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Linear turnpike theorem

Emmanuel Trélat∗

Abstract

The turnpike phenomenon stipulates that the solution of an optimal control problem in
large time, remains essentially close to a steady-state of the dynamics, itself being the optimal
solution of an associated static optimal control problem. Under general assumptions, it is
known that not only the optimal state and the optimal control, but also the adjoint state
coming from the application of the Pontryagin maximum principle, are exponentially close to
a steady-state, except at the beginning and at the end of the time frame. In such results, the
turnpike set is a singleton, which is a steady-state.

In this paper, we establish a turnpike result for finite-dimensional optimal control problems
in which some of the coordinates evolve in a monotone way, and some others are partial steady-
states of the dynamics. We prove that the discrepancy between the optimal trajectory and the
turnpike set is then linear, but not exponential: we thus speak of a linear turnpike theorem.

1 Introduction and main results

1.1 Reminders on the exponential turnpike phenomenon

Let n,m ∈ IN∗ and let T > 0 be arbitrary. We consider a general nonlinear optimal control problem
in IRn, in fixed final time T , without control constraint:

ẋ(t) = f(x(t), u(t)), x(0) ∈M0, x(T ) ∈M1 (1)

min

∫ T

0

f0(x(t), u(t)) dt (2)

where f : IRn × IRm → IRn, f0 : IRn × IRm → IR, M0 and M1 are subsets of IRn, and u ∈
L∞([0, T ], IRm) is the control. For simplicity of the exposition, we assume that there exists T0 > 0
such that, for every T > T0, there exists a unique optimal solution of (1)-(2), denoted by (x(·), u(·))
(sufficient conditions ensuring existence are standard, see, e.g., [25]; uniqueness is ensured under
differentiability properties of the value function and thus is generic in some sense). Note that
(x(·), u(·)) depends on T but we do not denote it by (xT (·), uT (·)) to keep readability. By the
Pontryagin maximum principle (see [19]), there exist p0 6 0 and an absolutely continuous mapping
px(·) : [0, T ]→ IRn (called adjoint vector), satisfying (px(·), p0) 6= (0, 0), such that

ẋ(t) =
∂H

∂px
(x(t), px(t), p0, u(t)), ṗx(t) = −∂H

∂x
(x(t), px(t), p0, u(t))

∂H

∂u
(x(t), px(t), p0, u(t)) = 0

(3)
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for almost every t ∈ [0, T ], where H(x, px, p
0, u) = 〈px, f(x, u)〉+ p0f0(x, u) is the Hamiltonian of

the optimal control problem (1)-(2) (here and throughout, 〈·, ·〉 is the Euclidean scalar product in
IRn, and ‖ · ‖ is the corresponding norm). We have moreover the transversality conditions on the
adjoint vector at initial and final time:

px(0) ⊥ Tx(0)M0, px(T ) ⊥ Tx(T )M1 (4)

provided the tangent space Tx(0)M0 to M0 at x(0) and the tangent space Tx(T )M1 to M1 at x(T )
exist (these conditions are empty when the initial and final points are fixed in the optimal control
problem). We assume that the extremal lift (x(·), px(·), p0, u(·)) is not abnormal and thus that one
can fix p0 = −1. We also assume, for the simplicity of the exposition, that the extremal lift is
unique (these two conditions are generic, see [6, 7]).

The turnpike phenomenon stipulates that, when the final time T is large, the optimal solution
(x(·), px(·), u(·)) remains, along the interval of time [0, T ] and except around the initial time t = 0
and around the final time t = T , “essentially close” to some static point (x̄, p̄x, ū) ∈ IRn×IRn×IRm,
i.e., roughly speaking,

x(t) ' x̄, px(t) ' p̄x, u(t) ' ū ∀t ∈ [η, T − η] (5)

(for some η > 0) and moreover, (x̄, p̄x, ū) is itself the solution of a minimization problem, called
static optimal control problem, which is:

min
{
f0(x, u) | (x, u) ∈ IRn × IRm, f(x, u) = 0

}
(6)

i.e., in other words, the problem of minimizing the instantaneous cost f0(x, u) over all possibles
equilibrium points of the dynamics (f(x, u) = 0). Note that, by the Lagrange multiplier rule,
expressed in a Hamiltonian form, applied to the static optimal control problem, we have

∂H

∂px
(x̄, p̄x, p

0, ū) = 0,
∂H

∂x
(x̄, p̄x, p

0, ū) = 0,
∂H

∂u
(x̄, p̄x, p

0, ū) = 0. (7)

Here we assume as well that the minimizer (x̄, ū) is unique, and also that the quadruple (x̄, p̄x, p
0, ū)

is not abnormal, so that one can take p0 = −1 (usual qualification condition in optimization theory)
and that the Lagrange multiplier is unique (the latter two conditions are generic).

We note then that (x̄, p̄x,−1, ū) is an equilibrium point of (3). Hence, the informal property
(5) stipulates that the optimal triple (x(·), px(·), u(·)), solution of (1)-(2)-(3) remains essentially
close to an equilibrium point of the dynamics (3), this equilibrium being itself an optimal solution
of the static problem (6). This is the turnpike phenomenon.

The intuition explaining why such a property is to be expected is the following. Since T is
assumed to be large, we set ε = 1

T , which is considered as a small parameter. Now, we make a
time reparametrization, by setting s = εt, so that, when t ranges over [0, T ], s ranges over [0, 1].
Setting xε(s) = x(t), pε(s) = px(t) and uε(s) = u(t), we have, still in an informal way,

∂H

∂px
(xε(s),pε(s),−1,uε(s)) = εx′ε(s) ' 0

∂H

∂x
(xε(s),pε(s),−1,uε(s)) = −εp′ε(s) ' 0

∂H

∂u
(xε(s),pε(s),−1,uε(s)) = 0

(8)

which gives credibility to (5), at least when (x̄, p̄x, ū) is the unique solution of (7) (and under
nondegenerate assumptions on the system of equations (7)). But this is not a proof and this
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remains completely informal: indeed, to justify (8) one would need that the derivatives x′ε(s) and
p′ε(s) be bounded (except around t = 0 and t = T ), uniformly with respect to ε, i.e., that the
derivatives T ẋ(t) and T ṗx(t) be bounded (except around t = 0 and t = T ), uniformly with respect
to T , which is precisely the hard part in establishing a turnpike result.

The main result of [29] states an exponential turnpike property, which is local (see Remark
1). Hereafter, we combine this result with a result of [27] in order to obtain a global exponential
turnpike property. We use the notion of strict dissipativity, introduced in [31] and already used in
[11, 14, 15, 16] to derive turnpike properties. We recall that the family of optimal control problems
(1)-(2), indexed by T > 0, is strictly dissipative at the optimal static point (ȳ, ū) with respect to
the supply rate function

w(x, u) = f0(x, u)− f0(x̄, ū) (9)

if there exists a locally bounded function S : IRn → IR, called storage function, such that

S(x(0)) +

∫ T

0

w(x(t), u(t)) dt > S(x(T )) +
1

T

∫ T

0

α (‖x(t)− x̄‖, ‖u(t)− ū‖) dt (10)

(strict dissipation inequality) for every t ∈ [0, T ], for every T > 0, for any pair (x(·), u(·)) solution
of (1), for some function α of class K, i.e., α : [0,+∞) → [0,+∞) continuous, increasing, and
α(0) = 0. Comments on dissipativity can be found in [4, 27, 31].

We use hereafter the shorter notations

H?# =
∂2H

∂ ? ∂#
(x̄, ū)

where ? and # will be replaced with such or such variable. We set

Ā1 = Hpxx =
∂f

∂x
(x̄, ū), B̄1 = Hpxu =

∂f

∂u
(x̄, ū), U = −Huu

and, since we assume hereafter that U is invertible,

A1 = Ā1 + B̄1U
−1Hux, W = −Hxx −HxuU

−1Hux.

Theorem 1. We make the following assumptions:
Assumptions of global nature:

(i) There exist R > 0 and T0 > 0 such that, for every T > T0, there exists a unique optimal
triple (x(·), px(·), u(·)) solution of (1)-(2)-(3)-(4) (assumed to be normal). Moreover, ‖x(t)‖+
‖px(t)‖+ ‖u(t)‖ 6 R for every t ∈ [0, T ].

(ii) There exists a unique optimal triple (x̄, p̄x, ū) solution of (6)-(7) (assumed to be normal).

(iii) The family of optimal control problems (1)-(2), indexed by T > 0, is strictly dissipative at
the optimal static point (ȳ, ū) with respect to the supply rate function w defined by (9), with
a storage function S (satisfying (10)) that is bounded on M0 and M1.

(iv) There exist δ > 0 and a trajectory x1(·) (resp., x2(·)), solution of (1) on some time interval
[0, t1], with t1 6 δ (resp., [0, t2] with t2 6 δ), such that x(0) ∈M0 and x(t1) = x̄ (resp., such
that x(0) = x̄ and x(t2) ∈M1).

Assumptions of local nature:

(iv) U = −Huu = −∂
2H
∂u2 (x̄, ū) is a positive definite symmetric matrix.
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(v) W is a positive definite symmetric matrix.

(vi) The pair (Ā1, B̄1) satisfies the Kalman condition1, i.e., rank(B̄1, Ā1B̄1, . . . , Ā
n−1
1 B̄1) = n.

In other words, the linearized system at (x̄, ū) is controllable.

Then, there exist C > 0 and ν > 0 such that if T > T0 then

‖x(t)− x̄‖+ ‖px(t)− p̄x‖+ ‖u(t)− ū‖ 6 C
(
e−νt + e−ν(T−t)

)
∀t ∈ [0, T ] (11)

In other words, except around t = 0 and t = T , the optimal triple (x(·), px(·), u(·)) solution
of (1)-(2)-(3)-(4) is exponentially close to the optimal triple (x̄, p̄x, ū) solution of (6)-(7). The
constants C and ν can even be made explicit by solving a Riccati equation (see [29] for details).

The local assumptions (iv)-(v)-(vi) done in this theorem have been chiefly discussed and com-
mented in [29]. The assumption (iv) is a global controllability assumption: there exists a trajectory
steering in finite time the control system (1) from M0 to the turnpike x̄, and from the turnpike x̄ to
the final set M1. The assumption (i) on the uniqueness of the solution of the optimal control prob-
lem and normality of the extremal triple is actually generic, in some sense: indeed it is well known
that it is satisfied as soon as the value function corresponding to the optimal control problem is
continuous at the terminal points under consideration. But, such comments are completely general
in optimal control theory and we thus do not comment more on the generality of our assumptions.

Remark 1. The above statement does not appear as such in the literature. Compared with [29]
where the main result is established under the assumptions of local nature only (i.e., (iv)-(v)-
(vi)), we have added here assumptions of global nature (i.e., (i)-(ii)-(iii)-(iv)): compactness and
uniqueness of minimizers, strict dissipativity, global controllability to and from the turnpike set,
and then we obtain a global turnpike property.

When the minimizers are not unique or when the system is not dissipative, we obtain only a
local turnpike property, in the sense that the turnpike estimate (11) can only be expected to be
satisfied in a neighborhood of an extremal steady-state (x̄, p̄x, ū) (see [29]). This is so, because the
dynamics is nonlinear. In dynamical systems theory, when an equilibrium is non degenerate, the
solutions of the nonlinear system resemble the solutions of the linearized system at the equilibrium,
only locally around the equilibrium. The above turnpike theorem is of this nature.

It is worth noting that the exponential turnpike estimate (11) is global for non-degenerate
linear-quadratic optimal control problems (by strict convexity), without having to assume (i)-(ii)-
(iii).

When the static problem has several local minimizers, then one has local turnpike properties.
When the static problem has, for instance, two global minimizers, then there is a region of the
state space in which globally optimal solutions of the optimal control problems have a turnpike
property corresponding to the first global minimizer, and another region in which the turnpike
property corresponds to the second global minimizer. We refer to Appendix A for a discussion on
these topics and for some numerical simulations.

The turnpike result of [29] has been extended to the infinite-dimensional setting in [27, 28, 10,
17]. One can find many turnpike results in the literature (see [5, 11, 16, 15, 20, 21, 32, 33], and see
historical references in [29]), but the specificity of the above result is that the turnpike property
is established as well for the adjoint vector: as explained in [29], this is particularly important in
view of deriving appropriate initializations in numerical computation methods (direct methods or
shooting methods, see [26]).

1Equivalently, the pair (A1, B̄1) satisfies the Kalman condition.
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Remark 2. It is proved in [27] that “strong duality implies dissipativity”. To be more precise, we
recall that the static problem (6) has the strong duality property if (x̄, ū) minimizes the Lagrangian
function L(·, ·, p̄x) : IRn× IRm× IRn → IR defined by L(x, u, p̄x) = f0(x, u)−〈p̄x, f(x, u)〉 (the sign
minus is due to the fact that we took p0 = −1 for the Lagrange multiplier associated with the
cost). This notion is well known in classical optimization theory, in relation with primal and dual
problems. It is proved in [27, Theorem 3] that the strong duality property implies the dissipativity
property, with the storage function S(x) = 〈p̄x, x〉.

Note that strong duality is in some sense an infinitesimal version of the dissipation inequality,
at least when the storage function is continuously differentiable (see also [11, 13]).

Until now, we have discussed a turnpike phenomenon around an equilibrium point of the dy-
namics. In the next section, we state a turnpike theorem for systems having some coordinates that
evolve in a monotone way and thus have no equilibrium point.

1.2 A new result: linear turnpike phenomenon

1.2.1 Framework

We keep the notations introduced in Section 1.1, and we add to the control system (1)-(2) p
additional differential equations, for some p ∈ IN∗, as follows. We consider the general optimal
control problem in IRn+p in fixed final time T > 0, without control constraint:

ẋ(t) = f(x(t), u(t)), x(0) ∈M0, x(T ) ∈M1 (12)

ẏ(t) = g(x(t), u(t)), y(0) = y0, y(T ) = yT1 (13)

min

∫ T

0

f0(x(t), u(t)) dt (14)

where y0, y
T
1 ∈ IRp are fixed and g : IRn × IRm → IRp is of class C2 (the rest of the assumptions is

unchanged, with respect to Section 1.1).
Compared with (1)-(2), we have added the p differential equations ẏ(t) = g(x(t), u(t)), where

g does not depend on the new coordinate y ∈ IRp. The instantaneous cost function f0 also, still
does not depend on y. This is important to derive the result hereafter.

As in the previous section, the final time T is fixed in the optimal control problem (12)-(13)-(14)
and the linear turnpike property will describe the behavior of optimal solutions when T is large.

In the optimal control problem (12)-(13)-(14), the data M0, M1 and y0 do not depend on T ,
but the final condition yT1 depends on T : we have thus put a superscript T in order to underline
this important dependence. We have indeed in mind to consider cases where ‖yT1 ‖ is large as T
is large: in such cases, we expect that the components of y(t) should evolve in a monotone way,
i.e., g(x(t), u(t)) 6= 0 along the optimal trajectory: in such a case, we have no equilibrium in the y
components.

We are going to derive a turnpike result in which the “turnpike set” consists of a partial
equilibrium, i.e., the turnpike is (x̄, ȳ(t), ū) ∈ IRn × IRp × IRm where f(x̄, ū) = 0, while its y-
component t 7→ ȳ(t) evolves in a monotone way.

Remark 3. Following [9], it is worth noting that such problems (12)-(13)-(14) frequently appear
in applications, for instance in mechanical problems where, denoting by x(t) a position variable,
by v(t) = ẋ(t) the speed variable, one has a system of the form

ẋ(t) = v(t), v̇(t) = f(v(t),u(t)).

The result that we are going to derive allows one to obtain a turnpike phenomenon along a tra-
jectory x(t) = vt, where v ∈ IRn is such that f(v,u) = 0. Here, (v,u) is an equilibrium of f , but
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(vt, v,u) is not an equilibrium of the complete dynamics, and the component x(t) = v̄t evolves in
a monotone way. In [9], this phenomenon is called a “velocity turnpike”. Because of the estimate
that we are going to establish in Theorem 2 hereafter, we rather speak of a “linear turnpike”
phenomenon.

Note that, in (12)-(13)-(14), we have fixed the initial and final conditions on y(t). Indeed,
otherwise, if either y(0) or y(T ) is let free, then there is nothing new, because f and f0 do not
depend on y and then (12)-(13)-(14) is then completely equivalent to (1)-(2), with the coordinate
y(t) evolving without having any impact on the optimal control problem (1)-(2). But here, we
impose y(0) = y0 and y(T ) = yT1 , which creates additional constraints with respect to (1)-(2), and
then the turnpike result stated in Theorem 1 cannot be applied.

1.2.2 A motivating example

In order to shed light on what we can expect, let us consider the very simple example in IR2:

ẋ(t) = u(t), x(0) = 1, x(T ) = 2

ẏ(t) = x(t), y(0) = 0, y(T ) = yT1

min

∫ T

0

(x(t)2 + u(t)2) dt

(15)

on which the optimal trajectory can be computed explicitly. Here, yT1 ∈ IR is a smooth function
of T that is sublinear at infinity. For instance, one can take yT1 = αT or yT1 = αT sin(T ) for some
α ∈ IR.

In a first step, if we ignore the dynamics in y in (15), then we are in the framework of Theorem
1. The static optimal control problem consists of minimizing x2 + u2 under the constraint u = 0,
which gives the optimal solution x̄ = 0, ū = 0, and the Lagrange multiplier p̄x = 0 (which is normal;
here, we take p0 = −1/2). By Theorem 1, we obtain |x(t)|+ |px(t)|+ |u(t)| 6 C(e−νt + e−ν(T−t))
for every t ∈ [0, T ]. In other words, roughly, x(t) ' 0 and u(t) ' 0, except around t = 0 and t = T .

Now, let us take into account the dynamics in y and the terminal conditions on y. We observe
that we are not anymore in the framework of Theorem 1, because there is no term in y(t)2 in the
cost and therefore the matrix W is not positive definite. We define the “static” optimal control
problem as

min{x2 + u2 | (x, u) ∈ IR× IR, u = 0, Tx = yT1 } (16)

i.e., with respect to the previous static problem, we add the terminal constraints coming from the
dynamics in y: the unique solution of the Cauchy problem ẏ(t) = x (with x constant), y(0) = 0,
must satisfy y(T ) = yT1 .

It is easy to check that the (unique) optimal solution of (16) is x̄ =
yT1
T , ū = 0, with Lagrange

multipliers p̄x = 0 associated with the constraint u = 0, and p̄y =
yT1
T associated with the constraint

x =
yT1
T (which are normal; here, we take p0 = −1/2). The corresponding trajectory in y is

ȳ(t) =
yT1
T t (and we have ȳ(T ) = yT1 ). For this example, we expect that, if T > 0 is large, then

x(t) ' 0, u(t) ' 0 and y(t) ' ȳ(t) for t ∈ [0, T ], where the order of this approximation is to be
determined, what we do hereafter by explicit calculations.

Let us apply the Pontryagin maximum principle to (15). The Hamiltonian is H = pxu+ pyx−
1
2 (x2 + u2) (there is no abnormal minimizer). Then u(t) = px(t) and the extremal system is

ẋ(t) = px(t), ẏ(t) = x(t), ṗx(t) = x(t)− py

6



with py constant. We have then

d

dt

(
x(t)− py
px(t)

)
=

(
0 1
1 0

)(
x(t)− py
px(t)

)
d

dt
y(t) = x(t)

In particular, the dynamics in (x − py, px) is hyperbolic: setting v(t) = x(t) − py + px(t) and
w(t) = x(t)− py − px(t), we have

v̇(t) = v(t), ẇ(t) = −w(t)

with terminal conditions v(0) + w(0) = 2 − 2py, v(T ) + w(T ) = 4 − 2py. The solutions of this
differential system are given by the familiar phase portrait around a saddle point, and we infer
that

|v(t)|+ |w(t)| = O(e−t + e−(T−t)) + O(|py|(e−t + e−(T−t)))

for every t ∈ [0, T ], where the O(·) is uniform with respect to T , and thus

|x(t)− py|+ |px(t)| = O(e−t + e−(T−t)) + O(|py|(e−t + e−(T−t))).

In particular,
x(t) = py + O(e−t + e−(T−t)) + O(|py|(e−t + e−(T−t)))

and, integrating ẏ(t) = x(t) we obtain y(t) = pyt + O(1) + O(|py|) for every t ∈ [0, T ]. Since
y(T ) = yT1 , we obtain that

py =
yT1
T

+ O

(
1

T

)
+ O

(
|py|
T

)
,

and since yT1 is sublinear at infinity, we conclude that

py = p̄y + O

(
1

T

)
.

Therefore

x(t) =
yT1
T

+ O

(
1

T
+ e−t + e−(T−t)

)
= x̄+ O

(
1

T
+ e−t + e−(T−t)

)
and

y(t) =
yT1
T
t+ O(1) = ȳ(t) + O(1)

for every t ∈ [0, T ]. In turn, we have also px(t) = O(e−t + e−(T−t)).
We conclude that there exists C > 0 such that

|x(t)− x̄| 6 C

(
1

T
+ e−t + e−(T−t)

)
|u(t)− ū|+ |px(t)− p̄x| 6 C

(
e−t + e−(T−t)

)
|y(t)− ȳ(t)| 6 C

|py − p̄y| 6
C

T

(17)

for every t ∈ [0, T ]. With respect to the conclusion of Theorem 1, we see on this example that we
do not have an exponential turnpike phenomenon for the component x(t): the above inequality is
weaker; it says that, except around t = 0 and t = T , x(t) is bounded by 1

T (which is small as T is
large), while the component y(t) remains in a bounded neighborhood of ȳ(t).

In what follows, we are going to generalize the above example.
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1.2.3 Main result

As in Section 1.1, we assume that there exists a unique optimal solution (x(·), y(·), u(·)) of (12)-
(13)-(14). With respect to (1)-(2), the Hamiltonian of (12)-(13)-(14) is now

H(x, y, px, py, p
0, u) = 〈px, f(x, u)〉+ 〈py, g(x, u)〉+ p0f0(x, u).

Assuming as well that the optimal solution has a unique extremal lift, which is not abnormal (so
that we take p0 = −1), the application of the Pontryagin maximum principle leads to the existence
of absolutely continuous mappings px(·) : [0, T ]→ IRn and py(·) : [0, T ]→ IRp such that

ẋ(t) =
∂H

∂px
(x(t), y(t), px(t), py(t),−1, u(t)) = f(x(t), u(t))

ẏ(t) =
∂H

∂py
(x(t), y(t), px(t), py(t),−1, u(t)) = g(x(t), u(t))

ṗx(t) = −∂H
∂x

(x(t), y(t), px(t), py(t),−1, u(t))

= −∂f
∂x

(x(t), u(t))>px(t)− ∂g

∂x
(x(t), u(t))>py(t) +

∂f0

∂x
(x(t), u(t))>

ṗy(t) = −∂H
∂y

(x(t), y(t), px(t), py(t),−1, u(t)) = 0

(18)

and

∂H

∂u
(x(t), y(t), px(t), py(t),−1, u(t))

=
∂f

∂u
(x(t), u(t))>px(t) +

∂g

∂u
(x(t), u(t))>py(t)− ∂f0

∂x
(x(t), u(t))> = 0 (19)

for almost every t ∈ [0, T ]. Note that py(t) = py ∈ IRp is constant.

With respect to (6), the “static” optimal control problem is now the following one:

min
{
f0(x, u) | (x, u) ∈ IRn × IRm, f(x, u) = 0

ẏ(t) = g(x, u), y(0) = y0, y(T ) = yT1

} (20)

where we have added the constraint coming from the dynamics and terminal conditions in y. As be-
fore, we assume that there exists a unique optimal solution (x̄, ȳ, ū) of (20) and that it has a unique
extremal (Lagrange multiplier) lift, which is not abnormal. Integrating the differential equation in
(20), noting that (x, u) is constant, the “static” optimal control problem (20) is equivalent to

min

{
f0(x, u) | (x, u) ∈ IRn × IRm, f(x, u) = 0, g(x, u) =

yT1 − y0
T

}
(21)

which is a classical optimization problem under equality constraints. The Lagrange multiplier rule,
applied to the solution (x̄, ȳ, ū) of this optimization problem, implies (since it is assumed not to be
abnormal) that df0(x̄, ū) can be expressed linearly in function of df(x̄, ū) and dg(x̄, ū). In the next
lemma, we write these conditions in an equivalent Hamiltonian form, which is more complicated
but is exactly devised to be comparable with (18).
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Lemma 1. There exist p̄x ∈ IRn and p̄y ∈ IRp such that, for every t ∈ [0, T ],

0 =
∂H

∂px
(x̄, ȳ(t), p̄x, p̄y,−1, ū) = f(x̄, ū)

˙̄y(t) =
∂H

∂py
(x̄, ȳ(t), p̄x, p̄y,−1, ū) = g(x̄, ū), ȳ(0) = y0, ȳ(T ) = yT1

0 = −∂H
∂x

(x̄, ȳ(t), p̄x, p̄y,−1, ū) = −∂f
∂x

(x̄, ū)>p̄x −
∂g

∂x
(x̄, ū)>p̄y +

∂f0

∂x
(x̄, ū)

0 = −∂H
∂y

(x̄, ȳ(t), p̄x, p̄y,−1, ū)

and
∂H

∂u
(x̄, ȳ(t), p̄x, p̄y,−1, ū) =

∂f

∂u
(x̄, ū)>p̄x +

∂g

∂u
(x̄, ū)>p̄y −

∂f0

∂u
(x̄, ū) = 0.

This lemma follows by applying the Lagrange multiplier rule to the optimization problem (21)
(see also Lemma 2 in Section 2).

We observe that ȳ(t) = y0 + tg(x̄, ū) and therefore y0 + Tg(x̄, ū) = yT1 . When g(x̄, ū) 6= 0, this
can only be if the norm of yT1 − y0 is large, as T is large. In the proof of the turnpike theorem
hereafter, we are going to consider T as a parameter, tending to +∞. This is why we have put a
superscript T in yT1 : we indeed want to underline that, when T becomes larger, it is required that
yT1 − y0 becomes larger as well (otherwise, the controllability problem may have no solution).

We use the same notations as before, and additionally, we set

Ā2 = Hpyx =
∂g

∂x
(x̄, ū), B̄2 = Hpyu =

∂g

∂u
(x̄, ū), A2 = Ā2 + B̄2U

−1Hux,

Ā =

(
Ā1

Ā2

)
=

(
∂f
∂x (x̄, ū)
∂g
∂x (x̄, ū)

)
, B̄ =

(
B̄1

B̄2

)
=

(
∂f
∂u (x̄, ū)
∂g
∂u (x̄, ū)

)
.

In our main result hereafter, we make all assumptions done in Theorem 1 and we adapt them in an
obvious way to the present context where the turnpike set is not anymore the singleton {x̄}, but is
now the trajectory t 7→ (x̄, ȳ(t)). For instance, the controllability assumption (iv) now stipulates
that there exists a trajectory steering in finite time some point of the initial set M0 to some point
of the turnpike trajectory, and that any point of the turnpike trajectory can be steered in finite
time to the final set M1.

Theorem 2. In addition to the assumptions done in Theorem 1, we assume that:

• ker(Ā>) ∩ ker(B̄>) = {0};2

• there exist C1 > 0 and T0 > 0 such that ‖yT1 ‖ 6 C1T for every T > T0.

Then, there exist C > 0 and ν > 0 such that if T > T0 then

‖x(t)− x̄‖+ ‖px(t)− p̄x‖+ ‖u(t)− ū‖ 6 C

(
1

T
+ e−νt + e−ν(T−t)

)
‖y(t)− ȳ(t)‖ 6 C, ‖py − p̄y‖ 6

C

T

(22)

for every t ∈ [0, T ].

2This condition is satisfied if the pair (Ā, B) satisfies the Kalman condition, i.e., rank(B, ĀB, . . . , Ān+p−1B) =
n + p, or in other words, if the linearized system at (x̄, ū) is controllable.
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The first estimate in (22) states that, except around t = 0 and t = T , the discrepancies x(t)− x̄,
px(t)− p̄x and u(t)− ū are bounded above by 1

T , which is small as T is large, but not exponentially
small: it is weaker than (11), and we speak of a linear turnpike estimate. The second estimate
in (22) gives a bound (uniform with respect to T ) on the discrepancy y(t)− ȳ(t) along the whole
interval [0, T ]: it says that y(t) remains at a uniform distance of ȳ(t) = y0 + tg(x̄, ū) as t ∈ [0, T ].
Finally, the third estimate in (22) says that the constant py − p̄y is (linearly) small as T is large.

Of course, on specific examples it may happen that some of the components of the extremal
triple (x(·), p(·), u(·)) enjoy the exponential turnpike property, i.e., an estimate that is stronger than
(22), without the term 1

T at the right-hand side. This is the case in the example (15): one can see
in (17) that the component x satisfies the linear turnpike estimate (22), while the components px
and u satisfy the stronger exponential turnpike estimate (11).

Remark 4. As said earlier, to simplify exposition we have assumed that, for every T > T0,
the optimal control problem (12)-(13)-(14) has a unique solution, whose extremal lift is as well
unique and normal, and that the static optimal control problem (21) has a unique solution, whose
Lagrange multiplier is as well unique and normal. In case the optimal solution is not unique, or
the extremal lift (still assumed to be normal) is not unique, the statement of Theorem (2) must
be adapted as in [29]: we obtain in this case a result that is satisfied locally around the extremal
triple.

Anyway, when the optimal control problem (12)-(13)-(14) is linear-quadratic,

ẋ(t) = Ā1x(t) + B̄1u(t), x(0) ∈M0, x(T ) ∈M

ẏ(t) = Ā2x(t) + B̄2u(t), y(0) = y0, y(T ) = yT1

min

∫ T

0

(
x(t)>Wx(t) + u(t)>Uu(t)

)
dt

(23)

i.e., when f(x, u) = Ā1x + B̄1u, g(x, u) = Ā2x + B̄2u, f0(x, u) = x>Wx + u>Uu, the result of
Theorem 2 is automatically global, by strict convexity, without having to assume any dissipativity
property.

Theorem 2 is proved in Section 2. In Section 3 we give several optimal control problems that
illustrate our main result and we provide numerical simulations showing evidence of the linear
turnpike phenomenon.

2 Proof of Theorem 2

2.1 Preliminaries on the static optimal control problem

Let us consider the static optimal control problem (20), written in the form of the optimization
problem (21): in the latter form, the optimization problem is “well-conditioned” in the sense that
the constraints in (x, u) are of the order of 1 as T is large. This observation is important to derive
the lemma below.

For the minimizer (x̄, ū) (which is assumed to exist and to be unique), we denote by p̄x ∈ IRn

and p̄y ∈ IRp the (normal) Lagrange multipliers respectively associated to the two constraints.
Note that (x̄, ū, p̄x, p̄y) depends on T but we do not add an index T to keep better readability.

Lemma 2. We have
(x̄, ū, p̄x, p̄y) = O(1)

as T → +∞.
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Proof. By the Lagrange multiplier rule, we have the optimality system

F (x̄, ū, p̄x, p̄y) =

df(x̄, ū)>p̄x + dg(x̄, ū)>p̄y − df0(x̄, ū)>

f(x̄, ū)
g(x̄, ū)

 =

 0
0

yT1 −y0
T


which is a system of 2n + m + p equations with the 2n + m + p unknowns (x̄, ū, p̄x, p̄y), where
F : IR2n+m+p → IR2n+m+p is a C1 mapping. The Jacobian of F at the point (x̄, ū, p̄x, p̄y), which
is the usual sensitivity matrix in optimization, is

dF (x̄, ū, p̄x, p̄y1 , p̄y2) =


Hxx Hxu Hxpx Hxpy

Hux Huu Hupx Hupy

Hpxx Hpxu 0 0
Hpyx Hpyu 0 0

 =

(
E1 E>2
E2 0

)

Note that

E2 =

(
∂f
∂x (x̄, ū) ∂f

∂u (x̄, ū)
∂g
∂x (x̄, ū) ∂g

∂u (x̄, ū)

)
=
(
Ā B

)
and since ker(Ā>) ∩ ker(B̄>) = {0} by assumption, it follows immediately that the matrix E2 is
surjective.

Besides, let us prove that the matrix E1 is invertible. If E1

(
ξ1
ξ2

)
= 0 then Hxxξ1 +Hxuξ2 = 0

and Huxξ1 + Huuξ2 = 0. From the latter equation, we get ξ2 = −H−1uuHuxξ1, and plugging
into the first equation yields (Hxx − HxuH

−1
uuHux)ξ1 = 0. Since, by assumption, the matrix

W = −Hxx +HxuH
−
uu1Hux is symmetric positive definite, we infer that ξ1 = 0, and then ξ2 = 0.

Therefore E1 is invertible.
Now, since E1 is invertible and E2 is surjective, we conclude that dF (x̄, ū, p̄x, p̄y) is invertible.

The assumption on yT1 done in the statement of Theorem 2 states that
yT1 −y0
T = O(1) as T → +∞.

Hence, we have to solve the nonlinear system of equations F (x̄, ū, p̄x, p̄y) = O(1). The lemma
follows by applying the implicit function theorem.

2.2 Perturbation variables

Let us now introduce perturbation variables, by setting

δx(t) = x(t)− x̄, δy(t) = y(t)− ȳ(t), δpx(t) = px(t)− p̄x, δpy = py − p̄y, δu(t) = u(t)− ū.

In these variables, we have the terminal conditions

δx(0) ∈M0 − x̄, δy(0) = 0, δx(T ) ∈M1 − x̄, δy(T ) = 0. (24)

Using Lemma 2, we note the important fact that all terminal values δx(0), δy(0), δpx(0), δpy,
δx(T ), δy(T ), δpx(T ), are at most of the order of 1 as T is large.

Linearizing (19) and then (18) along (x̄, ȳ(t), p̄x, p̄y, ū), we get, at the first order (i.e., neglecting
the terms of order > 2),

δu(t) = U−1
(
Huxδx(t) + B̄>1 δpx(t) + B̄>2 δpy

)
and then, still at the first order,

δẋ(t) = A1δx(t) + B̄1U
−1B̄>1 δpx(t) + B̄1U

−1B̄>2 δpy

δẏ(t) = A2δx(t) + B̄2U
−1B̄>1 δpx(t) + B̄2U

−1B̄>2 δpy

δṗx(t) = Wδx(t)−A>1 δpx(t)−A>2 δpy

11



where we recall that δpy is constant. Setting

z(t) =

(
δx(t)
δpx(t)

)
and defining the matrices

M =

(
A1 B̄1U

−1B̄>1
W −A>1

)
, V =

(
−B̄1U

−1B̄>2
A>2

)
, L =

(
A2 B̄2U

−1B̄>1
)
, (25)

we write the above system in the form

ż(t) = Mz(t)− V δpy (26)

δẏ(t) = Lz(t) + B̄2U
−1B̄>2 δpy (27)

When Hux = 0, this corresponds exactly to the extremal system associated with the linear-
quadratic optimal control problem (23).

We have the following spectral property for the matrix M .

Lemma 3. The matrix M is hyperbolic, i.e., all (complex) eigenvalues of M have a nonzero real
part.

Proof. Let µ ∈ IR and let ξ ∈ C2n be such that (M − iµI)ξ = 0. Let us prove that ξ = 0. Denoting
by (ξ1, ξ2) the coordinates of z, we have

(A1 − iµIn)ξ1 + B̄1U
−1B̄>1 ξ2 = 0

Wξ1 − (A>1 + iµIn)ξ2 = 0
(28)

We stress that all matrices above are real, but the coordinates (ξ1, ξ2) are complex. The second
equation in (28) gives ξ1 = W−1(A>1 + iµIn)ξ2, and plugging this expression in the first equation
of (28) yields

(A1 − iµIn)W−1(A>1 + iµIn)ξ2 + B̄1U
−1B̄>1 ξ2 = 0

and multiplying this equality, to the left, by the complex conjugate ξ̄>1 , gives

‖W−1/2(A>1 + iµIn)ξ2‖2 + ‖U−1/2B̄>1 ξ2‖2 = 0 (29)

Note that here, we have used that the complex conjugate of A1−iµIn is (A1 − iµIn)
>

= A>1 +iµIn.
The norms and scalar product used in (29) are Hermitian. Now, (29) implies that (A>1 +iµIn)ξ2 = 0
and B̄>1 ξ2 = 0, i.e.,

ξ2 ∈ ker(A>1 + iµIn) ∩ ker(B̄>1 ). (30)

Since the pair (A1, B̄1) satisfies the Kalman condition (see Foonote 1 in Theorem 1), we have
ker(A>1 − λIn) ∩ ker(B̄>1 ) = {0} for every λ ∈ C (Hautus test, see, e.g., [23, 25]). Then, (30) gives
ξ2 = 0.

The second equation of (28) gives then ξ1 = 0. We conclude that ξ = 0.

Since M is hyperbolic, first of all, it is invertible and then (26) can be written as

d

dt

(
z(t)−M−1V δpy

)
= M

(
z(t)−M−1V δpy

)
.

Second, there exists a real-valued invertible matrix P of size 2(n+ p) such that

P−1MP =

(
M1 0
0 M2

)
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where all (complex) eigenvalues of the real-valued matrix M1 have a negative real part and all
(complex) eigenvalues of the real-valued matrix M2 have a positive real part. Setting3

z(t)−M−1V δpy = P

(
v1(t)
v2(t)

)
we have then v̇1(t) = M1v1(t) and v̇2(t) = M2v2(t). Since all complex eigenvalues of M1 (resp., of
M2) have a negative (resp., positive) real part, there exist C > 0 and ν > 0 (not depending on T )
such that ‖v1(t)‖ 6 Ce−νt and ‖v2(t)‖ 6 Ce−ν(T−t) for every t > 0.

Noting (by using (24)) that z(0)−M−1V δpy = O(1) and z(T )−M−1V δpy = O(1) as T → +∞,
we get (taking a larger constant C if necessary) that

‖z(t)−M−1V δpy‖ 6 C
(
e−νt + e−ν(T−t)

)
∀t ∈ [0, T ]. (31)

Now, integrating (27), using that
∫ T
0
e−νt dt 6 1

ν for every T > 0, and defining the square
matrix of size p

R = LM−1V + B̄2U
−1B̄>2 (32)

we infer from (31) that (taking a larger constant C if necessary)

‖δy(t)− tR δpy‖ 6 C ∀t ∈ [0, T ]. (33)

Since we must have δy(T ) = 0 (this comes from (24), itself coming from the final condition
y(T ) = yT1 on the component y), we infer that

‖Rδpy‖ 6
C

T
. (34)

We have the following instrumental fact.

Lemma 4. The matrix R defined by (32) is symmetric positive definite, and thus is invertible.

Lemma 4 is proved in Section 2.3.
It follows from (34) and from Lemma 4 that (taking a larger constant C if necessary) ‖δpy‖ 6 C

T .
Let us then finish the proof of Theorem 2. Since δpy2 = O

(
1
T

)
, taking a larger constant C if

necessary, we infer from (31) and (33) that

‖z(t)‖ 6 C

(
1

T
+ e−νt + e−ν(T−t)

)
, ‖δy(t)‖ 6 C ∀t ∈ [0, T ]

which gives the estimates stated in Theorem 2 at the first order around (x̄, ȳ(t), p̄x, p̄y).
Until now we have kept only the first-order terms, in the linearization process. To take into

account the higher-order terms, as well as the general terminal conditions x(0) ∈M0, x(T ) ∈M1,
y(0) = y0, y(T ) = y1 and the corresponding transversality conditions (4), we have to prove that,
locally around the minimizer of the static problem, the corresponding shooting problem is locally
well posed. Since this part of the proof is exactly the same as in [29, end of Section 3.2], we do
not reproduce it here.

3Actually, since the matrix M is Hamiltonian (see [29] for some remarks on this issue), the size of v1 is equal to
the size of v2 (equal to n + p).
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From local to global. At this step, the turnpike property has been established locally around
(x̄, ȳ(t), p̄x, p̄y). Let us now prove that the turnpike estimate is global. We sketch hereafter the
argument. It suffices to prove that the unique solution (x(·), y(·), px(·), py(·), u(·)) of the optimal
control problem (12)-(13)-(14) passes arbitrarily close to the turnpike set (x̄, ȳ(·), p̄x, p̄y) as T is
large: indeed, along such a time interval, the turnpike inequality is true thanks to the above proof;
and thus, taking larger constants if necessary (which is possible by compactness, see Assumption
(i) in Theorem 1), the turnpike inequality remains true along the whole interval [0, T ], uniformly
with respect to T . By uniqueness of the extremal lift (see Assumptions (i) and (ii)), it suffices
to show that x(·) passes arbitrarily close to x̄ as T is large. This property follows from the
strict dissipativity assumption (iii) and from the controllability assumption (iv). Indeed, the strict
dissipativity inequality (10) implies that

f0(x̄, ū) 6
1

T

∫ T

0

f0(x(t), u(t)) dt+
S(x(0))− S(x(T ))

T
− 1

T

∫ T

0

α (‖x(t)− x̄‖, ‖u(t)− ū‖) dt

Let us prove by contradiction that x(·) passes near x̄. Otherwise, this means that the term
1
T

∫ T
0
α (‖x(t)− x̄‖, ‖u(t)− ū‖) dt is of the order of 1 and we infer from the above inequality that

f0(x̄, ū) 6 1
T

∫ T
0
f0(x(t), u(t)) dt − η for some η > 0. Besides, by the controllability assumption

(iv), there exists a trajectory x1(·), solution of (1) on [0, T ], such that x1(0) ∈ M0, x1(δ1) = x̄,
then x1(t) ≡ x̄ on [δ1, T − δ2], and x1(T ) ∈M1. The cost of this trajectory is

1

T

∫ T

0

f0(x1(t), u1(t)) dt =
1

T

∫ δ1

0

f0(x1(t), u1(t)) dt+
1

T

∫ T

T−δ2
f0(x1(t), u1(t)) dt

+
T − δ1 − δ2

T
f0(x̄, ū) = f0(x̄, ū) + O

(
1

T

)
as T is large, and hence we have obtained a trajectory x1(·) whose cost is (strictly) less than the
cost of the optimal trajectory x(·): this is a contradiction.

Remark 5. In (12)-(13)-(14), the dynamics in y is written as ẏ(t) = h(x(t), y(t), u(t)) with
h(x, y, u) = g(x, u): the mapping h does not depend on y. Our strategy of proof would not apply to
a general mapping h, depending on y. Indeed, otherwise, when linearizing ẏ(t) = h(x(t), y(t), u(t))
along the path (x̄, ȳ(t), ū), we would get δẏ(t) = A2δx(t) + B̄2δu(t) + Q(t)δy(t) where Q(t) =
∂h
∂y (x̄, ȳ(t), ū) depends on t and thus the matrix M defined by (25) would as well depend on t

(anyway, only through the part in Q). The argument of hyperbolicity, then, cannot be applied in
general, in particular we think that it may fail whenever the eigenvectors of Q(t) are oscillating
too fast. Nevertheless, we think that the technique of proof may be extended to the case where
t 7→ Q(t) is slowly-varying, as in the context of control or stabilization by quasi-static deformation
(see [8] and references therein). We leave this issue open.

2.3 Proof of Lemma 4

Let us first express the matrix R, defined by (32), in a more explicit way. Recall that

R =
(
A2B̄2U

−1B̄>1
)
M−1

(
−B̄1U

−1B̄>2
A>2

)
+ B̄2U

−1B̄>2 with M =

(
A1 B̄1U

−1B̄>1
W −A>1

)
.

We set (
C1

C2

)
= M−1

(
−B̄1U

−1B̄>2
A>2

)
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so that

A1C1 + B̄1U
−1B̄>1 C2 = −B̄1U

−1B̄>2

WC1 −A>1 C2 = A>2
(35)

Since W is invertible, we infer from the second equation of (35) that C1 = W−1A>1 C2 +W−1A>2 ,
and plugging this expression into the first equation of (35) gives(

A1W
−1A>1 + B̄1U

−1B̄>1
)
C2 = −A1W

−1A>2 − B̄1U
−1B̄>2 (36)

Lemma 5. The matrix A1W
−1A>1 + B̄1U

−1B̄>1 is invertible.

Proof. Let ξ ∈ IRn be such that
(
A1W

−1A>1 + B̄1U
−1B̄>1

)
ξ = 0. Multiplying to the left by ξ>,

we obtain ‖W−1/2A>1 ξ‖2 + ‖U−1/2B̄>1 ξ‖2 = 0 and hence ξ ∈ ker(A>1 ) ∩ ker(B̄>1 ). As in the proof
of Lemma 3, since the pair (A1, B̄1) satisfies the Kalman condition, the latter intersection is {0}.
The claim follows.

We infer from (36) and from Lemma 5 that

C2 = −
(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
and thus

C1 = −W−1A>1
(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
+W−1A>2 .

We conclude that

R = −
(
A1W

−1A>2 + B̄1U
−1B̄>2

)> (
A1W

−1A>1 + B̄1U
−1B̄>1

)−1 (
A1W

−1A>2 + B̄1U
−1B̄>2

)
+A2W

−1A>2 + B̄2U
−1B̄>2

(note that R is symmetric) that we can write as the sum of two symmetric matrices

R = A2W
−1/2

(
−W−1/2A>1

(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1
A1W

−1/2 + In

)
W−1/2A>2

+ B̄2U
−1/2

(
−U−1/2B̄>1

(
A1W

−1A>1 + B̄1U
−1B̄>1

)−1
B̄1U

−1/2 + Im

)
U−1/2B̄>2

= Ã2

(
−Ã>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1
Ã1 + In

)
Ã>2 + B̃2

(
−B̃>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1
B̃1 + Im

)
B̃>2

where we have set Ãi = AiW
−1/2 and B̃i = B̄iU

−1/2 for i = 1, 2, and we are going to prove
hereafter that the above two matrices are symmetric positive definite, so that R is itself symmetric
positive definite.

We have the following general result.

Lemma 6. Let A be an arbitrary real-valued square matrix of size n, and let B be an arbitrary real-
valued matrix of size n×m, where n and m are arbitrary nonzero integers. If ker(A>)∩ker(B>) =
{0} then

B>
(
AA> +BB>

)−1
B � Im (37)

meaning that the symmetric matrix Im −B>
(
AA> +BB>

)−1
B is positive semi-definite.
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Proof. Since ker(A>) ∩ ker(B>) = {0}, the matrix AA> + BB> is invertible (same argument as
in Lemma 5).

When B is invertible, the result is obvious: starting from

AA> +BB> � BB>,

taking the inverse and multiplying to the left by B> and to the right by B, we obtain (37).
When B is not invertible, we follow anyway the above reasoning, adding εIm for ε > 0 to

recover an appropriate invertibility property: starting from

AA> +BB> + εIm � BB> + εIm,

taking the inverse and multiplying to the left by B> and to the right by B, we obtain

B>
(
AA> +BB> + εIm

)−1
B � B>

(
BB> + εIm

)−1
B.

Now, we use the general fact that

B>
(
BB> + εIm

)−1
B −→

ε→0
Im

which is a consequence of the Tikhonov regularization in the Moore-Penrose pseudo-inverse theory
(see [24]). Then, taking the limit ε→ 0 gives (37).

Noting that ker(Ã>1 )∩ker(B̃>1 ) = {0} (this comes again from the Kalman condition on the pair
(A1, B̄1)), we infer from Lemma 6 that

Ã>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1
Ã1 � In and B̃>1

(
Ã1Ã

>
1 + B̃1B̃

>
1

)−1
B̃1 � Im.

Therefore R � 0, i.e., R is positive semi-definite.

3 Examples

In this section, we illustrate the linear turnpike phenomenon on several practical examples, with
numerical simulations. Hereafter, we compute numerically the optimal solutions either with a
direct method, using AMPL (see [12]) combined with IpOpt (see [30]), following a full discretization
of the problem, or with the variant of the shooting method introduced in [29]. In both cases, we
initialize the numerical method at the turnpike, thus guaranteeing its convergence.

3.1 The Zermelo problem

The Zermelo problem is a famous optimal control problem, often used as a simple model or exercise
to illustrate theory or practice of optimal control (see [25]). In this problem, we consider a boat
moving with constant speed along a river of constant width `, in which there is a current c(y). The
movement of the center of mass of the boat is governed by the control system

ẋ(t) = v cosu(t) + c(y(t)), x(0) = 0,

ẏ(t) = v sinu(t), y(0) = 0,

where v > 0 is the constant speed, and the control is the angle u(t) of the axis of the boat
with respect to the axis (0x) (see Figure 2). Given some T > 0 fixed, we consider the optimal
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Figure 1: Zermelo problem.

control problem of steering in time T this control system from M0 = {(0, 0)} to the final set
M1 = {y = `} (upper river), by maximizing the lateral deport x(T ), which is equivalent to

minimizing −
∫ T
0

(v cosu(t) + c(y(t))) dt.
We take T = 20, v = 1, L = 2 and c(y) = 3 + 0.2y(L− y). The current in the river is so strong

that we always have ẋ(t) > 0, whatever the control may be; hence x(t) is bound to be increasing.

Figure 2: Numerical results for the Zermelo problem

Solving the “static” problem (20) yields the turnpike trajectory x̄(t) = 5t, ȳ = 1, ū = 0. We
let the reader check that the assumptions of Theorem 2 are satisfied. We do not give any details
on the application of the Pontryagin maximum principle to this problem, which is easy (see, e.g.,
[25]). We just mention that px = 1 is constant. Here, our objective is to show evidence of the
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linear turnpike phenomenon, by assuming that T is large. The numerical results are reported on
Figure 2.

3.2 Optimal control model of a runner

Consider the runner model developed in [1, 2, 3], originating from [18]:

ẋ(t) = v(t) x(0) = 0, x(tf ) = d

v̇(t) = −v(t)

τ
+ f(t) v(0) = v0

ė(t) = σ − f(t)v(t) e(0) = e0, e(tf ) = 0, e(t) > 0

ḟ(t) = γ (u(t)(Fmax − f(t))− f(t)) 0 6 f(t) 6 Fmax

(38)

where d > 0 is the prescribed distance to run, e0 > 0 is the initial energy, τ > 0 is the friction
coefficient related to the runner’s economy, σ > 0 is a constant standing for the energetic equivalent
of the oxygen uptake V O2, Fmax > 0 is a threshold upper bound for the force f(t), γ > 0 is the
time constant of motor activation and u(t) ∈ [−M,M ] is the neural drive which is the control,
where M > 0 is some control bound. Here, x(t) is the distance travelled at time t by the runner,
v(t) the velocity, e(t) the anaerobic energy, and f(t) the propulsive force per unit mass. Actually,
the typical values of the initial energy e0 are such that the energy variable e(t) is decreasing. The
minimization criterion is

min

(
tf +

α

2

∫ tf

0

u(t)2 dt

)
(39)

where α > 0 is a fixed constant and the final time tf is free.
Although, in the optimal control problem (38)-(39), tf , v(tf ), f(0) and f(tf ) are let free, the

problem can be reparametrized by the distance s, with the change of variable t′(s) = dt
ds = 1

v(s) .

In terms of s, the optimal control problem is

v′(s) = −1

τ
+
f(s)

v(s)
v(0) = v0

e′(s) =
σ

v(s)
− f(s) e(0) = e0, e(d) = 0, e(s) > 0

f ′(s) =
γ

v(s)
(u(s)(Fmax − f(s))− f(s)) 0 6 f(s) 6 Fmax

min

∫ d

0

1

v(s)

(
1 +

α

2
u(s)2

)
ds

and now fits in the general framework developed in this paper.
Solving the “static” problem leads to ē(t) = e0 + (σ − f̄ v̄)t (we re-express it in function of t)

where

v̄ =
τ

2d

(
e0 +

√
e20 + 4

σd2

τ

)
, f̄ =

v̄

τ
=

1

2d

(
e0 +

√
e20 + 4

σd2

τ

)
, ū =

f̄

Fmax − f̄
.

For the numerical simulations, we take d = 1500, τ = 0.932, σ = 22, α = 10−5, Fmax = 8,
γ = 0.0025, v0 = 3, e0 = 4651. The distance run (1500 meters) is large enough so that we observe
the linear turnpike phenomenon. The numerical results are reported on Figure 3.

This runner optimal control problem has actually been the initial point for the present paper,
and the author warmly thanks Amandine Aftalion for having raised such an interesting problem.
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Figure 3: Numerical results for the Zermelo problem

A Appendix

This appendix is devoted to illustrate the comments done in Remark 1. We take a very simple
example and we give numerical simulations showing the competition between two global turnpikes,
or, at the level of the initialization of numerical methods, between local and global turnpikes.

We consider the one-dimensional optimal control problem

ẋ = −3x+ 3x3 + u, x(0) = x0, x(T ) = xf or free

min

∫ T

0

(
(x(t)− xd)2 + (u(t)− ud)2

)
dt

(40)

The corresponding static problem is

min
(x,u) | −3x+3x3+u=0

(
(x− xd)2 + (u− ud)2

)
. (41)

A.1 Competition between two (global) turnpikes

We take xd = 1 and ud = 3.47197. The choice of ud is done so that the static problem (41) has
two global minima, at x̄1 = −1.347372066 and x̄2 = 0.5939615956, see Figure 4.
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Figure 4: Plot of the function x 7→ (x− 1)2 + (3x− 3x3 − 3.47197)2

On Figure 5, in dashed blue, we have computed the optimal trajectory with x0 = −5, xf = −1,
T = 10: we observe a turnpike phenomenon around x̄1. In solid red, we have computed the optimal
trajectory with x0 = 2, xf = 1, T = 10: we observe a turnpike phenomenon around x̄2.

Figure 5: Global turnpikes around x̄1 and x̄2.

The fact that the turnpike phenomenon is either around x̄1 or around x̄2 depends on the
terminal conditions. For instance, if x0 and xf are close to x̄1 (resp., x̄2) then the optimal trajectory
will make a turnpike around x̄1 (resp., x̄2). But when the terminal conditions are farther, it is not
clear to predict the behavior of the optimal trajectory.

Since the minima are global, we expect to observe a competition between both turnpikes,
depending on the terminal conditions (see [22]). Let us provide some numerical simulations illus-
trating this competition. To facilitate the understanding, we consider the problem with xf free.
It is interesting to note that the numerical result strongly depends on the initialization of the
numerical method. Here, to compute numerically the optimal solutions of (40), we use AMPL (see
[12]) combined with IpOpt (see [30]): the trajectory and the controls are discretized (the control
is piecewise constant and the trajectory is piecewise linear, on a given subdivision that is chosen
fine enough), and we initialize the trajectory with the same constant value over all the subdivision.

20



Then according to the value of this initialization, we can make emerge such or such turnpike, and
all solutions are anyway optimal.

Figure 6: x0 = −2, xf free, T = 20.

On Figure 6, we have taken T = 20, x0 = −2 (and xf is let free). In dashed blue, we have initial-
ized the trajectory to the constant trajectory x̄1, and we then obtain an optimal trajectory which
stays essentially near x̄1 = −1.347372066, with a kind of “hesitation” towards x̄2 = 0.5939615956
near the end. In solid red, we have initialized the trajectory to the constant trajectory x̄2, and
we obtain a trajectory staying essentially near x̄2, with a kind of “hesitation” towards x̄1 near the
beginning. We stress that the two solutions are optimal: both have a cost C ' 6.2822. This is
so, because we have taken T = 20, which is large enough. We could make emerge other similar
trajectories, which “hesitate” between the two turnpikes. All of them are optimal, or, at least,
“quasi-optimal” (there is a small error due to switches from one turnpike to the other).

A.2 Local versus global turnpike

We take xd = 1 and ud = 1. The choice of ud is now such that the static problem (41) has
a unique global solution x̄ = 0.781538640850898, see Figure 7. But it has also a local solution
x̄loc = −1.10551208794920.

The global minimum x̄ is a global turnpike, while the local minimum x̄ is a local turnpike. In the
numerical simulations, when performing either an optimization or a Newton method (shooting),
we compute local solutions. Hence, we must expect that the numerical results depend on the
initialization. To check global optimality, we have to compare the costs.

On Figure 8, in dashed blue, we have initialized the code with the constant trajectory x̄loc. We
observe a turnpike around x̄loc = −1.10551208794920. The cost is C ' 7.008. But this is a local
turnpike only. This trajectory that we obtain is only locally optimal, and is not globally optimal.
In solid red, we have initialized the code with the constant trajectory x̄. We observe a turnpike
around x̄ = 0.781538640850898. The cost is C ' 3.825 and is lower than the one of the previous
one. Here, we have actually computed the globally optimal trajectory. This is the global turnpike.

It is also interesting to see what happens if we take T much smaller. Let us take T = 2. On
Figure 9, in dashed blue, we have initialized the code with the constant trajectory x̄. We observe a
trend to the turnpike around x̄ = 0.781538640850898. The cost is C ' 17.792. But this trajectory,
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Figure 7: Plot of the function x 7→ (x− 1)2 + (3x− 3x3 − 1)2

Figure 8: x0 = −2, xf = −1, T = 10.

now, is not globally optimal. In solid red, we have initialized the code with the constant trajectory
x̄loc. We observe a turnpike around x̄loc = −1.347372066. The cost is C ' 16.322. It is the
globally optimal trajectory.

We can search a time 2 < Tc < 10 for which both previous initializations give equivalent
turnpikes around x̄loc and x̄ (with same cost). This is done hereafter. What is important is that,
in large time T , we have indeed the global turnpike around x̄.

On Figure 10, at the left, the code is initialized with x(t) ≡ −1.1, in order to promote the
turnpike around x̄loc = −1.347372066. At the right, the code is initialized with x(t) ≡ 0.78, in
order to promote the turnpike around x̄ = 0.781538640850898. We have computed trajectories for
the following successives values of T : 2.5, 2.7, 2.9, 3.1, 3.3. We observe that the blue and cyan
trajectories at the top are optimal (see the value of their cost); and that the red, green and black
trajectories at the bottom are optimal. The bifurcation occurs around T = 2.9.

Finally, on Figure 11, we represent the global optimal trajectory. For T . 2.9, the global
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Figure 9: x0 = −2, xf = −1, T = 2.

Figure 10: x0 = −2, xf = −1

optimal trajectory makes a turnpike around x̄loc = −1.347372066, which is a local minimizer of
the optimal static problem. For T > 2.9 we have a bifurcation and the global optimal trajectory
makes a turnpike around x̄ = 0.781538640850898, which is the global minimizer of the optimal
static problem.
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[10] T. Faulwasser, L. Grüne, J.P. Humaloja, M. Schaller, The interval turnpike property for adjoints,
arXiv:2005.12120.

[11] T. Faulwasser, M. Korda, C.N. Jones, D. Bonvin, On turnpike and dissipativity properties of
continuous-time optimal control problems, Automatica J. IFAC 81 (2017), 297–304.

[12] R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A modeling language for mathematical programming,
Duxbury Press, Second edition (2002), 540 pages.
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