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ABSTRACT

The main goal of this work is to generate expressive
speech in different speaker’s voices for which no expres-
sive speech data is available. To do that, we propose to use
multiclass N-pair loss in end-to-end multispeaker expressive
Text-To-Speech (TTS) for improving the transfer of expres-
sivity to the target speaker’s voice. This augmentation of
the loss function during training paves the way to enhance
the latent space representation of emotions. The presented
approach condition tacotron based end-to-end system with
latent representation extracted from the expressivity encoder.
We have jointly trained the end-to-end (E2E) TTS with mul-
ticlass N-pair loss to discriminate between various emotions.

We experimented with two neural network architectures
for expressivity encoder namely global style token (GST) and
variational autoencoder (VAE). We transferred the expressiv-
ity using the mean of latent representation extracted from the
expressivity encoder for each emotion. The obtained results
show that adding multiclass N-pair loss based deep metric
learning in training process improves expressivity in the de-
sired speaker’s voice.

Index Terms— End-to-end TTS, metric learning, expres-
sivity, transfer learning

1. INTRODUCTION

With recent advancements in computational power, end-to-
end TTS systems can generate highly intelligible and natural
voice. The term expressivity in speech usually refers to the
characteristics of speech, such as emotions, speaking style,
the relationship of speech with gestures, and facial expres-
sion. Throughout this paper, we considered only the emo-
tional characteristics of expressivity in speech. Current end-
to-end TTS system heavily relied on a large amount of speech
corpus used for training the system [1]. Therefore, to build
expressive speech synthesis for a new speaker, we have to
create a speech corpus with various emotions. It is incon-
venient to record an expressive speech corpus every time we
want to build an expressive speech synthesis system for a new
speaker’s voice. Furthermore, creating an expressive speech
corpus is laborious and expensive in terms of workload. This
involves speech acquisition, labeling, alignment, and evalua-

tion of expressive speech corpus. It is inconvenient to record
an expressive speech corpus for the new speaker’s voice.

Many frameworks have been proposed for the implemen-
tation of expressivity transfer by interpolation either of latent
space of prosody or of prosody embedding [2, 3, 4, 5, 6, 7].
For controlling expressivity, these approaches enhance the
tacotron based TTS system by the addition of advanced deep
neural network architecture such as variational autoencoder
(VAE) [5], Gaussian mixture VAE [2], Global style token [3],
FLOW [8], etc.

The systems mentioned above have shown significant per-
formance in controlling expressivity but limited to emotive
storytelling style instead of emotions such as joy, sad, happy,
fear, anger, etc. For the transfer of expressivity for emotions,
very few approaches have addressed the usage of multiple
emotions. For instance, Deep convolutional TTS (DCTTS)
was trained with multiple emotions along with variational in-
ference [9]. Recently metric learning framework was intro-
duced in a parametric TTS system [10, 11] for transfer of
expressivity. In [10], the author proposed to build a recur-
rent conditional variational autoencoder based acoustic model
with multiclass N-pair [12]. This work was further extended
by the addition of Inverse Autoregressive Flow (IAF) for im-
plementing an encoder network of the acoustic model [11].

The above approaches indicate that the addition of multi-
class N-pair loss increases the perceived expressivity in the
target speaker’s voice. The above approaches have shown
promising results for acoustic modeling but still dependent
on the bottleneck step of the duration model. Also, synthe-
sizing various emotions need a change in phoneme duration.
In this paper, we present a novel metric learning framework
[13] jointly trained with a tacotron 2 based end-to-end TTS
system. This results in enhancing the latent representation
of expressivity for better transfer learning performance. The
representation of expressvity learned by encoder influences
the alignment of synthesized speech generated through atten-
tion.

The paper is organized as follows, Section 2 describes
multi-speaker expressive end-to-end TTS; Section 3 presents
details about data processing before training and speech cor-
pora used; Section 4 presents experimentation setup; results
are presented in Section 5,, Section 6 discussion and Section
7 conclusion.
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Fig. 1. End to End multispeaker expressive text to speech system

2. PROPOSED ARCHITECTURE

We extend a state-of-art Tacotron 2 model [14] based on se-
quence to sequence with attention module to implement end-
to-end multispeaker expressive TTS system. To work with
multiple speakers and expressvity, we extended Tacotron 2
approach by adding an expressivity encoder and a speaker
encoder. For a more detailed explanation of Tacotron 2 ar-
chitecture, refer to the work presented in [14].

2.1. General Framework

The proposed architecture takes input as text, which is then
converted to a sequence of phonemes. The text encoder pro-
cess this sequence of phonemes after passing through convo-
lutional layers proceeded by BLSTM based recurrent neural
network to get zt as a latent representation of text. The ref-
erence mel spectrogram is given to expressivity encoder to
extract the latent emotional information as expressive embed-
ding ze. For enabling a multispeaker setting, we provided
speaker identity to speaker encoder to create embedding, zs.
The speaker encoder network maps speaker index to non-
linear fixed dimensional speaker embedding.

Afterwards, zt, ze, and zs are concatenated and given as
input to location sensitive attention module, as illustrated in
Fig. 1. This assists end-to-end TTS to learn the alignment
between sequence of phonemes and desired Mel spectro-
gram. The decoder network is composed of prenet, BLSTM
based recurrent network and convolutional layer based post-
net. The decoder takes concatenated latent representation
of text, expressivity and speaker along with attention vector
to predict the Mel spectrogram frame by frame. This pre-
dicted mel spectrogram from prenet and recurrent network is
further passed through postnet, which improves the overall
reconstruction performance of Mel spectrogram.

2.2. Expressivity encoder

In this paper, we experimented with two neural network archi-
tecture for the implementation of expressivity encoder namely
Global Style Token (GST) [3] and Variational Autoencoder
(VAE) [5] as shown in Fig 1. The GST based expressiv-
ity encoder consists of a reference encoder, style attention,
and style embedding. The reference encoder maps prosody
of variable length mel spectrogram into a fixed-length vector,
which is passed to style attention layer. This layer applies a
multihead attention module to extract the similarity between
reference embedding and each token in style embedding as an
output of expressivity encoder. In this work, style embedding
ze weights represents the expressiveness of each emotion as a
stylistic factor to learn from reference embedding.

The second architecture for expressivity encoder is VAE
based composed of reference encoder and two feedforward
layers to generate mean and standard deviation of latent vari-
able ze. The reference encoder in VAE, generates hidden out-
put which is passed through feedforward layers to obtain la-
tent variable ze. This ze is obtained using a reparameteriza-
tion trick applied with mean and standard deviation. VAE
based framework suffer from Kublick Libler (KL) anneal-
ing problem in which reconstruction loss is suppressed by
KL loss term [15]. To avoid this, additional weight (close
to zero) is multiplied to KL loss and gradually increased over
the training epoch.

2.3. Multiclass N-pair loss

The expressivity encoder is jointly trained with end to end
TTS system. This assists in predicting Mel spectrogram out-
put in desired emotions. For the transfer of expressivity, we
use precomputed means of expressivity embeddings for each
emotion. Thus, during the inference phase, for a given mean



of latent variables of emotion, the system transfer expressive
attributes to the target speaker’s voice. The latent space repre-
sentation of unclustered emotion may lead to poor transfer of
expressivity. For better performance of expressivity transfer,
we need the tightly bounded representation of latent variables
of emotions. Therefore, we propose a novel metric learning
framework implemented using multiclass N-pair loss to fur-
ther enhance the expressivity representation.

The deep metric learning has gained popularity for solv-
ing discriminative tasks in computer vision and image pro-
cessing domain [16]. The deep metric learning framework
assists in the clustering of embeddings by reducing the dis-
tance between embeddings of positive class and increasing
distance between each negative classes. The multiclass N-pair
loss shown finer performance than triplet loss or contrastive
loss by considering embeddings of multiple negative classes
[12]. In the training phase, model needs to reduce the multi-
class N-pair loss function is given in Eq.1.

log(1 +

N−1∑
i=1

exp(z>e z−i − z>e z+)) (1)

In our approach, multiclass N-pair loss reduces the dis-
tance between latent variables of the same emotion class. This
loss criteria increases the intercluster distance from N1 neg-
ative samples and decreases the intracluster distance between
positive samples and training examples [10]. The positive ex-
ample refers to latent variables from the same emotion class
and negative samples correspond to examples of various emo-
tion classes. We provided the mean of latent variables of
emotion for sampling the positive example and the negative
examples. For N classes, z+ is a positive example and z−i
examples from negative classes as stated in Eq.1.

3. DATA PREPARATION

In this paper, we used 4 French Female speech synthesis cor-
pora for implementing end-to-end multispeaker expressive
TTS system. The speech corpora used are Lisa neutral speech
corpus (approx. 3hrs, in house speech synthesis corpus), SI-
WIS, neutral speech corpus (approx. 5hrs) [17], Synpaflex
speech corpus (approx. 7hrs) [18], and Caroline expressive
speech corpus [19]. Caroline’s expressive speech corpus con-
sists of 6 emotions namely joy, surprise, fear, anger, sadness,
and disgust (approx. 1hr for each emotion). Besides expres-
sive speech, Caroline speech corpus also has neutral speech
recorded for approximately 3hrs. Each speech corpus is split
into train, validation, and test sets in 80:10:10 ratio respec-
tively. In Synpaflex corpus, expressive speech samples are
available but due to an insufficient number of speech samples
for each emotion as well as the unbalanced distribution of
emotional speech samples, we used only the neutral voice of
Synpaflex in our work.

We used a sampling rate of 16000 Hz and extracted mel
spectrograms as acoustic features to be predicted by the end-
to-end TTS system. We applied STFT with an FFT length of
1024, hop length of 256, a window size of 1024, and extracted
Mel spectrograms using 80 Mel filters. As input features to
end-to-end TTS, we used a sequence of phonemes extracted
from the text. For French grapheme to phoneme conversion
SOJA-TTS tool (developed internally in the team) is used as
a front end text processor.

4. EXPERIMENTAL SETUP

For training end-to-end TTS system, we used the same model
parameters as explained in [3, 5, 14] for implementing the
Tacotron 2 system and expressivity encoders based on GST
and VAE. We used a 128 dimensional latent variable of ex-
pressivity for both GST and VAE. To avoid Kullback Leibler
(KL) annealing problem, before 150K training steps, we ap-
plied the weight of 0.0001 in every 200 steps. Afterward,
weight is increased by 0.00001 after every 500 steps. We
adopted a similar technique for fine-tuning with multiclass N-
pair loss, for which till 150K training steps a weight of 0 is
applied on multiclass N-pair loss, and afterward weight is in-
creased by 0.001 after every 200 steps.

We incorporated Waveglow [20] based neural vocoder
for synthesizing speech waveform and trained it on 4 French
speech synthesis corpora mentioned in Section 3. For evalu-
ating performance improvement obtained using the addition
of multiclass N-pair loss, we used an end-to-end TTS model
with GST and with VAE as baseline models. We compared
the baseline models with end to end TTS trained along with
multiclass N-pair loss for both expressivity encoders, GST,
and VAE.

5. RESULTS

5.1. Objective evaluation

We conducted an objective evaluation using Mel Cepstrum
Distortion (MCD), F0 Root Mean Squared Error (F0 RMSE),
and Voiced-Unvoiced error (VUV) between reference speech
samples and proposed end-to-end TTS systems. The objec-
tive evaluation results are presented in Table 1.

We opt for subjective evaluation to measure the perfor-
mance of transfer of expressivity, due to the unavailability of
reference emotional speech samples for Lisa, Siwis, and Syn-
paflex speech corpora.

5.2. Subjective evaluation

At first, we evaluated end-to-end (E2E) multispeaker expres-
sive TTS systems using Mean Opinion Score (MOS) [21]
based listening test. In this work, we used the absolute cat-
egory ranking scale, ranging from 1 to 5. Each listener had



Table 1. Objective evaluation for End-to-End TTS system
Model MCD F0 RMSE VUV error
E2E GST 5.12 24.10 10.41
E2E VAE 5.29 24.24 10.72
E2E GST N-pair 4.71 23.63 8.50
E2E VAE N-pair 4.82 23.70 9.10

Table 2. Subjective evaluation of End-to-End TTS system

Model MOS Speaker Expressive
MOS MOS

RCVAE 2.62 ± 0.5 2.40 ± 0.3 1.53 ± 0.3
RCVAE N-pair 2.97 ± 0.4 2.86 ± 0.3 1.93 ± 0.2
IAF N-pair 3.02 ± 0.4 2.93 ± 0.4 2.03 ± 0.3
E2E GST 3.51 ± 0.3 2.57 ± 0.2 3.05 ± 0.2
E2E VAE 3.38 ± 0.4 2.71 ± 0.3 3.12 ± 0.2
E2E GST N-pair 3.72 ± 0.4 2.65 ± 0.2 3.15 ± 0.4
E2E VAE N-pair 3.47 ± 0.3 2.83 ± 0.3 3.33 ± 0.3

to assign the score for synthesized speech utterances from a
scale of 1 as bad to 5 as excellent, considering intelligibility,
naturalness, and quality of speech utterance. Each listening
test consists of 10 randomly selected (from the test set) speech
utterances for each model. 14 French listeners participated in
this MOS test and results are displayed in Table 2 with an
associated 95% confidence interval.

The main goal of this work is to transfer the emotion
as expressive attributes to the target speaker’s voice without
altering the speaker’s voice characteristics. As there is no
possible way to extract quantitative results for evaluation of
transfer of expressivity without reference to expressive speech
samples, we opt for speaker MOS and expressive MOS as a
qualitative measure for expressivity transfer.

In speaker MOS, we instructed listeners to assign the
score between 1 (bad) and 5 (excellent) based on speaker
similarity between reference speaker speech and synthesized
expressive speech. Likewise, for expressive MOS, listeners
are directed to provide scores between 1 (bad) to 5 (excellent)
depending on how synthesized speech utterance resembles
the expressivity given in the reference speech utterance. A
total of 14 French listeners performed both listening tests
mentioned above, where each listener scored 18 speech utter-
ances for each speaker-emotion pair and model. The results
obtained through expressive MOS and speaker MOS are pre-
sented in Table 2 with associated 95% confidence intervals.

Apart from the presented E2E models, Table 2 also in-
cludes subjective scores obtained using the parametric mul-
tispeaker expressive TTS [10, 11], where RCVAE, RCVAE
N-pair and IAF N-pair are parameteric TTS systems.

6. DISCUSSION

We investigated the transfer of expressivity without the ex-
plicit need of reference mel spectrogram given to expressivity
encoder. From Table 2., the obtained MOS scores for each
E2E model are consistent with the objective evaluation score
in Table 1. The E2E GST N-pair model outperformed all
models, thus usage of multihead attention assists in speech
synthesis. The E2E GST N-pair model performance shows
that the addition of N-pair to expressivity encoder boosts the
model performance which can also be seen with the perfor-
mance of VAE based expressivity encoder.

The speaker MOS score of the E2E VAE N-pair model is
higher than with the other E2E models. The IAF N-pair based
parametric TTS performed slightly better than the E2E VAE
N-pair model for retaining speaker attributes. The IAF N-
pair model uses x-vector based speaker embedding for creat-
ing speaker representation [11]. This results in better speaker
representation than when only speaker identity is provided for
creating speaker embeddings. The E2E VAE N-pair model
obtains the highest expressive MOS score. This shows that
the E2E VAE N-pair model can generalize a better emotion
latent space using expressivity encoder than the E2E GST
N-pair model. In parametric based approaches, expressivity
transfer is conducted in acoustic space only, which lacks the
interpolation in duration prediction. Thus, the E2E TTS sys-
tem not only influences the prosody of synthesized speech but
also the alignment of synthesized speech for each emotion.

7. CONCLUSION

We proposed to use multiclass N-pair loss on latent represen-
tation extracted using expressivity encoder to derive emotion
as semantic information. The obtained results show that the
performance of expressivity transfer is significantly improved
”with” the addition of N-pair loss in comparison to ”without”
use of N-pair loss.

For transfer of expressivity VAE based expressivity en-
coder generalizes emotion representation better than GST.
The results reported for speaker MOS show that providing
speaker identity doesn’t convey enough information for re-
taining speaker attributes. Therefore, in the future, we would
like to improve the representation space of the speaker by pro-
viding a reference Mel spectrogram for estimating a speaker
embedding.
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