figure 6: (a) Equivalent grain size d distribution within the semisolid domain and (b) the variation in g s for five grains containing different sizes.

442

  permeability can only be predicted by the Carman-Kozeny equation with Dendritic S v or Globular S v over a small 444 range of solid fraction; outside of this range there is a great deviation from either the dendritic or the globular 446 cases. This deviation has not been identified before. In order to show the range of validity of the Carman-Kozeny 448 equation using these two limiting cases in predicting the mushy zone permeabilities in metallic alloys, a series of 450 quasi-steady flow simulations were performed, by varying the solid fraction (30 values), cooling rate (10 values as-452 suming an average grain size of 300 µm and a secondary

Figure 7 :

 7 Figure 7: Variations of permeability as a function of solid fraction for a semisolid domain containing both intra-dendritic and extradendritic flow.

Figure 8 :

 8 Figure 8: Permeability map as a function of solid fractions and (a) cooling rate as well as (b) dimensionless grain size, d/(2 • λ 2 ).

  g s ≥ g critical where N elem rep-504 resents the total number of elements within the domain. S e sl represents the solid/liquid interfacial area of an indi-506 vidual element, V domain is the total volume of the domain, V env is the volume of the dendrite envelope and S globule is 508 the surface area of globular element. The key point in determining the S v through our solid-510 ification model is identification of the internal solid fraction g s at which flow within an individual element is dom-512 inated by intra-dendritic or extra-dendritic character; if the g s is greater than critical point g critical the element 514 is treated to as globular and intra-dendritic liquid flow is ignored. Fig. 9 plots the permeability calculated from the 516 Carman-Kozeny equation utilizing the solidification model -calculated S v for five different critical values of g s , as well 518 as the prediction from the 3D fluid flow model for a cooling rate of 5 K/s, and the phenomenological macroscale 520 model developed by Wang et al [20]. As can be seen, the approach to calculate S v via our solidification model re-522 sults in a clear transition zone in permeability from dendritic to globular character and matches much more closely 524 to the model-predicted value than the Dendritic S v and Globular S v cases, and Wang's model. However, devia-526

  534lowing assumptions: a uniform porous medium within the dendrite envelope with locally S v = 2 λ2 and Poiseuille flow 536 when g s ∼ 0. Another option for overcoming the limitations of using S v calculated by λ 2 would be to use a 538 general form that considers grain growth, coalescence and impingement[START_REF] Neumann-Heyme | General evolution equation for the specific interface area of dendrites during 730 alloy solidification[END_REF].540It should be noted that Wang's model also shows a transition between the two limiting cases, but the over-542 all permeability predicted by this phenomenological approach matches with the Carman-Kozeny results for glob-544 ular S V at a much lower solid fraction ∼0.68 than our model-predicted values. This is due to the simplified as-546 sumption of average grain size used in Wang's model which fails to consider the influence of grain size distribution and 548 thus the flow path within different grains. 3.1.4. Localization of Liquid Feeding 550 In a domain that contains different grain sizes, different semisolid morphologies are possible as shown in Fig. 6(b).

  552

554

  produce this feeding localization, a set of simulations were carried out by imposing a pressure difference between the 556 top and bottom surfaces of the domain consisting of 8000 realistic grains, p 0 =0 Pa and p 1 =-2 MPa, while the lat-558 eral surfaces were closed, and solidification shrinkage and deformation were neglected (β=0, εsv =0). These condi-560 tions provide uni-directional flow with the same flow rate of liquid entering and leaving the domain.

  562

Fig. 10 Figure 9 :

 109 Fig. 10 shows the 3D permeability map and corresponding local fluid velocity resulting from these simula-564

578

  higher solid fraction, g s = 0.84 and shown in a-2, the maximum local permeability decreases to 4096 µm 2 due to the 580 increase in g s and narrowing of the extra-dendritic liquid channels. The maximum liquid channel velocity, shown in 582 b-2, consequently also decreases.

3. 2 .

 2 Fluid flow induced by phase changes and tensile deβ = 0, εsv = 0 follow Eqs. 9 and 13) Four different compositions were assessed; Fe-0.07wt.%C (non-peritectic), Fe-0.12wt.%C (hypo-peritectic), Fe-0.16wt.%C (peritectic) and Fe-0.18wt.%C (hyper-peritectic). The solidification simu-594 lations contained 8000 cubic grains, 500 µm in size, cooled at a rate of 55 K/s. The uniform selection of grain size (cu-596 bic grain) and the high cooling rate ensured the creation of a fully dendritic semisolid structure. For boundary conditions, the flow simulation assumed that all the domain surfaces except the one on the top were closed and a gauge pressure of 0 Pa, was imposed on the top surface. Hence, the liquid suction from top surface due to shrinkage and 602 deformation can be predicted. Fig. 11(a) shows the variation in net liquid flow per 604 unit volume (Q/V ) predicted by the 3D dendritic fluid flow model to compensate for solidification shrinkage in 606 all four of the carbon compositions of interest assuming β = 0 and εsv =0. First, as expected, it can be seen that 608 although the predicted inflow of liquid decreases with increasing solid fraction, the net liquid flow is significantly 610 different dependent on alloy composition. Interestingly, a sharp rise in net fluid flow is predicted to be needed 612 to compensate for shrinkage in the peritectic alloy once the peritectic transformation starts to account for the ad-614 ditional density difference of the austenitic phase. The sharp rise occurs at a relatively low solid fraction for the 616 hyper-peritectic alloy, followed by the peritectic and hypoperitectic alloy at increasing g s . The net fluid flow required 618 then remains relatively constant until the final stages of solidification.620

670Fig 12 (

 12 Fig 12(lower), clearly, lower strain rates result in a less liquid flow to counteract deformation. The net flow caused 678

  684

686A 720 Figure 11 :

 72011 Figure 11: A comparison of Q/V predicted by the 3D dendritic fluid flow model and Eq. 20 as a function of solid fraction for various Fe-C alloys along with the pressure contours at three solid fractions for Fe-0.12wt.% alloy. The required flux to compensate for the peritectic transformation in peritectic grades is also included in the flow predictions of the 3D dendritic fluid flow model. Note that Fig. 10(b1) and (b2) share the same color bar.

Figure 12 :

 12 Figure 12: A comparison of the Q/V predicted by the 3D dendritic fluid flow model taking into account both solidification shrinkage and deformation. Strain rates of 0.1 s -1 (upper) and 0.001 s -1 (lower) are examined.

  

performed to track the position of the dendrite envelope

oped, they are assembled together into the global stiffness matrix. This global matrix is then solved with a conjugate 282 gradient linear iterative method using a free open access
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formation

The 3D dendritic fluid flow model can also be used 586 to calculate the amount of liquid required to compensate phase changes and imposed tensile deformations under 588 dendritic solidification conditions. This requires activation of the shrinkage and deformation terms of Eq. 15(i.e.