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A new Evaluation Approach for Deep Learning-based Monocular Depth
Estimation Methods

Antoine Mauri 2, Redouane Khemmar !, Remi Boutteau !, Benoit Decoux ', Jean-Yves Ertaud !
and Madjid Haddad?

Abstract—In smart mobility based road navigation, object
detection, depth estimation and tracking are very important
tasks for improvement of the environment perception quality.
In the recent years, a surge of deep-learning based depth
estimation methods for monocular cameras has lead to sig-
nificant progress in this field. In this paper, we propose an
evaluation of state-of-the-art depth estimation algorithms based
on single single input on both the KITTI dataset and the
recently published NUScenes dataset. The models evaluated in
this paper include an unsupervised method (Monodepth2) and
a supervised method (BTS). Our work lies in the elaboration of
novel depth evaluation protocols, object depth evaluation and
distance ranges evaluation. We validated our new protocols
on both KITTI and NUScenes datasets, allowing us to get a
more comprehensive evaluation for depth estimation, especially
for applications in scene understanding for both road and rail
environment.

[. INTRODUCTION

Accurate depth estimation is necessary for the percep-
tion of the environment in front of the vehicle and can
significantly increase safety by estimating the distance of
pedestrians and vehicles. Technology can also improve the
competitiveness of road transports, as shown in [1], [2], but
this field still has many important challenges before being
completely operational. Distance measurement from objects
can be based on many kind of sensors: ultrasonic, laser [3]
or time-of-flight camera [4]. But those solutions are still
costly. In this work, we investigate the use of camera(s) for
this task. The most common method to estimate distance
with cameras is to use a pair of stereoscopic cameras with
matching algorithms. But recently, vision algorithms based
on Convolutional Neural Networks (CNN) have shown state-
of-the-art performance in depth estimation with a single cam-
era. Such methods has the advantages to require a relatively
low-cost and easy to integrate sensor. But those methods
still lack in precise evaluation. In this context, several works
related to environment perception have already been carried
out, such as the tracking of a person [5], the detection and
tracking of objects for the road smart mobility [6][7].

While the depth estimation algorithms tested in this paper
offer comprehensive evaluation results, they only provide an
evaluation of the overall performance of a method. It lacks
information of how well objects have their distance predicted
and what is the depth precision at longer ranges. These
informations are vital for applications in road environment
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especially for autonaumous driving. That is what motivated
our contribution of an evaluation protocol better suited for
road environments as well as a comparative evaluation using
our new protocols of state-of-the-art methods on two large
datasets on road environments: KITTI [8] and NuScene [9].

The main contribution of our work is to offer a new
evaluation protocol for single image depth estimation algo-
rithms adapted to road and rail environment for autonomous
vehicles as well as an evaluation of state-of-the-art methods.

The remainder of this paper is organized as follows: In
section II we review the state-of-the-art algorithms which
are evaluated in this paper, the datasets which are used,
and present the new proposed protocols. In section III, we
describe in more details the new class-specific metric which
is proposed, the methodology of evaluation and some speci-
ficities of learning on the NuScene dataset. Experimental
results are presented in section IV. Finally, conclusion and
future directions are drawn in section V.

II. RELATED WORK
A. Monocular Depth Estimation Methods

For learning purposes, if the datasets used contains the
distance from object as ground-truth information, this infor-
mation can be used to supervise learning of a neural network
with a regression output layer. Most of the CNN models for
depth estimation have an encoder-decoder structure, similar
to the one that is used for the application of semantic
segmentation of images [10] [11], in which the output of
the network has the same size as the inputs. One of the
main problems encountered by those models is to get full
resolution at the output of the network, due to the bottleneck
which exists at the junction between the encoder and decoder
parts.

In Multi-Scale Local Planar Guidance model (called BTS
for Big-To-Small in the following, the name given by the
authors in their paper) [12], layers located at multiple stages
of the decoding phase are used and their outputs are com-
bined to predict depth at full resolution. Another CNN in
this category is DenseDepth [13], in which the encoder
part is based on a pre-trained DenseNet [14]. The whole
network is then trained with NYU Depth v2 [15] and KITTY
datasets. A specific loss function penalizing high-frequency
distorsion allows for more faithfull depth reconstruction at
object boundaries.

Another way to get supervision information is to use
aligned pairs of stereo images during the learning phase, and
then infer depth maps on monocular images. This approach



is called self-supervised, as those models don’t need dataset
with ground-truth (like LiDAR measurement or disparity
maps) for learning. In Monodepth [16], the problem of
depth estimation is casted into an image reconstruction one.
Specifically, the CNN is given as input one of the images
of the stereo pair, and gives as output an estimate of the
disparities. The second image of the stereo pair is then
synthesized from this estimate. The difference between the
synthesized image and the real one is then used in the loss
function [17][18]. In MonoResMatch model [18], authors
also use stereo images with an end-to-end learning to get
the depth information. They do not use ground truth present
in the datasets, but use a stereo-matching algorithm (Semi-
Global Matching) to internally generate this information. In
Monodepth2 [19], authors present a set of improvements
over the first version of their algorithm [16]. The model
is based on three processes which collaborate together in
order to improve depth estimation: the model can be trained
with monocular data, stereo data, or both. Specifically, the
3 processes are made of: (1) a minimum reprojection loss
calculated for each pixel, (2) an auto-masking loss to ignore
confusing and (3) a full resolution multi-sampling method
for reducing visual artifacts. The effectiveness of the model
is demonstrated quantitatively and qualitatively on the KITTI
benchmark.

Other methods use monocular images for both learning
and inference. Specifically, sequences of images are used
for learning, and at test time depth is estimated on single
images. In [20], a CNN with two modules sharing the first
few convolutional layers, is used to jointly give estimates for
depth and pose. In [21], geometric structure of objects and
of the scene are introduced in the learning process, by using
separate object motion estimators, ego-motion estimator and
depth estimator, making the model well adapted to highly
dynamic environments.

By using sequences of stereo images, it is also possible to
learn depth and odometry at the same time, as both spatial
and temporal photometric errors are available [22].

B. Datasets for Depth Prediction in Outdoor Environment

In smart mobility based road and railway navigation,
object detection, depth estimation and tracking are very
important tasks for improvement of the environment percep-
tion quality. A deep learning method for object detection
and depth estimation requires more and more training and
evaluation datasets containing heterogeneous data like im-
ages, videos, ranges, etc. This is why it is very important
to identify a good and high accuracy dataset for our real
time object detection and depth estimation for road and rail
applications.

In KITTI [8], the authors present one of the highly
used dataset in road environment for mobile robotics and
autonomous driving research. KITTI is a calibrated, syn-
choronized, and timestamped autonomous driving dataset
which was captured with a wide range of scenarios. The
KITTI dataset was collected by using a VW Station vehicle
instrumented by different kinds of sensors such as: color and

grayscale stereo cameras, a velodyne 3D laser scanner and a
high precision GPS/IMU navigation system. The platform
contains real-world traffic situations with both static and
dynamic objects (object labels are presented in the form
of 3D tracklets). The dataset provides online benchmarks
for different tasks such as: stereo, optical flow, and object
detection.

NuTonomy scenes (NUScenes [9]) is a multimodal dataset
for autonomous driving. NUScenes contains different types
of sensor surch as: 6 cameras, 5 radars and 1 LiDAR. It
is fully annotated and comprises 1000 scenes (20s long for
each), 3D bounding boxes for 23 classes and 8 attributes. It
has 100x as many images than the pioneering KITTI dataset.
It also contains careful dataset analysis as well as baselines
for LIDAR and image based detection and tracking [9].

III. EVALUATION OF DEEP LEARNING-BASED
MONOCULAR DEPTH ESTIMATION METHODS

A. Error Metrics used in Depth Evaluation

Before presenting our contributions for depth evaluation,
we define below the depth error metrics that are used in the
literature and in our work. Let p be the depth prediction of a
pixel in the image, g its ground truth and N the total number
of depth pixels in the image.

Relative Error: The equation for the Relative Error (RE)
is detailed in Equation (1).
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Squared Relative Error: The equation for the Squared
Relative Error (SRE) is detailed in Equation (2).
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Root Mean Squared Error: The Root Mean Squared
Error (RMSE) details can be found in Equation (3).
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Logarithmic Root Mean Squared Error: The equation
for the Logarithmic Root Mean Squared Error (logRMSE)
is detailed in Equation (4).

1
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Percentage of Bad Matching Pixels: The Percentage of
Bad Matching Pixels (BMP) is detailed in Equation (5) where
C is a threshold used for setting an error tolerance.

ZZm

These metrics give a comprehenswe statistical assessment
of the performance of a method but we believe it can be
further developed. One of our contributions lies in novel
depth evaluation protocols that can be found below.
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B. Object Depth Evaluation

While the current evaluation of depth estimations gives a
comprehensive assessment of the overall performance of a
given method, it is done on the global image and does not
evaluate the object distance prediction. Object distance is a
vital aspect for applications in autonomous driving and scene
perception, this is why we designed a new depth evaluation
protocol that allows us to compute the depth prediction
error for relevant objects that are regularly encountered in
road environments (person, car, truck, etc). Our evaluation
protocol consists in 4 steps: (1) The predicted depth map is
scaled using median scaling; (2) Object masks are generated
using Mask-RCNN [23] (see Figure 1 for an example of
network output); (3) The generated object masks are then
used to segment the depth maps and the depth errors are
computed for each mask in the image; (4) Finally the mean of
the errors are computed for each class. This new evaluation
protocol will allow a better understanding of how well a
given method estimates the distance of objects present in
road environment. It is especially useful for autonomous
driving applications.

C. Depth Evaluation over Distance Ranges

The classic depth evaluation protocol also doesn’t allow
to evaluate a method’s performance over longer ranges since
the evaluation is done on the whole image. The performance
of a method over longer ranges is an important parameter
that needs to be taken into account for scene understanding
purposes. Here we propose to follow the work of [24] where
they described an evaluation protocol over distance ranges,
but while they used this protocol for indoor scenes, we
used it in a road environment where the distance ranges are
more important. Our protocol is as followed: We scale the
predicted depth map using median scaling. We then create
the distance ranges of 10m up to a distance of 80m (i.e [0-
10m], [10-20m], ..., [70-80m]). Each pixel is then assigned to
a distance range according to the value of the depth ground
truth. For each distance range, we compute the depth errors.
This new protocol gives an assessment of how the depth
estimation degrades over longer ranges.

IV. RESULTS ANALYSIS

In this section, we will present the results of our evaluation
on both KITTI and NuScenes datasets of state-of-the-art
supervised and self-supervised monocular depth estimation
methods BTS and Monodepth2.

A. KITTI Dataset

For the evaluation on the KITTI dataset, we used the
pretrained models provided by the authors both BTS and
Monodepth2. The BTS model was trained with images from
the Eigen training split [25] at a resolution of 704x352
and with a dense groundtruth. The pretrained weights of
Monodeth2 were trained using the monocular training on
Zhou’s training split [20] at a resolution of 1024x320. The
evaluation was performed on the eigen test split. The results
of our evaluation of BTS and Monodepth2 can be found in

Table I and II. The value of C for the Threshold error defined
in Equation (5) has been set to 1.25.

B. NuScenes Dataset

For the evaluation on NuScenes, we had to train both
methods on the training split of NuScenes. For BTS, we
trained for 50 epoch with a batch size of 20 and a resolution
of 192x192, we used the sparse data from the LiDAR super-
vision. Given that Monodetph2 is an unsupervised method,
it relies on reprojection loss for the monocular training. If
the training images have poor visibility, the training might
not converge. That is why we selected the scenes from the
training split where the visibility is good enough for the
training to converge. We also used all the images from each
scene and not just the images that were synced with the
LiDAR in order to get a framerate high enough for the
monocular training to work. We trained Monodepth2 for 20
epochs with a batch size of 12 and a training resolution
of 446x224. The results of our evaluation of BTS and
Monodepth2 can be found in Table III and IV. The value
of C for the Threshold error defined in Equation (5) has
been set to 1.25.

Fig. 1. Input data for our object distance evaluation protocol. (1) the input
image fed to the depth prediction algorithm, (2) the disparity map, (3) the
normalized depth map after median scaling and (4) the object masks from
Mask-RCNN.

C. Experimental Results Analysis

Our results over the two datasets show that overall BTS
yields better results than Monodepth2. Our evaluation over
distance ranges also shows that both methods, as expected,
tends to have a lower accuracy when the distance increases.
Our object depth evaluation also shows that the depth estima-
tion predictions errors for objects is significantly higher than
the errors on the overall picture (see Figures 4 and 5), this can
be explained by the large variety for each object class which



TABLE I
DEPTH EVALUATION OVER DISTANCE RANGES ON KITTI. THE ALGORITHMS EVALUATED ARE STATE-OF-THE-ART MONOCULAR DEPTH ESTIMATION
METHODS: MONODEPTH2 (MD2) AND BTS. GLOBAL DEPTH ERRORS ARE SHOWN AS WELL AS DEPTH ERRORS FOR DISTANCE RANGES OF 10M AND
UP TO 80M. BOTH SRE AND RMSE ARE EXPRESSED IN METERS.

RE SRE RMSE logRMSE al az as

Distance ranges || MD2 | BTS MD2 | BTS MD2 BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS

0 — 80m 0.115 | 0.060 || 0.882 | 0.249 || 4.701 2.798 0.190 | 0.096 || 0.879 | 0.955 0.961 | 0.993 || 0.982 [ 0.998
0—10m 0.102 | 0.071 0.503 | 0.188 1.489 0.991 0.141 | 0.106 || 0.929 | 0.959 0.979 | 0.988 || 0.99 0.994
10 — 20m 0.116 | 0.088 || 0.845 | 0.395 3.035 2.198 0.18 0.149 || 0.891 | 0.924 0.96 0.971 0.979 | 0.985
20 — 30m 0.168 | 0.13 1.866 | 1.055 || 6.208 4.745 0.261 | 0.229 || 0.773 | 0.836 0916 | 0934 || 0.957 | 0.964
30 — 40m 0.196 | 0.16 2.788 | 1.945 || 9.11 7.476 0.307 | 0.279 || 0.694 | 0.764 0.886 | 0.906 || 0.942 | 0.947
40 — 50m 0.209 | 0.174 3.504 | 2.64 11.682 | 10.008 || 0.318 | 0.298 || 0.641 | 0.725 0.865 | 0.889 || 0.943 | 0.941
50 — 60m 0.221 | 0.19 4394 | 3.739 14252 | 12.852 || 0.332 | 0.326 || 0.583 | 0.675 0.857 | 0.868 || 0.927 | 0.922
60 — 70m 0.212 | 0.201 4.657 | 4.584 15.855 | 15.585 || 0.325 | 0.334 || 0.609 | 0.619 0.854 | 0.856 || 0.93 0.923
70 — 80m 0.181 | 0.214 || 4.34 5.454 15.8 18.219 || 0.284 | 0.333 0.652 | 0.548 0.873 | 0.843 0.945 | 0.925

TABLE 11

OBJECT DISTANCE EVALUATION ON KITTI. THE ALGORITHMS EVALUATED ARE STATE-OF-THE-ART MONOCULAR DEPTH ESTIMATION METHODS:
MONODEPTH2 (MD2) AND BTS. DEPTH ERRORS WERE COMPUTED FOR THE OBJECT CLASSES WITH ENOUGH INSTANCE IN THE TEST SPLIT. BOTH
SRE AND RMSE ARE EXPRESSED IN METERS.

RE SRE RMSE logRMSE al as as
Object class || MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS
Person 0.314 | 0.166 || 5.721 | 1.786 || 8.43 5.892 || 0.326 | 0.253 || 0.601 | 0.772 || 0.829 | 0.894 || 0.92 0.947
Bicycle 0.131 | 0.116 || 0.517 | 0.467 || 2.81 2.669 || 0.172 | 0.163 || 0.829 | 0.839 || 0.964 | 0.962 || 0.993 | 0.994
Car 0.206 | 0.137 || 3.132 | 1.491 || 7.924 | 6.052 || 0.271 | 0.223 || 0.773 | 0.838 || 0.883 | 0.922 || 0.938 | 0.955
Truck 0.215 | 0.122 || 2.769 | 0.826 || 6.978 | 4.523 || 0.259 | 0.177 || 0.694 | 0.854 || 0.903 | 0.969 || 0.964 | 0.985
TABLE III

DEPTH EVALUATION OVER DISTANCE RANGES ON NUSCENES. THE ALGORITHMS EVALUATED ARE STATE-OF-THE-ART MONOCULAR DEPTH
ESTIMATION METHODS: MONODEPTH2 (MD2) AND BTS. GLOBAL DEPTH ERRORS ARE SHOWN AS WELL AS DEPTH ERRORS FOR DISTANCE RANGES
OF 10M AND UP TO 80M. BOTH SRE AND RMSE ARE EXPRESSED IN METERS.

RE SRE RMSE logRMSE al as as

Distance range || MD2 | BTS MD2 BTS MD2 BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS

0 —80m 0.176 | 0.147 || 2.521 1.184 || 7.746 5.849 0.271 | 0.214 || 0.787 | 0.817 || 0911 | 0.94 0.955 | 0.977
0—10m 0.115 | 0.116 || 0.982 0.43 1.561 1.347 0.139 | 0.151 0.919 | 0915 || 0.972 | 0.974 || 0.986 | 0.987
10 — 20m 0.187 | 0.153 || 2.69 0.966 || 4.854 3.452 0.243 | 0.197 || 0.794 | 0.81 0916 | 0945 || 0.958 | 0.984
20 — 30m 0.242 | 0.162 || 3.488 1.386 || 8.316 5.427 0.32 0.217 || 0.643 | 0.768 || 0.859 | 0.933 || 0.932 | 0.978
30 — 40m 0.256 | 0.183 || 4.296 2.01 11.327 | 7.922 0.368 | 0.255 || 0.569 | 0.677 || 0.807 | 0.909 || 0.904 | 0.969
40 — 50m 0.264 | 0.206 || 5.14 3.047 14.167 | 10.952 || 0.404 | 0.3 0.518 | 0.598 || 0.76 0.845 || 0.888 | 0.946
50 — 60m 0.27 0.225 || 6.298 4.441 17.267 | 14.398 || 0.44 0.346 || 0.483 | 0.556 || 0.746 | 0.789 || 0.854 | 0.904
60 — 70m 0.28 0.248 || 8.024 6.275 || 20.725 | 18.243 || 0.475 | 0.385 || 0.48 0.495 || 0.692 | 0.736 || 0.817 | 0.868
70 — 80m 0.289 | 0.284 10.299 | 8.802 || 24.621 | 23.16 0.505 | 0.434 || 0.463 | 0.394 || 0.645 | 0.677 || 0.776 | 0.834

TABLE IV

OBJECT DISTANCE EVALUATION ON NUSCENES. THE ALGORITHMS EVALUATED ARE STATE-OF-THE-ART MONOCULAR DEPTH ESTIMATION
METHODS: MONODEPTH2 (MD2) AND BTS. DEPTH ERRORS WERE COMPUTED FOR THE OBJECT CLASSES WITH ENOUGH INSTANCE IN THE TEST
SPLIT. BOTH SRE AND RMSE ARE EXPRESSED IN METERS.

RE SRE RMSE logRMSE ai az as
Object class || MD2 | BTS MD2 BTS MD2 BTS MD2 | BTS MD2 | BTS MD2 | BTS MD2 | BTS
Car 0.346 | 0.218 || 6.853 2.144 10.42 6.862 || 0.448 | 0.278 || 0.546 | 0.708 || 0.736 | 0.88 0.92 0.949
Person 0.501 | 0.384 || 8.312 3.91 9.291 7.858 || 0.531 | 0.449 || 0.438 | 0.492 || 0.679 | 0.717 || 0.803 | 0.839
Bus 0.448 | 0.228 11.837 | 2.226 13.929 | 7.811 || 0.448 | 0.274 || 0.465 | 0.644 || 0.729 | 0.891 || 0.848 | 0.958
Truck 0.324 | 0.218 || 6.803 2.091 11.425 | 7.263 || 0.378 | 0.26 0.574 | 0.674 || 0.793 | 0.902 || 0.887 | 0.964
Motorcycle 0.284 | 0.245 1.671 1.43 4.509 3917 || 0.32 0.288 || 0.512 | 0.658 || 0.868 | 0.869 || 0.935 | 0.946
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Fig. 2. Our quantitative RMSE results for the car object class over distance
ranges on the KITTI dataset. RMSE is expressed in meters.

makes learning the depth harder for the CNNs whereas the
surrounding environment is less variable making it easier for
the methods to learn the depth. We can see that errors can be
as high as 2 time the global error for persons and cars, and
it must be in mind if these methods are used to predict the
distance of an object. Finally we can see that our results over
the NuScenes dataset have higher errors than on KITTI, this
can be explained by the differences in the training between
the two datasets and NuScenes having more challenging
scenes for depth estimation. For example, some scenes have
been acquired in a raining weather which have reflections
due to the wet road. Scenes have also been captured during
nighttime with poor visibility. These scenes have a much
higher error than those with good visibility and it contributes
to increase the mean errors used for calculating the global
error. By combining our two evaluation protocols, we also
computed the evolution of the error for objects like cars over
distance ranges in Figures 2 and 3. Such comparative results
can be used to evaluate the fitness of a depth estimation
method to a particular scenario in road environments. For
example for driving in regular road where we assume that
the vehicle is travelling at 90km/h the method have to be
accurate up to 60m (safety distance between two vehicles at
that speed).

V. CONCLUSIONS

We presented in this paper a novel depth evaluation proto-
col better suited for autonomous driving applications in road
scenes as well as an evaluation of BTS and Monodepth2,
two state-of-the-art monocular depth estimation methods,
using our new protocols. For depth evaluation protocols, we
proposed a protocol over distance ranges allowing to evaluate
the evolution of the depth accuracy over the distance and a
protocol for evaluating the depth predictions of objects by
using the object masks generated using Mask-RCNN, one of
the best object detector. We then performed an evaluation
of an unsupervised method and an supervised one with
Monodepth2 and BTS on two large scale datasets for road
scenes, KITTI and NuScenes. The comparatives results of
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Fig. 3. Our quantitative RMSE results for the car object class over distance
ranges on the NuScenes dataset. RMSE is expressed in meters.
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Fig. 5. Our RE results of BTS and Monodepth?2 for different object classes
compared to the global RE (hashed) on NuScenes.



the evaluation shows that BTS have better performance on
all aspects than Monodepth2. We also showed that object
depth estimation errors were significantly higher than the
errors on the whole image for both methods. However while
we offer a comprehensive evaluation of depth estimation
over road environments, more methods including stereo-
based algorithms could also be evaluated for a complete
comparative study. We also aim to evaluate depth estimation
algorithms on railway environments but due to the lack of a
public dataset with camera images and depth ground truths
from a LiDAR, we will need to acquire our own dataset for
this task. Thus, we propose to develop an acquisition system
including a stereoscopic camera and a LiDAR so that we can
collect our own dataset in the railway environment.
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