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ABSTRACT 

This paper concerns the hydrodynamic interactions on a cylindrical particle in non-dilute regime at low 

Reynolds numbers. The particle moves between two parallel walls with its axis parallel to the boundaries. A 

numerical finite-volume procedure is implemented and a generalized resistance matrix is built by means of the 

superposition principle. Three problems are solved: the settling of the particle, the transport of a neutrally and 

of a non-neutrally buoyant particle in a Poiseuille flow. Concerning sedimentation, the settling velocity is 

maximal off the symmetry plane and decreases when the confinement increases. The particle rotates in the 

direction opposite to that of contact rolling. The particle induces a high pressure zone in the front and a low 

pressure zone in the back, the difference of which is maximal in the symmetry plane. For a neutrally-buoyant 

particle, the hydrodynamic interactions lead to a velocity lag between the particle and the undisturbed flow. 

The magnitude of the velocity lag increases with confinement and eccentricity. The angular velocity and 

pressure difference are opposite to the previous case. For a non-neutrally buoyant particle, three situations are 

found depending on a dimensionless parameter similar to an inverse Shields number. For its extreme low and 

high values, the particle is respectively either carried by the flow or settles against it whatever its position. For 

intermediate values, the particle either settles close to the walls or is dragged by the flow close to the symmetry 

plane. Similar results are obtained for the angular velocity and the pressure difference. All these results question 

the assumption usually met in particulate transport in which the kinematics of the particle is often supposed to 

be that of the flow.  

Keywords: Hydrodynamic interactions; Resistance matrix; Particle transportation; Confined solid particle. 

NOMENCLATURE 

ijA coefficient of the resistance matrix 

a cylinder radius 

b half-distance between the walls 

ijB coefficient of the resistance matrix 

c eccentricity of the particle 

ijC coefficient of the resistance matrix 

ijD coefficient of the resistance matrix 

e eccentricity parameter 

maxe maximal eccentricity parameter 

,  iF F drag force on the particle 

f, g, h generic functions 

g gravity acceleration 

i, j space index 

k confinement parameter 

,  iM M torque on the particle

ijR coefficient of the resistance matrix 

,  iU U particle velocity 

maxU maximal velocity of Poiseuille flow 

U mean velocity of Poiseuille flow 
*U characteristic velocity 

 ratio of gravitational to viscous forces

ΔP pressure difference 

Δ density difference 

 dynamic viscosity

,  i  angular velocity
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1. INTRODUCTION 

We tackle here the problem of the hydrodynamic 

entrainment of a cylindrical solid particle 

asymmetrically confined between two parallel 

plane walls. This kind of situations is ubiquitous in 

natural phenomena (sediment transport), industrial 

processes (settling tank, composites forming) or 

laboratories (separation processes in analytical 

chemistry such as Field-Flow Fractionation (FFF), 

Split-Flow Fractionation (SPLITT) or Capillary 

HydroDynamic Chromatography (CHDC)) among 

many others. In the absence of flow and for non-

neutrally buoyant particles, gravity is the natural 

force to operate segregation and particles heavier 

(or lighter) than the fluid tend to segregate more 

rapidly. In the presence of a flow when inertia and 

gravity are negligible, the particles follow the 

direction of the streamlines with a kinematics 

affected by the hydrodynamic interactions. When 

inertia is present, lift forces appear and transverse 

migration across the streamlines is possible. In this 

work, we consider only the Stokes regimes at very 

low Reynolds numbers where lift forces are 

negligible and we want to describe the kinematics 

of a free cylindrical particle subject to 

hydrodynamic interactions from parallel 

boundaries. At low Reynolds numbers, these long-

range interactions slowly decay (as 1/r) and 

strongly affect the motion of particles. We recall 

that when the particle translates in an infinite 

medium, the Stokes equation is not valid far from 

the particle: this is the famous Stokes paradox 

highlighted by Oseen (1910). For a cylindrical 

particle moving in a finite medium however, the 

matching of the solution at infinity is not necessary 

anymore and the Stokes paradox vanishes. In this 

case, the Stokes equation admits solutions whose 

properties are those of purely viscous flows: 

linearity, reversibility, minimum of dissipation and 

instantaneity (Guazzelli et al. (2012), Happel et al. 

(2012)) (in a previous article (Champmartin et al. 

(2007)) devoted to this kind of problems, we called 

“Stokes-type” the solutions having these 

properties). In an infinite fluid, when the particle 

spins on its axis, the Stokes equation do have a 

solution (there is no Stokes paradox for rotation). 

This is of course also the case in a finite medium. 

The articles dedicated to viscous flows around 

cylindrical particles confined between two parallel 

walls are numerous.  For obvious reasons most of 

them propose analytical or semi-analytical solutions 

when the particle is symmetrically confined. In such 

situation, the only relevant geometrical parameter 

characterizing the confinement is the ratio k= a/b 

with a the particle radius and b half the distance 

between the parallel walls. For a particle in uniform 

translation, we can quote the works of Faxén 

(1946), Takaisi (1955, 1956), de Mestre (1973), 

Katz et al. (1975), Tachibana et al. (1987), Bézine 

et al. (1981), Bouard et al. (1986), Bourot et al. 

(1987), Ristow (1997) or Ben Richou et al. (2005). 

All these studies propose for the drag force per unit 

length solutions in the following form:  

 4F Uf k                                       (1) 

with U the particle velocity,   the dynamic 

viscosity of the fluid and f (k) an increasing function 

in the form of a power series of k and ln k . The only 

theoretical study about a cylindrical particle 

translating between parallel walls in an asymmetrical 

position comes from Harper et al. (1967) but their 

results are limited to very low confinements  

( 210k  ). Some numerical solutions are also 

available in Dvinsky et al. (1987a), Hu (1995) and 

Feng I. (1996). For a rotating cylindrical particle 

confined between two walls, the studies are by far 

less numerous and only devoted to the symmetrical 

problem. We can cite the papers of Howland et al. 

(1932) and Hellou et al. (1984, 2001). In these 

studies, the torque per unit length can be written in 

the following form: 

 24M a g k                   (2) 

with   the angular velocity and g (k) an increasing 

function of the confinement parameter. Finally, 

another problem often tackled is when the particle is 

fixed and subject to a Poiseuille plane flow. The 

main analytical and numerical contributions are 

those of Faxén (1946), Bézine et al. (1981), Bairstow 

et al. (1922), Takaisi (1956a,b), Harrison (1924) and 

Ben Richou et al. (2004) when the particle is in the 

symmetry plane. Like the case of the uniform motion 

of the particle, the drag force per unit length can be 

written as: 

 4 maxF U h k                   (3) 

with 
maxU  the maximal velocity of the Poiseuille 

flow and h(k) an increasing function of the 

confinement parameter. To our knowledge, the only 

analytical solution for this problem when the 

particle is off the symmetry plane is the one of 

Jeong et al. (2014). Some numerical results are also 

available like those of Dvinsky et al. (1987b), 

Eklund et al. (1994) or Sugihara et al. (1984). This 

bibliographical review clearly reveals that most of 

the studies are devoted to symmetrically confined 

particles and that the influence of eccentricity is 

rarely addressed. In our previous article 

(Champmartin et al. (2007)) we studied the 

kinematics of a symmetrically confined free 

cylindrical particle for which the angular velocity is 

zero for obvious symmetry reasons. We solved the 

problems of the particle sedimentation and of its 

transport in a Poiseuille flow when the particle is 

neutrally buoyant or not. The main results of this 

study show that the settling velocity decreases when 

the confinement k  increases, that a neutrally 

buoyant particle in Poiseuille flow lags the 

undisturbed flow and that a non-neutrally buoyant 

particle lags or leads the Poiseuille flow depending 

on the value of a dimensionless parameter similar to 

an inverse Shields number (or to the ratio of 

Archimedes and Reynolds numbers). In order to 

extend these results, we consider in this study the 

kinematics of a particle when it moves freely off the 

symmetry plane. In addition to the presence of an 

angular velocity, it is well established that the 

asymmetrical backflow in this configuration 
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induces a minimal drag force at an off-center 

position. This was clearly proved by Harper et al. 

(1967), Hu (1995), Dvinsky et al. (1987a,b) and 

Taneda (1964) for a cylindrical particle and by 

Brenner et al. (1958), Bungay et al. (1973) or 

Ambari et al. (1984) for a confined spherical 

particle.   

The existence of “Stokes type” solutions for a 

confined cylindrical particle is a key element in this 

type of studies. They only exist if the particle has a 

finite size or moves close to an infinitely long 

boundary (see for example Krakowski et al. (1953)). 

When such solutions exist, it is possible to formulate 

the problem as a set of linear equations. A transfer 

matrix called here the resistance matrix can be 

formed whose inversion leads to the kinematics of 

the particle at equilibrium. Lacking in analytical 

solutions, the numerical approach is the most 

appropriate one. In this work, we numerically solved 

the governing equations using a finite-volume 

method, the details of which are reported in our 

previous paper (Champmartin et al. (2007)). The 

frame of this article is as follows: in section 2, the 

description of the problem and the resistance matrix 

formalism are presented. In section 3, the method is 

applied to solve three problems namely: the settling 

of the particle, its transport in a Poiseuille flow when 

it is neutrally and non-neutrally buoyant (particle 

heavier or lighter than the fluid). The first two 

problems (sedimentation and transport of a neutrally 

buoyant particle) will be compared to the few 

available results in order to validate our approach. 

Some new results concerning the influence of the 

particle angular velocity, the position of the maximal 

velocities and the pressure difference are also 

discussed. The last problem (transport of a non-

neutrally buoyant particle) is original to our 

knowledge or necessitates heavy numerical 

procedures such as DNS. In this work, emphasis is 

particularly placed on the influence of the 

eccentricity of the particle.  Finally, the last section 

gives the conclusion. 

2. RESISTANCE MATRIX AND 

DESCRIPTION 

As mentioned above, the formulation of the problem 

by a resistance matrix is related to the existence of 

“Stokes-type” solutions available at low Reynolds 

numbers in the presence of boundaries. The linearity 

of such solutions allows to write that at equilibrium 

the forces and moments are linearly coupled to the 

kinematics of the particle: 

 

 / .

i ij j ij j

i ij j ij j

F A U B a

M a C U D a

 

 

  


 

             (4) 

In the present two-dimensional problem, Fi and Mi 

are the force and torque components per unit length. 

The coefficients Aij and Dij relate respectively the 

forces to the translational velocities and the torques 

to the angular velocities. The coefficients Bij and Cij 

relate respectively the forces to the angular velocities 

and the torques to the translational velocities. The 

terms of this tensor have general symmetry 

properties from the Lorentz reciprocal theorem (Aij = 

Dij and Bij = Cij). We apply this formalism in the case 

of a cylindrical particle of radius a confined between 

two parallel plane walls 2b apart, the particle axis 

remaining in the z–direction (Fig. 1). The 

confinement parameter k = a/b varies between 0 

(infinite medium) and 1 (complete blockage) and the 

distance c  between the particle axis and the 

symmetry plane defines the eccentricity e = c/b 

varying between 0 (particle in the symmetry plane) 

and 1maxe k   (particle touching one of the plane 

walls).    

 

 
Fig. 1. Sketch of the problem. 

 

For this two-dimensional non-inertial problem, the 

only existing components in (4) are the drag force Fx, 

the moment Mz and the velocities Ux and 
z . We 

can generalize the resistance matrix by introducing 

the additional pressure difference ΔP  induced by 

the motion of the particle and the mean velocity U  

in the presence of a plane Poiseuille flow. Using a 

unique notation Rij for the matrix dimensionless 

coefficients, we obtain: 

11 13 14

31 33 34

41 43 44

/  

Δ  2

x x

z z

F R R R U

M a R R R a

P b R R R U

 

    
    

     
        

             (5) 

To complete the resistance matrix, we use the 

superposition principle and three numerical 

simulations are sufficient. The details of the 

numerical procedure, based on a projection method 

and a finite volume discretization of the governing 

equations, are given in our previous article4. The first 

column 
1iR  is obtained by simulating a uniformly 

moving particle without rotation, the second column 

3iR  by simulating a uniformly rotating particle 

without translation and the third column 
4iR  

corresponds to the simulation of a fixed particle in a 

plane Poiseuille flow. Figure 2 shows how the 9 
ijR  

coefficients vary as a function of the relative 

eccentricity / maxe e  for the particular confinement 

parameter k = 0.29. The Reynolds numbers in all 

these simulations are very small and equal to   
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Fig. 2. 
ijR  coefficients vs /  maxe e for 0.29k . 

 

 

2 32 / 2 / 2 / 10x zU a a U a          with   

the fluid density. This ensures the existence of 

“Stokes type” regimes as confirmed by the equality 

of the extra-diagonal terms of the resistance matrix 

visible in Fig. 2. Once the matrix is complete, it is 

possible to use it to solve the kinematics of a freely 

moving particle at equilibrium. Three situations are 

considered: a particle settling along the plane walls, 

a neutrally buoyant particle transported by a plane 

Poiseuille flow and finally a non-neutrally buoyant 

particle transported by a plane Poiseuille flow. 

3. RESULTS AND DISCUSSION 

3.1 Particle Sedimentation 

The first problem we can solve is the settling of the 

particle when gravity acts parallelly to the walls. At 

equilibrium when the particle reaches its terminal 

velocities, the apparent weight exactly equals the 

drag force and the torque on the particle is zero. The 

linear system to solve is therefore:  

2
11 13 14

31 33 34

41 43 44

Δ

0 ω

Δ 2 0

x

z

g a R R R U

R R R a

P b R R R

 



     
     

     
        

        (6) 

with   the density difference between the particle 

and the fluid. The settling velocity can be written as: 

*33

11 33 13 31

( )x

R
U U

R R R R





                  (7) 

xwith * 2Δ /U g a    a characteristic 

velocity. In Fig. 3 we have plotted the evolution of 
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*/xU U  as a function of / maxe e  for three 

confinement parameters k . The numerical results 

from the article of Dvinsky et al. (1987a) for 

0.5k   and 0.6k   are also given and agree well 

with ours.  

 

 
Fig. 3. Dimensionless settling velocity vs / maxe e  

for 0.44k , 0.5k  and 0.6k . 

 

These curves show that the settling velocity 

decreases when k  increases and evidence the 

growing effect of the hydrodynamic interactions as 

the confinement increases. The backflow induced by 

the sedimenting particle is more and more confined 

when k  increases and enhances the drag force on 

the particle. This phenomenon was accurately 

quantified in our previous article (Champmartin et al. 

(2007)) for the particular symmetrical position (in 

that case 
13 31 0R R   and the settling velocity 

(Eq.7) depends only on the drag force coefficient 

11R ). Figure 3 also reveals that for a given 

confinement, the maximal settling velocity is off the 

symmetry position. This effect is also related to the 

drag force on the particle which is minimum at an 

off-center position as it is visible in Fig. 2 with the 

11R  coefficient of the resistance matrix. At this 

particular position, even if the coefficients 

13 31R R  are not zero, the analysis of these terms 

in Eq.7 shows that they are one order of magnitude 

lower than the terms 
11R  and 

33R . Consequently 

the settling velocity is only weakly affected by the 

particle angular velocity and behaves closely as 

111/xU R  . This result is also observed in 

Harper et al. (1967), Dvinsky et al. (1987a), Hu 

(1995), Feng et al. (1996) and Taneda (1964) and in 

the analogous problem of a spherical particle 

confined in a cylindrical tank in Brenner et al. 

(1958), Bungay et al. (1973) or Ambari et al. (1984).  

The local off-center minimum of the drag force 

comes from the asymmetrical distribution of the 

backflow in such confined media (this phenomenon 

disappears for a spherical particle settling between 

two infinite parallel walls where the backflow is not 

confined anymore).  

 
Fig. 4. Relative maximal increase in the settling 

velocity vs k . 

 

In Fig. 4, we plot as a function of k  the relative 

maximal increase in the settling velocity compared 

to its value in the symmetrical position. Our 

numerical results are in accordance with those of 

Harper et al. (1967), Dvinsky et al. (1987a) and Feng 

et al. (1996). The relative augmentation is an 

increasing function of the confinement and seems to 

increase non-linearly.  The more confined the 

particle, the slower its settles and the more its 

velocity is sensitive to position.  The angular velocity 

of the settling particle is: 

*
31

11 33 13 31
z

R U

R R R R a


 
  

 
               (8) 

It is plotted in Fig. 5 for three confinement 

parameters. This velocity was also calculated by 

Dvinsky et al. (1987a) and their results are in 

qualitative agreement with ours.  

 

 
Fig. 5. Dimensionless angular velocity vs 

/ maxe e  for 0.44k , 0.5k  and 0.6k . 

 
From symmetry, 0z   in the mid-plane. Like 

the settling velocity, the hydrodynamic interactions 

impede all the more the rotation of the particle when 

k  increases. As the eccentricity increases, the 

magnitude of the angular velocity increases, reaches 

a maximum and finally steeply decreases when 

/ 1maxe e  . In lubrication regime, the 

asymptotical behaviors of the  ijR coefficients 
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indicate that the rotation of the particle vanishes 

when it touches the wall. Figure 6 displays the 

relative positions ( / )  
max
z

maxe e  and ( / )
max
xU

maxe e  

at which the amplitude of the angular and settling 

velocities are maximal. When the confinement 

increases, the position of the maximal velocities 

moves away from the symmetry plane but 
xU  and 

z  are not maximal at the same position. The 

evolutions seem to be linear at least in the present 

range 0.7k  . At low confinements for 0.17k  , 

the settling velocity reaches its maximum closer to 

the symmetry plane than the angular velocity and 

for  0.17k  , the angular velocity is maximum 

closer to the symmetry plane than the settling 

velocity. 

 

 
Fig. 6. Relative position of the maximal settling 

and angular velocities vs k . 
 

Some data from the studies of Harper et al. (1967), 

Dvinsky et al. (1987a), Hu (1995) and Feng et al. 

(1996) are also reported in this figure and agree well 

with our results. A noteworthy characteristic of the 

angular velocity is its sense of rotation: the negative 

sign of z  in Fig. 5 indicates that the particle 

rotates in the direction opposite to that of contact 

rolling with the nearby wall. The word “anomalous 

rolling” is sometimes found in the bibliography (Hu 

(1995) or Liu et al. (1993)). To explain this sense of 

rotation, Fig. 7 shows the streamlines around the 

particle in a reference frame translating at the settling 

velocity 
xU  for 0.5k   and / 0.5maxe e  .  

We observe that the flow between the particle and 

the plane nearby is very weak and that most of the 

fluid bypasses the particle from below inducing the 

apparently “anomalous” sense of rotation.  In his 

article, Hu (1995) thoroughly analyzed the stress 

distribution on the particle to confirm this 

phenomenon. Dvinsky et al. (1987a) claim however 

that in the very vicinity of the wall, the particle 

changes its sense of rotation (like it is proven for a 

spherical particle settling in a cylindrical tank) but 

their result is in contradiction with the evolution of 

the torque they calculate (Fig. 4 in their article) 

because it monotonically tends to infinity without 

changing its sign. The accuracy of their numerical 

results in this lubrication regime is probably 

questionable. When the particle settles, it produces in 

the surrounding fluid a disturbance in the pressure 

field: the pressure is higher in front of the particle 

and lower behind. The resistance matrix can 

calculate this pressure difference: 

*
43 31 41 33

11 33 13 31 2

R R R R U
P

R R R R b

 
   

 
               (9) 

 

 
Fig. 7. Streamlines around the settling particle  

( / 0.5 maxk e e ). 
 

Figure 8 shows the dimensionless pressure 

difference for three confinement parameters. It is 

maximal in the symmetry plane and monotonically 

decreases when the particle gets closer to a wall. The 

numerical results of Dvinsky et al. (1987a) are also 

plotted and accord reasonably well with ours. At first 

glance, it seems in Fig. 8 that at low eccentricities the 

pressure difference varies as the inverse of the 

confinement parameter (the smaller the particle, the 

larger the pressure difference). This misleading 

analysis is due to the scales used to 

adimensionnalize the pressure difference which 

depend on a and b. In fact, in a given fluid, a particle 

produces a pressure difference that increases as the 

confinement increases whatever its position in the 

channel. In Fig. 9 the individual contributions to P  

of translation and rotation are plotted for 0.5k  .  

We notice that the translational motion of the particle 

results in a positive pressure difference whereas the 

rotational motion of the particle induces a negative 

pressure difference because of its “anomalous” 

sense. The former being one order of magnitude 

greater than the latter, the total pressure difference 

remains positive. We see again that rotation weakly 

affects the results (for 0.6k   if we constrain the 

particle to settle without rotation, both 
xU  and P  

change at most by 5% at the position where 
z  is 

maximum). 

3.2 Neutrally Buoyant Particle in 

Poiseuille flow 

The second problem we can solve is the transport of 

the particle in a plane Poiseuille flow with average 

velocity U  when the densities of the particle and of 

the fluid match ( 0  ). In that case, both the 

forces and torques on the particle are zero and the 

resistance matrix formalism is: 
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11 13 14

31 33 34

41 43 44

0

0 ω

Δ 2

x

z

R R R U

R R R a

P b R R R U



    
    

     
        

               (10) 

The transport velocity is then: 

13 34 14 33

11 33 13 31
x

R R R R
U U

R R R R

 
  

 
                (11) 

 

 
Fig. 8. Pressure difference around the settling 

particle vs / maxe e . 

 

 
Fig. 9. Pressure difference due to translation and 

rotation for 0.5k  vs  / maxe e . 

 

Figure 10 shows how the dimensionless transport 

velocity /xU U  varies according to /  maxe e  for 

three confinements. Some results from the articles of 

Jeong et al. (2014) (for 0.5k   and 0.6k  ), 

Dvinsky et al. (1987b) (for 0.5k   and 0.6k  ) 

and Eklund et al. (1994) (for 0.5k  ) are also 

reported in Fig. 10 and agree qualitatively well with 

ours.  

For a given k  value, this velocity is maximal in 

the symmetry plane and monotonically decreases 

when the eccentricity increases. Logically the 

particle transport velocity follows the same trend 

as the Poiseuille flow. According to the asymptotic 

behaviors of the 
ijR  coefficients, 

xU  vanishes 

when / 1 maxe e  .  In the same figure, the dotted 

lines represent for each k  value the velocity 

profile of the undisturbed plane Poiseuille flow. It 

is clear that a neutrally buoyant particle lags the 

flow and that the velocity lag enhances as 

confinement and eccentricity increase. In 

particular in the symmetry plane ( / 0)maxe e   we 

can use some results from our previous article 

(Champmartin et al. (2007)) to calculate the 

relative lag velocity: 

  2

2

/ 0 3

4 2

max x maxU U e e k

U k

 



             (12) 

In the limit 0k  , the particle translates at the 

fluid velocity 
maxU . In this limit, Eq.12 also 

agrees with Faxén’s law (Faxén, 1922) for a 

spherical particle which states that the particle lags 

the fluid with a difference of the order of 
2k . In 

their article, Dvinsky et al. (1987b) proposed the 

expression: 

 
1

/ 0 3

2 2

max x maxU U e e k

U k



 

 



               (13) 

 

 
Fig. 10. Transport velocity of a neutrally 

buoyant particle in a plane Poiseuille flow vs  

/ maxe e . 

 

with 1.91   obtained from a fitting of their 

numerical results. Although Eq.12 and Eq.13 give 

similar results in the limit of low confinements, both 

rapidly diverge when k  increases. The numerical 

results of Dvinsky et al. (1987b) are again doubtful 

at high confinements. Indeed in the lubrication 

regime when 1k  , Eq.12 shows that 

 / 0x maxU e e U   that is, to say, that the 

particle behaves like a plug moving at the mean 

velocity U  whereas Eq.13 gives 

 / 0 1.2395 x maxU e e U  . Moreover the 

analytical results of Jeong et al. (2014) match 

accurately those given by Eq.12 (within 0.12%  

relative error). The angular velocity of the particle 

writes: 

31 14 11 34

11 33 13 31
z

R R R R U

R R R R a


 
  

 
                (14) 
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It is plotted in Fig. 11 for three confinement 

parameter as a function of / maxe e . Some results 

from the articles of Jeong et al. (2014) (for 0.5k   

and 0.6k  ), Dvinsky et al. (1987b) (for 0.5k   

and 0.6k  ) and Eklund et al. (1994) (for 0.5k 
) are also reported in Fig.11 and agree qualitatively 

well with ours. The rotation is zero in the midplane 

as expected from symmetry, it increases when 

/ maxe e  increases, reaches a local maximum and 

finally steeply decreases when / 1maxe e  . The 

asymptotic behaviors of the coefficients 
ijR  

indicate that ωz
 vanishes when the particle touches 

one of the plane walls. In the same figure the dotted 

lines give the local vorticity of the undisturbed 

Poiseuille flow: 

 
3

1
2

z
max

e U
k k

e a
                   (15) 

According to Faxén’s law (Faxén, 1922), the solid 

particle should rotate at the same angular velocity as 

the fluid. This is clearly in contradiction with the 

results in Fig. 11 in which the angular velocity of the 

cylindrical particle is always lower than that of the 

fluid. The angular velocity lag increases when both 

k  and / maxe e  increase like in the case of the 

transport velocity 
xU . Contrary to sedimentation, 

the angular velocity of the neutrally buoyant particle 

is positive and the “anomalous rolling” phenomenon 

has disappeared.  

 

 
Fig. 11. Angular velocity of a neutrally buoyant 

particle in a plane Poiseuille flow vs  / maxe e . 

 

In Fig. 12 we can see the streamlines around the 

particle for / 0.5maxk e e   in a reference frame 

moving at the transport velocity 
xU . We notice the 

existence of “Stokes cells” appearing because of the 

coupling between the shear in the Poiseuille flow 

and the backflow induced by the particle movement. 

Like for the settling problem, the “weak” backflow 

due to the particle motion in the region above the 

particle induces an anti-clockwise sense of rotation 

and the “strong” backflow in the region below the 

particle induces a clockwise sense of rotation but 

due to the velocity gradient of the Poiseuille flow, 

this latter effect is counterbalanced by the velocity 

of the Poiseuille flow which is stronger below the 

particle. As a consequence, all the particle surface 

is subject to an anticlockwise flow and the particle 

rotates as if rolling along the plane nearby. The 

additional pressure change due to the cylindrical 

particle is: 

41 13 34 14 33

11 33 13 31

43 31 14 11 34
44

11 33 13 31

( )

( ) 2

R R R R R

R R R R U
P

R R R R R b
R

R R R R



 
  

   
 

  

            (16) 

 

 
Fig. 12. Streamlines around the transported 

particle in a plane Poiseuille flow  

( / 0.5 maxk e e ). 

 

It is plotted in Fig. 13 for three confinement 

parameters. Some results from the articles of Jeong 

et al. (2014) (for 0.5k   and 0.6k  ), Dvinsky et 

al. (1987b) (for 0.5k   and 0.6k  ) are also 

plotted and agree well with our data. 

 

 
Fig. 13. Pressure difference induced by the 

transported particle in a plane Poiseuille flow vs  

/ maxe e . 

 
The negative sign of P  indicates that the particle 

produces an additional pressure loss. The 

magnitude of P  is minimal in the symmetrical 

position and increases monotonically when the 

eccentricity and the confinement increase. The 

three terms in Eq.16 represent from left to right the 

pressure difference due to the translational motion, 

the rotational motion and the Poiseuille flow. These 
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individual contributions are plotted in Fig. 14. We 

notice that P  induced by the particle translation 

(square symbols) and rotation (star symbols) are 

positive whereas P  due to Poiseuille flow (circle 

symbols) is negative. The contribution of rotation 

is again very small compared to the others and the 

total P  is mainly due to the competition between 

the positive contribution of translation and the 

negative contribution of Poiseuille flow, this latter 

dominating the former at every position.  Another 

interesting result is that the magnitude of the 

pressure loss for a fixed particle (circle symbols) is 

much larger than the pressure loss for a free particle 

(solid line) and that their dependence on / maxe e  

is opposite.   

 

 
Fig. 14. Pressure difference induced by 

translation, rotation and Poiseuille flow vs  

/ maxe e  for 0.5k . 

 
3.3 Non-Neutrally Buoyant Particle in 

Poiseuille flow 

The last problem we can look at is when the particle 

is non-neutrally buoyant ( 0  ). To our 

knowledge, this is the first attempt to solve such a 

problem in the Stokes regime limit with the 

resistance matrix approach although in actual 

particulate transport problems, the fluid and 

particle densities rarely match. In virtue of the 

linearity of the equations and of the boundary 

conditions, this problem can be solved using the 

superposition principle. Let us suppose that gravity 

acts in the opposite direction as the Poiseuille flow. 

The transport velocity of the free particle now 

writes: 

  
13 34 14 33 33

11 33 13 31 11 33 13 31
x

R R R R R
U U

R R R R R R R R


  
  

   

(17) 

with 
* /U U   ( 0   when the particle 

density is larger than the density of the fluid). This 

parameter is the ratio of gravitational to viscous 

forces (it can be seen as the inverse of the Shields 

number used in sediment transport). In Fig.15 we can 

see the transport velocity (Eq.17) as a function of 

/  maxe e  for the particular confinement parameter 

0.29k   and various values of  . 

 
Fig. 15. Transport velocity of a non-neutrally 

buoyant free particle in a plane Poiseuille flow vs  

/ maxe e  for 0.29k . 

 

For 40  , the transport velocity in negative at 

every transverse position and the particle always 

settles against the Poiseuille flow. The velocity 

profile is non-monotonous with the same trend as the 

settling velocity in Fig. 3. For 15 40  , the sign 

of 
xU  depends on the position of the particle in the 

channel: if it is close to the symmetry plane, it is 

transported by the Poiseuille flow and if the particle 

is close to a plane wall, it settles in the reverse 

direction. In the range 15 40  , the evolution of 

xU  is still non-monotonous but the position of the 

negative minimal velocity shifts toward the plane 

nearby when   decreases (increasing influence of 

the Poiseuille flow). When 0 15  , the transport 

velocity of the particle becomes positive regardless 

of its position and the particle always moves in the 

same direction as the Poiseuille flow. The velocity is 

maximal in the symmetry plane and decreases 

monotonically when /  maxe e  increases. We notice 

also that the particle lags the fluid (the Poiseuille 

velocity profile is plotted in green solid line in Fig. 

15). When 0  , the particle is “lighter” than the 

fluid and sedimentation turns into flotation. In that 

case, the transport velocity of the Poiseuille flow 

adds to the flotation velocity and the particle can lead 

the fluid. Finally for 20   , the transport velocity 

profile becomes again non-monotonous showing the 

dominating effect of the flotation velocity compared 

to the transport velocity of the Poiseuille flow. In 

Fig.16, we can see the evolution of the angular 

velocity as a function of / maxe e  for various values 

of   and for 0.29k  . The expressions of 
z  

can be easily obtained by adding the respective 

contributions of the sedimentation and of the 

neutrally buoyant particle problems: 

31 14 11 34 31

11 33 13 31 11 33 13 31

αz

R R R R R U

R R R R R R R R a


  
  

   

(18) 

This figure shows that the angular velocity can be 

either positive throughout the channel, negative 

throughout the channel or change its sign depending 

on its position. For this particular confinement 

parameter 0.29k  , the angular velocity is always 

positive when 17    and always negative when 
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113   .  In the range 113 17    , the 

angular velocity is negative from the symmetry plane 

up to a transverse position that shifts towards the 

plane wall as   decreases. For 0  , we notice 

that the particle can rotate faster than the undisturbed 

fluid particle (the green solid line in Fig. 16) with the 

same sense of rotation.  The critical values of   

separating the transport ( 0xU  ) and sedimentation 

( 0)xU   regimes and the 0z   and 0z   

rotation regimes are obtained from Eq.17 and Eq.18 

by solving 0xU   and 0z  . For the 

translational motion, we obtain: 

13 34
14

33
c

R R
R

R
                  (19) 

For the rotational motion, we obtain: 

11 34
14

31
c

R R
R

R
                   (20) 

 

 
Fig. 16. Angular velocity of a non-neutrally 

buoyant free particle in a plane Poiseuille flow vs  

/ maxe e  for 0.29k . 

These critical parameters are plotted in Fig.17. They 

define three regions and three kinematics for the 

particle depending on   and on its eccentricity. 

 

 

Fig. 17. Critical values of α  for the translational 

and angular velocities of a non-neutrally 

buoyant free particle in a plane Poiseuille flow vs  

/ maxe e  for 0.29k . 

 

In the case of separation processes usually used in 

analytical chemistry, the particular regime for which 

the particle is either transported or settles depending 

on its position can play an important role. The lower 

bound 
min  and upper bound 

max  defining this 

regime depend obviously on the confinement. We 

have plotted these limits in Fig. 18 as a function of 

k . If  min k  , the particle always moves in 

the same direction as the Poiseuille flow. If 

 max k   the particle always settles in the 

inverse direction of the Poiseuille flow. If 

   min maxk k     the sign of 
xU  depends on 

the particle position. 

 

 

Fig. 18. Values of 
minα  and  maxα  for 

xU  vs k

. 

 

Finally, the pressure difference induced by the 

particle is obtained by combining Eq.9 and Eq.16. 

We consider here the pressure difference between 

two sections placed respectively above and below the 

particle (the pressure difference due to the Poiseuille 

flow is always negative and the pressure difference 

due to settling or floating is positive or negative 

depending on a and on the particle position). The 

total pressure difference is plotted in Fig. 19 for 

0.29k   and various values of  .  

 

 
Fig. 19. Pressure difference for a non-neutrally 

buoyant free particle in a plane Poiseuille flow 

for 0.29k  vs / maxe e . 

 

Qualitatively this figure shows that the pressure 

difference is positive when 0   and inversely 

except in the very vicinity of the plane wall. If we 

look at Fig. 8 and Fig. 13, we notice that when the 

particle is close to a plane wall, the pressure 

difference due to the sedimentation or flotation is 

very small compared to that of the Poiseuille flow. 

Consequently, all the curves in Fig. 19 seem to 

converge towards the same negative value 
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corresponding to the pressure difference of the 

Poiseuille flow alone when / 1maxe e  . In the 

opposite limit when / 0maxe e  , most of the 

pressure difference comes from the 

sedimentation/flotation phenomenon. When 0  , 

the pressure difference due to sedimentation is 

negative and adds to the negative pressure difference 

of the Poiseuille flow. When   increases, this effect 

is enhanced and the pressure difference becomes 

more and more negative. When 0  , the pressure 

difference due to flotation is positive. When a 

decreases, the negative pressure difference due to the 

Poiseuille flow is rapidly compensated and 

overcome, leading to an increasing positive pressure 

difference. 

4. CONCLUSION 

We took advantage of the mathematical properties of 

the “Stokes-type” solutions at low Reynolds 

numbers to solve the kinematics of a free cylindrical 

particle in asymmetrical position between two 

parallel plane walls. Three problems were tackled 

using a finite volume numerical approach and a 

projection method enabling to compute the terms of 

the generalized resistance matrix: the first problem is 

the settling of the particle parallelly to the walls. The 

hydrodynamic interactions lead to a maximal settling 

velocity off the symmetry plane. The relative 

position of the extremal settling and angular 

velocities are linearly related to the confinement 

parameter. The sense of rotation of the particle is 

opposite to contact rolling with the plane nearby and 

the motion of the particle induces a positive pressure 

difference between two sections placed in front and 

behind the particle respectively. The second problem 

concerns the transport of a neutrally buoyant particle 

in a plane Poiseuille flow. The transport velocity is 

maximal in the symmetry plane and follows the same 

trend as the undisturbed Poiseuille profile. The sense 

of rotation of the particle is opposite to that of 

sedimentation. For the translational and angular 

velocities, the solid particle always lags the 

undisturbed fluid particle at the same position. This 

effect is enhanced when the confinement and the 

eccentricity of the particle increase. The pressure 

difference induced by the particle motion is negative. 

The last problem is the transport of a non-neutrally 

buoyant particle in a plane Poiseuille flow. The 

particle can be heavier or lighter than the 

surrounding fluid. Several possible kinematics are 

found depending on the value of a control parameter 

defined as the ratio of the gravitational force to the 

viscous force. Three regimes were identified: 

whatever its position in the channel, the particle can 

settle against the Poiseuille flow or be transported by 

it. In the third regime, the particle direction depends 

on its position: close to the symmetry plane, the 

particle is transported by the Poiseuille flow and 

close to the plane wall the particle settles in the 

opposite direction. The control parameter also 

dictates the sense of rotation of the particle and the 

pressure difference due to its motion. From a general 

point of view, the rotation of the particle plays a 

minor role in its translational velocity and disturbs 

weakly the pressure field around the particle. These 

results highlight the role of the hydrodynamic 

interactions at low Reynolds numbers in the transport 

of solid particles in non-dilute regimes at high 

confinements and eccentricities. They could be 

useful in the numerical modeling of fiber transport or 

in the design of separation devices commonly used 

in analytical chemistry. Let us note that the present 

technique can be easily generalized if the particle 

undergoes other external forces such as electric or 

magnetic forces. 
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