Supporting Information

A Combined Operando Synchrotron X-ray Absorption Spectroscopy and First-Principles Density Functional Theory Study to Unravel the Vanadium Redox Paradox in the Na₃V₂(PO₄)₂F₃—Na₃V₂(PO₄)₂FO₂ Compositions

Long H. B. Nguyen,^{†,‡,§} Antonella Iadecola,[§] Stéphanie Belin,^{**} Jacob Olchowka,^{†,§,I} Christian Masquelier,^{‡,§,I} Dany Carlier,^{†,§,I} and Laurence Croguennec^{*,†,§,I}

[†] CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR CNRS 5026, F-33600, Pessac, France.

[‡] Laboratoire de Réactivité et Chimie des Solides, UMR CNRS 7314, Université de Picardie Jules Verne, F-80039 Amiens Cedex 1, France.

* SOLEIL Synchrotron, F-91192 Gif-sur-Yvette, France.

§ RS2E, Réseau Français sur le Stockage Electrochimique de l'Energie, FR CNRS 3459, F-80039 Amiens Cedex 1, France.

^I ALISTORE-ERI European Research Institute, FR CNRS 3104, Amiens, F-80039 Cedex 1, France.

* Corresponding Author: L. Croguennec (Laurence.Croguennec@icmcb.cnrs.fr)

Figure S1: (a) Schematic view showing the position of the Vⁿ⁺/V⁽ⁿ⁻¹⁾⁺ redox couple in Vⁿ⁺₂(PO₄)₂(F,O)₃ composition versus Na⁺/Na. (b) Molecular diagrams comparing the orbital interactions in F—V⁴⁺O₄—F and F—V⁵⁺O₄=O units. The anti-bonding states in F—V⁵⁺O₄=O are greatly increased due to the presence of the highly covalent vanadyl bond.

In solid-state electrochemistry, the relative position of a redox couple, e.g. $F-V^{4+}O_4-F/F-V^{3+}O_4-F$, versus Na⁺/Na is defined as the difference between the Fermi level (E_F) of Na metal and the Fermi level of the material containing $F-V^{4+}O_4-F$ group, e.g. $NaV_2(PO_4)_2F_3$. The E_F value of $NaV_2(PO_4)_2F_3$ in turn depends strongly on the position of the anti-bonding states resulted from the orbital interaction between V⁴⁺ and its surrounding ligands. Similar deduction can be made when considering the relative position of the F-V⁵⁺O₄=O/F-V⁴⁺O₄=O redox couple versus Na⁺/Na. The energy of 3*d* orbitals in an

isolated V⁵⁺ ion is below the energy of 3*d* orbitals in an isolated V⁴⁺ ion, and thus antibonding states resulted from the V⁵⁺—F/O interaction are expected to be localized below the anti-bonding states of the V⁴⁺—F/O interaction. Nonetheless, when the V⁵⁺ ion is involved in a highly covalent vanadyl bond, this strong covalent interaction stabilizes significantly the bonding states, which are occupied by the ligands' electrons, and de-stabilizes greatly the anti-bonding states, which are empty. The energy of the anti-bonding states in F—V⁵⁺O₄=O increases proportionally to the covalency of the vanadyl bond, and lower the gap between these anti-bonding states and the E_F of Na metal.

Figure S2: Evolution in the edge energy (taken at normalized absorption equals to 1.0) for the $Na_3V_2(PO_4)_2F_3$ — $NaV_2(PO_4)_2F_3$ system. The blue solid line shows the electrochemical profile.

Figure S3: (a) Spin distribution map calculated for $Na_2V_2(PO_4)_2F_3$ using GGA+3.1eV approach with an isosurface value of $1.5 \cdot 10^{-2}$ electron·Å⁻².

(b) The projection of the spin distribution map on the (*ab*) plane. The V³⁺ possesses two unpaired electrons, as compared to one unpaired electron of V⁴⁺, and thus the orbital lobes of V³⁺ are more extended than those of V⁴⁺. The two F–V³⁺O₄–F–V³⁺O₄–F bioctahedra of Na₂V₂(PO₄)₂F₃ are not identical due to a slight difference in the Na⁺ distribution in their surroundings. **Table S1:** V—O/F bond lengths in Vanadium's first coordination sphere obtained from the

 EXAFS analysis performed on the reconstructed XAS spectra of the three principal

components required to describe the *operando* data set recorded on a Na//Na₃V₂(PO₄)₂F₃ halfcell upon charging up to 4.5 V vs Na⁺/Na.

	Symmetric site	Distorted site			
	<i>d</i> v– _{F/0} (Å)	$d_{\rm V-F}({\rm \AA})$	dv-0 (Å)	$d_{\rm V-F}({\rm \AA})$	σ (Å ²)
Component 1	2.003(5) × 6				3.3(5).10-3
Component 2	$1.967(5) \times 6$	$1.908(5) \times 1$	$1.967(5) \times 4$	$1.746(5) \times 1$	6.0(5).10-3
Component 3		$1.857(5) \times 1$	$1.915(5) \times 4$	$1.726(5) \times 1$	6.1(5).10-3

Figure S4: Charge ordering on vanadium sites in (a) $Na_2V_2(PO_4)_2F_3$ and (b) $NaV_2(PO_4)_2F_3$ calculated by first-principles DFT calculations. The $V^{3+}O_4F_2$ and $V^{4+}O_4F_2$ sub-octahedra are represented as red and blue octahedra, respectively. Na^+ ions are represented as yellow spheres.

Figure S5: Real part of backward Fourier transform of the EXAFS oscillations $\chi(q)$ of the three principal components of the Na₃V₂(PO₄)₂F₃—NaV₂(PO₄)₂F₃ system. The backward Fourier transform was considered only in the R-range 1.0 – 2.1 Å with dR = 0 Å (Sine window). The circles represent the experimental data and the solid lines represent the fits.

Figure S6: Input model for $NaV_2(PO_4)_2F_3$ composition by using a supercell. The supercell was created by doubling the unit cell along the *c* direction and all the Na⁺ ions are forced to be distributed in only half of the supercell.

Table S2: V—O/F bond lengths in Vanadium's first coordination sphere obtained from the EXAFS analysis performed on the reconstructed XAS spectra of the three principal components required to describe the *operando* data set recorded on a Na//Na₃V₂(PO₄)₂F₂O half-cell upon charging up to 4.5 V vs Na⁺/Na.

	Symmetric site	Distorted site			
	$d_{\mathrm{V-F/O}}(\mathrm{\AA})$	$d_{\mathrm{V-F}}(\mathrm{\AA})$	<i>d</i> v-0 (Å)	dv=0 (Å)	σ (Ų)
Component 1	2.033(5) × 6	$1.854(5) \times 1$	1.999(5) × 4	1.629(5) × 1	3.6(5).10-3
Component 2	$1.968(5) \times 6$	$1.719(5) \times 1$	$1.974(5) \times 4$	$1.603(5) \times 1$	8.0(5).10-3
Component 3	$1.897(5) \times 6$	$1.731(5) \times 1$	$1.988(5) \times 4$	$1.564(5) \times 1$	3.6(5).10-3

Figure S7: Evolution in the edge energy (taken at normalized absorption equals to 1.0) for the $Na_3V_2(PO_4)_2F_2O$ — $NaV_2(PO_4)_2F_2O$ system. The blue solid line shows the electrochemical profile.

Figure S8: Pre-edge deconvolution on the XANES spectrum #37 recorded *operando* on the $Na_3V_2(PO_4)_2F_2O$ — $NaV_2(PO_4)_2F_2O$ system.

The contribution of V^{3+} , V^{4+} and V^{5+} in the pre-edge region are illustrated by green, blue and red curves, respectively.

Figure S9: Evolution in the relative area between the two pre-edge signals at 5469.5 eV and 5471.0 eV observed in the Na₃V₂(PO₄)₂F₂O—NaV₂(PO₄)₂F₂O system.
The signal at 5469.5 eV corresponds to V⁴⁺ states (F—V⁴⁺O₄—F and F—V⁴⁺O₄=O) while the

one at 5471.0 eV corresponds to $F-V^{5+}O_4=O$.

Figure S10: Variance plot of the PCA analysis performed on the *operando* data set recorded on a $Na//Na_3V_2(PO_4)_2F_2O$ half-cell upon charging up to 4.5 V vs Na^+/Na .

Figure S11: Real part of backward Fourier transform of the EXAFS oscillations $\chi(q)$ of the three principal components of the Na₃V₂(PO₄)₂F₂O—NaV₂(PO₄)₂F₂O system. The backward Fourier transform was considered only in the R-range 1.0 – 2.1 Å with dR = 0 Å (Sine

window). The circles represent the experimental data and the solid lines represent the fits.

Figure S12: (Top) *Operando* Vanadium K-edge XANES spectra recorded on a Na//Na₃V₂(PO₄)₂F_{1.5}O_{1.5} half-cell from 2.5 to 4.5 V vs Na⁺/Na. Inset focuses on the pre-edge. (Bottom) Evolution in the edge energy (taken at normalized absorption equals to 1.0) for the Na₃V₂(PO₄)₂F_{1.5}O_{1.5}–NaV₂(PO₄)₂F_{1.5}O_{1.5} system.

Figure S13: Evolution in the relative area between the two pre-edge signals at 5469.5 eV and 5471.0 eV observed in the Na₃V₂(PO₄)₂F_{1.5}O_{1.5}—NaV₂(PO₄)₂F_{1.5}O_{1.5} system.
The signal at 5469.5 eV corresponds to V⁴⁺ states (F–V⁴⁺O₄–F and F–V⁴⁺O₄=O) while the one at 5471.0 eV corresponds solely to F–V⁵⁺O₄=O.

Figure S14: Variance plot of the PCA analysis performed on the *operando* data set recorded on a $Na/Na_3V_2(PO_4)_2F_{1.5}O_{1.5}$ half-cell upon charging up to 4.5 V vs Na^+/Na .

Figure S15: (*a*) Concentration profile of the three principal components required to describe the *operando* XAS spectra recorded on a Na//Na₃V₂(PO₄)₂F_{1.5}O_{1.5} half-cell upon charging from 2.5 to 4.5 V vs Na⁺/Na. The corresponding electrochemical profile is shown as black solid curve; (*b*) Reconstructed XANES spectra of the three independent components in the Na₃V₂(PO₄)₂F_{1.5}O_{1.5} – NaV₂(PO₄)₂F_{1.5}O_{1.5} system as compared to the references VPO₄, LiVOPO₄ and VOPO₄. Inset focuses on the pre-edge area of the reconstructed spectra; (*c*) Fit of the *k*²-weighted Vanadium K-edge EXAFS spectrum Fourier transform (*k*-range: 2.7 – 11.6 Å⁻¹, sine window) in the *R* space (*R*-range :1.0 – 2.1 Å, d*R* = 0, sine window) for the three components determined for the Na₃V₂(PO₄)₂F_{1.5}O_{1.5} - NaV₂(PO₄)₂F_{1.5}O_{1.5} system; (*d*) Real part of backward Fourier transform of the EXAFS oscillations $\chi(q)$ by considering only the *R*-range 1.0 – 2.1 Å with d*R* = 0 Å (Sine window). The circles represent the experimental data and the solid lines represent the fits.

Table S3: V-O/F bond lengths in Vanadium's first coordination sphere obtained from the

EXAFS analysis performed on the reconstructed XAS spectra of the three principal components required to describe the *operando* data set recorded on a Na//Na₃V₂(PO₄)₂F_{1.5}O_{1.5} half-cell upon charging up to 4.5 V vs Na⁺/Na.

	Symmetric site†	Distorted site†			
	$d_{\mathrm{V-F/O}}(\mathrm{\AA})$	$d_{\mathrm{V-F}}(\mathrm{\AA})$	dv-0 (Å)	$d_{\rm V=0}({\rm \AA})$	σ (Å ²)
Component 1	$1.945(5) \times 6$	$1.854(5) \times 1$	$2.062(5) \times 4$	1.630(5) × 1	$2.0(5) \cdot 10^{-3}$
Component 2	1.911(5) × 6	$1.758(5) \times 1$	$2.019(5) \times 4$	$1.591(5) \times 1$	4.0(5).10-3
Component 3	1.856(5) × 6	$1.773(5) \times 1$	$1.981(5) \times 4$	$1.578(5) \times 1$	1.6(5).10-3

[†] The V—O/F distances represented on **Figure 3** for the mixed valence sites of $Na_3V_2(PO_4)_2F_{1.5}O_{1.5}$ and $NaV_2(PO_4)_2F_{1.5}O_{1.5}$ are average values with the 1/1 contribution of the symmetric and distorted sites

References:

(1) Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. *Chem. Rev.* **2013**, *113* (8), 6552–6591. https://doi.org/10.1021/cr3001862.

(2) Manthiram, A. A Reflection on Lithium-ion Batteries Cathode Chemistry. *Nat. Commun.* **2020**, *11* (1), 1550. https://doi.org/10.1038/s41467-020-15355-0.