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Multiscale analysis of brittle failure in heterogeneous
materials

EID Elie1,∗, SEGHIR Rian1, RÉTHORÉ Julien1
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Abstract

This paper presents a versatile model-free approach for linking the damage

in highly heterogeneous materials at multiple scales. The proposed scheme

evolves from phase-field modelling at the microscopic scale to simulate brittle

failure, towards the estimation of the effective elastic, toughness and strength

properties of the material at the mesoscopic scale, via a model-free coarse-

graining technique. On one side, it’s shown that, in comparison with the

classical homogenisation approaches, the considered upscaling method: (i)

requires no RVE (representative volume element), (ii) can be applied when

the statistical homogeneity of the material ceases to exist and (iii) when sharp

localisations are present. On the other, (iv) the quasi-brittle behaviour of the

material is justified without any assumption on the model at the mesoscopic

scale. Most prominently this paper shows that (v) the consideration of an

effective homogeneous continuum to substitute a microscopically heteroge-

neous one is dictated by the use of a much larger regularisation parameter

than what has been classically established.
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1. Introduction

The desire for better-performing materials has long been established,

and expansion of the boundaries of the material property space has already

been achieved in multiple ways, i.e., whether by manipulating the chemistry,

through developing new alloys and polymers, or by manipulating the mi-

crostructure through thermomechanical processing [1]. Innovative materials

for aerospace and automotive applications are recently requiring the improve-

ment of the mechanical properties while reducing the structure’s weight.

Accordingly, engineers have shown interest in controlling the architecture of

the materials through thoughtfully designing them in a certain fashion, to

acquire improved mechanical properties over their constituents. However, the

use of those highly heterogeneous materials is bridged by some limitations,

de facto, treating the heterogeneities for accurately simulating the complex

behaviour of such structures requires huge computational resources. Thus, of

course, it’s appealing to describe a simpler nature of those materials.

A variety of upscaling methods were proposed to reveal the relations be-

tween the microstructural heterogeneities from one side and the behaviour at

higher scales from the other [2]. The underlying principle of existing classical

homogenisation techniques lies on the description of a structure with the help

of a much smaller specimen, known as the representative volume element -

RVE. This implicitly assumes the presence of two separated scales: (i) the

microscopic scale that is small enough to capture the heterogeneities in the
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material, and (ii) the overall scale of the structure where the effects of the

heterogeneities are expected to be smeared out, and on which effective mate-

rial properties are considered [3]. The classical (first-order) homogenisation

method is based on the construction of a boundary value problem on the

RVE that allows the determination of the effective material properties at the

higher scales [2]. In this case, the RVE should be big enough to statistically

capture the heterogeneities and be constitutively valid, yet small enough to

be considered as a volume element of continuum mechanics. More details

on the classical homogenisation method can be found in the literature, and

the respective work outlines the following limitations: upscaled deformation

modes of an RVE for a first-order homogenisation are linear; the first-order

methods cannot take into account the size effects, nor large gradients of de-

formation, nor localisation, i.e., also, in case of large gradients, even materials

with small microstructure cannot be accurately modelled [4]. Moreover, the

first-order schemes do not work for softening materials. To surpass these

problems, an extension to higher-order approaches has also been addressed

[4, 5]. The solution of the microscopic boundary-value problem in the case

of higher-order computational homogenisation is effortless, yet allows for an

enriched upscaled continuum with higher-order strain and stress fields [4].

Although the higher-order techniques are able to treat softening materials,

they present their limitations: localisation bands beyond a quadratic nature

for the displacements cannot be resolved, i.e., softening materials in the

presence of sharp localisation regions from the presence of a crack and/or

high heterogeneities [6].

Aside from determining the effective material properties, and with the
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increasing demand on architectured (highly heterogeneous) materials, there’s

a relevant need for incorporating small-scale mechanisms of deformation and

damage to essentially assess reliability and lifetime of structures within rea-

sonable computations. As damage localises in narrow regions in a considered

continuum, the length scale that determines the variation of the defect falls

below the considered scale of the mechanical fields (RVE) leading thus to

what is known as gradient effects [7]. Gradient theories emerging from the

multiscale nature of the mechanical framework are based on the enrichment of

the classical continuum description with additional terms; those allow taking

those gradient effects into account [8]. When the constitutive equations at

the higher scales are difficult to write, general methods based on concurrent

finite element simulations (FE2) can be applied [9]. FE2 methods do not

require any constitutive equations because all non-linearities come directly

from the homogenisation of microscopic quantities after applying localisation

rules to determine local solutions. Interests are presently concentrating on

the development of a continuous-discontinuous homogenisation scheme, to

allow the assessment of the presence of both micro and macro cracks, and

where localisation bands are incorporated at the macroscale [10].

Recently, work has been done on deriving a homogenised cohesive law

at the macroscale from computations of crack propagation in a microscopic

sample [11]. In [12], X-FEM approaches are used to incorporate the dis-

continuity at the macroscale, but as previous methods, this technique relies

heavily on the principle of separation of scales as well as the presence of

an RVE and it remains a homogenisation technique where a small part of

the domain is considered to extract the full response of the structure; plus,

4



both those methods rely on concurrent multilevel finite element (FE2) which

is computationally expensive, and requires the difficult task of writing a

consistent homogenisation scheme to link the scales [9]. Moreover, the need

for enrichment of the description of the multiscale problem is directly per-

ceived [13, 14, 15]. Although those methods are theoretically prominent, their

experimental applicability remains questionable. In [16], a different approach

has been proposed, where the effective toughness of the heterogeneous media

was directly evaluated a priori (without concurrent computations). Recently,

[17] followed the work of [16] to identify the different parameters of a damage

model at the mesoscale by fitting a typical force-displacement response on a

heterogeneous structure. Yet, as the effective material properties are deter-

mined macroscopically from force-displacement responses, it’s believed that

micro-cracks and their influence on the structural responses fail to be taken

into consideration.

The above mentioned methods stand as long as the separation of scales is

prominent, or as long as an RVE can be well-defined, which naturally leads

to a homogeneous description of the microstructures at the macroscopic scale.

Nonetheless, when the microstructure’s heterogeneities and/or the damage

distribution are not statistically homogeneous, the effective description is

expected to be dependent on the position in space and becomes influenced

by simultaneous interactions between the damage and the microstructure.

This restrains the above mentioned methods from accurately transferring

the information from the microscopic scale to the macroscopic scale. Plus,

to the author’s best knowledge, there’s no available formulation allowing a

consistent transfer of such information between the scales.
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Accordingly, we believe that a consistent micro-meso analysis on the dam-

age of highly heterogeneous materials’ (architectured materials between them)

requires proceeding through multiple intermediate scales to ensure the proper

modelling between the scales. By setting the intermediate mesoscales, different

continuum descriptions are sought going from the microscale consistently all

the way to the larger macroscale. For this purpose, we follow the bottom-up

approach of analysis in which information at the microscale is considered

to inform the larger scales. We use a model-free coarse-graining technique

[18] - a widely used technique in molecular dynamics studies - where pseudo-

molecular systems are built to reproduce physically consistent behaviour of

all-atom with easier and faster computations. The coarse-graining technique

[18] is adapted to evaluate continuum mechanics at different intermediate

mesoscales solely from the gathered data at the microscopic scale and by

a manipulation of the inviolable conservation laws. The effective fields of

mechanical properties are thus established. Ultimately, we seek to find the

conditions under which one may describe the crack propagation process in het-

erogeneous materials by substituting it by an effective homogeneous medium

with effective elastic moduli, fracture toughness and strength. The proposed

scheme relies on simulating (i) the failure process of architectured materials

(modelled as periodic and quasi-periodic microstructures) at the microscopic

scale by explicitly taking the heterogeneities into account. The acquired infor-

mation is then (ii) upscaled to mesoscopic scales by the means of the proposed

model-free coarse-graining technique; before finally (iii) analysing the obtained

information at the considered scale. This method allows the construction

of consistent density, displacement, strain and stress fields at larger scales
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(a) microscale

?

(b) mesoscale (c) macroscale

Figure 1: The scales of interest for the failure problem of microscopically heterogeneous

materials: the microscopic scale (a) the intermediate mesoscopic scales with properties

obtained upon the length scales considered (b) and the structural macroscopic scale (c).

based on the actual physics in question at the scale of the heterogeneities.

Without any a priori on the material’s behaviour, the herein proposed scheme

provides a genuine evaluation of the effective material and failure properties

at the considered scales. The different scales of interest are presented in

Section 2.1. The paper is organised as follows: the computational method

considered for the simulations at the microscopic scales is briefly introduced

in Section 2.2 and the proposed coarse-graining method is provided in Section

2.3. Application of the scheme for the analysis of mesoscopic damage on

typical microstructures is then constructed and discussed in Section 3; the

effective material and failure properties are assessed in a lower-cost and more

straightforward manner.

2. Computational Approach

2.1. General Statements

Let us briefly recall the multiple scales of interest at which damage

problems can be tackled: the microscopic level is the level at which the
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material’s architecture is prominent. In this study, reproducible lattices of

pores are considered, e.g., Figure 1(a). Continuum mechanics apply; brittle

failure occurs and can be simulated by the linear elastic fracture mechanics

or its approximations (Phase-field Modelling [19], Eigen erosion [20]...). At

the macroscale, the material is seen as a homogeneous bulk (Figure 1(c)),

where linear elastic fracture mechanics elements can be implemented, and

microstructural features give rise to resistance-curve behaviour. Effective

macroscopic physical parameters shall be determined. In between those scales

are the mesoscales. At the mesoscales, the literature suggests considering a

homogeneous material (Figure 1(b)), and the effects of the microstructural

heterogeneities are implemented in the modelling with the introduction of a

process zone of size related to a certain length parameter to which damage

spreads. Phase-Field Modelling, Eigen Erosion and Thick Level Set applied

to quasi-brittle failure are examples of models considered at this scale. The

homogeneity of the fields at the intermediate mesoscales is put into question

in this study and the bottom-up approach is considered via a model-free

upscaling technique for the analysis to answer the arisen questions.

2.2. Phase-field modelling

In this section, the method considered for the micromechanical simulation

of crack propagation is presented. With the expected complex crack networks,

techniques like X-FEM [21] that require the predefinition of a crack and/or

cohesive element methods [22] that only allow separations on mesh’s boundary

are discarded, and the variational approach [19] known as phase-field method

is considered for building the micro-mechanical numerical experiments. The

robustness and versatility of the approach regarding its independence of the
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finite element mesh were decisive in the choice of the phase-field model for the

micro-mechanical simulations. Of course, more recently, a Thick Level-Set

(TLS) [23] approach was developed. In the TLS approach, the damage zone

is separated from the undamaged zone and the damage variable is linked to

the level set function which itself is a parameter of the model. But with fewer

assumptions on the model, the phase-field framework is believed to be more

convenient for our study.

In this section, the phase-field approach as implemented in [24] is briefly

presented; the choice regarding the method’s parameters is based on the study

led in [25].

Assuming small strains, the phase-field introduces the following energy func-

tional for a cracked body in a regularized framework:

E(u,Γ(α)) = Eu(u,Γ(α)) + Es(Γ(α)) (1)

Where u and Γ are the variables representing the displacement and the crack

surface respectively. The crack surface being a function of a continuous

damage variable α. α describes the material damage state: it takes the value

0 in the intact region of the material and 0 < α ≤ 1 to represent the crack.

E(u,Γ(α)) is the strain energy stored in the cracked body, Es(Γ(α)) is the

energy required to create the crack according to Griffith Criterion - known as

the fracture energy.

The sharp crack is smeared-out by a regularisation parameter lc [26], and the

fracture energy is thus written as a function of the regularised crack density
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function γ(α,∇α).

E (u, α) = Eu(u,Γ(α))+Es(Γ(α)) =

∫
Ω

Wu (ε (u) , α) dΩ+gc

∫
Ω

γ (α,∇α) dΩ

(2)

It’s recalled that this approach uses the continuous field α to describe the

discontinuities coming from the presence of a crack by the means of a crack

density function γ. The term Wu(ε(u, α)) represents the strain energy density

in the cracked body, ε is the displacement symmetric gradient and gc is

the fracture toughness. The regularisation parameter lc choice has also been

previously assessed ([27, 28]). And it was shown that this phase-field modelling

approach converges to the classical brittle failure when the regularisation

parameter lc approaches 0. More details on the choice of the parameters

considered for the finite element implementation are given in Section 3.1

2.3. Coarse-graining

When seeking to find continuum mechanics for the fracture process, out

of information gathered at the microscopic scale, the challenge is to find an

appropriate technique that takes into consideration the real solicitation of

the material as well as the singularities coming from crack propagation and

the presence of the heterogeneities. The micromechanical fields coming from

phase-field simulations are upscaled by adapting the method from [29] and

[18]: a physically consistent upscaling coarse-graining method that allows

going from discrete probability density into an upscaled continuum (Figure

2).

The parameters of this method are:

• the convolution or the coarse-graining function φ that can be any
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sufficiently regular function with a local support: a variety of forms

were studied and similar results were obtained; in this paper, the

normalised Gaussian distribution (Figure 2(b)) of zero mean µ and a

standard deviation σ is considered. It takes the following form:

φ(x, σ, µ) =
1

σ
√

2π
e

−(x−µ)2

2(σ)2 (3)

• the width of the convolution function lCG = w/2. In 3, w = 2× 3σ: it’s

the most important parameter that defines the different length-scales

at which the problem is inspected. The normalised Gaussian function

can be rewritten as follows:

φlCG(x, lCG) =
1

lCG
3

√
2π
e

−x2

2(
lCG
3 )2 (4)

• the discretization H considered for the coarser mesh (the support for

the coarse-graining): this parameter defines the resolution of the coarse-

grained fields (Figure 2(c)) and does not affect their distribution. Iden-

tical results are obtained from investigations on multiple discretization

sizes validating thus the mesh objectivity of the proposed upscaling

technique.

In [18], a system of particles indexed by e is considered (Figure 2(a)), with

known masses me(t) and centres of masses re(t) at time t. The coarse-grained

mass density at position r and time t is given by:

ρ(r, t) ≡
∑
i

meφ[r − re(t)] (5)
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(a) Random particle system (b) Gaussian Distribution (c) Mesh support

Figure 2: The coarse-graining function (b) sweeps over the different points in the domain (c).

Information from the particles system (a) is smoothed and continuous fields are computed.

Unlike in [18], continuum data is considered at the fine-scale from the microme-

chanical simulations. Let Ω0 be the domain of interest in the microstructure,

a discretization of Ω0 into finite elements serves as a support for the coarse-

graining computations. The coarse-grained mass density R(x, t) at position x

in Ω0, at time t, is defined as the convolution between the microscopic density

function ρ and the predefined coarse-graining function φ:

R(x, t) =

∫
Ω0

ρ(x− x′, t)φ(x′, t)dx′ (6)

For the sake of simplicity, the following notation is considered to replace

the convolution:

〈ρ(x, t)〉φ =

∫
Ω0

ρ(x− x′, t)φ(x′, t)dx′ (7)

and the coarse-grained mass density R(x, t), at position x and time t, would

be as follows:

R(x, t) = 〈ρ(x, t)〉φ (8)

From this spatial/temporal definition of the coarse-grained mass density, and

by imposing the mechanical conservation laws at both the microscopic and
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coarse-grained scale, expressions for the impulsions, velocities, displacements

and stresses are obtained at different positions x and times t, at the coarse-

grained scale. We start by recalling the conservation laws written at the

microscopic scale; i and j denote the different directions in the considered

space:

• Balance of Mass
∂ρ

∂t
+
∂(ρvi)

∂xi
= 0 (9)

• Balance of Momentum

∂

∂t
ρvi +

∂

∂xi
ρvivj =

∂

∂xj
σij (10)

2.3.1. Balance of mass

A simple manipulation of (9) allows the computation of the expression

for the velocity at the coarse-grained scale. Computing the convolution of

both sides of the equation, one can obtain:

〈∂ρ
∂t
〉φ = −〈∂(ρvi)

∂xi
〉φ (11)

The left side of the equation denotes the time derivative of the coarse-grained

density R(x, t):

∂R

∂t
= −〈 ∂

∂xi
ρvi〉φ (12)

Using the basic rule of the derivation of convolution, one can write:

∂R

∂t
+

∂

∂xi
〈ρvi〉φ = 0 (13)
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Writing the balance of mass at the coarse-grained scale, with RVi denoting

the impulsion Pi at the coarse-grained scale:

∂R

∂t
+

∂

∂xi
RVi = 0 (14)

and by identification between (2.3.1) and (2.3.1), we can conclude that

RVi = 〈ρvi〉φ (15)

Identifying the coarse-grained impulsion, Pi = RVi, and the microscopic

impulsion, pi = ρvi, one can see that the coarse-grained impulsion is equal to

the coarse-graining of the microscopic impulsion, which is not the case for the

velocity field. The velocity at the coarse-grained scale is the ratio between

the upscaled impulsion and the coarse-graining mass density:

Vi =
〈ρ vi〉φ
R

=
〈 pi〉φ
R

=
Pi
R

(16)

In this study, continuum mechanics is assumed to hold in all length scales

involved; the derivation is restricted to small displacement gradients and the

discussion is confined to two- dimensional quasi-static problems on perfectly

solid materials. Therefore, the coarse-grained displacement Ui and velocity

Vi fields have similar expressions, from (2.3.1):

Ui =
〈ρ ui〉φ
R

(17)

Next, it is natural to proceed with a strain calculation based on the coarse-

grained displacements:

E =
1

2
(∇U +∇TU) (18)
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2.3.2. Balance of linear momentum

At the microscopic scale, the balance of linear momentum states:

∂

∂t
ρvi +

∂

∂xi
ρvivj =

∂

∂xi
σij (19)

at the mesoscopic scale, a similar expression is expected with coarse-grained

mechanical fields, to be written as:

∂

∂t
RVi +

∂

∂xi
RViVj =

∂

∂xi
Sij (20)

From the time derivative of the coarse-grained impulsion Pi = RVi = 〈ρvi〉φ
(2.3.1), and using the basic rule of derivation, the expression of the stresses

at the coarse-grained scale is determined:

∂Pi
∂t

= 〈 ∂
∂t
ρvi〉φ (21)

from the balance of momentum at the microscopic scale (10), we can write

(2.3.2) as:

∂Pi
∂t

= 〈 ∂
∂xi

(σij − ρvivj)〉φ (22)

It’s here interesting to introduce what is called ’fluctuating velocity’ v′i = vi−Vi.

This velocity does not add any impulsion to the system, and the coarse-grained

fluctuation impulsion vanishes as:

〈ρv′i〉φ =

∫
ρ(vi(x− x′, t)− Vi(x, t))φ(x)dx′ = 〈ρvi〉φ−Vi〈ρ〉φ = Pi−RVi = 0

(23)

Once, vi is replaced in (2.3.2) by v′i+Vi, the following equation can be written:

∂Pi
∂t

+
∂

∂xi
RViVj =

∂

∂xi
〈σij − ρv′iv′j〉φ (24)
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Now writing the coarse-grained balance of linear momentum as a function of

the coarse-grained variables, and by identification between (2.3.2) and (2.3.2)

the expression of the stress at the coarse-grained scale is obtained:

Sij = 〈σij − ρv′iv′j〉φ (25)

In quasi-statics, the dynamic terms v′iv′j will be neglected and the stress at the

coarse-grained stress field S scale is found to be equivalent to the convolution

of the microscopic stress field with the coarse-graining function: S = 〈σ〉φ.

Finally, from equations (2.3.1), (2.3.1) and (2.3.2), displacement, strain

and stress fields are constructed out of micromechanical simulations. As seen,

this upscaling technique requires no condition on the geometrical aspect of

the microstructure, nor on the micromechanical fields, nor puts any a priori

on the behaviour at the mesoscopic scales. It’s indeed applicable on arbitrary

heterogeneous (e.g., non-periodic) materials even when sharp localisation is

present.

A general scheme of the analysis based on this upscaling technique is

illustrated by the following steps:
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1. Generating the geometries with suggested microstructures.

2. Acquiring the microscopic displacement, stress and strain fields before

failure.

3. Acquiring the microscopic displacement, stress and strain fields from the

micro-mechanical simulations of failure.

4. Coarse-graining the mechanical responses obtained from step 2 and 3

with different lCG.

5. Analysing the constructed database on heterogeneous microstructures

and determining the effective elastic properties (κ, µ, E, ν) from steps

2 and 4, the failure toughness Gd and strength σf properties from steps

3 and 4.

3. Application on Mesoscale Analysis of damage

In this section, we present detailed information about an application of

the proposed scheme where we present the typical microstructures of interest

and their corresponding micromechanical simulation followed by an in-depth

investigation of the results.

3.1. Typical Microstructures

Due to their wide presence and uses, periodic and quasi-periodic mi-

crostructures are considered in the study, with the idea that any material

would behave between a perfectly periodic one and a quasi-periodic mate-

rial presenting long-range heterogeneities. For this purpose, hexagonal and

kite&dart Penrose paving are studied. The materials’ symmetry order (6

and 5-fold symmetry respectively) should lead to elastic isotropic equivalent
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.

Typical microstructures properties

Geometry Characteristic length(s) (µm) Hole radius (µm)

Periodic 3000 750

Quasi-Periodic - Type 1 2270 and 3670 750

Quasi-Periodic - Type 2 2270 and 3670 750

Table 1: Typical microstructures and their properties studied: The periodic microstructure

presents a unique characteristic length (the distance between the holes); while the quasi-

periodic shows two [30]

(a) Periodic Hexagonal (b) Quasi-Periodic - Type 1 (c) Quasi-Periodic - Type 2

Figure 3: Typical microstructures considered for the simulations of periodic material (a)

and two types of quasi-periodic microstructures: holes distribution at the nodal positions

of a kite&dart Penrose paving (Type 1) (b) and on the centroids of the kite&dart paving

(Type 2) (c).
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ρ 1200kg/m3

E 3GPa

ν 0.35

gc 250J/m2

lc 400µm

Table 2: Material properties considered in the phase-field simulation

media - a property to be discussed in the upcoming sections. We recall

that for the hexagonal distribution, there’s only one characteristic length of

the microstructure that is the distance between holes, denoted by d; while

for the Penrose kite&dart paving, there are two characteristic lengths. As

mentioned previously, the microstructure is modelled by the drilled holes

inside a bulk material which mechanical properties are presented in Table

2. ρ is the material density, E and ν are respectively the Young Modulus

and Poisson ratio, lc is the internal length of the phase-field model and gc the

fracture toughness. In order to meticulously compare the microstructures,

the same hole radii rh = 750µm are taken, and the mean distances between

the holes is fixed to d = 3000µm corresponding to a volume fraction of

78% for the periodic microstructure and 75% for the quasi-periodic ones.

The generated microstructures are shown in Figure 3, and their respective

geometrical aspects are displayed in Table 1. Two types of quasi-periodic

microstructures are considered, both based on the kite&dart Penrose paving.

Type 1 corresponds to the holes drilled at the nodes of the paving, while type

2 suggests drilling holes at the centroids of the kites and darts in the paving,

leading thus to same-yet-different perfectly controlled microstructures each
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(a) (b)

Figure 4: Full (a) and close-up (b) diagrams of a typical finite element mesh of a TDCB

specimen with the considered coarse-graining support mesh region (in light blue) allowing

the study of large scales lCG up to 10 times the mean distance between holes d.

one presenting specific quasi-periodic patterns. For the micro-mechanical

simulations, the microstructure is put at the core of a Tapered Double Can-

tilevered Beam (TDCB) fracture geometry to provide crack growth stability

from the tapered profile of the specimen [31, 32]; the microstructure is sur-

rounded by a homogeneous bulk material, the dimensions are put forth in

Figure 4. Displacement boundary conditions are applied for the phase-field

micro-mechanical simulation. In fact, the stability in crack growth provided

by the TDCB specimen is believed to match the stability provided by the

application of a surfing boundary condition [16]. In both cases, the crack

evolves as it pleases inside the microstructure. In this study, the former

- more straightforward - approach is adopted. We recall that we confine
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ourselves to the quasi-static evolution of cracks neglecting thus dynamics

effects. The numerical discretization h = 200µm is thoughtfully adapted

to the heterogeneities sizes and placements inside the domain and based

on [25], the internal parameter of the phase-field model lc is set to 400µm.

Both lengths are much smaller than the structure’s heterogeneities leading to

mesh-independent crack initiation and propagation.

The influence of the microstructures on the crack propagation is prominent

and put forth in Figure 3. For the periodic material, a simple linear crack

path is obtained suggesting thus the presence of weak planes [30]. While

for the quasi-periodic materials, each type proposes different-more tortuous

paths suggesting more complexity of the damaging process. The influence

of the microstructure is visibly reflected on both paths. A detailed crack

path analysis is found in Section 3.4. After acquiring the simulation results,

a domain of interest Ω0 is considered for the study and then subdivided

into finite constant-stress-constant-strain elements of size H = 1mm without

loss of generality (Figure 4(b)).The considered coarse-graining function then

sweeps over the mesh support constructing a database of mechanically and

physically consistent fields at multiple larger scales to be analysed without any

a priori on the model at each scale and by considering the physics happening

at the scale of heterogeneities. Ω0 is at the core of the microstructure which

allows the use of large lCG and therefore large observation scales.

Exploiting the adapted coarse-graining method, one is able to investi-

gate the microstructure at different transitional scales by building density,

displacement, strain and stress fields at each scale.
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(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 5: Effective density fields of type 1 quasi-periodic microstructure for three different

scales.

3.2. Density

As established in the method, the density field R(x) is first computed.

Effective density fields of the quasi-periodic type 1 microstructure at different

coarse-graining scales lCG are presented in Figure 5. Results actually show the

ability of the method to construct heterogeneous/homogeneous continuous

density fields depending on the scale of interest without any a priori on the

effective field’s homogeneity. To analyse the "homogenization" of the effective

density as the coarse-graining scale lCG is increased, we plot the evolution

of the mean and the coefficient of variation of R for the three considered

microstructures (Figure 6 (a)). It’s considered that the homogeneity of a

field is attained once its corresponding coefficient of variation COV drops

below the ≤ 1% threshold. The arithmetic mean is calculated as the sum

of the sampled values (whether at the nodes or the Gaussian points of the

coarse elements in Ω0) divided by the total number of samples (nodes and

Gaussian points respectively). The standard deviation is found by taking the

square root of the average of the squared differences of the values from their

mean value. The coefficient of variation is defined as the ratio of the standard
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Figure 6: Density conservation through mesoscales (a) and the evolution of the correspond-

ing coefficient of variation COVR - defining the heterogeneity of the effective density -

evolution with lCG (b)

deviation to the arithmetic mean.

As the implemented coarse-graining method is based on the inviolable

conservation laws - mass continuity between them -, it can be seen that the

mean effective density in the studied domain is conserved through the scales

and only the homogeneity of the field is altered. The heterogeneities of the

effective density of the material are smeared-out much faster when considering

a periodic microstructure at lCG/d = 1, while the quasi-periodic microstruc-

tures require higher coarse-graining scales for the density heterogeneities to

smear-out at lCG/d = 4 (Figure 6 (b)).

3.3. Elastic Properties

Once the density fields are computed, manipulating the balance of mass

at the fine and the coarser scale leads to the computation of the effective

displacement fields that can be differentiated to determine the strain fields.

The balance of linear momentum allows the evaluation of the effective stress
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(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 7: Fields of the C11 component of the effective elasticity tensor of type 1 quasi-

periodic microstructure at three different scales.

fields. First, we aim to determine the behaviour of the material prior to dam-

aging. For this purpose, we put the microstructure at the core of a rectangular

specimen on which two tensile and one shear test simulations are conducted.

From the microscopic mechanical fields, coarse-grained displacements, strains

and stresses can be evaluated for different lCG. Coarse-grained strain and

stress couples in Ω0 (obtained from the three tests) provide an evaluation

of the nine components Cij of the effective stiffness tensor C, representative

of the elastic behaviour, at each material point for the considered scales. It

was observed that in the specimen coordinate system, the shear-extension

coupling terms vanish; the reduced expression for the effective elasticity tensor

written in (26) is thus adopted:
S11

S22

S12

 =


C11 C12 0

C21 C22 0

0 0 C66



E11

E22

2E12

 (26)

Fields of the C11 component of the effective elasticity tensor of the quasi-

periodic type 1 microstructure at three different coarse-graining scales lCG are
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presented in Figure 7; the heterogeneity of C11 is shown to persist for large

regularisation scales and thus the influence of the distribution of holes on the

effective stiffness fields. From the computed effective elasticity tensors, both

the anisotropy and homogeneity can be evaluated. As mentioned previously,

the symmetry order of the studied periodic and quasi-periodic microstructures

(6 and 5-fold symmetry respectively) are expected to lead to an equivalent

isotropic response. From here, we aim to determine the scale from which

the symmetry orders actually governs the elastic isotropy. To do so, the

two-dimensional elastic anisotropy index ar - defined in [33] - is analysed at

each material point for each observation scale. An explicit expression of ar as

a function of Cij and SCij can be written as follows:

ar =

([1

4
(C11 + C22 + 2C12)(SC11 + SC22 + 2SC12)− 1

]2

+ 2
[ 1

16
(C11 + C22 − 2C12 + 4C66)(SC11 + SC22 − 2SC12 + SC66)− 1

]2
) 1

2

(27)

Where SCij represent the components of the compliance tensor SC defined as

SC = C−1. ar takes the value of 0 in the case of perfect isotropy. Otherwise,

ar increases as the anisotropy strengthens. The main advantage of ar over

other anisotropy indices (Kube [34], Zener [35],...) is its direct applicability

in 2D, for any symmetry type, and its direct evaluation from the elasticity

tensor. In this study, ar is computed from the evaluated elasticity tensors C

and SC at each material point of the domain for each coarse-graining scale

lCG. The distribution of these indices is shown in Figure 8. It’s observed

that for the periodic material, all the points present an isotropic response
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(c) Quasi-periodic type 2

Figure 8: Material points distribution based on the elastic anisotropy index ar computed

at different coarse-graining scales and for the considered microstructures.

(with an error lower than 1% ) once lCG is larger than the characteristic

length d of the microstructure. Although the material symmetry order of the

quasi-periodic materials considered suggests elastic isotropic behaviour, it’s

quite clear that this isotropy of the elasticity tensor cannot be reached at

small scales but in fact, suggests a required scale of observation of at least 3

times the characteristic length d of the microstructure where the anisotropy

indices of all the material points fall within 1% to 0 corresponding to the

isotropy of the elasticity tensor in the whole domain.
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Next, the homogeneity of the elastic moduli is put forth at different lCG.

Only the observation scales at which the effective elasticity in the whole

domain is isotropic (within 1% error) are considered in the study (Figure

8), i.e., lCG/d ≥ 1 for the periodic microstructure and lCG/d ≥ 3 for the two

quasi-periodic microstructures. From the isotropic elasticity tensors fields,

effective Young modulus (E) and Poisson ratio (ν) are computed for different

lCG on each element in the domain Ω0. Statistical analysis is conducted on the

evaluated effective elastic moduli to identify their possible "homogenisation"

for each microstructure. The mean and standard deviation of the two material

properties are plotted in Figures 9 and 10 as well as the evolution of the

coefficient of variation of each property with the coarse-graining scale. The

Poisson ratio converges and homogenises at considerably low length scales of

observation. For the periodic microstructure, the effective Young modulus

is homogenised at considerably small observation scales (lCG/d = 1.5). The

average effective Young modulus for the different microstructures rapidly

converges, contrary to its variation, especially for the quasi-periodic mi-

crostructures where the effective Young modulus field requires larger length

scales, at least 7 times the characteristic length d, to homogenise. Next, we

proceed with the multi-scale damage analysis, starting with the influence of

the observation scale on the crack path towards the effect on the strength

and toughness fields as the crack advances inside the microstructures.

3.4. Crack Path

Displacement and stress fields from the phase-field simulations of fracture

on the TDCB are upscaled, and coarse-grained displacements, strains and

stresses with damage consideration are obtained. As the crack advances in
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Figure 9: The effective Young modulus computed at different lCG for the three microstruc-

tures (a) and the evolution of the corresponding coefficient of variation COVE - defining

the heterogeneity of the effective Young modulus - with lCG (b)
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Figure 10: The effective Poisson ratio computed at different lCG for the three microstruc-

tures (a) and the evolution of the corresponding coefficient of variation COVν - defining

the heterogeneity of the Poisson ratio - with lCG (b)
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the microstructure, interactions between the crack and the structure of the

material are observed, especially in the quasi-periodic microstructures. The

crack can be expected to follow the path that would allow the maximum dis-

sipation of energy. For type 1 quasi-periodic distribution, "resilient patterns"

(red circles in Figure 11(b)) impose the deviation of the crack. For the type-2

quasi-periodic distribution, kinking of the crack is present, and due to the high

amount of elastic energy stored in the specimen before kinking (red circles in

Figure 11(c)), failure becomes unstable. The question arising here regards

the ability to replace the complex crack path (at the microscopic scale) by an

equivalent failure band (at larger scales of observations) represented by an

effective straight crack path. To answer that question, the effective crack path

at the coarse-grained scale is determined. Without loss of generality, we define

the effective crack tip at time t as the local zone where the maximum stress

occurs at this time t. By considering different criteria (Rankine, Maximum

Volumetric Stress, ...) to evaluate the position of maximum stress, identical

results were obtained; that is of course due to the stress singularity at the

crack tip. The choice of the Rankine criterion naturally emerges for the

description of brittle and quasi-brittle failure. From here, the effective "meso-

scopic" crack tip position is defined as the local zone where the maximum

Rankine stress is reached for each microscopic crack tip position. The length

scale introduced via the coarse-graining lCG method suggests softening of the

material (Figure 14 - more details about the stress-strain response is found in

Section 3.5)- and an equivalency to a process zone is present suggesting that

the critical stress before softening happens at a distance to the true crack

tip (the crack tip determined from the micromechanical simulations). The
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Figure 11: Mesoscopic crack paths for the type 1 (b) and type 2 (c) microstructures at

different lCG and the corresponding crack tortuosity evolution with lCG (a).

evolution of the crack paths and their corresponding tortuosity at different

scales in the quasi-periodic microstructures are shown in Figure 11. Counter

intuitively, one can observe prominent tortuosity of the crack path even at

large scales. In fact, for the type 1 quasi-periodic microstructure, the crack

tortuosity only drops of less than 6% at lCG/d = 10 while the type 2 crack

path tortuosity drops around 9% from its microscopic value (Figure 11(a)).

The conservation of the tortuosity across the considered scales drops the idea

of the consideration of an effective straight failure band to replace complex

crack paths. FFT analysis on the crack paths at different observation scales

offers an insight on the amplitudes and wavelengths that contribute to the

effective crack deflection. Later, the interaction between the wavelengths

driving the crack deflection and the wavelengths driving the variations of the

critical stresses and energy dissipation along the crack path are confronted.

Figure 12 shows the FFT analysis results on the crack path inside the two

quasi-periodic microstructures. As expected, small wavelengths λ/d ≤ 3 are

smeared-out as the coarse-graining scale increases and more weight on the

larger wavelengths is observed λ/d ≥ 10. The type 1 response shows decaying
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Figure 12: FFT analysis on the mesoscopic crack path inside the quasi-periodic type 1 (a),

and quasi-periodic type 2 (b) microstructures

amplitudes at wavelengths λ/d = 2 − 3 with a drop of about 62% (Figure

12(a)). The contribution of the wavelengths around λ/d = 5 corresponding to

the distance between zones of "resilient patterns" (Figure 11(b)) is conserved

through the scales and is responsible for 80% of the crack deflection. For

the type 2 quasi-periodic microstructure, one clearly observe the absence

of uniquely conserved high amplitude wavelengths across the scales (Figure

12(b)), except for λ/d = 2− 3 that actually corresponds to the kinking spots.

The crack path, in comparison with the type 1 -except for the kinking spots-

does not conserve the same wavelengths suggesting a more easily smoothed

crack path. Next, we focus on the influence of the microscopic heterogene-

ity on the resistance and toughness fields at different coarse-graining scales,

and we confront the wavelengths controlling the heterogeneities with the

wavelengths present in the crack paths.
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(a) lCG/d = 1 (b) lCG/d = 4 (c) lCG/d = 8

Figure 13: Upscaled vertical displacement Uy at different lCG. The discontinuity of the

displacement field is regularized by the coarse-graining function and dictated by its width

3.5. Fracture strength

Displacement and stress fields from the phase-field simulations of fracture

on the TDCB specimens with the microstructures at their cores are upscaled,

and coarse-grained displacements, strains and stresses with damage considera-

tion are obtained. Figure 13 shows the vertical displacement field at different

coarse-graining scales. The jump on the crack faces are smoothed as the

observation scale increases and the sharpness of the crack at these scales is

expected to be smeared out. A plot of the stress-strain relation computed

at the coarse-grained scales of a TDCB test corresponds to a stress-strain

response of a quasi-brittle behaviour (Figure 14). Here, the history of the

hydrostatic stresses as a function of hydrostatic strains is plotted for different

points in Ω0.

As shown in Figure 14, the material undergoes a linear elastic trend

followed by a non-linear region before reaching the critical stress where

softening occurs. For small length scales, the increased width of the pack in

the linear elastic region suggests heterogeneity of the modulus, to confirm

the previous results regarding the homogenization of the elastic properties
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Figure 14: Stress-strain behaviour of elements along the crack path and in a neighbourhood

of the crack at two length scales lCG

of the materials. Non-uniqueness of the stress-strain response is observed

when studying the response in a neighbourhood around the crack. The curve

reaching the maximum stress corresponds to the response of the elements

along the crack path. As the distance to the crack path dc increases, the stress-

strain response of the corresponding elements reach lower maximum stress

states followed by some softening. When the elements are much further to

the crack path, they remain undamaged and show typical linear elastic stress-

strain response. For instance Figure 14 shows the stress-strain response of a

material in the neighbourhood of a crack at a specific abscissa in the domain,

at lCG/d = 1 which corresponds to lCG = d = 3mm. As the coarse-graining

mesh size H is equal to 1mm, we find 6 different stress-strain responses of

the elements corresponding to the discretization of the damageable zone. The

same trend is found at different coarse-graining scales lCG (Figure 14(a))

where a unique relation between the local stress and local strain states does

not exist. Instead, as we move further from the crack path, and due to the

regularizing nature of the coarse-graining, softening persists yet starts at

lower critical stress levels leading thus to non-unique relations between the
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stresses and strains. Non-locality of the fields is thus probable.

Moreover, when following the stress-strain response of the elements along

the crack path, especially at low scales, and as the crack propagates through

different patterns in the microstructure, the critical stress state reached before

softening is found to differ from one position to another along the path. We

define the maximum Rankine stress reached at each position of the crack

tip as the fracture strength or simply strength denoted σf , without abuse of

language. The evolution of the critical Rankine stress at different scales of

observation is plotted in Figure 15 for the periodic (a), quasi-periodic type 1

(b) and quasi-periodic type 2 (c). The below figures thus show the significant

influence of the local differences inside the microstructure - distribution of

holes - on the fracture strength of the effective continuum. As the crack

gets trapped inside the holes, much higher loading is required for the crack

re-initiation, this phenomenon is mainly observed on the periodic geometry

at the smallest scales, while for the quasi-periodic geometries, not only crack

trapping influence the critical stress state reached, but also the crack deflection

and deviation around the special "resilient patterns".

The strength fields at different coarse-graining scales lCG are studied and

both the average critical stress and its coefficient of variation over the crack

path for each length scale lCG are plotted in Figure 16. It’s clear that the

critical stress σf decreases when lCG increases. Moreover, a tendency stating

σf ∼ 1√
lCG

is found. Similar expressions relating the tensile strength σf to

the characteristic length lc, E and gc are found in [25, 36, 37, 38] for gradient

and non-local damage models. Kindly refer to Section 3.6 for more details

about this finding.
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(a)

(b)

(c)

Figure 15: Fracture strength σf evolution along the crack path for the periodic (a),

quasi-periodic type 1 (b) and quasi-periodic type 2 (c) microstructures.
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In Figure 16, one observes higher strength for the periodic microstructure

in comparison with the two quasi-periodic microstructures. A study on the

evolution of the "homogeneity" of the strength is also conducted. Here, the

coefficient of variation is evaluated by considering the squared differences of

the values from the normalised values of a homogeneous response - allowing

the study of the deviation of the strength surpassing the geometrical influences

of the TDCB geometry and the loading conditions. Unlike the elasticity, the

effective strength of the microstructures remains highly heterogeneous even

at large lCG. From Figure 16(b), it’s clear that the coefficient of variation

stabilizes nay slightly increases at large scales of observations independently

of the microstructure. The coefficient of variation of the strength of type 1

and the type 2 microstructures stagnates at about 2% and 3% respectively.

The periodic’s COVσf converges to 0.6%. Counter-intuitively, the coefficient

of variation of the effective strength of the type 1 microstructure is lower than

that of type 2 even though the path is more complex, but this may be caused

by the presence of kinking in specific places leading to a huge increase of the

loadings before the crack saps in comparison to the rest of domain where the

crack path is smooth and straight.

Looking at Figure 15, it’s hard to quantify both the microstructural

effects and the influence of lCG on the fracture strength evolution in the

material. For this purpose, the fracture evolution is studied in the frequency

domain, and FFT analysis allows to display the wavelengths and amplitudes

to better depict the interactions of the microstructures and the coarse-graining

impacting the strength. Figure 17 compares the wavelength spectrum of the

FFT analysis transformed from the fracture strength’s deviation Dσf . The

36



2 4 6 8 10
l
CG

/d

4

6

8

10

12

14

16
18
20
22
24

f (
M

Pa
)

Periodic
Quasi-Periodic type 1
Quasi-Periodic type 2

(a)

2 4 6 8 10
l
CG

/d

10-3

10-2

10-1

C
O

V
f

Periodic
Quasi-Periodic type 1
Quasi-Periodic type 2
1%

(b)

Figure 16: Evolution of the mean fracture strength σf as a function of lCG for the three

microstructures (a) and the evolution of the corresponding coefficient of variation COVσf

defining the heterogeneity of the effective strength field of the continuum (b)

amplitude is computed as the ratio of the amplitude of each wavelength to

the RMS (root mean square) amplitude of the input signal. The periodic

microstructure analysis shows a dominant peak occurring at a wavelength λ =

d corresponding to the length scale of the microstructure. The relatively low

(30%) drop of the contribution from the small scale to the largest considered

scale of λ = d suggests that the variation of the strength σf of the material is

controlled mainly by the distance d between the holes even on large observation

scales for a periodic microstructure. This observation could explain the

stagnation of COVσf across the scales. As seen previously on the crack path

analysis, more weight is put on the larger wavelengths as the coarse-graining

scales increase. The size of the holes does not present any influence on the

strength variations. Regarding the type 1 quasi-periodic microstructure in

Figure 17(b), one clearly observes the drop of the contributions of the small

lengths scales and the rise of the contributions of the larger wavelengths as
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the coarse-graining scales increase. The peaks on the wavelengths around

λ/d = 2 − 3 persist with increased influence as the scale of observation

enlarges. Comparing the FFT analysis of the crack path and the strength

offers insights on the link between the wavelengths controlling the crack

inside the microstructure and the effective strength. As the crack deflects

mainly every λ/d = 5, it would have travelled two "resilient patterns" zones.

This reflects the periodicity of the crack path that is twice the periodicity

of the mechanical response. Once again, we can see that the main variation

of the strength of the material is directly controlled by the distribution of

holes. For the type 2 quasi-periodic microstructure (Figure 17(c)), even at the

smallest scales, the heterogeneity of the strength comes from the long-range

variations. At the smallest scale, 50% of the deviation comes from the larger

wavelengths, which is due to the kinking that happen for the crack inside

this microstructure at wide distances in the domain. Moreover, the small

peak present at the small scale at λ/d = 1 corresponds to the crack travelling

from one hole to another in a straight path between the kinking zones. The

other small peak at λ/d = 2− 3 (also met in type 1 microstructure) decays

as the scale is increased. As the coarse-graining scale enlarges, the small

wavelengths contributions are smeared out leading to the extreme rise of the

influence of the large scales onto the strength variations.

3.6. Fracture toughness

The difference in the loading history of the material points inside the

microstructure - whether distributed along their crack path or in the neigh-

bourhood of a crack (Figure 14) - is directly related to the total amount of

energy absorbed by the material points until fracture. Here, the focus is
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Figure 17: FFT analysis on the fracture strength σf for the periodic microstructure (a),

quasi-periodic type 1 (b) and quasi-periodic type 2 (c) microstructures.
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on the energy absorbed by the material points along the crack path. The

effective toughness Gd is defined as the energy to total failure evaluated as:

Gd =

∫ tf

t0

S : Ėdt (28)

allowing thus the measure of the energy dissipated per unit volume from the

start of the loading (t = t0) until the fracture of the specimen (t = tf). S

is the mesoscopic stress tensor and Ė is the mesoscopic strain rate tensor.

The evolution of Gd at different scales of observation is plotted in figure 18

for the periodic (a), quasi-periodic type 1 (b) and quasi-periodic type 2 (c).

The below figures thus show the significant influence of the local differences

inside the microstructure -holes distribution- on the overall dissipated energy

along the crack path of the obtained continuum. As the crack gets trapped

inside the holes, much higher energy is required for the crack re-initiation, this

phenomenon is mainly observed on the periodic geometry at the smallest scales,

while for the quasi-periodic geometries, not only crack trapping influence the

energy dissipation, but also the crack deflection and deviation around the

special "resilient patterns".

A similar analysis to the one in Section 3.5 is conducted: a study of the

evolution of this toughness parameter Gd at different coarse-graining scales

followed by an FFT analysis to better understand the relationship between

the microstructure and the effective toughness.

The average toughness Gd is inversely proportional to the coarse-graining

scale lCG (Figure 19(a)), and we find Gd ∼ 1
lCG

. Indeed, coarse-graining

admits that the displacement, stress and strain fields on a material point

actually depend on the state variables distribution in a neighbourhood of

the point under consideration. The size of the neighbourhood is depicted by
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(a)

(b)

(c)

Figure 18: Fracture toughness Gd evolution along the crack path for the periodic (a),

quasi-periodic type 1 (b) and quasi-periodic type 2 (c) microstructures.
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lCG. Here, we find Gd ∼ 1
lCG

and σf ∼ 1√
lCG

. As previously stated, similar

expressions relating the tensile strength σf to the characteristic length lc, gc

and E can be found in [25, 36, 37, 38]. From [25], the critical value of the

tensile strength in uniaxial traction is given by:

σf =
9

16

√
Egc
3lc

(29)

This suggests the following: for a fixed toughness gc, the same relation

between σf and lCG holds between σf and lc: σf ∼ 1√
lc
. Ultimately, for an

experimentally determined σf , the relationship Gd ∼ gc
lc

stands. We recall

that the relations found in the literature hold only for uniaxial traction. We

mention that no consensus on the relation linking E, σf , lc and gc taking into

account the different loading conditions, and/or specimen geometries can be

found in the literature. To emphasize, we recall that all the results presented

in this paper are found without any a priori on the material behaviour at the

coarse-grained scales.

A study on the evolution of the "homogeneity" of the effective toughness

is conducted. In Figure 19, we plot the evolution of the effective fracture

toughness Gd as a function of lCG for the three microstructures (a) and the

evolution of the corresponding coefficient of variation COVGd defining the

heterogeneity of the effective toughness field (b).

As compared to the strength σf , one notices that the heterogeneity of

the toughness field Gd is higher than the one of the strength field at the

same scales. Yet no stability of the coefficient of variation of this quantity

is observed at the large scales. As long as the crack path is straight, both

the strength and the toughness evolve in the same manner at different coarse-

graining scale. Regarding the quasi-periodic microstructures, one observes
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inversion of "homogeneity" of the toughness in comparison with the strength,

i.e., when comparing the plots in both Figure (a) and Figure (b), the blue

and green curves corresponding to the coefficients of variation of σf and Gd

are inverted; COVσf is greater for the quasi-periodic type 2 microstructure

as compared to quasi-periodic type 1, while COVGd is smaller. In fact, the

crack might deflect to maximize its energy dissipation. This raises questions

on the drift from LEFM where the notions of critical stress intensity factors

and the critical energy release rate are somehow two faces of the same coin.

Again, FFT analysis transformed from the effective toughness deviation DGd

is presented in Figure 20.

For all three microstructures, small wavelengths λ/d ≤ 3 are smeared-

out as the coarse-graining scale increases and more weight on the larger

wavelengths is observed λ/d ≥ 10. In comparison with the strength responses,

we can see that the larger wavelengths contributions to the heterogeneity

of the toughness fields significantly increase as lCG increases (a rise of more

than 100%) for all the microstructures). The peak on λ/d = 2− 3 observed

at the smallest scale for the type 1 microstructure (in both the strength

and the toughness responses) is decreasing as the coarse-graining increases

to give way to the larger wavelengths (see Figure 20). As compared to

the FFT analysis of the fracture strength, the dominant peaks observed at

smaller scales are no longer present through the observation scales and this

suggests the following: as the regularization via coarse-graining increases, the

influence of the microstructure on Gd is smeared-out and the local phenomena

intervening in the energy dissipation process are smoothed, which can lead to

an actual homogenisation of this parameter in comparison with the strength
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Figure 19: Evolution of the effective fracture toughness Gd as a function of lCG for the

three microstructures (a) and the evolution of the corresponding coefficient of variation

COVGd
defining the heterogeneity of the effective fracture toughness field of the continuum

(b)

σf where the microstructural influence persists even for larger coarse-graining

scales.

4. Discussion and Concluding Remarks

This paper proposes a model-free coarse-graining method that does not

require specific boundary conditions (as opposed to classical homogenisa-

tion schemes) and is indeed applicable to non-periodic structures presenting

high strain localisation. Aditionally, a model-free analysis of failure at the

mesoscopic scale is performed. Phase-field simulation of failure on different

microstructures was considered for the micromechanical simulations. The

obtained data are upscaled at different mesoscopic scales lCG via the pro-

posed coarse-graining technique that is solely based on the conservation laws.

Density, displacement, stresses and strain fields at the mesoscopic scales are

constructed and analysis on the established database is led.
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Figure 20: FFT analysis on the fracture toughness Gd for the periodic microstructure (a),

quasi-periodic type 1 (b) and quasi-periodic type 2 (c) microstructures.
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Quasi-brittle behaviour The coarse-graining method introduces a

length scale which implies softening of the material - and thus an equiv-

alency to a softening behaviour with a process zone, without any a priori on

the behaviour at the larger scales. Plotting the stresses against the strains

shows a typical response of quasi-brittle materials where a linear elastic region

is followed by a non-linear region before softening. The notion of strength is

thus notable.

Non-local effects Without any assumption on the material behaviour,

the absence of a unique behaviour law that links the local variables, i.e.,

local strains and local stresses, is illustrated. The stress-strain history of the

elements at different distances to the crack path is different suggesting thus

non-locality of the behaviour.

Once the behaviour at larger scales was established from the microscopic

data, failure analysis was led on different heterogeneous materials, and for

this purpose, three microstructures were considered: the periodic hexagonal

distribution of holes and two types of kite&dart Penrose distribution of holes:

at the nodal positions (type 1) and on the centroids of the kites and darts

(type 2). A study on the effective material properties was led followed by a

failure analysis to further understand interactions between the cracks, the

scales and the microstructures.

Density The equivalent densities at different coarse-graining scales are

conserved - an expected results since the essence of the coarse-graining method

is the conservation principles. A homogeneous density field (COV < 1%) is

obtained at lCG/d = 1 for the periodic and lCG/d = 4 for the quasi-periodic

microstructures.
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Elastic properties From the micromechanical simulations before failure,

coarse-grained elastic stresses and strains allowed the computation of elasticity

fields. Although the anisotropy of a microstructure is depicted by its symmetry

order, the proposed scheme shows that a relatively large observation scale is

needed for the symmetry order to reveal its influence. From the scale lCG/d =

1, isotropy converges for the periodic microstructure while the isotropy of

the quasi-periodic structure requires lCG/d = 3. The heterogeneities found

at the microscopic scale influence the equivalent elastic properties at the

mesoscopic scale. We show that in order to consider a homogeneous isotropic

elastic equivalent medium, the required lCG exceeds the values considered

in the literature and in fact is much larger when considering non-periodic

microstructures with long-range heterogeneities. For the periodic distribution,

an equivalent isotropic homogeneous elastic medium is found starting lCG/d =

1.5, while for both quasi-periodic distributions, an lCG/d = 7 is required to

obtain an equivalent elastic homogeneous medium.

Crack path Phase-field simulations on the considered microstructures

showed highly complex crack networks especially for the quasi-periodic mi-

crostructures. The effective crack path was analysed at different observation

scales. We define the crack tip at each time step as the position at which the

equivalent Rankine stress is maximum. The evolution of the crack paths shows

prominent tortuosity across the observation scales. FFT analysis on the crack

paths offered insight on the amplitudes and wavelengths that contribute to

the effective crack paths. For the type 1 quasi-periodic microstructure, peaks

at similar wavelengths for different coarse-graining scales persist suggesting

thus that the microstructural distribution of holes underlines the conserva-
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tion of the tortuosity and prohibits the consideration of a smooth effective

failure band. For the type 2 microstructure, one clearly observes the absence

of uniquely conserved high amplitude wavelengths across the scales which

suggests a more readily smoothed crack path between the kinking spots.

Fracture strength The notion of strength emerging from the obtained

coarse-grained stress-strain response was analysed. We define the fracture

strength as the critical equivalent Rankine stress state reached at each effective

crack tip position. The effective fracture strength is found to vary from one

position of the crack tip to another along the crack path. This is explained by

different phenomena including the trapping, re-nucleation, and deflection of

the cracks after advancing inside the microstructure. This property is found

to be the hardest to smear-out; in fact, the influence of the microstructure

persists in all three microstructures even for relatively large coarse-graining

scales. The stagnation of the coefficient of variation of the strength for the

considered microstructures suggests the inability of the consideration of a

homogeneous strength field for an effective medium that takes into account

the heterogeneities at the smaller scales and that has a dominant role in stress

concentration, crack initiation and general propagation. To better understand

the microstructure’s influence coupled with the scales, FFT of the crack

paths and the fracture strengths are confronted. Even at large coarse-graining

scales, i.e., where smoothing of local phenomena is expected, the strength

remains highly influenced by the relatively small scales of the microstructures

and large wavelengths do not have a significant influence on this quantity.

This, with the evolution of the coefficient of variation of σf leads to believe

in the impossibility to completely smear-out the heterogeneities involved in
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the fracture strength field of locally heterogeneous material.

Fracture Toughness We also proposed a definition of the fracture

toughness. Following the evolution of the coefficient of variation for the

different microstructures, coarse-graining shows good ability to smear-out

the microstructural effects on the equivalent toughness with no stagnation of

the coefficient of variation at the large scales. FFT analysis of the fracture

toughness evolution in the domain shows the large wavelengths contribu-

tions suggesting more easily smoothed parameter in comparison with the

fracture strength, whereas the small wavelength amplitudes related to the

microstructures are smeared-out.

This leads us to believe that considering a homogeneous model for sim-

ulating quasi-brittle failure in highly heterogeneous materials requires the

consideration of extremely large scales to always be on the safe side when

considering equivalent isotropic homogeneous properties. We also show the

inevitability of the consideration of a non-homogeneous material in which the

influence of substructures is preserved at the mesoscopic scales.

Open issues and extensions Within the proposed framework, we are

able to perform a micro-meso analysis of quasi-brittle failure on periodic

and quasi-periodic materials. The examples presented herein are limited to

quasi-static crack propagation with imposed displacement. The absence of

branching and multi cracks limited the analysis to a single crack propagation.

The consideration of the phase-field model at the microscopic scale to build

the ground for the multi-scale analysis presented some limitations, especially

regarding the model parameter and the calculation times. Yet, once the

micromechanical data are obtained, the proposed coarse-graining method can
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be easily and efficiently implemented and is readily paralleled. The arbitrary

mesoscopic discretization choice H did not influence on the overall results

and only alters the resolution of the coarse-grained fields. The maximum

observation scale lCG is bounded by the considered TDCB geometry. Con-

fronting macroscopic load-displacement, with the obtained mesoscopic results

at the larger scales and projecting the obtained displacement fields on the

Williams’ series [39] should give more insight on the multiscale behaviour. We

are currently exploiting the framework for a meso-macro analysis. Moreover,

we are working on a multi-scale dynamic analysis of crack propagation inside

the considered microstructures.
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