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The instability of the vertically-stratified horizontal plane Poiseuille flow

We present here the first study on the stability of the plane Poiseuille flow when the fluid is stratified in density perpendicularly to the plane of the horizontal shear. Using laboratory experiments, linear stability analyses and direct numerical simulations, we describe the appearance of an instability that results from a resonance of internal gravity waves and Tollmien-Schlichting waves carried by the flow. This instability takes the form of long meanders confined in thin horizontal layers stacked along the vertical axis.

Introduction: the stratified Poiseuille flow

The plane Poiseuille flow, i.e. the steady flow between two infinite parallel plates, is one of the simplest and most common shear flows. In the non-stratified case, it is known to be linearly unstable for Reynolds numbers larger than 5772 [START_REF] Orszag | Accurate solution of the Orr-Sommerfeld stability equation[END_REF]. Above this value, two dimensional waves -known as Tollmien-Schlichting waves -are viscously unstable and can develop and propagate in the flow. We present here the stability analysis of a horizontal plane Poiseuille flow which is stably stratified in density along the vertical direction, i.e. orthogonal to the plane of the horizontal shear. As density stratification is ubiquitous in nature, the instability of this stratified flow may be relevant to water flows in submarine canyons, to winds in deep valleys or to laminar flows in rivers or canals where stratification can be due to temperature or salinity gradients.

The situation where shear is inclined vs. stratification, has already been studied for instance for jets [START_REF] Candelier | Shear instability in a stratified fluid when shear and stratification are not aligned[END_REF], for a Kolmogorov shear flow [START_REF] Lucas | Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities[END_REF], or for vortex dipoles [START_REF] Deloncle | Three-dimensional stability of a horizontally sheared flow in a stably stratified fluid[END_REF]. It differs from the more classical two-dimensional case where both stratification and shear lie in the same plane [START_REF] Gage | The stability of thermally stratified plane Poiseuille flow[END_REF][START_REF] Caulfield | Multiple linear instability of layered stratified shear flow[END_REF]. According to the studies of [START_REF] Basovich | Internal waves in a horizontally inhomogeneous flow[END_REF] and Bakas & Farrell (2009a,b), horizontal shear flows can indeed excite internal gravity waves in the presence of a vertical stratification. Our study follows recent investigations on instabilities of stratified rotating or not rotating shear flows: the strato-rotational instability in Taylor-Couette flows (Le [START_REF] Bars | Experimental analysis of the stratorotational instability in a cylindrical Couette flow[END_REF][START_REF] Park | The stably stratified Taylor-Couette flow is always unstable except for solid-body rotation[END_REF][START_REF] Rüdiger | The stratorotational instability of Taylor-Couette flows with moderate reynolds numbers[END_REF], or plane Couette flows [START_REF] Facchini | The linear instability of the stratified plane Couette flow[END_REF][START_REF] Vanneste | Unbalanced instabilities of rapidly rotating stratified shear flows[END_REF], the radiative instability in boundary layer flows [START_REF] Candelier | Inviscid instability of a stably stratified compressible boundary layer on an inclined surface[END_REF][START_REF] Chen | Instability of a boundary layer flow on a vertical wall in a stably stratified fluid[END_REF], rotating flows [START_REF] Riedinger | Radiative instability of the flow around a rotating cylinder in a stratified fluid[END_REF] or vortices [START_REF] Dizès | Radiative instability in stratified vortices[END_REF][START_REF] Riedinger | Viscous stability properties of a Lamb-Oseen vortex in a stratified fluid[END_REF]. All of these examples belong to a class of instabilities caused by the resonant interaction of Doppler shifted internal gravity waves [START_REF] Molemaker | Instability and equilibration of centrifugally stable stratified Taylor-Couette flow[END_REF]Le Dizès & Riedinger 2010). More generally, resonances of different types of waves in shear flows are the subject of a long standing history originating from the seminal paper of [START_REF] Cairns | The role of negative energy waves in some instabilities of parallel flows[END_REF] on the Kelvin-Helmholtz instability, then extended to surface flows by [START_REF] Satomura | An investigation of shear instability in a shallow water[END_REF] and also to different arrangement of stratified flows (see for instance the review by [START_REF] Carpenter | Instability in stratified shear flow: Review of a physical interpretation based on interacting waves[END_REF]). Even Tollmien Schlichting waves were shown to be possibly interpreted as the result of a resonant interaction of two different components [START_REF] Baines | The mechanics of the Tollmien-Schlichting wave[END_REF]. A particularity of the present case is that the Tollmien-Schlichting waves can themselves also interact and possibly resonate with inviscid gravity waves. But to our knowledge, the first who realized this wave related destabilisation for continuously stratified fluids was [START_REF] Taylor | Effect of variation in density on the stability of superposed streams of fluid[END_REF] who showed that stratification, intuitively seen as a stabilizing effect, may destabilize stable parallel basic flows. Note that the phenomenon of interaction between viscous vorticity waves and gravity waves was already observed by [START_REF] Eaves | Multiple instability of layered stratified plane Couette flow[END_REF] in a 2D numerical simulations of the Couette flow with a three layer density distribution i.e. in a case when shear and density gradients are aligned. As described by these authors, this coupling gives rise to a viscous Holmboe-wave instability. This interaction was in fact previously suggested by [START_REF] Lindzen | Instability and wave over-reflection in stably stratified shear flow[END_REF] through a mechanism of internal wave over-reflections at critical levels.

Experimental set-up and numerical methods

The experiments are realized in an annular channel having a diameter at mid gap of 2R = 1.515 m and a rectangular vertical section of 85 × 250 mm 2 . This channel is filled up to a level h chosen between 128 and 200 mm (position of the free surface) with linearly stratified salty (NaCl) water. The Schmidt number of the fluid, defined as the ratio of momentum diffusivity (kinematic viscosity) and mass diffusivity is equal to Sc = 700. The tank is made of transparent acrylic glass (Polymethyl methacrylate, PMMA) so that the fluid interior is entirely accessible to non-invasive measurement techniques such as Particle Image Velocimetry (PIV). For the tank rotation, a synchronous servomotor (model CMPZ100S) with helical-bevel gear unit (KAF57) from SEW-EURODRIVE is used. Deviations in rotation rate are less than 2%. The laser used for PIV is a Nano 250-532-100 from the Linos AG company. It is a diode-pumped steady laser that emits a monochromatic beam at a wavelength of 532 nm. The laser beam goes through a cylindrical-lens optical system that spreads it into a 2D plane sheet of about 1 mm thick.

For the experiments we used a mixture of two different PIV particles from DANTEC: hollow glass spheres and silver-coated hollow-glass spheres. The camera used to record the flow is a GoPro hero 4 black. It has a video resolution of 1080p, which corresponds to a screen resolution of 1920 × 1080 pixels, with an image rate of 30 or 48 frames per second. A modification that improved the data was to change the lenses of the GoPro camera with lenses provided by The Imaging Source R . With the updated lens we can control the focusing and the aperture, which significantly improves the quality of our PIV measurements.

The free surface fluid is then set in motion by the side and bottom walls of the curved channel which is slowly rotated at a rate Ω. However, a barrier (28 cm high, 8.4 cm wide and 10 mm thick plastic plate) that nearly fits the rectangular cross section of the channel, is placed along the radius inside the channel. As it is maintained stationary in the laboratory frame, this wall blocks the fluid and prohibits solid body rotation, resulting in a nearly parabolic horizontal velocity profile. Figure 1 presents a drawing and a photograph of the installation at the Brandenburg University of Technology, Cottbus-Senftenberg.

To complement the experiments, we also perform Direct Numerical Simulations (DNS) using the spectral element solver Nek5000 (Version 19.0. Argonne National Laboratory, Illinois. Available: https://nek5000.mcs.anl.gov) [START_REF] Fischer | An overlapping Schwarz method for spectral element solution of the incompressible Navier-Stokes equations[END_REF]. The same equations used to study the stratified Couette flow by [START_REF] Facchini | The linear instability of the stratified plane Couette flow[END_REF] are adapted here to the Poiseuille case. A constant and uniform stream-wise force is added to the momentum equation in order to reach the targeted Poiseuille flow profile by compensating for viscous dissipation. Note that this is different from the experiment, where the Poiseuille profile is maintained at zero constant mass flux instead of constant force. This does not affect the linear behavior of the instability but might have some effect on its non-linear development, which is outside the scope of the present paper.

We consider the simplest case of a plane Poiseuille flow between two vertical walls which are static, no-slip and with zero buoyancy flux. The other directions are assumed to be periodic. In order to avoid confinement effects due to the inherent discretisation of the wave vectors fitting inside our numerical domain, we consider a rather large domain of dimensionless size (L x , L y , L z ) = (16, 2, 6) × D/2 where D is the width of the channel, the stratification is along the vertical direction and the Poiseuille flow is along the x direction. While we can reach the Reynolds and Froude numbers of the experiments, we cannot consider the same Schmidt number. We typically consider values between 1 (as in the linear stability analysis, see section 5 below) and 7.

Base flow profile

We discuss in this section the equilibrium base flow as measured in the experiments in the absence of instability. At very low velocities (i.e. under a threshold as we will see later) and using the PIVlab software [START_REF] Thielicke | PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in matlab[END_REF], PIV measurements in horizontal planes permit to characterize the base flow at different vertical levels. Figure 2-a) shows an example of a transverse (in the radial direction of the annulus) profile of the horizontal velocity which is compared on one hand to the analytical parabolic two-dimensional plane Poiseuille flow (which does not therefore take into account the presence of the bottom) obtained analytically, and on the other hand to the analytical three-dimensional profile of the channel flow i.e. when taking into account the shear at the bottom (see for instance [START_REF] Theofilis | Viscous linear stability analysis of rectangular duct and cavity flows[END_REF]). As can be seen, the experimental profile is very close to the analytical two-dimensional parabolic profile with a zero flux. Moreover, as presented on Figure 2-b) for two PIV measurements at respectively Re = 1250 for a Froude number F = 0.30 and at Re = 500 for a Froude number F = 0.12 , the vertical profiles of the horizontal velocity (see Figure 2-b) are very flat over most of the height of the flow. This phenomenon is due to the presence of a mixed layer at the bottom of the channel that acts somehow as a lubrication layer and restricts the velocity vertical gradient to a few centimeters at the bottom. As a consequence, the base flow studied here is very close to the ideal two-dimensional laminar plane Poiseuille flow. This ideal two-dimensional flow profile with zero flux can be written in the laboratory frame as a function of the transverse coordinate y (with its origin located at the middle of the channel) when neglecting the rotation and curvature effects:

U (y) = Ω R [12(y/D) 2 -1]/2
where D is the width of the annular channel and R its radius at mid gap. The maximum velocity is thus reached near the vertical walls: U (±D/2) = ΩR and its minimum is located at the center of the channel: U (0) = -ΩR/2. The small asymmetry between the inner and outer walls -located at different radii -is neglected. Taking D/2 as typical length scale and 3ΩR/2 as typical velocity scale, we can define the Reynolds number and the Froude number of the flow as: Re = 3ΩRD/4ν where ν is the kinematic viscosity of the fluid and F = 3ΩR/N D where N is the Brunt-Väisälä frequency characterizing the density stratification. To check that rotation has a negligible effect on the flow, we can calculate its Rossby number as the ratio between the local vorticity and twice the rotation rate Ω. The local vorticity, calculated from the velocity profile is equal to 12ΩRy/D 2 . Therefore, the analytical expression of the Rossby number is 6Ry/D 2 . Its mean value across the channel is 3R/2D which is as large as 13 due to the high aspect ratio of the channel. Therefore, we can conclude that the rotation of the channel has a small effect on the flow. Note that the curvature of the channel scales in the same way and thus can be neglected for the same reason. To support our experimental observations of the base flow in this particular arrangement, we have also computed the two dimensional flow in the same geometry as that of the experiment using again Nek5000. The two-dimensional Navier-Stokes equations are solved inside a cylindrical annulus rotating at constant rate Ω. A static barrier with no-slip boundary conditions is inserted at an arbitrary azimuthal angle (here φ = 0[2π]). Starting from a fluid at rest, we wait for the system to reach a quasi-steady state represented in figure 2(c). While the expected 2D Poiseuille profile is perturbed on both sides of the barrier, the velocity profile measured at a diametrically opposed position is very close to the theoretical 2D planar result (see figure 2(a)). To be more quantitative we have also computed the relative error between the radial profile of azimuthal velocity in the 2D cylindrical annulus and the theoretical 2D planar Poiseuille profile, as a function of the azimuthal position φ. As can be seen in figure 2(d), there is an extended plateau where this error stays smaller than 7%. While this numerical simulation confirms that rotation and curvature effects remain negligible, the mechanism preventing the 3D channel profile to develop in the stratified experiment remains to be explained. But we can speculate that it is due to a combined effect of stratification and localised turbulent mixing caused by the leak under the barrier. The fluid is first stratified before being slowly set into rotation. When arriving at the barrier, except near the bottom wall, the fluid particles stay at the same elevation, minimising the energy to turn back following in this way horizontal streamlines. Beside this effect that bidimensionalizes the flow, we think that the fluid jet leaking through the small gap between the barrier and the bottom, is mixed by turbulence. This effect decouples the bulk from the bottom wall that in consequence cannot transmit its momentum through viscous effects. Therefore, we can imagine that this thin layer (that grows very slowly in time) acts as a kind of lubrification layer. The precise study of this mechanism is left for a further study since the analysis of the 2D Poiseuille flow instability is our main focus here.

Experimental and Numerical analysis of the instability

To explore the instability, four independent experimental runs were performed with different stratifications and heights of water in the channel. Each of these runs obeys the same protocol. First we create a linear stratified layer of a chosen total height h using the classical double bucket technique [START_REF] Oster | Density gradients[END_REF]. Having measured the density profile, and determined by linear fit the corresponding Brunt-Väisälä frequency, the annulus is progressively set into rotation step by step. When having reached the desired rotation rate Ω, we wait for a period of time ranging between several hours to 20 minutes in the cases where the velocity increments were small. Note that the critical parameters vary in each run as the density gradient and total height h are changed for each of them. tern relative to the laboratory (in some cases a small drift is detected) composed of interfering oblique waves. It appears only above a threshold depending on the Reynolds numbers Re and on the Froude number F . Figures 3(a) and (b) present a laser plane kalliroscope visualization (adding reflective platelets in water) and PIV measurements of the instability that takes the form of meanders in horizontal planes. These meandering flows are confined in thin layers along the vertical direction and have a strong visual similarity with the patterns of the unstable two-dimensional Poiseuille flow recently discovered by [START_REF] Falkovich | Turbulence appearance and nonappearance in thin fluid layers[END_REF]. We also show in figure 3(c) the numerical results for similar parameters, Re = 2800 and F r = 0.7, but in a periodic channel. The results are showed for the end of the exponential growth phase when the linear instability saturates. We observe the same meandering, despite the differences between the experiments and the idealized periodic simulations. We have also realized experimental visualizations and velocity measurements in the median vertical plane located at y = 0 and neglecting the curvature of the channel. Figure 4(a) shows an example of our PIV measurements that illustrate the layered pattern, similar to that already observed in the plane Couette flow by [START_REF] Facchini | The linear instability of the stratified plane Couette flow[END_REF]. Therefore, as can be observed on horizontal and vertical plane velocity measurements, the periodic arrangement of the meanders in horizontal planes is in phase opposition with each of its neighboring layers. Note also the difference between the horizontal scale of the pattern which is about ten times larger than the thickness of each layer. This typical feature is again qualitatively confirmed by the periodic DNS for which a very similar pattern is observed during the linear phase (see figure 4(b)). By repeating the experiment for different Reynolds and Froude numbers, it is possible to measure the sensitivity of the instability threshold on these parameters and to compare it with the theoretical predictions presented in following Section 5. Moreover, using these threshold values, we can plot in figure 5 the bifurcation diagram of the instability gathering all our measurements by calculating a reduced Reynolds number (Re -Re c )/Re c . We found that the best way to represent the evolution of the instability finite amplitude is to compute from the time averaged PIV fields, the value ∆U = U max -U min (which eliminates the base flow) divided by < U >= (U max + U min )/2, where U max and U min are the minimum and the maximum of the horizontal velocity in vertical planes. The average being taken on a 4 second temporal window, the scatter of the data points comes from some fluctuations of the amplitude of the velocity fields measured at different time during each run. Despite this relative non-stationarity of the flow, the bifurcation seems to be supercritical with a classical exponent 1/2 as can be seen from the linear fit. 

Linear analysis of the instability

In this section, the main results obtained by the linear stability analysis of the stratified plane Poiseuille flow are summarized. A more complete account can be found in [START_REF] Chen | Stabilité d'un écoulement stratifié sur une paroi et dans un canal[END_REF]. To perform the stability analysis, we use a pseudo-spectral code (already used in [START_REF] Chen | Instability of a boundary layer flow on a vertical wall in a stably stratified fluid[END_REF]) that solves the linearized Boussinesq Navier-Stokes equations for the normal mode perturbations. For given streamwise and transverse wavenumbers k x and k z , and given base flow parameters Re, Sc and F , the code provides the complex frequencies ω of the eigenmodes.

Typical stability diagrams with and without stratification are displayed in figure 6 for a stratified and a non-stratified base flow. We clearly see in this figure that the presence of stratification enhances the instability. For the non-stratified configuration (left plot) we observe a single instability mode that corresponds to a viscous Tollmien-Schlichting (TS) wave. In the stratified case (right plot), this mode is still present and is unstable in a larger wavenumber domain. But the most striking feature of the stratified case is the presence of numerous other instability modes, that are more unstable than the TS wave. These modes have been generated by adding stratification. Note that we have run a DNS for the same parameters (Re = 10 4 , F = 1.1 et Sc = 1) and found perfect agreement on both the growth rate and the wave numbers of the most unstable mode.

To understand the mechanism of instability, we plot in figure 7 both the real frequency Re(ω) and the growth rate Im(ω) of the different modes involved in the stability diagram of figure 6(b) as a function of k z for k x = 1. By this procedure, we can identify in the frequency plot (figure 7(a)) five different branches of modes involved in the instability diagram. By examining the shape of the eigenfunctions along the y direction, it is possible to discriminate the origin of each of these modes (see [START_REF] Chen | Stabilité d'un écoulement stratifié sur une paroi et dans un canal[END_REF]. The dashed curves are found to correspond to viscous TS waves, while the solid curves are associated with internal gravity waves. The black symbols indicate the points where the growth rate is locally maximum. We clearly see in figure 7(a) that these points are very close to the crossing points of the viscous and gravity wave frequency curves. The instability mechanism can thus be attributed to a phenomenon of resonance between viscous and gravity waves. Such a resonant mechanism has been observed in other contexts (e.g. [START_REF] Satomura | An investigation of shear instability in a shallow water[END_REF], Le Dizès & Riedinger (2010) or [START_REF] Facchini | The linear instability of the stratified plane Couette flow[END_REF]) but it generally involves the coupling of inviscid waves only. The coupling with a viscous wave seems to 

Comparison with the experimental and numerical results and discussion

The wave numbers k x and k z can be estimated from the PIV measurements. These values are reported on the figure presenting the predicted instability regions obtained from the linear stability analysis (figure 6(b)). Note that the vertical wavelengths have as expected, the order of magnitude of the buoyancy scale λ [START_REF] Billant | Self-similarity of strongly stratified inviscid flows[END_REF] which is with our notation equal to F D. For an average Froude number F ≈ 0.7 as realized in our experiments, λ is about 3 cm which in agreement with figure 4.

Similarly, we have plotted in figure 8(b) the experimental data and the marginal stability curve calculated from the theory at Sc = 1. Interestingly, we observe a good agreement for the threshold values even if the Schmidt numbers for the theoretical analysis and for the experiments are quite different: in fact, we could have expected a lower experimental threshold because of the high value of the salt water Schmidt number. Even if this is not the case, the observed agreement is a good indication that the instability is indeed associated with the mechanism of resonance that we have identified.

To explore the stability diagram further, we have also run DNS with parameters comparable to those of the experiments but in a doubly-periodic channel and with a Schmidt number of Sc = 7. All unstable experimental cases are also found to be unstable numerically. However, as can be seen in figure 8(b), some cases considered stable in the experiment and in the theory, are found unstable numerically. This discrepancy could first be attributed to the already evoked differences in Schmidt numbers: Sc = 1 for the linear stability analysis, while Sc = 7 in the DNS and Sc = 700 in the experiments. More likely and even if the effects of rotation and curvature can be discarded because of the quite large values of the Rossby number, we can notice that the experimental base flow is slightly different than the 2D planar parabolic Poiseuille profile (see figure 2) used in the theory and in the DNS. This small departure could indeed affect the stability threshold of the flow. Finally, we can also evoke the amplitude sensitivity of the measurements: as in any experimental instability study, the unstable flow needs to reach finite amplitude saturated states before being detectable. Moreover, close to threshold, these non linear regimes need very long time to establish and our observations may have missed them. To conclude this discussion, we think that a combination of these different reasons is probably responsible for the observed and non expected delay of the instability threshold observed experimentally, but this should not underplay the otherwise good qualitative agreement between all of our three approaches.

Conclusion

In this study, we have performed laboratory experiments, linear stability analysis and direct numerical simulations of the density stratified Poiseuille flow. This flow was heuristically created by the insertion of a barrier in an annular slowly rotating channel. Even if we do not fully understand the detailed mechanism at the origin of the 2D basic flow in the bulk of the fluid, we have observed and described an instability that we claim to arise from a resonant interaction of waves. In a wave dispersion diagram, such a resonant interaction is signaled by a crossing or near crossing of dispersion curves, simply speaking, either by a pair of waves showing different Doppler shifts or by two waves of different physical origin. In the present study, the interaction is between a viscous Tollmien-Schlichting wave and an inviscid internal gravity wave (see Figure 7). Hence, the coupling of the two stable waves makes the basic flow unstable even without the necessity of an inflection point in the basic flow. Our results fit nicely in a number of findings on enhanced instability for classical but stratified flows. With the present study we added the stratified Poiseuille flow to this list with the expectation that this confined flow will be a proxy of natural stratified flows like stratified water flows in rivers or winds in narrow valleys.

The unstable pattern we observe for the stratified Poiseuille takes the form of a meandering flow confined in horizontal layers with a well defined vertical wavelength close to the buoyancy scale. The experimental characteristics of the instability is well predicted by the linear stability analysis even if the latter was performed for a Schmidt number equal to unity and not 700 as in the experiment. However, our direct numerical simulations confirm the results found in the laboratory and the predictions obtained with the linear stability analysis. Therefore, they validate the scenario built on the resonance between non viscous internal gravity waves and the Tollmien-Schlichting waves of the Poiseuille flow. Our study on this linear instability of a realistic flow opens new perspectives in the interpretation and understanding of stratified flow characteristics such as the scaling of coherent structures in stratified turbulent shear flows [START_REF] Chen | Instability of a boundary layer flow on a vertical wall in a stably stratified fluid[END_REF][START_REF] Lucas | Layer formation and relaminarisation in plane Couette flow with spanwise stratification[END_REF], bridging observations to linear or non linear instability characteristics.

Of interest for further studies is the interplay between wave related instabilities, turbulence and mixing [START_REF] Caulfield | Layering, instabilities, and mixing in turbulent stratified flows[END_REF]. As described in our study, the unstable flow saturates at a finite amplitude meandering layered pattern. A further step would be to increase the rotation rate of our experimental set-up in order to bring the stratified Poiseuille flow closer to high Reynolds number large-scale geophysical flows. This may permit to study the nonlinear regimes associated with the types of instabilities we have observed, possible secondary instabilities and to evaluate the energy transfers or the competition with other instabilities. Moreover, for larger Reynolds numbers the flow might become intermittent or turbulent and it would be of a particular relevance to study the mixing efficiency e.g. as a function of the Froude number and connect this to environmental flows.
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 1 Figure 1. Drawing (a) and picture (b) of the experimental installation: an annular channel of rectangular section 85 × 200 mm 2 a radius at mid gap R = 75.75 cm is rotated at a weak angular velocity Ω between 0.1 and 0.5 rpm. The Poiseuille flow is created by the insertion of a barrier fixed in the laboratory frame that prohibits solid body rotation of the fluid in the annulus.

Figure 2 .

 2 Figure 2. (a) Exemple for a Reynolds number Re = 1250 for a Froude number F = 0.30 of a measured horizontal profile of the dimensionless longitudinal velocity at a height of 100 mm (the total depth of water being h = 128 mm)(•). We also show for comparison the theoretical 2D planar and 3D profiles, along with the results of a 2D DNS in the annulus. (b) Two examples of the vertical profile of the dimensionless horizontal velocity measured in the experiment at Re = 1250 for a Froude number F = 0.30 ( ) and at Re = 500 for a Froude number F = 0.12 ( ), dotted lines (• • •) are there to guide the eye. These profiles can be compared to the 3D channel flow profile (--) and to the invariant 2D Poiseuille flow profile (-). (c) Visualisation of the azimuthal velocity from DNS during the quasi-steady phase for Re = 2000 in a rotating 2D cylindrical annulus. A thin impenetrable and no-slip barrier is cutting through the annulus on the right. (d) Relative error between the radial profile of azimuthal velocity in the 2D cylindrical annulus from DNS and the theoretical 2D planar Poiseuille profile, as a function of the azimuthal position. The barrier is located at φ = 0[2π].

Figure 3 .

 3 Figure 3. (a) Kalliroscope visualization of the meandering and recirculation eddies in a horizontal plane (adding reflective platelets in water). (b) An example of PIV measurements of the velocity field shown here by its streamlines and associated vertical vorticity field in background colors. F = 0.70 , Re= 2866. (c) Velocity amplitude from DNS for Re = 2800, F r = 0.7 and Sc = 7 in a periodic channel. Results are shown during the early stages of the nonlinear saturation.

Figure 4 .

 4 Figure 4. Observation of the horizontal vorticity field in the vertical plane showing the layered structure reminiscent of wave interaction. (a) Experiment with F = 0.67 , Re = 2741. (b) DNS with F r = 0.7, Re = 2800 and Sc = 7 in a periodic channel. Results are shown during the linear phase of the instability. The same window as (a) is shown in dimensionless units.

Figure 5 .

 5 Figure 5. Supercritical bifurcation of the stratified Poiseuille flow. The dash line on the right part of the graph is calculated from a linear fit of the whole set of measurements. Each critical Reynolds number has been first obtained by interpolation between the stable and unstable data.

Figure 6 .

 6 Figure 6. Growth rate contours in the (kx, kz) plane for Re = 10 4 and Sc = 1 and two values of the Froude number F . Both plots use the same colorbar with contours every 0.005 from 0.001 to 0.05. (a) F = ∞ (non-stratified case), (b) F = 1.1. Superimposed on figure (b) are the experimental data points coming from the four experimental runs: run 1 ( ), run 2 ( ), run 3 ( ), run 4 ( ). The dashed line kx = 1 represents the cross section made for figure 7.

Figure 7 Figure 8 .

 78 Figure 7. a) Dispersion relation of the waves calculated by following the eigenvalues of the linear stability analysis of the flow for Re = 10 4 , F = 1.1 and and kx = 1. As can be noticed, some intersections of these dispersion relations are possible. b) Growth rates of the instability corresponding to the aforementioned intersections of dispersion relations, resonance areas are visible. The dashed curves are the frequencies and growth rates of the viscous modes, whereas the other solid curves are the dispersion relation of inviscid gravity modes.

Table 1 .

 1 Table1gives the principal characteristics of the experimental runs and also the values of the critical Reynolds and Froude numbers obtained from interpolations between the stable and unstable flows observed by their corresponding PIV velocity fields. The critical Reynolds numbers Re c are first determined by extrapolating the measured amplitudes of the velocity fields under and above the transition (see figure5later). The corresponding critical Froude numbers F c are then calculated from the estimated values of Ω at threshold.Visualizations and PIV measurements show the appearance of a nearly stationary pat-Characteristics of the four experimental runs under study with their corresponding observed instability threshold values Rec and Fc.

	Run	1	2	3	4
	N (rad/s)	2.26 1.59 1.17 0.93
	Height h (cm) 12.8 20	16	17
	Rec	2254 1940 1585 1565
	Fc	0.55 0.67 0.75 0.93
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