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Linear turnpike theorem

Emmanuel Trélat∗

Abstract

The turnpike phenomenon stipulates that the solution of an optimal control problem in
large time remains essentially close to a steady-state of the dynamics, itself being the optimal
solution of an associated static optimal control problem. Under general assumptions, it is
known that not only the optimal state and the optimal control, but also the adjoint state
coming from the application of the Pontryagin maximum principle, are exponentially close to
that optimal steady-state, except at the beginning and at the end of the time frame. In such
a result, the turnpike set is a singleton, which is a steady-state.

In this paper, we establish a turnpike result for finite-dimensional optimal control problems
in which some of the coordinates evolve in a monotone way, and some others are partial steady-
states of the dynamics. We prove that the discrepancy between the optimal trajectory and
the turnpike set is linear, but not exponential: we thus speak of a linear turnpike theorem.

1 Introduction and main results

1.1 Reminders on the exponential turnpike phenomenon

Let n,m ∈ IN∗ and let T > 0 be arbitrary. We consider a general nonlinear optimal control problem
in IRn, in fixed final time T :

ẋ(t) = f(x(t), u(t)), x(0) ∈M0, x(T ) ∈M1 (1)

(2)

min

∫ T

0

f0(x(t), u(t)) dt (3)

where f : IRn × IRm → IRn and f0 : IRn × IRm → IR are mappings of class C2, , M0 and M1

are subsets of IRn, and u ∈ L∞([0, T ],Ω) is the control. For simplicity of the exposition, we
assume that there exists T0 > 0 such that, for every T > T0, there exists a unique optimal solution
of (1)-(2)-(3), denoted by (sufficient conditions ensuring existence are standard, see, e.g., [33];
uniqueness is ensured under differentiability properties of the value function and thus is generic in
some sense). By the Pontryagin maximum principle (see [26]), there exist p0 6 0 and an absolutely
continuous mapping (called adjoint vector), satisfying , such that for almost every t ∈ [0, T ],
where H(x, px, p

0, u) = 〈px, f(x, u)〉+p0f0(x, u) is the Hamiltonian of the optimal control problem
(1)-(2)-(3) (here and throughout, 〈·, ·〉 is the Euclidean scalar product in IRn, and ‖ · ‖ is the
corresponding norm). We have moreover the transversality conditions on the adjoint vector at
initial and final time:

pTx (0) ⊥ TxT (0)M0, pTx (T ) ⊥ TxT (T )M1, (4)
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provided that the tangent space TxT (0)M0 to M0 at xT (0) and the tangent space TxT (T )M1 to

M1 at xT (T ) exist (these conditions are empty when the initial and final points are fixed in the
optimal control problem). We assume that the extremal lift (xT (·), pTx (·), p0, uT (·)) is not abnormal
and thus that one can take p0 = −1. We also assume, for the simplicity of the exposition, that
the extremal lift is unique (these two conditions are generic for large classes of optimal control
problems, see [9, 10]).

The turnpike phenomenon stipulates that, when the final time T is large, the optimal solution
(xT (·), pTx (·), uT (·)) remains, along the time interval [0, T ] and except around the initial time t = 0
and around the final time t = T , “essentially close” to some static point (x̄, p̄x, ū) ∈ IRn× IRn×Ω,
i.e., roughly speaking,

xT (t) ' x̄, pTx (t) ' p̄x, uT (t) ' ū ∀t ∈ [η, T − η] (5)

(for some η > 0). Moreover, (x̄, p̄x, ū) is the solution of a minimization problem called static
optimal control problem , which is:

min
{
f0(x, u) | (x, u) ∈ IRn × Ω, f(x, u) = 0

}
(6)

i.e., in other words, the problem of minimizing the instantaneous cost f0(x, u) over all possibles
equilibrium points of the dynamics. Note that, , by the Lagrange multiplier rule, expressed in a
Hamiltonian form, applied to the static optimal control problem, we have

∂H

∂px
(x̄, p̄x, p

0, ū) = 0,
∂H

∂x
(x̄, p̄x, p

0, ū) = 0,
∂H

∂u
(x̄, p̄x, p

0, ū) = 0. (7)

Here we assume as well, for the simplicity of the exposition, that the minimizer (x̄, ū) ∈ IRn × Ω̊
is unique, and also that the quadruple (x̄, p̄x, p

0, ū) is not abnormal, so that one can take p0 = −1
(usual qualification condition in optimization theory) and that the Lagrange multiplier is unique
(the latter two conditions are generic).

We note then that (x̄, p̄x,−1, ū) is an equilibrium point of (??). Hence, the informal property (5)
stipulates that the optimal triple (x(·), px(·), u(·)), solution of (1)-(2)-(3)-(??) remains essentially
close to an equilibrium point of the dynamics (??), this equilibrium being itself an optimal solution
of the static problem (6). This is the turnpike phenomenon.

The intuition explaining why such a property is to be expected is the following. Since T is
assumed to be large, we set ε = 1

T , which is considered as a small parameter. Now, we make a
time reparametrization, by setting s = εt, so that, when t ranges over [0, T ], s ranges over [0, 1].
Setting xε(s) = xT (t), pε(s) = pTx (t) and uε(s) = uT (t), we have, still in an informal way,

∂H

∂px
(xε(s),pε(s),−1,uε(s)) = εx′ε(s) ' 0

∂H

∂x
(xε(s),pε(s),−1,uε(s)) = −εp′ε(s) ' 0

∂H

∂u
(xε(s),pε(s),−1,uε(s)) = 0

(8)

(the latter condition, assuming that the control is in the interior of Ω) which gives credibility to
(5), at least when (x̄, p̄x, ū) is the unique solution of (7) (and under nondegenerate assumptions
on the system of equations (7)). But this is not a proof and this remains informal: indeed, to
justify (8) one would need that the derivatives x′ε(s) and p′ε(s) be bounded (except around t = 0
and t = T ), uniformly with respect to ε, i.e., that the derivatives T ẋT (t) and T ṗTx (t) be bounded
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(except around t = 0 and t = T ), uniformly with respect to T , which is precisely the hard part in
establishing a turnpike result.

The main result of [37] states an exponential turnpike property which is of a local nature (see
Remark 1). Hereafter, we combine this result with a general result of [35] in order to obtain a
global exponential turnpike property. We use the notion of strict dissipativity, introduced in [39]
and already used in [16, 19, 20, 21] to derive turnpike properties. We recall that the family of
optimal control problems (1)-(2)-(3), indexed by T > 0, is said to be strictly dissipative at the
optimal static point (x̄, ū) with respect to the supply rate function

w(x, u) = f0(x, u)− f0(x̄, ū) (9)

if there exists a locally bounded function S : IRn → IR, called storage function, such that

S(x(0)) +

∫ T

0

w(x(t), u(t)) dt > S(x(T )) +

∫ T

0

α (‖x(t)− x̄‖, ‖u(t)− ū‖) dt (10)

(strict dissipation inequality) for every t ∈ [0, T ], for every T > 0, for any pair (x(·), u(·)) solution
of the control system (1), for some function α of class K, i.e., α : [0,+∞) → [0,+∞) continuous,
increasing, and α(0) = 0. Comments on dissipativity can be found in [7, 35, 39].

We use hereafter the shorter notations

H̄?# =
∂2H

∂ ? ∂#
(x̄, p̄x,−1, ū)

where ? and # will be replaced with such or such variable. We set

Ā1 = H̄pxx =
∂f

∂x
(x̄, ū), B̄1 = H̄pxu =

∂f

∂u
(x̄, ū), Ū = −H̄uu

and, since we assume hereafter that Ū is invertible,

A1 = Ā1 + B̄1Ū
−1H̄ux, W̄ = −H̄xx − H̄xuŪ

−1H̄ux.

Theorem 1. We make the following assumptions:
Assumptions of global nature:

(i) There exist K > 0 and T0 > 0 such that, for every T > T0, there exists a unique optimal
triple (xT (·), pTx (·), uT (·)) solution of (1)-(2)-(3)-(??)-(4) (assumed to be normal); moreover,
‖xT (t)‖+ ‖uT (t)‖ 6 K for every t ∈ [0, T ].

(ii) There exists a unique optimal triple (x̄, p̄x, ū) solution of (6)-(7), assumed to be normal; .

(iii) The family of optimal control problems (1)-(2)-(3), indexed by T > 0, is strictly dissipative
at the optimal static point (x̄, ū) with respect to the supply rate function w defined by (9),
with a storage function S (satisfying (10)) that is bounded on M0 and M1.

(iv) For i = 1, 2, there exist ti > 0, a control ui(·) ∈ L∞([0, ti],Ω) and a trajectory xi(·) solution
of ẋi(t) = f(xi(t), ui(t)) on [0, ti], satisfying ‖xi(t)‖ + ‖ui(t)‖ 6 K for every t ∈ [0, ti] and
the terminal conditions x1(0) ∈M0, x1(t1) = x̄, and x2(0) = x̄, x2(t2) ∈M1.

Assumptions of local nature:

(v) Ū = −H̄uu = −∂
2H
∂u2 (x̄, p̄x,−1, ū) is a positive definite symmetric matrix.
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(vi) W̄ is a positive definite symmetric matrix.

(vii) The pair (Ā1, B̄1) satisfies the Kalman condition1, i.e., rank(B̄1, Ā1B̄1, . . . , Ā
n−1
1 B̄1) = n.

In other words, the linearized system at (x̄, ū) is controllable.

Then, there exist C > 0 and ν > 0 such that if T > T0 then

‖xT (t)− x̄‖+ ‖pTx (t)− p̄x‖+ ‖uT (t)− ū‖ 6 C
(
e−νt + e−ν(T−t)

)
∀t ∈ [0, T ] (11)

In other words, except around t = 0 and t = T , the optimal triple (xT (·), pTx (·), uT (·)) solution
of (1)-(2)-(3)-(??)-(4) is exponentially close to the optimal triple (x̄, p̄x, ū) solution of (6)-(7). The
constants C and ν (not depending on T ) can even be made explicit by solving a Riccati equation
(see [37] for details).

The local assumptions (v)-(vi)-(vii) done in this theorem, which concern the linearization at
the turnpike, have been chiefly discussed and commented in [37].

The assumption (iv) is a global controllability assumption: there exists a trajectory steering in
finite time the control system (1) from M0 to the turnpike x̄, and from the turnpike x̄ to the final
set M1. But, such comments are completely general in optimal control theory and we thus do
not comment more on the generality of our assumptions.

Remark 1. The above statement does not appear as such in the literature. Compared with [37]
where the main result is established under the assumptions of local nature only (i.e., (v)-(vi)-
(vii)), we have added here assumptions of global nature (i.e., (i)-(ii)-(iii)-(iv)): compactness and
uniqueness of minimizers, strict dissipativity, global controllability to and from the turnpike set,
and then we obtain a global turnpike property.

When the minimizers are not unique or when the system is not dissipative, we obtain only a
local turnpike property, in the sense that the turnpike estimate (11) can only be expected to be
satisfied in a neighborhood of an extremal steady-state (x̄, p̄x, ū) (see [37]). This is so, because the
dynamics is nonlinear. In dynamical systems theory, when an equilibrium is non degenerate, the
solutions of the nonlinear system resemble the solutions of the linearized system at the equilibrium,
only locally around the equilibrium. The above turnpike theorem is of this nature.

It is worth noting that the exponential turnpike estimate (11) is global for non-degenerate
linear-quadratic optimal control problems (by strict convexity), without having to assume (i)-(ii)-
(iii).

When the static problem has several local minimizers, then one has local turnpike properties.
When the static problem has, for instance, two global minimizers, then there is a region of the
state space in which globally optimal solutions of the optimal control problems have a turnpike
property corresponding to the first global minimizer, and another region in which the turnpike
property corresponds to the second global minimizer. We refer to Appendix A for a discussion on
these topics and for some numerical simulations.

The turnpike result of [37] has been extended to the infinite-dimensional setting in [35, 36] and
in [15, 22]. One can find many turnpike results in the literature (see [8, 16, 20, 21, 27, 28, 40, 41], and
see historical references in [37]), but the specificity of the above result is that the turnpike property
is established as well for the adjoint vector: as explained in [37], this is particularly important in
view of deriving appropriate initializations in numerical computation methods (direct methods or
shooting methods, see [34]).

Remark 2. It is proved in [35] that “strong duality implies dissipativity”. To be more precise, we
recall that the static problem (6) has the strong duality property if (x̄, ū) minimizes the Lagrangian

1Equivalently, the pair (A1, B̄1) satisfies the Kalman condition.
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function L(·, ·, p̄x) : IRn× IRm× IRn → IR defined by L(x, u, p̄x) = f0(x, u)−〈p̄x, f(x, u)〉 (the sign
minus is due to the fact that we took p0 = −1 for the Lagrange multiplier associated with the
cost). This notion is well known in classical optimization theory, in relation with primal and dual
problems. It is proved in [35, Theorem 3] that the strong duality property implies the dissipativity
property, with the storage function S(x) = 〈p̄x, x〉.

Note that strong duality is in some sense an infinitesimal version of the dissipation inequality,
at least when the storage function is continuously differentiable (see also [16, 18]).

Until now, we have discussed a turnpike phenomenon around an equilibrium point of the dy-
namics. In the next section, we state a turnpike theorem for systems having some coordinates that
evolve in a monotone way and thus have no equilibrium point.

1.2 A new result: linear turnpike phenomenon

1.2.1 Framework

We keep the notations introduced in Section 1.1, and we add to the control system (1)-(2)-(3) p
additional differential equations, for some p ∈ IN∗, as follows. We consider the general optimal
control problem in IRn+p in fixed final time T > 0, without control constraint:

ẋ(t) = f(x(t), u(t)), x(0) ∈M0, x(T ) ∈M1 (12)

ẏ(t) = g(x(t), u(t)), y(0) = y0, y(T ) = yT1 (13)

u(t) ∈ Ω (14)

min

∫ T

0

f0(x(t), u(t)) dt (15)

where y0, y
T
1 ∈ IRp are fixed and g : IRn × IRm → IRp is of class C2 (the rest of the assumptions is

unchanged, with respect to Section 1.1).
Compared with (1)-(2)-(3), we have added the p differential equations ẏ(t) = g(x(t), u(t)),

where g does not depend on the new coordinate y ∈ IRp. The instantaneous cost function f0 also,
still does not depend on y. This is important to derive the result hereafter.

As in the previous section, the final time T is fixed in the optimal control problem (12)-(13)-
(14)-(15) and the linear turnpike property will describe the behavior of optimal solutions when T
is large.

In the optimal control problem (12)-(13)-(14)-(15), the data M0, M1 and y0 do not depend on
T , but the final condition yT1 depends on T : we have thus put a superscript T in order to underline
this important dependence. We have indeed in mind to consider cases where ‖yT1 ‖ is large as T is
large: in such cases, we expect that the components of y(t) should evolve in a monotone way, i.e.,
g(x(t), u(t)) 6= 0 along the optimal trajectory: we have then no equilibrium in the y components.

We are going to derive a turnpike result in which the “turnpike set” consists of a partial
equilibrium, i.e., the turnpike is a path t 7→ (x̄, ȳ(t), ū) ∈ IRn × IRp × IRm where f(x̄, ū) = 0.

Remark 3. Following [13, 14], it is worth noting that such problems (12)-(13)-(14)-(15) frequently
appear in applications, for instance in mechanical problems where, denoting by x(t) a position
variable, by v(t) = ẋ(t) the speed variable, one has a system of the form

ẋ(t) = v(t), v̇(t) = f(v(t),u(t)).

The result that we are going to derive allows one to obtain a turnpike phenomenon along a tra-
jectory x(t) = vt, where v ∈ IRn is such that f(v,u) = 0. Here, (v,u) is an equilibrium of f , but
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(vt, v,u) is not an equilibrium of the complete dynamics. In [13, 14], this phenomenon is called a
“velocity turnpike”. Because of the estimate that we are going to establish in Theorem 2 hereafter,
we rather speak of a “linear turnpike” phenomenon.

Note that, in (12)-(13)-(14)-(15), we have fixed the initial and final conditions on y(t). Indeed,
otherwise, if either y(0) or y(T ) is let free, then there is nothing new, because f and f0 do not
depend on y and then (12)-(13)-(14)-(15) is then equivalent to (1)-(2)-(3), with the coordinate
y(t) evolving without having any impact on the optimal control problem (1)-(2)-(3). But here, we
impose y(0) = y0 and y(T ) = yT1 , which creates additional constraints with respect to (1)-(2)-(3),
and then the turnpike result stated in Theorem 1 cannot be applied.

1.2.2 A motivating example

In order to shed light on what can be expected, let us consider the very simple example in IR2:

ẋ(t) = u(t), x(0) = 1, x(T ) = 2

ẏ(t) = x(t), y(0) = 0, y(T ) = yT1

min

∫ T

0

(x(t)2 + u(t)2) dt

(16)

for which the optimal trajectory can be computed explicitly. Here, yT1 ∈ IR is a smooth function
of T that is sublinear at infinity. For instance, one can take yT1 = αT or yT1 = αT sin(T ) for some
α ∈ IR. We also assume that Ω = IR, i.e., there is no control constraint.

In a first step, if we ignore the dynamics in y in (16), then we are in the framework of Theorem
1. The static optimal control problem consists of minimizing x2 + u2 under the constraint u = 0,
which gives the optimal solution x̄ = 0, ū = 0 with the Lagrange multiplier p̄x = 0 (which is normal;
here, we take p0 = −1/2). By Theorem 1, we obtain |xT (t)|+ |pTx (t)|+ |uT (t)| 6 C(e−νt+e−ν(T−t))
for every t ∈ [0, T ]. In other words, roughly, x(t) ' 0 and u(t) ' 0, except around t = 0 and t = T .

Now, let us take into account the additional dynamics in y with the terminal conditions on y.
We are not anymore in the framework of Theorem 1, because there is no term in y(t)2 in the cost
and therefore the matrix W is not positive definite. We define the as

min{x2 + u2 | (x, u) ∈ IR× IR, u = 0, Tx = yT1 } (17)

i.e., with respect to the previous static problem, we add the terminal constraints coming from the
dynamics in y: the unique solution of the Cauchy problem ẏ(t) = x (with x constant), y(0) = 0,
must satisfy y(T ) = yT1 .

It is easy to check that the (unique) optimal solution of (17) is x̄T =
yT1
T , ūT = 0, with

Lagrange multipliers p̄Tx = 0 associated with the constraint u = 0, and p̄Ty =
yT1
T associated with

the constraint x =
yT1
T (which are normal; here, we take p0 = −1/2). The corresponding trajectory

in y is ȳT (t) =
yT1
T t (and we have ȳT (T ) = yT1 as expected). For this example, we expect that, if

T > 0 is large, then xT (t) ' 0, uT (t) ' 0 and yT (t) ' ȳT (t) for t ∈ [0, T ], where the order of this
approximation is to be determined, what we do hereafter by explicit calculations.

Let us apply the Pontryagin maximum principle to (16). The Hamiltonian is H = pxu+ pyx−
1
2 (x2 + u2) (there is no abnormal minimizer). Then uT (t) = pTx (t) and the extremal system is

ẋT (t) = pTx (t), ẏT (t) = xT (t), ṗTx (t) = xT (t)− pTy
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with pTy constant. We have then

d

dt

(
xT (t)− pTy
pTx (t)

)
=

(
0 1
1 0

)(
xT (t)− pTy
pTx (t)

)
d

dt
yT (t) = xT (t)

In particular, the dynamics in (xT − pTy , pTx ) is hyperbolic: setting vT (t) = xT (t)− pTy + pTx (t) and

wT (t) = xT (t)− pTy − pTx (t), we have

v̇T (t) = vT (t), ẇT (t) = −wT (t)

with terminal conditions vT (0) + wT (0) = 2 − 2pTy , vT (T ) + wT (T ) = 4 − 2pTy . The solutions of
this differential system are given by the familiar phase portrait around a saddle point, and we infer
that

|vT (t)|+ |wT (t)| = O(e−t + e−(T−t)) + O(|pTy |(e−t + e−(T−t)))

for every t ∈ [0, T ], where the O(·) is uniform with respect to T , and thus

|xT (t)− pTy |+ |pTx (t)| = O(e−t + e−(T−t)) + O(|pTy |(e−t + e−(T−t))).

In particular,
xT (t) = pTy + O(e−t + e−(T−t)) + O(|pTy |(e−t + e−(T−t)))

and, integrating ẏT (t) = xT (t) we obtain yT (t) = pTy t+ O(1) + O(|pTy |) for every t ∈ [0, T ]. Since

yT (T ) = yT1 , we obtain that

pTy =
yT1
T

+ O

(
1

T

)
+ O

(
|pTy |
T

)
,

and since yT1 is sublinear at infinity, we conclude that

pTy = p̄Ty + O

(
1

T

)
.

Therefore

xT (t) =
yT1
T

+ O

(
1

T
+ e−t + e−(T−t)

)
= x̄T + O

(
1

T
+ e−t + e−(T−t)

)
and

yT (t) =
yT1
T
t+ O(1) = ȳT (t) + O(1)

for every t ∈ [0, T ]. In turn, we have also pTx (t) = O(e−t + e−(T−t)).
We conclude that there exists C > 0 (independent of T ) such that

|xT (t)− x̄T | 6 C

(
1

T
+ e−t + e−(T−t)

)
|uT (t)− ūT |+ |pTx (t)− p̄Tx | 6 C

(
e−t + e−(T−t)

)
|yT (t)− ȳT (t)| 6 C

|pTy − p̄Ty | 6
C

T

(18)
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for every t ∈ [0, T ] (with p̄Tx = 0 and p̄Ty =
yT1
T ). Comparing with Theorem 1, we see on this

example that we do not have an exponential turnpike phenomenon for the component xT (t): the
above inequality is weaker; it says that, except around t = 0 and t = T , xT (t) is bounded by 1

T
(which is small as T is large), while the component yT (t) remains in a bounded neighborhood of

ȳT (t) =
yT1
T .

In what follows, we are going to generalize the above example.

1.2.3 Main result

As in Section 1.1, we assume that there exists a unique optimal solution (xT (·), yT (·), uT (·)) of
(12)-(13)-(14)-(15). With respect to (1)-(2)-(3), the Hamiltonian of (12)-(13)-(14)-(15) is now

H(x, px, py, p
0, u) = 〈px, f(x, u)〉+ 〈py, g(x, u)〉+ p0f0(x, u).

Note that H does not depend on the variable y. Assuming as well that, for every T > T0, the
optimal solution has a unique extremal lift, which is not abnormal (so that we take p0 = −1), the
application of the Pontryagin maximum principle leads to the existence of an absolutely continuous
mapping pTx (·) : [0, T ]→ IRn and of a constant pTy ∈ IRp such that

ẋT (t) =
∂H

∂px
(xT (t), pTx (t), pTy ,−1, uT (t)) = f(xT (t), uT (t))

ẏT (t) =
∂H

∂py
(xT (t), pTx (t), pTy ,−1, uT (t)) = g(xT (t), uT (t))

ṗTx (t) = −∂H
∂x

(xT (t), pTx (t), pTy ,−1, uT (t))

= −∂f
∂x

(xT (t), uT (t))>pTx (t)− ∂g

∂x
(xT (t), uT (t))>pTy +

∂f0

∂x
(xT (t), uT (t))>

(19)

(pTy is constant because ∂H
∂y = 0) and

uT (t) = argmax
v∈Ω

H(xT (t), pTx (t), pTy ,−1, v) (20)

for almost every t ∈ [0, T ].

With respect to (6), the is now the following one:

min
{
f0(x, u) | (x, u) ∈ IRn × Ω, f(x, u) = 0

ẏ(t) = g(x, u), y(0) = y0, y(T ) = yT1

} (21)

where we have added the constraint coming from the dynamics and terminal conditions in y.
We assume that, , there exists a unique optimal solution and that it has a unique extremal

(Lagrange multiplier) lift, which is not abnormal. Integrating the differential equation in (21),
noting that (x, u) is constant, the optimal control problem (21) is equivalent to

min

{
f0(x, u) | (x, u) ∈ IRn × Ω, f(x, u) = 0, g(x, u) =

yT1 − y0

T

}
(22)

which is a classical optimization problem under equality constraints. The Lagrange multiplier rule,
applied to the solution (x̄T , ȳT (·), ūT ) of this optimization problem, implies (since it is assumed
not to be abnormal) that df0(x̄T , ūT ) can be expressed linearly in function of df(x̄T , ūT ) and
dg(x̄T , ūT ). In the next lemma, we write these conditions in an equivalent Hamiltonian form,
which seems more complicated but is exactly devised to be comparable to (19).
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Lemma 1. There exist p̄Tx ∈ IRn and p̄Ty ∈ IRp such that, for every t ∈ [0, T ],

0 =
∂H

∂px
(x̄T , p̄Tx , p̄

T
y ,−1, ūT ) = f(x̄T , ūT )

˙̄y(t) =
∂H

∂py
(x̄T , p̄Tx , p̄

T
y ,−1, ūT ) = g(x̄T , ūT ), ȳT (0) = y0, ȳT (T ) = yT1

0 = −∂H
∂x

(
x̄T , p̄Tx , p̄

T
y ,−1, ūT

)
= −∂f

∂x
(x̄T , ūT )>p̄Tx −

∂g

∂x
(x̄T , ūT )>p̄Ty +

∂f0

∂x
(x̄T , ūT )

0 = −∂H
∂y

(x̄T , p̄Tx , p̄
T
y ,−1, ūT )

and

∂H

∂u

(
x̄T , p̄Tx , p̄

T
y ,−1, ūT

)
=
∂f

∂u
(x̄T , ūT )>p̄Tx +

∂g

∂u
(x̄T , ūT )>p̄Ty −

∂f0

∂u
(x̄T , ūT ) = 0.

This lemma follows by applying the Lagrange multiplier rule to the optimization problem (22)
(see also Lemma 2 in Section 2).

We observe that
ȳT (t) = y0 + tg(x̄T , ūT ) ∀t ∈ [0, T ] (23)

and therefore y0 + Tg(x̄T , ūT ) = yT1 . When g(x̄T , ūT ) 6= 0, this can only be if the norm of yT1 − y0

is large, as T is large. In the proof of the turnpike theorem hereafter, we are going to consider T as
a parameter, tending to +∞. This is why we have underlined the dependence of yT1 with respect
to T : when T becomes larger, it may be required that yT1 − y0 becomes larger as well (otherwise,
the controllability problem may have no solution).

We use the same notations as before , and additionally, we set

ĀT2 = H̄pyx =
∂g

∂x
(x̄T , ūT ), B̄T2 = H̄pyu =

∂g

∂u
(x̄T , ūT ), AT2 = ĀT2 + B̄T2 (ŪT )−1H̄ux,

ĀT =

(
ĀT1
ĀT2

)
=

(
∂f
∂x (x̄T , ūT )
∂g
∂x (x̄T , ūT )

)
, B̄T =

(
B̄T1
B̄T2

)
=

(
∂f
∂u (x̄T , ūT )
∂g
∂u (x̄T , ūT )

)
.

In our main result hereafter, we make all assumptions done in Theorem 1 and we adapt them in an
obvious way to the present context where the turnpike set is not anymore the singleton {x̄}, but is
now the path t 7→ (x̄T , ȳT (t)) that we call the turnpike trajectory. For instance, the controllability
assumption (iv) now stipulates that there exists a trajectory steering in finite time some point of
the initial set M0 to some point of the turnpike trajectory, and that any point of the turnpike
trajectory can be steered in finite time to the final set M1.

Theorem 2. There exist K > 0 and T0 > 0 such that, for every T > T0:
– Assumptions of global nature:

(i) There exists a unique optimal tuple (xT (·), yT (·), pTx (·), pTy , uT (·)) solution of (12)-(13)-(14)-

(15)-(19)-(20)-(4) (assumed to be normal); moreover, ‖xT (t)‖ + ‖uT (t)‖ 6 K for every t ∈
[0, T ].

(ii) There exists a unique optimal tuple (x̄T , ȳT (·), p̄Tx , p̄Ty , ūT ) solution of (21) (with ȳT (·) given
by (23)) and of the first-order optimality system stated in Lemma 1, assumed to be normal;
moreover, ‖x̄T ‖+ ‖ūT ‖ 6 K and
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(iii) The family of optimal control problems (12)-(13)-(14)-(15), indexed by T > 0, is with respect
to the supply rate function w defined by (9), with a storage function S (satisfying (10), with
α not depending on T ) that is bounded on M0 and M1, uniformly with respect to T .

(iv) There exists a trajectory (x̃T (·), ỹT (·), ũT (·)) solution of (12)-(13) on [0, T ], such that ‖x̃T (t)‖+
‖ũT (t)‖ 6 K for every t ∈ [0, T ] and x̃T (t) = x̄T and ũT (t) = ūT for every t ∈ [tT1 , T − tT2 ],
for some tT1 > 0 and tT2 > 0 satisfying tTi /T → 0 as T → +∞.

– Assumptions of local nature:

(v) ŪT = −H̄uu = −∂
2H
∂u2 (x̄T , p̄Tx , p̄

T
y ,−1, ūT ) is a positive definite symmetric matrix.

(vi) W̄T is a positive definite symmetric matrix.

(vii) The pair (ĀT1 , B̄
T
1 ) satisfies the Kalman condition2, i.e., rank(B̄T1 , Ā

T
1 B̄

T
1 , . . . , (Ā

T
1 )n−1B̄T1 ) =

n. In other words, the system (12) in x (not in y), linearized at (x̄T , ūT ), is controllable.

(viii) ker((ĀT )>) ∩ ker((B̄T )>) = {0}.3

In addition, we assume that there exists C1 > 0 such that:

(ix) ‖yT1 ‖ 6 C1T for every T > T0.

(x)

Then, there exist C > 0 and ν > 0 such that if T > T0 then

‖xT (t)− x̄T ‖+ ‖pTx (t)− p̄Tx ‖+ ‖uT (t)− ūT ‖ 6 C

(
1

T
+ e−νt + e−ν(T−t)

)
‖yT (t)− ȳT (t)‖ 6 C, ‖pTy − p̄Ty ‖ 6

C

T

(24)

for every t ∈ [0, T ].

The first estimate in (24) states that, except around t = 0 and t = T , the discrepancies
xT (t)− x̄T , pTx (t)− p̄Tx and uT (t)− ūT are bounded above by 1

T , which is small as T is large, but
not exponentially small: it is weaker than (11), and we speak of a linear turnpike estimate. The
second estimate in (24) gives a bound (uniform with respect to T ) on the discrepancy yT (t)− ȳT (t)
along the whole interval [0, T ]: it says that yT (t) remains at a uniform (wrt T ) distance of ȳT (t) =
y0 + tg(x̄T , ūT ) as t ∈ [0, T ]. Finally, the third estimate in (24) says that pTy − p̄Ty is (linearly) small
as T is large.

Of course, on specific examples it may happen that some of the components of the extremal
triple (xT (·), pTx (·), uT (·)) enjoy the exponential turnpike property, i.e., an estimate that is stronger
than (24), without the term 1

T at the right-hand side. This is the case in the example (16): one can
see in (18) that the component xT satisfies the linear turnpike estimate (24), while the components
pTx and uT satisfy the stronger exponential turnpike estimate (11).

Remark 4. As said earlier, to simplify the exposition we have assumed that, for every T > T0, the
optimal control problem (12)-(13)-(14)-(15) has a unique solution, whose extremal lift is as well
unique and normal, and that the static optimal control problem (22) has a unique solution, whose

2Equivalently, the pair (AT
1 , B̄T

1 ) satisfies the Kalman condition.
3This condition is satisfied if the pair (ĀT , B̄T ) satisfies the Kalman condition, i.e.,

rank(B̄T , ĀT B̄T , . . . , (̄AT )n+p−1B̄T ) = n + p, or equivalently, if the system (12)-(13) (i.e., the full system),
linearized at (x̄T , ūT ), is controllable. .
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Lagrange multiplier is as well unique and normal. In case the optimal solution is not unique, or
the extremal lift (still assumed to be normal) is not unique, the statement of Theorem (2) must
be adapted as in [37]: we obtain in this case a result that is satisfied locally around the extremal
triple.

When the optimal control problem (12)-(13)-(14)-(15) is linear-quadratic,

ẋ(t) = ĀT1 x(t) + B̄T1 u(t), x(0) ∈M0, x(T ) ∈M

ẏ(t) = ĀT2 x(t) + B̄T2 u(t), y(0) = y0, y(T ) = yT1

min

∫ T

0

(
x(t)>W̄Tx(t) + u(t)>ŪTu(t)

)
dt

(25)

i.e., when f(x, u) = ĀT1 x+ B̄T1 u, g(x, u) = ĀT2 x+ B̄T2 u, f0(x, u) = x>W̄Tx+u>ŪTu and Ω = IRm,
the result of Theorem 2 is automatically global, by strict convexity, without having to assume any
dissipativity property.

Theorem 2 is proved in Section 2. In Section 3 we give several optimal control problems that
illustrate our main result and we provide numerical simulations showing evidence of the linear
turnpike phenomenon.

2 Proof of Theorem 2

2.1 Preliminaries on the turnpike-static optimal control problem

Let us consider the optimal control problem (21), written in the form of the optimization problem
(22). Recall that, by Assumption (ii), there exists a unique minimizer (x̄T , ūT ) of (22) and that
p̄Tx ∈ IRn and p̄Ty ∈ IRp are the (normal) Lagrange multipliers respectively associated to the two
constraints.

Lemma 2.
(x̄T , ūT , p̄Tx , p̄

T
y ) = O(1) (26)

as T → +∞.

Proof. The optimality system (??) is written as

F (x̄T , ūT , p̄Tx , p̄
T
y ) =

df(x̄T , ūT )>p̄Tx + dg(x̄T , ūT )>p̄Ty − df0(x̄T , ūT )>

f(x̄T , ūT )
g(x̄T , ūT )

 =

 0
0

yT1 −y0
T


which is a system of 2n + m + p equations with the 2n + m + p unknowns (x, u, px, py), where
F : IR2n+m+p → IR2n+m+p is a C1 mapping. The Jacobian of F at the point (x̄T , ūT , p̄Tx , p̄

T
y ),

which is the usual sensitivity matrix in optimization, is

dF (x̄T , ūT , p̄Tx , p̄
T
y1 , p̄

T
y2) =


H̄xx H̄xu H̄xpx H̄xpy

H̄ux H̄uu H̄upx H̄upy

H̄pxx H̄pxu 0 0
H̄pyx H̄pyu 0 0

 =

(
E1 E>2
E2 0

)

Noting that

E2 =

(
∂f
∂x (x̄T , ūT ) ∂f

∂u (x̄T , ūT )
∂g
∂x (x̄T , ūT ) ∂g

∂u (x̄T , ūT )

)
=
(
ĀT B̄T

)
,
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Assumption (viii) immediately implies that the matrix E2 is surjective.

Besides, let us prove that the matrix E1 is invertible. If E1

(
ξ1
ξ2

)
= 0 then H̄xxξ1 + H̄xuξ2 = 0

and H̄uxξ1 + H̄uuξ2 = 0. From the latter equation, we get ξ2 = −H̄−1
uu H̄uxξ1, and plugging into

the first equation yields (H̄xx − H̄xuH̄
−1
uu H̄ux)ξ1 = 0. Since, by Assumption (vi), the matrix

W̄T = −H̄xx + H̄xuH̄
−1
uu H̄ux is symmetric positive definite, we infer that ξ1 = 0, and then ξ2 = 0.

Therefore E1 is invertible.
Now, since E1 is invertible and E2 is surjective, we conclude that dF (x̄T , ūT , p̄Tx , p̄

T
y ) is in-

vertible. By Assumption (ix), we have
yT1 −y0
T = O(1) as T → +∞. Hence, we have to solve

the nonlinear system of equations F (x̄T , ūT , p̄Tx , p̄
T
y ) = O(1). The continuity property follows by

applying the implicit function theorem.

2.2 Convergence to the turnpike

Recall that, by Assumption (i), the unique solution (xT (·), yT (·), uT (·)) of the optimal control prob-
lem (12)-(13)-(14)-(15), has a unique extremal lift (xT (·), yT (·), pTx (·), pTy , uT (·)) which is moreover
normal.

Proof. The partial x-strict dissipativity inequality (10) implies that

f0(x̄T , ūT ) 6
1

T

∫ T

0

f0(xT (t), uT (t)) dt+
S(xT (0))− S(xT (T ))

T

− 1

T

∫ T

0

α
(
‖xT (t)− x̄T ‖, ‖uT (t)− ū‖

)
dt (27)

Let us prove that 1
T

∫ T
0
α
(
‖xT (t)− x̄T ‖, ‖uT (t)− ūT ‖

)
dt→ 0 as T → +∞. By contradiction,

assume that there exists η > 0 and a sequence Tk → +∞ such that

1

Tk

∫ Tk

0

α
(
‖xTk(t)− x̄Tk‖, ‖uTk(t)− ūTk‖

)
dt > η (28)

for every k large enough. The cost of the trajectory (x̃T (·), ỹT (·)) solution of (12)-(13) given by
Assumption (iv) is

1

T

∫ T

0

f0(x̃T (t), ũT (t)) dt =
1

T

∫ tT1

0

f0(x̃T (t), ũT (t)) dt+
1

T

∫ T

T−tT2
f0(x̃T (t), ũT (t)) dt

+
T − tT1 − tT2

T
f0(x̄T , ūT ) = f0(x̄T , ūT ) + o(1)

as T → +∞. Hence, for T large enough, using (27) and (28), we have obtained a trajectory solution
of (12)-(13) whose cost is (strictly) less than the cost of the optimal trajectory (xT (·), yT (·), uT (·)):
this is a contradiction.
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2.3 Linear turnpike estimates

Let us now introduce perturbation variables, by setting

δxT (t) = xT (t)− x̄T , δyT (t) = yT (t)− ȳT (t),

δpTx (t) = pTx (t)− p̄Tx , δpTy = pTy − p̄Ty , δuT (t) = uT (t)− ūT

Linearizing (??) and then (19) at (x̄T , p̄Tx , p̄
T
y , ū

T ), we get, at the first order (i.e., neglecting the

terms in δxT , δpTx , δpTy , δuT of order > 2),

δuT (t) = (ŪT )−1
(
H̄uxδx

T (t) + (B̄T1 )>δpTx (t) + (B̄T2 )>δpTy
)

(29)

(where we have used Assumption (v)) and then, still at the first order,

δẋT (t) = AT1 δx
T (t) + B̄T1 (ŪT )−1(B̄T1 )>δpTx (t) + B̄T1 (ŪT )−1(B̄T2 )>δpTy

δṗTx (t) = W̄T δxT (t)− (AT1 )>δpTx (t)− (AT2 )>δpTy
(30)

where we recall that δpTy is constant. Setting

zT (t) =

(
δxT (t)
δpTx (t)

)
and defining the matrices

MT =

(
AT1 B̄T1 (ŪT )−1(B̄T1 )>

W̄T −(AT1 )>

)
, V T =

(
−B̄T1 (ŪT )−1(B̄T2 )>

(AT2 )>

)
, (31)

we write the system (30) in the form

żT (t) = MT zT (t)− V T δpTy . (32)

δẏT (t) = LT zT (t) + B̄T2 (ŪT )−1(B̄T2 )>δpTy (33)

where
LT =

(
AT2 B̄T2 (ŪT )−1(B̄T1 )>

)
.

Note that, when H̄ux = 0, the system (32)-(33) corresponds exactly to the extremal system
associated with the linear-quadratic optimal control problem (25).

We have the following spectral property for the matrix MT .

Lemma 3. The matrix MT is hyperbolic, i.e., all (complex) eigenvalues of MT have a nonzero
real part. Moreover, there exists η > 0 such that, for every T > T0, every eigenvalue λ of MT

satisfies |Re(λ)| > η.

Proof. Let µ ∈ IR and let ξ ∈ C2n be such that (MT − iµI2n)ξ = 0. Let us prove that ξ = 0.
Denoting by (ξ1, ξ2) the coordinates of ξ, we have

(AT1 − iµIn)ξ1 + B̄T1 (ŪT )−1(B̄T1 )>ξ2 = 0

W̄T ξ1 − ((AT1 )> + iµIn)ξ2 = 0
(34)

We stress that all matrices above are real, but the coordinates (ξ1, ξ2) are complex. Using As-
sumption (vi), the second equation in (34) gives ξ1 = (W̄T )−1((AT1 )>+ iµIn)ξ2, and plugging this
expression in the first equation of (34) yields

(AT1 − iµIn)(W̄T )−1((AT1 )> + iµIn)ξ2 + B̄T1 (ŪT )−1(B̄T1 )>ξ2 = 0
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and multiplying this equality to the left by the complex conjugate ξ̄>1 gives

‖(W̄T )−1/2((AT1 )> + iµIn)ξ2‖2 + ‖(ŪT )−1/2(B̄T1 )>ξ2‖2 = 0. (35)

Here, we have used the fact that ŪT and W̄T are symmetric positive definite matrices (by Assump-

tions (v) and (vi)), and we have used that the complex conjugate of AT1 − iµIn is (AT1 − iµIn)
>

=
(AT1 )> + iµIn. The norms and scalar product used in (35) are Hermitian. Now, (35) implies that
((AT1 )> + iµIn)ξ2 = 0 and (B̄T1 )>ξ2 = 0, i.e.,

ξ2 ∈ ker((AT1 )> + iµIn) ∩ ker((B̄T1 )>). (36)

Since the pair (AT1 , B̄
T
1 ) satisfies the Kalman condition (see Assumption (vii) and Foonote 2 in

Theorem 1), we have ker((AT1 )>−λIn)∩ker((B̄T1 )>) = {0} for every λ ∈ C (Hautus test: see, e.g.,
[30, 33]). Then, (36) gives ξ2 = 0.

The second equation of (34) gives then ξ1 = 0. We conclude that ξ = 0.

Since MT is hyperbolic, first of all, it is invertible and then (32) can be written as

d

dt

(
zT (t)− (MT )−1V T δpTy

)
= MT

(
zT (t)− (MT )−1V T δpTy

)
.

Second, there exists a real-valued invertible matrix PT of size 2n such that

(PT )−1MTPT =

(
MT

1 0
0 MT

2

)
where all (complex) eigenvalues of the real-valued matrix MT

1 have a negative real part and all
(complex) eigenvalues of the real-valued matrix MT

2 have a positive real part. Setting4

zT (t)− (MT )−1V T δpTy = PT
(
vT1 (t)
vT2 (t)

)
we have then v̇T1 (t) = MT

1 v
T
1 (t) and v̇T2 (t) = MT

2 v
T
2 (t). Since all complex eigenvalues of MT

1 (resp.,
of MT

2 ) have a negative (resp., positive) real part, far from 0 uniformly with respect to T , there
exist C > 0 and ν > 0, not depending on T , such that ‖vT1 (t)‖ 6 Ce−νt and ‖vT2 (t)‖ 6 Ce−ν(T−t)

for every t ∈ [0, T ].

It remains to estimate the norm of δpTy . Integrating (33), using that
∫ T

0
e−νt dt 6 1

ν for every
T > 0, and defining the square matrix of size p

RT = LT (MT )−1V T + B̄T2 (UT )−1(B̄T2 )> (37)

we infer from (??) that (taking a larger constant C if necessary)

‖δyT (t)− tRT δpTy ‖ 6 C ∀t ∈ [εT, (1− ε)T ]. (38)

Since we must have δy(T ) = 0 (this comes from the final condition y(T ) = yT1 on the component
y), and since ε > 0 is arbitrary, we infer that

‖RT δpTy ‖ 6
C

T
. (39)

We have the following instrumental fact.

4Actually, since the matrix MT is Hamiltonian (see [37] for some remarks on this issue), the size of v1 is equal
to the size of v2 (equal to n).
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Lemma 4. The matrix RT defined by (37) is symmetric positive definite, and thus is invertible.

Lemma 4 is proved in Section 2.4.
It follows from (39) and from Lemma 4 that (taking a larger constant C if necessary) ‖δpTy ‖ 6 C

T .
We infer from (??) and (38) that

‖zT (t)‖ 6 C

(
1

T
+ e−νt + e−ν(T−t)

)
, ‖δyT (t)‖ 6 C ∀t ∈ [0, T ],

which gives the estimates stated in Theorem 2.

Remark 5. In (12)-(13)-(14)-(15), the dynamics in y is written as ẏ(t) = h(x(t), y(t), u(t)) with
h(x, y, u) = g(x, u): the mapping h does not depend on y. Our strategy of proof would not apply to
a general mapping h, depending on y. Indeed, otherwise, when linearizing ẏ(t) = h(x(t), y(t), u(t))
along the path (x̄, ȳ(t), ū), we would get δẏ(t) = A2δx(t) + B̄2δu(t) + Q(t)δy(t) where Q(t) =
∂h
∂y (x̄, ȳ(t), ū) depends on t and thus the matrix M defined by (31) would as well depend on t

(anyway, only through the part in Q). The argument of hyperbolicity, then, cannot be applied in
general, in particular we think that it may fail whenever the eigenvectors of Q(t) are oscillating
too fast. Nevertheless, we think that the technique of proof may be extended to the case where
t 7→ Q(t) is slowly-varying, as in the context of control or stabilization by quasi-static deformation
(see [12] and references therein). We leave this issue open.

2.4 Proof of Lemma 4

In this section, we do not write the upperscript T in all matrices, to facilitate the reading. The
uniform property stated in the lemma is obtained by compactness.

Let us first express the matrix R, defined by (37), in a more explicit way. Recall that

R =
(
A2B̄2U

−1B̄>1
)
M−1

(
−B̄1U

−1B̄>2
A>2

)
+ B̄2U

−1B̄>2 with M =

(
A1 B̄1U

−1B̄>1
W −A>1

)
.

We set (
C1

C2

)
= M−1

(
−B̄1U

−1B̄>2
A>2

)
so that

A1C1 + B̄1U
−1B̄>1 C2 = −B̄1U

−1B̄>2

WC1 −A>1 C2 = A>2
(40)

Since W is invertible, we infer from the second equation of (40) that C1 = W−1A>1 C2 +W−1A>2 ,
and plugging this expression into the first equation of (40) gives(

A1W
−1A>1 + B̄1U

−1B̄>1
)
C2 = −A1W

−1A>2 − B̄1U
−1B̄>2 (41)

Lemma 5. The matrix A1W
−1A>1 + B̄1U

−1B̄>1 is invertible.

Proof. Let ξ ∈ IRn be such that
(
A1W

−1A>1 + B̄1U
−1B̄>1

)
ξ = 0. Multiplying to the left by ξ>,

we obtain ‖W−1/2A>1 ξ‖2 + ‖U−1/2B̄>1 ξ‖2 = 0 and hence ξ ∈ ker(A>1 ) ∩ ker(B̄>1 ). As in the proof
of Lemma 3, since the pair (A1, B̄1) satisfies the Kalman condition, the latter intersection is {0}.
The claim follows.
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We infer from (41) and from Lemma 5 that

C2 = −
(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
and thus

C1 = −W−1A>1
(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
+W−1A>2 .

We conclude that

R = −
(
A1W

−1A>2 + B̄1U
−1B̄>2

)> (
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
+A2W

−1A>2 + B̄2U
−1B̄>2

(note that R is symmetric) that we can write as the sum of two symmetric matrices

R = A2W
−1/2

(
−W−1/2A>1

(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1
A1W

−1/2 + In

)
W−1/2A>2

+ B̄2U
−1/2

(
−U−1/2B̄>1

(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1
B̄1U

−1/2 + Im

)
U−1/2B̄>2

= Ã2

(
−Ã>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1

Ã1 + In

)
Ã>2 + B̃2

(
−B̃>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1

B̃1 + Im

)
B̃>2

where we have set Ãi = AiW
−1/2 and B̃i = B̄iU

−1/2 for i = 1, 2, and we are going to prove
hereafter that the above two matrices are symmetric positive definite, so that R is itself symmetric
positive definite.

We have the following general result.

Lemma 6. Let A be an arbitrary real-valued square matrix of size n, and let B be an arbitrary real-
valued matrix of size n×m, where n and m are arbitrary nonzero integers. If ker(A>)∩ker(B>) =
{0} then

B>
(
AA> +BB>

)−1
B � Im (42)

meaning that the symmetric matrix Im −B>
(
AA> +BB>

)−1
B is positive semi-definite.

Proof. Since ker(A>) ∩ ker(B>) = {0}, the matrix AA> + BB> is invertible (same argument as
in Lemma 5).

When B is invertible, the result is obvious: starting from

AA> +BB> � BB>,

taking the inverse and multiplying to the left by B> and to the right by B, we obtain (42).
When B is not invertible, we follow anyway the above reasoning, adding εIm for ε > 0 to

recover an appropriate invertibility property: starting from

AA> +BB> + εIm � BB> + εIm,

taking the inverse and multiplying to the left by B> and to the right by B, we obtain

B>
(
AA> +BB> + εIm

)−1
B � B>

(
BB> + εIm

)−1
B.

Then, taking the limit ε→ 0 gives (42).

Noting that ker(Ã>1 )∩ker(B̃>1 ) = {0} (this comes again from the Kalman condition on the pair
(A1, B̄1)), we infer from Lemma 6 that

Ã>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1

Ã1 � In and B̃>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1

B̃1 � Im.

Therefore R � 0, i.e., R is positive semi-definite.
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3 Examples

In this section, we illustrate the linear turnpike phenomenon on several practical examples, with
numerical simulations. Hereafter, we compute numerically the optimal solutions either with a
direct method, using AMPL (see [17]) combined with IpOpt (see [38]), following a full discretization
of the problem, or with the variant of the shooting method introduced in [37]. In both cases, we
initialize the numerical method at the turnpike, thus guaranteeing its convergence.

3.1 The Zermelo problem

The Zermelo problem is a famous optimal control problem, often used as a simple model or exercise
to illustrate theory or practice of optimal control (see [33]). In this problem, we consider a boat
moving with constant speed along a river of constant width `, in which there is a current c(x).
The movement of the center of mass of the boat is governed by the control system

ẋ(t) = v(t) sinu(t), x(0) = 0,

ẏ(t) = v(t) cosu(t) + c(x(t)), y(0) = 0,

where the controls are the modulus of the speed v(t) ∈ [0, vmax] and the angle u(t) ∈ IR of the axis
of the boat with respect to the axis (0y) (see Figure 2).

Figure 1: Zermelo problem.

Many variants of terminal conditions and of cost functionals can be considered. Here, in order
to illustrate the linear turnpike phenomenon, given some T > 0 fixed (to be chosen large enough),
we consider the optimal control problem of steering in time T this control system from the initial
point (0, 0) to the final point (`, 5T ) (on the opposite river), by minimizing the cost functional∫ T

0
v(t)2 dt.
We take L = 2, vmax = 1.1 and c(x) = 3 + x(L− x). The current in the river is so strong that

we always have ẏ(t) > 0, whatever the control may be; hence y(·) is bound to be increasing.
The turnpike-static optimal control problem consists of minimizing v2 under the constraints

v sinu = 0 and T (v cosu + c(y)) = 5T . It has the unique solution x̄T = 1, ȳT (t) = 5t, x̄T = 1,
ūT = 0, v̄T = 1, p̄Tx = 0, p̄Ty = 2.
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Figure 2: Numerical results for the Zermelo problem

The numerical results for T = 20 are reported on Figure 2. We observe, as expected, that
|yT (t)− ȳT (t)| is bounded by a constant. Besides, we observe that, in the long middle part of the
time interval, (xT (t), uT (t), pTx (·)) is exponentially close to (x̄T , ūT , p̄Tx ) while (vT (t), pTy ) is linearly

close to (v̄T , p̄Ty ).

Note that the optimal control vT (·) has two bang arcs along which vT (t) = vmax = 1.1: a short
one at the beginning, and another short one at the end.

3.2 Optimal control model of a runner

Consider the runner model developed in [2, 3, 4, 5], originating from [24]:

ẋ(t) = v(t) x(0) = 0, x(tf ) = d

v̇(t) = −v(t)

τ
+ f(t) v(0) = v0

ė(t) = σ − f(t)v(t) e(0) = e0, e(tf ) = 0, e(t) > 0

ḟ(t) = γ (u(t)(Fmax − f(t))− f(t)) 0 6 f(t) 6 Fmax

(43)
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where d > 0 is the prescribed distance to run, e0 > 0 is the initial energy, τ > 0 is the friction
coefficient related to the runner’s economy, σ > 0 is a constant standing for the energetic equivalent
of the oxygen uptake V O2, Fmax > 0 is a threshold upper bound for the force f(t), γ > 0 is the
time constant of motor activation and u(t) ∈ [−M,M ] is the neural drive which is the control,
where M > 0 is some control bound. Here, x(t) is the distance travelled at time t by the runner,
v(t) the velocity, e(t) the anaerobic energy, and f(t) the propulsive force per unit mass. Actually,
the typical values of the initial energy e0 are such that the energy variable e(t) is decreasing. The
minimization criterion is

min

(
tf +

α

2

∫ tf

0

u(t)2 dt

)
(44)

where α > 0 is a fixed constant and the final time tf is free.
Although, in the optimal control problem (43)-(44), tf , v(tf ), f(0) and f(tf ) are let free, the

problem can be reparametrized by the distance s, with the change of variable t′(s) = dt
ds = 1

v(s) .

In terms of s, the optimal control problem is

v′(s) = −1

τ
+
f(s)

v(s)
v(0) = v0

e′(s) =
σ

v(s)
− f(s) e(0) = e0, e(d) = 0, e(s) > 0

f ′(s) =
γ

v(s)
(u(s)(Fmax − f(s))− f(s)) 0 6 f(s) 6 Fmax

min

∫ d

0

1

v(s)

(
1 +

α

2
u(s)2

)
ds

and now fits in the general framework developed in this paper.
Solving the “static” problem leads to ē(t) = e0 + (σ − f̄ v̄)t (we re-express it in function of t)

where

v̄ =
τ

2d

(
e0 +

√
e2

0 + 4
σd2

τ

)
, f̄ =

v̄

τ
=

1

2d

(
e0 +

√
e2

0 + 4
σd2

τ

)
, ū =

f̄

Fmax − f̄
.

For the numerical simulations, we take d = 1500, τ = 0.932, σ = 22, α = 10−5, Fmax = 8,
γ = 0.0025, v0 = 3, e0 = 4651. We obtain v̄ = 6.2, f̄ = 6.65, ū = 4.92. The distance run (1500
meters) is large enough so that we observe the linear turnpike phenomenon. The numerical results
are reported on Figure 3.

This runner optimal control problem has actually been the initial point for the present paper,
and the author warmly thanks Amandine Aftalion for having raised such an interesting problem.
The linear turnpike phenomenon has been recently exploited in [5].

A Appendix

This appendix is devoted to illustrating the comments done in Remark 1. We take a very simple
example and we give numerical simulations showing the competition between two global turnpikes,
or, at the level of the initialization of numerical methods, between local and global turnpikes.

We consider the one-dimensional optimal control problem

ẋ = −3x+ 3x3 + u, x(0) = x0, x(T ) = xf or free

min

∫ T

0

(
(x(t)− xd)2 + (u(t)− ud)2

)
dt

(45)
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Figure 3: Numerical results for the runner problem

The corresponding static problem is

min
(x,u) | −3x+3x3+u=0

(
(x− xd)2 + (u− ud)2

)
. (46)

A.1 Competition between two (global) turnpikes

We take xd = 1 and ud = 3.47197. The choice of ud is done so that the static problem (46) has
two global minima, at x̄1 = −1.347372066 and x̄2 = 0.5939615956, see Figure 4.
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Figure 4: Plot of the function x 7→ (x− 1)2 + (3x− 3x3 − 3.47197)2

On Figure 5, in dashed blue, we have computed the optimal trajectory with x0 = −5, xf = −1,
T = 10: we observe a turnpike phenomenon around x̄1. In solid red, we have computed the optimal
trajectory with x0 = 2, xf = 1, T = 10: we observe a turnpike phenomenon around x̄2.

Figure 5: Global turnpikes around x̄1 and x̄2.

The fact that the turnpike phenomenon is either around x̄1 or around x̄2 depends on the
terminal conditions. For instance, if x0 and xf are close to x̄1 (resp., x̄2) then the optimal trajectory
will make a turnpike around x̄1 (resp., x̄2). But when the terminal conditions are farther, it is not
clear to predict the behavior of the optimal trajectory.

Since the minima are global, we expect to observe a competition between both turnpikes,
depending on the terminal conditions (see [29]). Let us provide some numerical simulations illus-
trating this competition. To facilitate the understanding, we consider the problem with xf free.
It is interesting to note that the numerical result strongly depends on the initialization of the
numerical method. Here, to compute numerically the optimal solutions of (45), we use AMPL (see
[17]) combined with IpOpt (see [38]): the trajectory and the controls are discretized (the control
is piecewise constant and the trajectory is piecewise linear, on a given subdivision that is chosen
fine enough), and we initialize the trajectory with the same constant value over all the subdivision.
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Then according to the value of this initialization, we can make emerge such or such turnpike, and
all solutions are anyway optimal.

Figure 6: x0 = −2, xf free, T = 20.

On Figure 6, we have taken T = 20, x0 = −2 (and xf is let free). In dashed blue, we have initial-
ized the trajectory to the constant trajectory x̄1, and we then obtain an optimal trajectory which
stays essentially near x̄1 = −1.347372066, with a kind of “hesitation” towards x̄2 = 0.5939615956
near the end. In solid red, we have initialized the trajectory to the constant trajectory x̄2, and
we obtain a trajectory staying essentially near x̄2, with a kind of “hesitation” towards x̄1 near the
beginning. We stress that the two solutions are optimal: both have a cost C ' 6.2822. We could
make emerge other similar trajectories, which “hesitate” between the two turnpikes. All of them
are optimal, or, at least, “quasi-optimal” (there is a small error due to switches from one turnpike
to the other).

A.2 Local versus global turnpike

We take xd = 1 and ud = 1. The choice of ud is now such that the static problem (46) has
a unique global solution x̄ = 0.781538640850898, see Figure 7. But it has also a local solution
x̄loc = −1.10551208794920.

The global minimum x̄ is a global turnpike, while the local minimum x̄ is a local turnpike. In the
numerical simulations, when performing either an optimization or a Newton method (shooting),
we compute local solutions. Hence, we must expect that the numerical results depend on the
initialization. To check global optimality, we have to compare the costs.

On Figure 8, in dashed blue, we have initialized the code with the constant trajectory x̄loc. We
observe a turnpike around x̄loc = −1.10551208794920. The cost is C ' 7.008. But this is a local
turnpike only. This trajectory that we obtain is only locally optimal, and is not globally optimal.
In solid red, we have initialized the code with the constant trajectory x̄. We observe a turnpike
around x̄ = 0.781538640850898. The cost is C ' 3.825 and is lower than the one of the previous
one. Here, we have actually computed the globally optimal trajectory. This is the global turnpike.

It is also interesting to see what happens if we take T much smaller. Let us take T = 2. On
Figure 9, in dashed blue, we have initialized the code with the constant trajectory x̄. We observe a
trend to the turnpike around x̄ = 0.781538640850898. The cost is C ' 17.792. But this trajectory,
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Figure 7: Plot of the function x 7→ (x− 1)2 + (3x− 3x3 − 1)2

Figure 8: x0 = −2, xf = −1, T = 10.

now, is not globally optimal. In solid red, we have initialized the code with the constant trajectory
x̄loc. We observe a turnpike around x̄loc = −1.347372066. The cost is C ' 16.322. It is the
globally optimal trajectory.

We can search a time 2 < Tc < 10 for which both previous initializations give equivalent
turnpikes around x̄loc and x̄ (with same cost). This is done hereafter. What is important is that,
in large time T , we have indeed the global turnpike around x̄.

On Figure 10, at the left, the code is initialized with x(t) ≡ −1.1, in order to promote the
turnpike around x̄loc = −1.347372066. At the right, the code is initialized with x(t) ≡ 0.78, in
order to promote the turnpike around x̄ = 0.781538640850898. We have computed trajectories for
the following successives values of T : 2.5, 2.7, 2.9, 3.1, 3.3. We observe that the blue and cyan
trajectories at the top are optimal (see the value of their cost); and that the red, green and black
trajectories at the bottom are optimal. The bifurcation occurs around T = 2.9.

Finally, on Figure 11, we represent the global optimal trajectory. For T . 2.9, the global
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Figure 9: x0 = −2, xf = −1, T = 2.

Figure 10: x0 = −2, xf = −1

optimal trajectory makes a turnpike around x̄loc = −1.347372066, which is a local minimizer of
the optimal static problem. For T > 2.9 we have a bifurcation and the global optimal trajectory
makes a turnpike around x̄ = 0.781538640850898, which is the global minimizer of the optimal
static problem.
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