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Abstract—The main goal of this work is to generate expressive
speech in different speaker’s voices for which no expressive
speech data is available. The presented approach conditions
Tacotron 2 speech synthesis with latent representations extracted
from text, speaker identity, and reference expressive Mel spectro-
gram. We propose to use multiclass N-pair loss in the end-to-end
multispeaker expressive Text-To-Speech (TTS) for improving the
transfer of expressivity to the target speaker’s voice. We have
jointly trained the end-to-end (E2E) TTS with multiclass N-pair
loss to discriminate between various emotions. This augmentation
of the loss function during training paves the way to enhance the
latent space representation of emotions.

We have experimented with two different neural network
architectures for expressivity in the encoder, namely global style
token (GST) and variational autoencoder (VAE). We transferred
the expressivity using the mean of latent representation extracted
from the expressivity encoder for each emotion. The obtained
results show that adding multiclass N-pair loss based deep metric
learning in the training process improves expressivity in the
desired speaker’s voice.

Index Terms—End-to-end TTS, metric learning, expressivity,
transfer learning

I. INTRODUCTION

The term expressivity in speech usually refers to the
characteristics of speech, such as emotions, speaking style,
relationship of speech with gestures, and facial expression.
Throughout this paper, we consider only the emotional char-
acteristics of expressivity in speech. The current end-to-end
TTS systems heavily relies on a large amount of speech corpus
used for training the system [1]. Therefore, to build expressive
speech synthesis for a new speaker, one has to create a speech
corpus with various emotions. It is inconvenient to record an
expressive speech corpus every time somebody wants to build
an expressive speech synthesis system for a new speaker’s
voice. Furthermore, creating an expressive speech corpus is
laborious and expensive in terms of workload. Though, many
approaches proposed to use audio-books, films, dialogues.
to create expressive speech synthesis. However, labeling the
expressions is not a trivial task due to a large number of
possible variations in a single emotion [22]. This creates a
bottleneck in the development of expressive speech synthesis
in a new speaker’s voice.

There are numerous frameworks that have been proposed
for the implementation of expressivity transfer either by inter-

polation of latent representations of prosody or of prosody em-
bedding [2]–[7]. For controlling expressivity, these approaches
enhance the Tacotron based TTS system by the addition of
advanced deep neural network architecture such as variational
autoencoder (VAE) [5], Gaussian mixture VAE [2], Global
style token [3], FLOW [8].

The systems mentioned above have shown significant per-
formance in controlling expressivity, but many approaches use
audiobook emotive storytelling style. Besides, they don’t work
with emotions such as joy, sadness, happiness, fear, anger.
However, few approaches addressed the usage of multiple
emotions [9]–[11], [19] in TTS. For instance, Deep convo-
lutional TTS (DCTTS) was trained with multiple emotions
along with variational inference [9]. Recently, metric learning
framework was introduced in a parametric TTS system [10],
[11] for transfer of expressivity. In [10], the authors proposed
to build a recurrent conditional variational autoencoder based
acoustic model and is trained using multiclass N-pair loss as
additional loss function [12]. This work was further extended
by the addition of Inverse Autoregressive Flow (IAF) for
implementing an encoder network of the acoustic model [11].

The above mentioned approaches indicates that the addition
of multiclass N-pair loss increases the perceived expressivity
in the target speaker’s voice. They have shown promising
results for parametric systems but still, depending on the
bottleneck step of the duration model for each emotion. In
this paper, we present a novel metric learning framework
[13] jointly trained with a Tacotron 2 based end-to-end TTS
system [14]. This results in enhancing the latent representation
of expressivity for better transfer learning performance. The
expressivity information learned by the encoder influences the
alignment of synthesized speech generated through attention.

The paper is organized as follows, Section II introduces the
proposed architecture and the loss function used for training
the end-to-end TTS. Section III describes the speech corpora
and the processing of data before training. Section IV presents
the experimentation setup. This is followed by Section V,
presents the results obtained. Finally, Section VI and Section
VII concludes the paper and presents a discussion.
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Fig. 1. End-to-end multispeaker expressive text to speech system

II. PROPOSED ARCHITECTURE

The Tacotron 2 consists of a recurrent sequence-to-sequence
feature prediction network that maps character embeddings to
mel-scale spectrograms. This recurrent sequence-to-sequence
replaces the convolutional block highway gates as proposed in
Tacotron system [1]. A more detailed explanation of Tacotron
2 architecture is presented in [14].

We extend the state-of-the-art Tacotron 2 model [14] based
on sequence to sequence with attention module to implement
an end-to-end multispeaker expressive TTS system. In order
to work with multiple speakers and expressivity, we modify
the Tacotron 2 approach by adding an expressivity encoder
and a speaker encoder.

A. General Framework

The proposed architecture takes input as text, which is
then converted into a sequence of phonemes. The text en-
coder processes sequence of phonemes after passing through
convolutional layers proceeded by Bidirectional Long Short
Term Memory (BLSTM) based recurrent neural network to
get zt as a latent representation of text. The reference mel
spectrogram is given to the expressivity encoder to extract
the latent emotional information as expressive embedding ze.
For enabling a multispeaker setting, we have provided the
speaker identity to speaker encoder to create embedding, zs.
The speaker encoder network maps the speaker index to non-
linear fixed dimensional speaker embedding.

Afterwards, zt, ze, and zs are concatenated and given as
input to the location sensitive attention module, as illustrated in
Fig. 1. This assists the end-to-end TTS to learn the alignment
between the sequence of phonemes and the desired Mel
spectrogram. The decoder network is composed of pre-net,
BLSTM based recurrent network, and convolutional layer
based post-net.

The decoder takes encoder outputs with attention vector as
input to predict the Mel spectrogram frame by frame. The

output from the previous frame is first passed through the pre-
net network. The pre-net network consists of fully connected
layers with the ReLU activation function. This predicted mel
spectrogram from the pre-net and recurrent network is further
passed through the post-net network. The post-net network
composes of 5 layers of a convolutional network. The post-
net improves the overall reconstruction performance of Mel
spectrogram by predicting residual to add to the predicted Mel
spectrogram.

B. Expressivity encoder

We have experimented with two neural network architec-
tures for the implementation of expressivity encoder namely,
Global Style Token (GST) [3] and Variational Autoencoder
(VAE) [5]. The GST based expressivity encoder consists of
a reference encoder, style attention, and style embedding.
The reference encoder maps expressivity of variable length
mel spectrogram into a fixed-length vector, which is passed
to the style attention layer. This layer applies a multi-head
attention module to extract the similarity between reference
embedding and each token in style embedding as an output
of expressivity encoder. In this work, style embedding ze
represents the expressivity as a stylistic factor to learn from
the reference embedding.

The second architecture for the expressivity encoder is VAE
based which is composed of a reference encoder and two feed-
forward layers to generate mean and standard deviation of
latent variable ze. The reference encoder in VAE generates a
hidden output which is passed through the feed-forward layers
to obtain latent variable ze. The ze is obtained by using a
reparameterization trick applied with mean and standard devia-
tion. VAE based framework suffers from Kublack Leibler (KL)
annealing problem in which reconstruction loss is suppressed
by KL loss term [15]. In KL annealing problem, after few
initial epochs, KL divergence term suddenly goes close to zero.



To avoid this, additional weight (close to zero) is multiplied
to KL loss and gradually increased over the training epoch.

C. Multiclass N-pair loss

The end-to-end TTS is jointly trained with the multiclass N-
pair loss function. This assists in predicting Mel spectrogram
output in desired emotions. For the transfer of expressivity,
we have used pre-computed means of latent variables of each
emotion. Thus, during the inference phase, for a given mean
of latent variables of emotion, the system transfer expressive
attributes to the target speaker’s voice. The latent space repre-
sentation of unclustered emotions may lead to the poor transfer
of expressivity. And for better performance of expressivity
transfer, we need the tightly bounded representation of the
latent variables of emotions. Therefore, we propose a novel
deep metric learning framework implemented using multiclass
N-pair loss to further enhance the expressivity representation.

Deep metric learning has gained popularity for solving
discriminative tasks in computer vision and image processing
domain [16]. The deep metric learning framework assists in
the clustering of embeddings by reducing the distance between
embeddings of positive classes and increasing the distance
between each negative class. The multiclass N-pair loss has
shown better performance than triplet loss or contrastive loss
by considering embeddings of multiple negative classes [12].
In the training phase, the model needs to reduce the multiclass
N-pair loss function as stated in Eq.1, in addition to the
reconstruction loss and attention loss.

LossN−pair = log(1 +

N−1∑
i=1

exp(z>e z−i − z>e z+)) (1)

In our approach, the multiclass N-pair loss function is
applied with respect to the N emotion classes. This loss
criteria increases the intercluster distance from N −1 nega-
tive samples and decreases the intracluster distance between
positive samples and training examples [10]. The positive
example refers to the latent variables from the same emotion
class and negative samples corresponds to the examples of
various emotion classes. We have provided the mean of latent
variables of emotion for sampling the positive and the negative
examples. For N classes, z+ is a positive example and z−i is
a negative example as stated in Eq.1.

III. DATA PREPARATION

We have used 4 French Female speech synthesis corpora
for implementing an end-to-end multispeaker expressive TTS
system. The speech corpora used are Lisa neutral speech cor-
pus (approx. 3hrs, in house speech synthesis corpus), SIWIS,
neutral speech corpus (approx. 5hrs) [17], Synpaflex speech
corpus (approx. 7hrs) [18], and Caroline expressive speech
corpus [19]. Caroline’s expressive speech corpus consists of 6
emotions namely joy, surprise, fear, anger, sadness, and disgust
(approx. 1hr for each emotion). Besides expressive speech,
Caroline speech corpus also has neutral speech recorded for
approximately 3hrs. Each speech corpus is split into train,

validation, and test sets in 80 : 10 : 10 ratio respectively.
In Synpaflex corpus, expressive speech samples are available
but due to an insufficient number of speech samples for each
emotion as well as the unbalanced distribution of emotional
speech samples, we have used only the neutral voice of
Synpaflex in our work.

We have used a sampling rate of 16000 Hz and extracted
Mel spectrograms as acoustic features to be predicted by the
end-to-end TTS system. We have applied STFT with an FFT
length of 1024, hop length of 256, a window size of 1024,
and extracted Mel spectrograms using 80 Mel filters. As input
features to the end-to-end TTS, we have used a sequence of
phonemes extracted from the text. For French grapheme to
phoneme conversion SOJA-TTS tool (developed internally in
the team) is used as a front-end text processor.

IV. EXPERIMENTAL SETUP

For training the end-to-end TTS system, we have used
the same model parameters as explained in [3], [5], [14] for
implementing the Tacotron 2 system and expressivity encoders
based on GST, and VAE. We have used a 128 dimensional
latent variable of expressivity for both GST and VAE. Before
150K training steps, we have applied the weight of 0.0001
in every 200 steps in order to reduce the KL annealing
effect. This weight is increased by 0.00001 after every 500
steps.We have adopted a similar technique for fine-tuning with
multiclass N-pair loss, for which until 150K training steps
a weight of 0 is applied on the multiclass N-pair loss, and
afterwards the weight is increased by 0.001 after every 200
steps.

We have incorporated Waveglow [20] based neural vocoder
for synthesizing speech waveform and trained it on 4 French
speech synthesis corpora mentioned in Section III. For eval-
uating the performance improvement obtained using the ad-
dition of multiclass N-pair loss, we have used an end-to-
end TTS model with GST and VAE as baseline models. We
have compared the baseline models with an end-to-end TTS
systems trained along with the multiclass N-pair loss for both
expressivity encoders, GST, and VAE.

V. RESULTS

In this section, Table I and Table II includes proposed
end-to-end TTS (E2E) models, along with evaluation scores
obtained using the parametric multispeaker expressive TTS as
stated in [10], [11]. We have presented the evaluation scores
for parametric TTS as recurrent conditional variational autoen-
coder (RCVAE), RCVAE N-pair, and inverse autoregressive
flow (IAF) N-pair.

A. Objective evaluation

We have conducted an objective evaluation using Mel
Cepstrum Distortion (MCD), F0 Root Mean Squared Error (F0
RMSE), and Voiced-Unvoiced error (VUV) between reference
speech samples and proposed E2E TTS systems. The objective
evaluation results are presented in Table I. From Table I E2E



TABLE I
OBJECTIVE EVALUATION FOR AN END-TO-END TTS SYSTEM

Model MCD F0 RMSE VUV error
E2E GST 5.12 24.10 10.41
E2E VAE 5.29 24.24 10.72
E2E GST N-pair 4.71 23.63 8.50
E2E VAE N-pair 4.82 23.70 9.10

GST N-pair model has shown superior performance compared
to other models.

We opt for subjective evaluation to measure the performance
of transfer of expressivity, due to the unavailability of refer-
ence emotional speech samples for Lisa, Siwis, and Synpaflex
speech corpora.

B. Subjective evaluation

At first, we have evaluated an end-to-end (E2E) multi-
speaker expressive TTS systems using Mean Opinion Score
(MOS) [21] based listening test. In this work, we used the
absolute category ranking scale. Each listener had to assign
a score for synthesized speech utterance between scale 1
to 5 considering the intelligibility, naturalness, and quality
of speech utterance. Suppose the speech quality is bad the
listener will then assign the score 1 and if the speech quality
is excellent then the listener will assign the score 5. Each
listening test consists of 10 randomly selected speech files
from the test set for each model. A total of 14 French listeners
participated in this MOS test and results are displayed in Table
II with an associated 95% confidence interval.

The main goal of this work is to transfer the emotion
as expressive attributes to the target speaker’s voice without
altering the speaker’s voice characteristics. As there is no
possible way to extract quantitative results for evaluation of
transfer of expressivity without reference to expressive speech
samples, we opt for speaker MOS and expressive MOS as a
qualitative measure for expressivity transfer.

Similarly, for speaker MOS as well, we instructed the
listeners to assign the score between 1 (bad) and 5 (excellent)
to the speech samples based on the speaker similarity between
reference speaker speech and synthesized expressive speech.
Likewise, for expressive MOS, listeners are directed to provide
scores between 1 (bad) and 5 (excellent) depending on how
synthesized speech utterance resembles the expressivity given
in the reference speech utterance. A total of 14 French listeners
performed both listening tests mentioned above, where each
listener scored 18 speech utterances for each speaker-emotion
pair and model. The results obtained through expressive MOS
and speaker MOS are presented in Table II with associated
95% confidence intervals.

VI. DISCUSSION

From Table II, the obtained MOS scores for each E2E model
are consistent with the objective evaluation score in Table I.
The E2E GST N-pair model outperformed all models, thus
usage of multi-head attention assists in speech synthesis. The
E2E GST N-pair model performance shows that the addition of
N-pair to expressivity encoder boosts the model performance

TABLE II
SUBJECTIVE EVALUATION OF AN END-TO-END TTS SYSTEM

Model MOS Speaker Expressive
MOS MOS

RCVAE 2.62 ± 0.5 2.40 ± 0.3 1.53 ± 0.3
RCVAE N-pair 2.97 ± 0.4 2.86 ± 0.3 1.93 ± 0.2
IAF N-pair 3.02 ± 0.4 2.93 ± 0.4 2.03 ± 0.3
E2E GST 3.51 ± 0.3 2.57 ± 0.2 3.05 ± 0.2
E2E VAE 3.38 ± 0.4 2.71 ± 0.3 3.12 ± 0.2
E2E GST N-pair 3.72 ± 0.4 2.65 ± 0.2 3.15 ± 0.4
E2E VAE N-pair 3.47 ± 0.3 2.83 ± 0.3 3.33 ± 0.3

which can also be seen with the performance of VAE based
expressivity encoder.

The speaker MOS score of the E2E VAE N-pair model
is higher than the other E2E models. The IAF N-pair based
parametric TTS performed slightly better than the E2E VAE
N-pair model for retaining speaker attributes. The IAF N-pair
model uses x-vector based speaker embedding for creating
speaker representation [11]. This results in better speaker
representation than when only speaker identity is provided for
creating speaker embeddings.

The E2E VAE N-pair model obtains the highest expressive
MOS score. This shows that the E2E VAE N-pair model can
generalize a better emotion latent space using an expressivity
encoder than the E2E GST N-pair model.

The proposed E2E models learn the duration information
as alignment derived from attention vector as opposed to
parametric TTS, where explicit duration model is required.
From Table II, MOS scores for parametric TTS range between
2 and 3, while E2E models have greater than 3. The parametric
TTS systems conduct expressivity transfer in acoustic space
only, which lacks the interpolation in duration prediction.
Thus, E2E TTS system not only influence the prosody of
synthesized speech but also the alignment of synthesized
speech for each emotion.

VII. CONCLUSION

We proposed to use multiclass N-pair loss on latent rep-
resentation extracted using expressivity encoder to derive
emotion as latent information. During the inference phase, we
investigated the transfer of expressivity without the explicit
need of reference Mel spectrogram. We used pre-computed
means of latent variables of each emotion for expressivity
transfer. The obtained results show that the performance
of expressivity transfer is significantly improved ”with” the
addition of N-pair loss in comparison to ”without” use of N-
pair loss. For transfer of expressivity VAE based expressivity
encoder generalizes emotion representation better than GST.
To our knowledge, the presented work is the first approach to
use metric learning in an end-to-end multispeaker TTS system.
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