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In this work, Joukowski’s rotor wake model is considered for a two-blade rotor of radiusRb
rotating at the angular velocity ΩR in a normal incident velocity V∞. This model is based
on a description of the wake by a limited number of vortices of core size a: a tip vortex of
constant circulation Γ for each blade and a root vortex of circulation −2Γ on the rotation
axis. Using a free-vortex method, we obtain solutions matching uniform interlaced helices
in the far field that are steady in the frame rotating with the rotor for a large range
of tip-speed ratio λ = RbΩR/V∞ and vortex strength η = Γ/(R2

bΩR). Solutions are
provided for a two-bladed rotor for both helicopters and wind turbines. A particular
attention is brought to the study of the solutions describing steep-descent helicopter
flight regimes and large tip-ratio wind turbine regimes, for which the vortex structure is
strongly deformed in the near wake and crosses the rotor plane. Both the geometry of the
structure and its induced velocity field are analyzed in detail. The thrust and the power
coefficient of the solutions are also provided and compared to the momentum theory.

The stability of the solutions is studied by monitoring the linear spatio-temporal
development of a localized perturbation placed at different locations. Good agreements
with the theoretical predictions for uniform helices and for point vortex arrays are
demonstrated for the stability properties in the far wake. However, a more complex
evolution is observed for the more deformed solutions when the perturbation is placed
close to the rotor.

1. Introduction

Vortices are present in nature as well as in many engineering applications. They are
systematically created by lifting surfaces, such as wings. They take the form of trailing
vortices for airplanes but exhibit an helical shape when they are generated by a rotor
as for helicopters (Leishman 2006) or wind turbines (Hansen 2015). As they could
significantly contribute to the velocity felt by their generating surface, it is important
to know their structure and dynamics. In the present work, we consider the rotor wake
model that was first introduced by Joukowski (1929). In this so-called Joukowski’s model,
the wake is modeled by a set of vortices created by each blade: one bound vortex fixed
on the blade and two free vortices emitted from the tip and root of the blade (see figure
1). Our objective is to provide the structure of the wake and its stability for all wind
turbine regimes and all vertical flight regimes of a helicopter.

In the wind turbine community, most researchers have been using the Blade Element
Momentum theory for the design of wind turbines. This theory does not require a precise
description of the flow. It is based on a balance between, on the one hand, thrust and

† Email address for correspondence: stephane.ledizes@univ-amu.fr



2 E. Durán Venegas, P. Rieu and S. Le Dizès

Figure 1. Joukowski vortex model (from Joukowski (1929)).

torque applied to the rotor and, on the other hand, the change of axial and angular
momentum experienced by the flow. It has been progressively improved to consider the
presence of multiple blades, three-dimensional effects and a prescribed vortical wake
(see Sørensen 2016). Several wake models have been considered, either in the form
of vortex sheet (Betz 1920; Goldstein 1929; Chattot 2003; Branlard & Gaunaa 2014)
or vortex filaments (Okulov & Sørensen 2010; Wood et al. 2017) but always with a
prescribed cylindrical or helical symmetry. For this reason, these models cannot capture
the contraction of helicopter wakes and the expansion of wind turbine wakes. In our
model, as no helical symmetry is prescribed, the spatial evolution of the wake is fully
described. We shall see that strongly deformed wake structures, evolving on either side
of the rotor can in particular be obtained.

Our framework is the same as in Durán Venegas & Le Dizès (2019). The vortices
are concentrated in thin filaments of small but finite core size. This allows us to use a
cut-off approach to compute the self-induced velocity of the vortices from Biot-Savart
law (see Saffman 1992, for details). The structure and dynamics of the vortices are
then computed using a free-vortex method, each vortex being discretized in straight-
line segments advected by the flow (Leishman 2006). To obtain the wake structure, we
first focus on steady solutions. More precisely, we look for solutions in a uniform normal
incident flow that are stationary in the rotor frame. The solutions are also assumed
to keep a 2π/N azimuthal symmetry for a N -blade rotor, and become in the far-field
uniform interlaced helices.

Perfect helical structures have been the subject of an enormous amount of works that
go back to Kelvin (1880) and Da Rios (1916). They have the particularity to rotate and
translate without changing shape. Recent theoretical progresses have mainly been made
thanks to the expressions obtained by Hardin (1982). But, there are still some debate
about helix self-induced motion (Velasco Fuentes 2018; Okulov & Sørensen 2020). Our
objective is here to construct vortex solutions that take into account the presence of the
rotor but match uniform helices in the far-wake.

The stability of the solutions is also addressed. So far, most works have been concerned
with the stability of uniform helices. Widnall (1972) and Gupta & Loewy (1974) consid-
ered the full induction deduced from Biot-Savart law and obtained the long-wavelength
stability characteristics of a single helix and multiple helices, respectively. The effect of
an axial flow in the vortex cores was analysed by Fukumoto & Miyazaki (1991). More
recently, global temporal stability characteristics were also derived by Okulov (2004) and
Okulov & Sørensen (2007) using Hardin’s expressions. In all these works, the core size
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is assumed small and short-wavelength instabilities (Blanco-Rodŕıguez & Le Dizès 2016,
2017; Hattori et al. 2019) that may develop in vortex cores are neglected.

A number of authors have also considered the stability problem using numerical
simulations. Ivanell et al. (2010) and Sarmast et al. (2014) studied the instability of
the wind turbine wake using the actuator line method (Sørensen & Shen 2002) to model
the rotor. They were able to calculate the spatial growth rate of individual modes through
a spectral analysis of the non-linear flow. A temporal linear stability analysis was recently
performed by Selçuk et al. (2018) and Brynjell-Rahkola & Henningson (2019), obtaining
the growth rate of different unstable modes using time-stepping methods on the linearised
Navier-Stokes equations.

Experiments have also been performed in the wind turbine regime (Leweke et al. 2014).
By perturbing the flow of a single blade rotor, Quaranta et al. (2015) were able to measure
the growth rates of the main unstable modes and demonstrated a good agreement of their
measurements with the theoretical predictions of Widnall (1972). They also provided a
convincing explanation of the instability mechanism in term of local pairing. In Quaranta
et al. (2018) a similar analysis was performed with a two-blade rotor, and the unstable
pairing modes predicted by Gupta & Loewy (1974) was captured.

In our work, we shall also consider the spatial development of the perturbations, and
analyse how the stability changes from convective to absolute (Huerre & Monkewitz
1990). A similar study has been performed for an array of vortex rings in Bolnot et al.
(2014).

The paper is organized as follows. In §2, we introduce the framework of the vortex
method applied to Joukowski’s model. We provide the numerical procedures to obtain
the base flow and analyse its stability. The parameters describing our problem are also
provided. In §3, the base flow is characterized as function of the parameters for a fixed
blade number and a fixed vortex core size. We show that the geometry of the vortex
structure strongly varies close to the rotor as the direction of the incident velocity
changes. The characteristics of the induced velocity field are analysed in the rotor plane
and in the far wake. Thrust and power coefficients are also computed and compared
to momentum theory predictions. In §4, the linear stability properties of the solutions
are considered. The spatio-temporal development of a localized perturbation is analysed
for four characteristic regimes. We first show that the theoretical temporal growth rate
curves of Gupta & Loewy (1974) are recovered in the far-wake for all cases. We then
analyse the change of nature from convective to absolute of the instability. We show that
in the far-field, the spatial growth is reasonably well described by a 2D point vortex
model. In the near wake, a more complex dynamics is however observed, especially when
the vortex structure is present on both sides of the rotor plane.

2. Framework

Joukowski rotor model is a particular model for the wake generated by a rotor. It
assumes a bound vortex on the blade and two free vortices of opposite circulation emitted
from the root and tip of each blade as illustrated on the sketch by Joukowski (1929) shown
in figure 1.

This model is adequate in the near wake of the rotor if the circulation profile on the
blade is uniform along the span. We are rarely in these conditions, so Joukowski model
should be considered instead as an approximate model for the intermediate wake where
the roll-up processes of the vorticity sheet shed from the blade trailing edge have already
formed two main vortices close to the tip and root for each blade. The hub vortex of
Joukowski model then results from the merging of the root vortices of each blade. By
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Figure 2. Local reference frame used by Leishman et al. (2002)

symmetry, this vortex can be positioned on the rotor axis as soon as there is at least
two blades. Its circulation is equal to −NΓ if there is a tip vortex of circulation Γ
associated with each of the N blades. The procedure used to construct a Joukowski wake
model for any circulation profile has been described in Durán Venegas et al. (2019). Note,
however, that if the rotor has a single blade, the root vortex cannot be positioned on
the rotor axis and is expected to become helically deformed. More complex solutions are
expected in this case. The far-wake associated with these solutions has been analyzed in
Durán Venegas & Le Dizès (2019).

To describe the vortex system, we use a free-vortex method. Vortices are assumed to
be thin filaments of small core size that move in the fluid as material lines advected by
the velocity field:

dξ

dt
= U(ξ) = U∞ +U ind(ξ), (2.1)

where ξ is the position vector of the vortex filament, U the velocity field, composed of
the external velocity field V∞ = V∞ez and the induced velocity field U ind(ξ) generated
by the vortex filaments.

Because vortices are continuously created, it is necessary to introduce a second variable
that characterizes the age of the vortices. As explained by Leishman et al. (2002), a
convenient way to describe the vortex system of a rotor is actually to parametrize the
vortex position by two angular coordinates ψ and ζ measuring the angular positions of
the blade at time t, and at the time when the vortex element was created, respectively
(see figure 2). As we shall see, this second angle can be viewed as a spatial coordinate
along the vortex structure. This transforms (2.1) into

ΩR

[
∂ξ(ψ, ζ)

∂ψ
+
∂ξ(ψ, ζ)

∂ζ

]
= U∞ +U ind(ξ) (2.2)

where ΩR > 0 is the rotation speed of the rotor.
The induced velocity U ind(ξ) can be decomposed into four different contributions:

U ind(ξ) = U tip(ξ) +Uhub(ξ) +Ublade(ξ) +UFW(ξ), (2.3)

where U tip , Uhub, Ublade and UFW are the velocity fields induced by the tip vortices,
the hub vortex, the bound vortex on the blade, and the far-wake, respectively. All these
contributions are computed using Biot-Savart law. The divergence of Biot-Savart integral
on the vortices is solved by introducing a small vortex core size a. This allows us to obtain
the self-induced velocity by the so-called cut-off method (Saffman 1992). For simplicity,
the vortex core size is assumed constant and identical for all the vortices.

Both hub and bound vortices have prescribed positions on the rotor axis and blade
respectively. The difficulty is then to compute to position of tip vortices which are
attached to the blade on one side and connected to a perfect helical structure in the
far wake.
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Figure 3. Schematic of the complete vortical structure generated at the wake (to simplify the
figure, only the tip vortex from a single blade is represented). In solid line, the calculation
domain. In dashed line, the prescribed far-wake structure. A smaller number of turns are shown
compared to what is used for the computation.

The first objective of the analysis is to obtain steady wake solutions in the frame
rotating with the rotor. This amounts to find solutions of the following system of
equations:

dr

dζ
=

1

ΩR
U ind
r ,

dφ

dζ
=

1

ΩR
(Ωind −ΩR),

dz

dζ
=

1

ΩR
(U ind

z + V∞) . (2.4)

where r, φ and z are the radial, angular and axial position of the vortex at ζ and U ind
r ,

Ωind and U ind
z the radial, angular and axial components of the induced velocity. This

system can be directly obtained from (2.2) by requiring solutions to be independent of ψ
in the rotating frame. It could have also been obtained by enforcing the vector tangent
to the vortex trajectory described in cylindrical coordinates by (r(ζ), φ(ζ), z(ζ)) to be
always parallel to the velocity field U∞+U ind−rΩReφ in the rotating frame. The vortex
structure and the velocity field are thus steady but the vortex elements are not: they are
moving along the steady vortex structure.

Each tip vortex structure is attached to the blade at a distance Rb from the rotation
axis. Assuming a 2π/N azimuthal symmetry for a N blades rotor, we can consider a
single tip vortex structure, whose starting position is chosen to be

r(0) = Rb , φ(0) = 0 , z(0) = 0. (2.5)

As in Durán Venegas & Le Dizès (2019) for generalized helical pairs, equations (2.4) are
solved by an iterative method using a finite difference scheme. The tip vortex structure
is discretized in small elements with at least 25 points by turn. This allows us to use
explicit expressions for the induced velocity with distant vortex segments contributions
and a local self-induced contribution associated with local curvature (see Durán Venegas
& Le Dizès 2019). A sufficiently large number of turns are considered such that the
structure is almost helical at the end of the computation domain. This number depends
on the operational conditions and has varied between 15 and 40 in our study. At the
end of the computational domain, estimates for the helix pitch hFW and radius RFW
are obtained and used to construct the far-wake structure. At least 15 turns of this
far-wake structure are used to compute the induced velocity of the far-wake (see figure
3). The dependence of the results with respect to the numerical parameters (number of
discretization points by turn, number of turns in the computation domain, number of
turns in the far wake) is analysed in appendix A. The numerical parameters have been
chosen such that the results are fully converged. The iterative method is initiated by a
perfect helix solution or by a solution obtained for close parameters.
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(a) (b) (c) (d)

Figure 4. Vortex geometry for a two bladed rotor in wind turbine regimes. (a) λ = 3.3, (b)
λ = 4.3, (c) λ = 5.1, (d) λ = 6.1. For all cases η = 0.05 and ε = 0.01.

The vortices are defined by their circulation Γ and their core size a. Both are assumed
constant and uniform. Tip vortices are emitted at the radial coordinates Rb. If the rotor
has N blades, rotates at the angular velocity ΩR in an incident flow of axial velocity V∞,
we can then define 4 non-dimensional parameters:

λ =
RbΩR
V∞

, η =
Γ

R2
bΩR

, ε =
a

Rb
, N. (2.6)

The parameter λ is known as the tip-speed-ratio. It can be either positive or negative. By
convention, we consider that λ is negative for a helicopter in ascent flight (V∞ < 0), and
positive in descent flight (V∞ > 0). The wind turbine regime is then obtained for positive
values of λ. The parameter η measures the relative strength of the vortices: it is related
to the so-called blade loading. This parameter can be chosen positive if we define the
circulation of the bound vortex as Γbound = Γer. The parameter η is in general smaller
than 0.1. The parameter ε characterises the vortex core size with respect to the rotor
size. This parameter will always be considered as small, and typically equal to 0.05 or
0.01. The number N of blades will be kept fixed to 2.

3. Description of the steady solutions

3.1. Geometry

For fixed ε and N , when the tip-speed-ratio λ and vortex strength parameter η are
varied, different vortex geometries are obtained. These geometries are illustrated for a
fixed η and different λ in figures 4 and 5.

Two main types of solutions are obtained according to the behavior of the solution
away from the rotor: solutions in the wind turbine regime for which the vortex structure
expands and goes upwards (figures 4); solutions in the helicopter regime for which the
vortex structure contracts and goes downwards (figures 5). This corresponds to the two
domains of parameters, which are indicated in figure 6 for ε = 0.01 and N = 2 on either
side of the grey region where no solution has been obtained.

Before describing the geometry of the vortices close to the rotor, let us first look at the
characteristics of the far-wake. By construction, the tip vortices form perfect helices in
the far-wake. The radius RFW and pitch hFW of these helices are shown in figure 7 for
the parameters of figure 6. By convention, we have chosen the pitch to be positive when
the vortices go upwards, and negative when they go downwards. We can see that both the
wake contraction in the helicopter regime and the wake expansion in the wind turbine
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(a) (b) (c) (d)

Figure 5. Vortex geometry for a two bladed rotor in helicopter regimes. (a) λ = −10, (b)
λ =∞, (c) λ = 19, (d) λ = 11. For all cases η = 0.05 and ε = 0.01.

1/λ
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regimes

Figure 6. Map of the rotor regimes as a function of λ and η. The grey region represents
the region where no solution has been obtained. On the left, helicopter regimes: the wake
contracts and is advected downwards. On the right, wind turbine regimes: the wake expands
and is advected upwards. In both regimes, the dashed line corresponds to the boundary of the
domain where the tip vortices are on either side of the rotor plane. The other boundary of that
domain is the grey region.

are reduced as the tip speed ratio |λ| decreases. An opposite tendency is by contrast
observed for the far-wake helix pitch that increases with |λ|.

An estimate for hFW can be deduced from simple arguments. As the helical structure
is stationary (in the frame rotating at the angular speed ΩR), its rotation must be
balanced by its axial displacement, that is VFW /ΩFW = −hFW /(2π) (assuming ΩFW <
0). An approximation to the axial displacement speed VFW can be obtained from the
displacement speed of a double array of opposite point vortices separated by a distance
hFW /N in a background axial flow V∞, that is VFW = −NΓ/(2hFW ) + V∞ in the wind
turbine regimes and Vz = NΓ/(2hFW ) + V∞ in the helicopter regimes. If we neglect the
self-induced rotation of the structure, that is assume that ΩFW ≈ −ΩR, the condition
of stationarity then give

hFW =
2π

ΩR

(
NΓ

2hFW
+ V∞

)
, for helicopter regimes (hFW < 0), (3.1a)

hFW =
2π

ΩR

(
− NΓ

2hFW
+ V∞

)
, for wind turbine regimes (hFW > 0). (3.1b)
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Figure 7. Contour maps of the far-wake helix characteristics for ε = 0.01; N = 2,
non-dimensionalized by Rb. (a) Radius RFW /Rb; (b) Pitch hFW /Rb. By convention, hFW is
negative (resp. positive) when the vortices are advected downwards (resp. upwards). In dashed
lines are represented the theoretical formulae (3.3a) (yellow) and (3.3b) (red).

This gives a second-order equation for X = hFW /Rb of the form

X2 − 2π

λ
X ±Nπη = 0, (3.2)

where the sign − is for helicopter regimes, and the sign + for wind turbine regimes. The
adequate solution for each case is

hFW /Rb =
π

λ
−
√
π2

λ2
+Nπη, for helicopter regimes (hFW < 0), (3.3a)

hFW /Rb =
π

λ
+

√
π2

λ2
−Nπη, for wind turbine regimes (hFW > 0). (3.3b)

These contours have been plotted in dashed lines in figure 7(b). We can see that these
formulae provide a reasonably good approximation of hFW /Rb, especially for small η.

The wind turbine regime is associated with large values of 1/λ. It also corresponds
to the so-called windmill brake regime of helicopters in rapid descent flight. In this
regime, the vortices move in the direction of the external wind, and the vortex structure
expands. As seen in figure 8(b), the radius of the structure increases monotonously up
to its far-wake value. By contrast, the vortex pitch does not seem to change much along
the structure at least as long as λ is not too large (figure 9(b)). The most interesting
feature is the existence, for each η, of a critical value of λ above which the tip vortices
are first emitted downwards before being advected upwards. This transition has been
materialized by a dashed line on the right of the grey region in figure 6. As λ gets larger,
the expansion continues to increase and finally gets too large to fit in the computation
domain. This provides the limit of existence of the wind turbine solutions.

The change of direction of the vortex emission as λ increases has been observed
experimentally. In the left pictures of figure 10 are visualized using dye the time averaged
trajectories of the vortices in a rotor side view for values of λ before and after the
transition. We clearly see on the bottom view obtained for λ = 11.2 that the trajectory
of the tip vortex goes below the rotor plane. Unfortunately, vortex circulation and core
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Figure 8. Radial position of the wake in the axial direction for different tip-speed-ratio
values. With η = 0.05, ε = 0.01 and N = 2. (a) Helicopter regimes. (b) Wind turbine regimes.
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Figure 9. Evolution of the local pitch along the wake for different tip-speed-ratio values. With
η = 0.05 and ε = 0.01. (a) Helicopter regimes. (b) Wind turbine regimes. By convention, hFW
is negative (resp. positive) when the vortices are advected downwards (resp. upwards).

size have not been measured in the experiment, so we cannot perform a quantitative
comparison. Nevertheless, the plots on the left in figure 10 demonstrate that we can
obtain a good agreement for the geometry with the numerical model for similar values
of λ.

In the helicopter domain of parameters (left side to the grey region in figure 6), we cover
the normal flight conditions of a helicopter: climbing flight for negative 1/λ, hovering for
1/λ = 0 and weak descent flight for positive (and small) values of 1/λ. In all these
cases, the vortex structure matches away from the rotor a helical structure that moves
downwards, although the external wind is downwards for negative λ and upwards for
positive λ.

The main modifications of the geometry as λ varies are observed close to the rotor
plane. In figures 8(a) and 9(a) are displayed the variation in the wake of the radius and
pitch of the vortex structure, respectively. As already mentioned above, we can observe
in figure 8(a), that the contraction of the vortex structure becomes more important as
1/λ increases. As for the wind turbine regime, we observe that there exists a critical
value of 1/λ above which tip vortices are no longer emitted towards its far-wake, but in
the opposite direction. This transition is indicated by a dashed curve on the left of the
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Figure 10. Time-averaged dye visualization of the wake behind half of the rotor plane in a wind
turbine configuration at λ = 7.23 (upper) and λ = 11.2 (lower) (from Quaranta 2017). Right
plots: qualitative comparison of the wake geometry with the numerical model for wind turbine
configuration at high tip-speed-ratio (up: λ = 8, down: λ = 10. η = 0.02, ε = 0.01). The rotor
disc is represented in black dashed line. In black solid line, the projection of the tip vortices and,
in red, their radial evolution.

hatched region in figure 6. For values of 1/λ larger than this critical value, the vortices
go upwards before being advected downwards. Accordingly, the local pitch changes sign
as we move along the structure: it is positive when the vortices move upwards close to
rotor, and becomes negative afterwards when vortices start to be advected downwards
(see figure 9(a)).

It is interesting to note that the transition curve is close to the line 1/λ = 0 but not
identical to this line. For small η (low loading), this transition occurs in a climbing flight
configuration, whereas this transition is observed in the descent flight regime for large
η (strong loading). As 1/λ is increased above the transition, the vortex excursion above
the rotor plane becomes more important. It becomes more and more difficult to follow
the solution as the number of turns above the rotor plane grows as 1/λ increases.

For all the parameters tested, we have not found any overlap between wind turbine
domain and helicopter domain. However, we cannot exclude this possibility if a larger
computational domain is considered for wind turbine solutions or if helicopter solutions
are continued further.

3.2. Induced velocities

For applications, especially the design of rotors, it is useful to know the velocity field
induced by the vortex structure. In this section, we provide the induced velocity field
for 4 different configurations typical of each identified flow regime. We fix η, ε and N
(η = 0.05, ε = 0.01, N = 2) and consider different values of λ (λ = −20, λ = 11, λ = 6.2,
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Figure 11. Induced velocity contours in the rotor plane (z = 0 plane) for η = 0.05, ε = 0.01,
N = 2 and various λ (λ = −20, 11, 6.2, 4.3). Upper plots: V ind

z /V∞, lower plots: V ind
φ 2πr/Γ .

λ = 4.3). For convenience, we normalize the induced axial velocity by the outer velocity
V∞, and the induced azimuthal velocity by the azimuthal velocity Γ/(2πr) of a vortex
filament of circulation Γ .

In figure 11 are shown contours plots of each velocity component in the rotor plane
for each case. In figure 12 are compared for each case and each component, the induced
velocity on the blade (black dashed line), the mean (azimuthal average) induced velocity
in the rotor plane (black solid line), and the mean induced velocity in the far wake (red
solid line).

The first point to emphasize is the axisymmetric character of the induced flow (figure
11). In the rotor plane, both velocity components are almost axisymmetric. In the rotor
plane, the difference between the azimuthally averaged field and the local field is mainly
concentrated to the close neighborhood of the vortices (see figure 11). This is also clearly
visible on figure 12, where we can see that the velocity on the blade (black dashed line)
departs from its azimuthal average (black solid line) in specific locations: at the blade
tip, and at the location where one vortex crosses the rotor plane (r/Rb ≈ 0.6 for λ = 11;
r/Rn ≈ 2.1 for λ = 6.2).

The azimuthally averaged profiles of the induced velocity possess interesting features.
As soon as we are outside the vortex structure, both the axial and the azimuthal
component vanish. This is true in the far-field and in the rotor plane as well (see figure
12). In the far-field, both components are also constant inside the vortex structure. This
is in agreement with known properties of the induced velocity of infinite helices (see
Hardin 1982). In the rotor plane, we can note that both components are also constant
inside the vortex structure for λ = −20 and λ = 4.3. Moreover, for these cases, the
constant is approximatively equal to the half of the induced axial velocity in the far field,
as assumed in the momentum theory (e. g. Sørensen 2016). For the two cases where the
vortices cross the rotor plane, axial and azimuthal components are only almost constant
by part: there is a jump at each radial location where a vortex crosses the rotor plane.
For these cases, the relation between the mean induced axial flow in the rotor plane and
in the far-field is less obvious. It corresponds to the situations where momentum theory
does not apply.

In figure 13 are compared the azimuthal average of each component in the rotor for the
different values of λ. This figure is interesting to analyse the effect of λ on the mean profile
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Figure 12. Induced velocity profiles (left: axial velocity V ind
z /V∞, right: azimuthal velocity

V ind
φ 2πr/Γ ) for various values of λ and η = 0.05, ε = 0.01 and N = 2. In black, the profiles in

the rotor plane (dashed: on the blade, solid: azimuthal average), in red, the azimuthal average
in the far wake.

in the rotor plane. When normalized by Γ/(2πr), the azimuthal profile is particularly
simple: in the central part of the rotor, it is always, +1 in the helicopter regimes and
-1 in the wind turbine regimes. When no vortices cross the rotor plane, the azimuthal
velocity just jumps to zero at the rotor edge (λ = −20, λ = 4.3). In the more complex
configurations where the vortices cross the rotor plane (λ = 11, λ = 6.2), the normalized
azimuthal velocity exhibits an addition jump at the radial location of crossing. For the
helicopter regimes (λ = 11), it jumps from +1 to -1 at the radial location of crossing then
back to 0 at the edge of the disk. For the wind turbine regimes (λ = 6.2), it jumps from
-1 in the center to -2 at the edge of the disk then to 0 at the radial location of crossing.
Although complex, the azimuthal induced velocity is therefore easily modeled in all the
configurations. The axial component has also a simple structure: it is approximatively
constant by part. Except for λ = 11, the induced axial flow is found to be fairly constant
in the whole rotor disk, and therefore close to the mean value in the rotor disk. However,
this value strongly varies with λ. For λ = 11, that is in the helicopter descent flight
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Figure 13. Azimuthal average of the induced velocity in the rotor plane for different values
of λ and η = 0.05, ε = 0.01 and N = 2. (a) Axial velocity V ind

z /V∞. (b) Azimuthal velocity
V ind
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Figure 14. Streamlines of the azimuthally averaged flow in the (r, z) plane for (a) λ = −20 (b)
λ = 19 (c) λ = 6.1 (d) λ = 4.3 with η = 0.05, ε = 0.01 and N = 2. Black solid line: induced
flow. Black dashed line: total flow. Red solid line: radial position of the tip vortex. Black dotted
line: rotor disc.

regimes where the vortices cross the rotor disk, the induced flow is strong between the
center and the location where the vortices cross the rotor, and just compensates the
mean advection velocity in the external part of the rotor. The mean induced axial flow
on the rotor disk is therefore not expected to be a relevant quantity in that case as only
a reduced inner part of the rotor contributes.

In figure 14, the streamlines of the azimuthally averaged flow are displayed in the (r, z)
plane for the four typical regimes. In solid lines are plotted the streamlines of the induced
flow, while the streamlines of the total flow are represented with dashed lines. In fast
climbing helicopter regimes and in wind turbine regimes, the external flow is dominant,
so the total flow remains unidirectional. When the external flow is weaker and opposed
to the induced velocity, the flow can become bidirectional (see figures 14(b) and (c)): the
vortex tube that goes through the rotor disk starts and ends on the same side of the rotor
plane. For these configurations, as already mentioned above, momentum theory does not
apply.
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(a) (b)

Figure 15. (a) Thrust coefficient C
(Hel)
T and (b) power coefficient C

(Hel)
P for a Joukowski

rotor with N = 2, ε = 0.01. The red dashed lines are the contours of the approximation

obtained without taking into account the induced flow [(0.01, 0.02, 0.03, 0.04) for C
(Hel)
T ,

(−0.004,−0.002, 0, 0.002, 0.004) for C
(Hel
P ]. The solid yellow line in (b) is the contour C

(Hel)
P = 0.

3.3. Thrust and power coefficients

In both the helicopter and the wind turbine community, it is common to characterize
a rotor using the thrust and the power coefficient. These coefficients are non-dimensional
forms of thrust and power. They can be obtained using the local lift force dL derived
from Kutta-Joukowski theorem (e.g. Sørensen 2016, chap 9.2)

dL = ρ(V∞ + Uind)× Γbounddr (3.4)

where Γbound = Γer is the constant circulation of the bound vortex on the blade. The
thrust T and the torque Q are then defined by integrating on the blade the local thrust
dT = dL.ez and the local torque dQ = (r× dL).ez :

T = ρNΓ

∫ R−a

a

(rΩR − U ind
θ )dr, (3.5a)

Q = ρNΓ

∫ R−a

a

(V∞ + U ind
z )rdr. (3.5b)

Note that we neglect the contribution coming from the small intervals in the cores of
hub and tip vortices where the circulation of the bound vortex should in principle be
modified. The power P delivered (or received) by the rotor is then given by

P = ΩRQ = ρNΓΩR

∫ R−a

a

(V∞ + U ind
z )rdr. (3.6)

In agreement with our convention, T is always positive, but P may change sign. We
expect P < 0 in the helicopter regime, but P > 0 in the wind turbine regime.

For helicopters, thrust and power coefficients are usually defined by

C
(Hel)
T =

T
1
2ρπR

4Ω2
R

, C
(Hel)
P =

P
1
2ρπR

5Ω3
R

. (3.7)

In figure 15 are displayed the contour levels of these coefficients in the (1/λ, η) plane. Are
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Figure 16. Mean induced velocity Vi/Vh versus V∞/Vh where Vh is the mean induced velocity

in hover for a fixed C
(Hel)
T (C

(Hel)
T = 0.01 with circles, C

(Hel)
T = 0.02, 0.03, 0.04 with dots). The

fixed parameters are N = 2, ε = 0.01. The other parameters are such that −0.2 < 1/λ < 0.3
and 0.01 < η < 0.1. The mean induced axial velocity Vi is obtained from Vi = P/T − V∞ (red
symbols) or by taking the mean of U ind

z in the rotor plane (blue symbols). The solid line is the
momentum theory prediction (valid for V∞/Vh smaller than −2 or larger than 0). The thick
dashed line is a fit of experimental data provided by Leishman (2006), eq. (2.96), p. 87. (a)
The data are computed using formula (3.5a) for T and (3.6) for P . (b) The data are computed
neglecting U ind

θ in (3.5a) for T and using < U ind
z >θ instead of U ind

z in (3.6) for P .

also indicated in red dashed lines the approximation obtained when the induced velocity
in the rotor plane is neglected:

C
(Hel)
T0 ≈ Nη

π
; C

(Hel)
P0 ≈ Nη

πλ
. (3.8)

As expected from the above formula, we observe that the thrust coefficient C
(Hel)
T mainly

depends on η. Note however the effect of the azimuthal induced flow: it decreases the
thrust in the helicopter regime and increases it in the wind turbine regime.

The mean induced velocity Vi is an important quantity. It can be calculated directly
by integrating U ind

z in the rotor disk or by computing the ratio P/T that gives Vi + V∞.
In figure 16(a), we have plotted the ratio Vi/Vh versus V∞/Vh where Vh is the mean
induced velocity in hover (that is when V∞ = 0). The calculation is performed for a

fixed C
(Hel)
T . The results are compared to the momentum theory predictions which apply

for V∞/Vh < −2 (wind turbine regime) or V∞/Vh > 0 (helicopter climbing regime) and
to the experimental data fit proposed by Leishman (2006) for −2 < V∞/Vh < 0. The

best agreement with the momentum theory is obtained for low loading data (C
(Hel)
T =

0.01, indicated by circles). A systematic departure is nevertheless observed when the
mean induced velocity is computed from the power. We suspect that it comes from an
overestimation of the contributions of the blade tip to the torque. Note also that the

agreement is less good on the wind turbine side for large C
(Hel)
T . This is clearly an effect

of the azimuthal induced velocity in the rotor plane. When this contribution is neglected,
the departure from the momentum theory almost disappears, as seen in figure 16(b).

For wind turbines, a different normalization is used for the thrust and power coeffi-
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Figure 17. Wind turbine thrust coefficient (a) and wind turbine power coefficient (b) versus
the interference factor ai = Vi/V∞. The solid lines are the momentum predictions (3.10). All the
data are in the wind turbine regime for N = 2, ε = 0.01 and 0.01 < η < 0.1. The green symbols
are obtained using formula (3.5a) for T and (3.6) for P . The blue symbols are obtained using
the same formula but replacing the induced velocity on the blade by its azimuthal average. The
red symbols are when the induced velocity field is neglected.

cients. They are defined by

C
(W )
T =

T
1
2ρπR

2V 2∞
= λ2C

(Hel)
T , (3.9a)

C
(W )
P =

P
1
2ρπR

2V 3∞
= λ3C

(Hel)
P . (3.9b)

The simplest version of the momentum theory provides formulas for these coefficients in
term of the interference factor ai = Vi/V∞ (e.g. Sørensen 2016):

C
(W )
T = 4ai(1− ai) , C

(W )
P = 4ai(1− ai)2 . (3.10)

Our data are tested against these expressions in figure 17. This figure shows that
momentum theory is recovered for small ai. As expected a departure is observed for
ai > 0.5. Thrust continues to increase as ai gets larger than 0.5 contrarily to the
momentum theory prediction. The induced field impact is clearly seen on these plots.
It increases the thrust but strongly decreases the power. A difference between the data
obtained with the mean induced velocity and with the induced velocity on the blade is
only visible on the power coefficient. When the induced velocity on the blade is used, the
power is found to be smaller and further away from the momentum theory prediction.

It worth mentioning that in this section the local lift force on the blade has been
calculated assuming a uniform circulation profile along the span (see formula (3.4)).
When the circulation is not uniform on the blade, an equivalent Joukowski wake model
can still be constructed, as mentioned in §2. But, in that case, the local lift force can be
computed differently, using the exact circulation profile on the blade and the azimuthal
average of the induced velocity field as in Durán Venegas et al. (2019) for instance.
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4. Stability

In this section, we analyze the evolution of linear perturbations to the base flow
obtained in the previous section.

4.1. Perturbation model

We now consider the full problem (2.2) and search for solutions of the form

ξ(ψ, ζ) = ξ0(ζ) + ξ′(ψ, ζ), (4.1)

where ξ0 = (r0(ζ), φ0(ζ), z0(ζ)) is a base flow satisfying (2.4), and ξ′ = (r′, φ′, z′) a small
perturbation. Linearizing (2.2), we obtain the following partial differential equations for
the perturbation:

∂r′

∂ψ
= −∂r

′

∂ζ
+

1

ΩR

[
∂Ur
∂r

∣∣∣∣
ξ0

r′ +
∂Ur
∂φ

∣∣∣∣
ξ0

φ′ +
∂Ur
∂z

∣∣∣∣
ξ0

z′
]
, (4.2)

∂φ′

∂ψ
= −∂φ

′

∂ζ
+

1

ΩR

[
∂Ω

∂r

∣∣∣∣
ξ0

r′ +
∂Ω

∂φ

∣∣∣∣
ξ0

φ′ +
∂Ω

∂z

∣∣∣∣
ξ0

z′
]
, (4.3)

∂z′

∂ψ
= −∂z

′

∂ζ
+

1

ΩR

[
∂Uz
∂r

∣∣∣∣
ξ0

r′ +
∂Uz
∂φ

∣∣∣∣
ξ0

φ′ +
∂Uz
∂z

∣∣∣∣
ξ0

z′
]
. (4.4)

The system is solved numerically. For this purpose, a finite difference discretization
scheme has been implemented in ψ and ζ:

ξ′j+1 − ξ′j
∆ψ

=

[
−Dζ +

1

ΩR
∇U |ξ0

]
ξ′j (4.5)

where the index j represents the discretized position in ψ, ∆ψ the discretization interval
in ψ, Dζ the discretization matrix on ζ and ∇U |ξ0 the Jacobian matrix of the induced
velocity field of the base flow. To avoid numerical stability problems, a robust discretiza-
tion scheme has to be chosen for the matrix Dζ . In our case, a four point backward
discretization scheme has been used.

The perturbation is introduced as a displacement impulse in the axial direction at the
azimuthal position ζp:

ξ′j=0(ζ) =

 0
0

Apδ(ζ − ζp)

 , (4.6)

where Ap is the amplitude of the initial perturbation (that could be fixed to 1 since
the problem is linear) and δ is the Dirac delta function. We keep the 2π/N azimuthal
symmetry of the base flow, so the Dirac impulse is applied to the N tip vortices
simultaneously.

In figure 18, the evolution of the axial displacement of the vortices induced by the Dirac
perturbation is shown for a helicopter climbing flight regime. Here, the initial perturba-
tion has been placed at ζp = 4π. We observe that the perturbation grows, extends and
propagates downstream. Moreover, it forms alternate peaks that are associated with a
particular interaction with the other parts of the helices. To understand this interaction,
it is useful to look at the deformation of the helices induced by the perturbation. In
figure 19(a) is plotted in an axial-azimuthal view the undeformed helices as well as the
helices deformed by the perturbation: we clearly see that the two vortices tend to get
closer at specific locations. A similar behavior has already been observed in experiments
and shown to correspond to a local pairing instability (Quaranta et al. 2015, 2018). A
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Figure 18. Axial displacement induced by the perturbation at three different instants
(ψ = 0, 2π, 4π). Parameters of the base flow are λ = −10, η = 0.04, ε = 0.05, N = 2.
Perturbation amplitude and initial position Ap = 10−4Rtip and ζp = 4π.
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Figure 19. Illustration of the instability. (a) View of the tip vortices in the axial-azimuthal
plane. Solid line: perturbed solution. Dashed line: unperturbed solution. (b) View in longitudinal
cross cut of the tip vortices (on one side). Top: unperturbed; bottom: perturbed.

longitudinal cut across the helices shows that the displacement of the vortices towards
each other is actually in phase opposition and makes a 45◦ angle with respect to line
connecting both vortices (see figure 19(b)), as for the pairing instability of an array of
point vortices (Lamb 1932).

4.2. Temporal stability properties

In this section, we first consider the properties of the far-field, by introducing the
perturbation sufficiently far away from the rotor (typically ζp = 20π). As the flow is
approximatively homogeneous at this location, each perturbation wavenumber is thus
expected to have its own independent amplitude evolution. One of the advantages of
using a Dirac perturbation is that it excites all the wavenumbers simultaneously. A
single simulation can therefore be used to obtain the complete stability diagram of the
flow. In practice, we proceed as follows. At each time step ψ, we perform a spatial Fourier
transform in ζ of the function z′(ψ, ζ) in order to obtain the amplitude z′k(ψ) associated
with each wavenumber k. We then estimate the growth rate σ(k) of each wavenumber,
by looking at the slope of log(z′k(ψ)) in term of ψ. For four typical cases corresponding
to the different regimes, we obtain the curves shown in figure 20(a). By construction,
the growth rate σ and the wavenumber k that we get by this method are dimensionless.
The growth rate has been normalized by the rotor rotation rate ΩR and the wavenumber
corresponds to an azimuthal wavenumber (k = 1 means an oscillation for a rotation of
2π).

In order to compare the characteristics of the instability in the different regimes, the
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Figure 20. Growth rate as a function of the (azimuthal) wavenumber k for ε = 0.05, η = 0.02,
N = 2, and ζp = 20π in different rotor regimes (solid line: λ = −20; dashed line: λ = 40; dotted
line: λ = 9.5; dash-dotted line: λ = 8). (a) Growth rate σ∗ = σ/ΩR (normalized by ΩR). (b)
Growth rate σ2h2

FW /(N
2Γ ) (normalized by the characteristic advection time 2h2

FW /(N
2Γ )).

Dashed red line is the theoretical prediction by Gupta & Loewy (1974) for h/R = 0.35 and
ε = 0.05.

growth rate has to be non-dimensionalized by an advection time of the vortex structure.
We use, as we did above, the advection time 2h2FW /(N

2Γ ) obtained for a double array
of 2D point vortices (time needed to be advected by their separation distance hFW /N).
With such a rescaling, we observe in figure 20(b) that the stability curves obtained for
the different regimes superimposed on a single curve corresponding to the theoretical
prediction calculated by Gupta & Loewy (1974) for infinite helices. In principle, the
theoretical prediction depends on h/R and ε but for the parameters we have considered
this dependency is not significant, so a single curve has been plotted. The most unstable
mode is obtained for k = 1 with a value of σ ' (π/2)Γ/(2(hFW /N)2). As already noticed
by Quaranta et al. (2015), it is worth mentioning that this maximum growth rate also
corresponds to the maximum growth rate of the pairing instability for an array of point
vortices of circulation Γ separated by a distance hFW /N (see also appendix B).

The good agreement with Gupta & Loewy (1974) for all the cases we have studied is
a confirmation that the evolution of the perturbation is not affected by the presence of
the rotor as soon as we are a few radius behind the rotor.

4.3. Spatio-temporal behavior

Although the temporal stability properties does not change, the way the wave packet
expands and is advected does vary according to the regime. In figure 21 are displayed
the local growth rate contours in the (ζ, ψ) plane of four characteristic cases. The
perturbation has been introduced in the far-field at ζp/(2π) = 10. For both the climbing
regime (figure 21(a) for λ = −20) and the wind turbine regime (figure 21(d) for λ = 4.3)
the perturbation is advected away as it grows. This is characteristic of convectively
unstable regimes. For the two others regimes, the wave packet does not completely move
away as it expands. For λ = 11, a part of it clearly moves upstream (see figure 21(b)).
The flow is then absolutely unstable in that case. For λ = 6.2, the wave packet amplitude
remains constant at the impulse location (see figure 21(c)). It corresponds to a marginally
absolutely unstable configuration.

To analyse quantitatively the wave packet evolution, it is interesting to consider the
growth rate σV = σ(Vψ) ≈ log(|z′(ψ, ζp + Vψψ)|)/ψ in the frame moving at a given
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Figure 21. Spatio-temporal evolution of the perturbation for ε = 0.01, η = 0.05, N = 2.
Contours of the amplitude envelope (in log scale) in the (ζ, ψ) plane for a impulse placed at
ψ = 0 in ζ/2π = 10. (a) λ = −20; (b) λ = 11; (c) λ = 6.2; (d) λ = 4.3.
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Figure 22. Maximum temporal growth rate in a frame moving at the angular speed Vψ (or
equivalently at the non-dimensionalized axial velocity Vz2π/(ΩRhFW ) = Vψ) for ε = 0.01,
η = 0.05, N = 2, and ζp = 20π in different rotor regimes (solid line: λ = −20; dashed line:
λ = 11; dotted line: λ = 6.2; dash-dotted line: λ = 4.3). (a) Growth rate σV /ΩR (normalized by
ΩR) versus Vψ. (b) Growth rate σV 2h2

FW /(N
2Γ ) (normalized by the characteristic advection

time 2h2
FW /(N

2Γ )) versus (Vψ−1)h2
FWΩR/(NΓπ). Dashed red line is the theoretical prediction

obtained from an array of 2D point vortices σ∗ = π/2(1−X2).

(dimensionless) speed Vψ from the impulse location ζp. The corresponding plot is shown
in figure 22(a). Of particular interest are the velocities v−ψ , v+ψ which delimits the frame
velocity interval in which the perturbation grows and the frame velocity vmax

ψ at which
the growth is maximum. These velocities correspond to the slopes of the green and red
lines indicated in figure 21(b). One can see in figure 22(a) that vmax

ψ is close to 1 in all the
regimes. This is not surprising as the maximum growth rate is expected to be reached in
the frame moving with the vortex elements. These elements moves at a negative angular
velocity close to −ΩR, corresponding to the dimensionless velocity vψ = 1. The difference
comes from the self-inducted angular motion of the helices. As observed in figure 12, the
azimuthal induced velocity is positive in helicopter regimes, and negative in wind turbine
regimes. This explains why vmax

ψ is slightly smaller than 1 for helicopters, and slightly
larger than 1 for wind turbines.

In the far-field, as the pitch is constant and equal to hFW , a 2π increases of ζ
corresponds to an axial displacement of a distance hFW . It follows that Vψ can also
be considered as an axial speed Vz normalized by hFWΩR/(2π). This can be used to
compare the results with a 2D point vortex model. As shown in appendix B, for an array
of point vortices of circulation Γ separated by hFW /N , the pairing instability develops in
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Figure 23. Spatio-temporal evolution of the perturbation for ε = 0.01, η = 0.05, N = 2.
Contours of the axial displacement |z′| (in log scale) in the (z, t) plane for a impulse placed at
ψ = 0 in ζ/2π = 3. (a) λ = −20; (b) λ = 11; (c) λ = 6.2; (d) λ = 4.3. The same colormap
is used for all the figures. The red diamond corresponds to the impulse location. The rotor is
located at z = 0.

a frame moving at the velocity V ∗rel = Vrel2hFW /(NΓ ) with respect to the vortex frame
with a growth rate given by

σV 2h2FW /(N
2Γ ) =

π

2

(
1− (V ∗rel)

2
)
. (4.7)

For the far-wake helices, the relative velocity is given by V ∗rel = (Vψ−1)h2FWΩR/(NΓπ).
We have compared our numerical results with formula (4.7) in figure 22(b). We can
observe that the 2D point vortex model works quite well. A similar agreement was already
observed for the instability developing in an array of vortex rings (Bolnot et al. 2014).

When the Dirac impulse is placed close to the rotor plane, the spatio-temporal
development of the perturbation becomes more complex, especially for the configurations
where the vortices are on both sides of the rotor. A few illustrations of the behavior of the
displacement amplitude are shown in figure 23. Whereas for the classical cases (λ = −20
and λ = 4.3) a well-defined wavepacket forms and is advected away from the rotor. For
the two other cases, a dominant part of the wavepacket is still advected away as in the
far-field, but a small part of the wavepacket is now advected upstream. The wake has
then become absolutely unstable. This part of the wavepacket is now trapped in the close
neighborhood of the rotor in the region where the vortices move on the other side of the
rotor. No simple model is able to describe the evolution of the wavepacket in those cases.
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5. Conclusion

In this work, we have provided a vortex wake model for a rotor in any incident normal
wind. It applies to all the vertical flight regimes of a helicopter (ascent, hover, descent) as
well as all the regimes of a wind turbine. This model, which was first introduced a century
ago by Joukowski, is based on a simple description of the wake by tip and root vortex
filaments for each blade. Contrarily to the classical studies where a helical geometry was
in general prescribed for the wake, here we have solved the governing equations to obtain
the geometry of the vortex structure. This has allowed us to account for the contraction
of the wake in the helicopter regimes and for its expansion in the wind turbines regimes.
In the helicopter regimes, we have been able to get solutions up to the regimes of rapid
descent, for which the vortices move above the rotor before being advected below it.
Similarly, in the wind turbine regimes, we have shown that for large tip ratio the vortices
could also cross the rotor plane. The properties of these new types of solutions have been
analyzed in detail, by providing their geometric characteristics, their induced velocity
field in the rotor plane and in the far wake, as well as their thrust and power coefficients.
The stability of the solutions has also been considered by analysing the linear impulse
response. All the solutions have been found to be unstable with respect to a local pairing
instability, and well described in the far wake by the theoretical predictions for uniform
helices (Gupta & Loewy 1974) and for an array of 2D point vortices. However, the more
complex solutions have been found to be more unstable, with perturbations propagating
upstream (absolute instability) and exhibiting a non-trivial spatio-temporal behavior
close to the rotor.

It is clear that for those cases, the vortex structure is expected to be globally unstable.
We suspect that it is replaced by a time-dependent solution corresponding to the so-
called Vortex Ring State (VRS). This state is characterized by the presence of a ring
structure in the rotor plane that is periodically shed (Drees & Hendal 1951; Stack et al.
2005; Green et al. 2005).
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Appendix A. Numerical convergence study

In this appendix, we analyze the convergence of the results with respect to discretiza-
tion parameters that are the number of discretization points per turn, the number of
turns in the computation domain and the number of turns used to describe the far-wake
structure. We consider the highly deformed case obtained for the parameters λ = −40,
ε = 0.05, η = 0.02 and N = 2 which corresponds to one of the most challenging
configuration. Both the helical structure and the stability results are analyzed.

In figure 24, we show the effect of the numerical parameters on the far-wake and the
near-wake geometry. The effect on the far-wake is analyzed by considering the radius
RFW and the pitch hFW . For the near-wake, we consider the position of the points of
the first two turns. More specifically, we define the maximum distance dmax

NW between
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Figure 24. Effect of numerical parameters on the far-wake and near-wake geometry for λ = −40,
ε = 0.05, η = 0.02 and N = 2. The default parameters are 30 discretization points per turn, 30
turns for the computation domain and 30 turns for the far-wake domain. Left column: radius
RFW in the far-wake; Central column: pitch hFW in the far–wake; Right column: near-wake
maximum distance dmax

NW . Upper line: number of discretization points per turn; Middle line:
number of turns in the computation domain; Lower line: number of turns in the far wake.

the points of the first two turns of the helix compared to a well converged case. For this
analysis, the converged reference case has 60 points per turn, 40 turns for the computation
domain and 40 turns for the far-wake.

The effect of the number of the discretization points per turn was already analysed in
Durán Venegas & Le Dizès (2019) for periodic configurations. Similar results are obtained
for semi-infinite configurations: when one changes the number of points per turn from
30 to 60, we observe a difference smaller than 0.1% for RFW and 0.8% for hFW . For the
near-wake structure, dmax

NW /Rb is found to be 5 · 10−3.
Concerning the number of turns in the computation domain, RFW and hFW are found

not to vary much above 10 turns. Between 20 turns and 40 turns, we obtain variations
of 0.05% for RFW , of 0.2% for hFW while dmax

NW /Rb is 2 · 10−4. Concerning the number
of turns in the far wake, the difference between taking 10 and 40 turns is 0.02% for RFW
and 0.08% for hFW . This difference is reduced by one order of magnitude if one compares
30 turns with 40 turns. In the near wake, dmax

NW /Rb is found to be 10−3 when 30 turns is
compared to 40 turns.

The effect of the numerical parameters on the instability growth rate is shown in
figure 25. We observe that larger numerical parameters are needed to reach convergence
for first two instability bands. For instance, if one takes 20 points per turn, the wake
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Figure 25. Effect of the numerical parameters on the growth rate as a function of the
(azimuthal) wavenumber k for λ = −40, ε = 0.05, η = 0.02, N = 2, and ζp = 16π. The default
parameters are 60 points per turn, 30 near wake turns and 30 far wake turns. (a) Variation of
the number of points per turn: 20 (dotted), 40 (dashed dotted), 60 (solid) and 80 (grey thick
solid). (b) Variation of the number of turns in the near wake domain: 15 (dotted), 20 (dashed
dotted), 30 (solid) and 40 (grey thick solid). (c) Variation of the number of turns in the far wake
domain: 5 (dotted), 10 (dashed dotted), 20 (solid) and 30 (grey thick solid).

structure is well-described, as well as the first instability band (see figure 25a), but the
second instability peak is not properly reproduced. One needs 60 points per turn to
obtain converged results for this instability band. Concerning the number of turns in
the computation domain (figure 25b), no significant differences are observed when the
number of turns varies from 15 to 40. The limitation actually comes from the advection
of the perturbation: the domain has to be sufficiently large such that the wave packet has
not reached the far-wake before being completely developed. Finally, for the number of
turns in the far wake (figure 25c), a quite good convergence is already obtained as soon
as it is larger than 10. Above 20 turns, the difference becomes imperceptible (see figure
25c).

Appendix B. Spatio-temporal development of the pairing instability
in an array of 2D point vortices

In this appendix, we review the stability properties of an infinite array of point vortices
of circulation Γ located at zp = ph, where p covers all the integers and h is the separation
distance. As shown by Lamb (1932), §156, this array is linearly unstable in the frame of
the vortices with respect to a displacement of the form z′p = δeikhp−iωt with a complex
frequency ω = ω∗Γ/(2h2) that is related to the wavenumber k = k∗/h by

ω∗ = i
π

2

(
1−

(
k∗

π
− 1

)2
)
. (B 1)

In a frame moving at the velocity Vrel = V ∗relΓ/(2h) with respect to the vortices, the
dispersion relation is

ω∗V = ω∗ − k∗V ∗rel = i
π

2

(
1−

(
k∗

π
− 1

)2
)
− k∗V ∗rel . (B 2)

As explained in (Huerre & Monkewitz 1990), in order to find the maximum growth rate
of a wave packet in this moving frame, one should consider the wavenumber k∗V that
cancels the group velocity:

∂ω∗V
∂k∗

(k∗V ) = 0, (B 3)
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which gives

k∗V = π (1 + iV ∗rel) . (B 4)

The maximum growth rate of the wave packet in the frame moving at the velocity V ∗rel
is thus given by σ∗V = =m(ω∗V (k∗V )) with

ω∗V (k∗V ) = i
π

2

(
1− (V ∗rel)

2
)
− πV ∗ . (B 5)

In dimensional form, we then obtain

σV =
πΓ

4h2

(
1−

(
Vrel2h

Γ

)2
)

(B 6)

for the growth rate of a wavepacket moving at a velocity Vrel with respect to the vortices.
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Selçuk, C., Delbende, I. & Rossi, M. 2018 Helical vortices: linear stability analysis and
nonlinear dynamics. Fluid Dyn. Res. 50, 011411.

Sørensen, J. N. 2016 General momentum theory for horizontal axis wind turbines, Springer
series: Research topics in wind energy, vol. 4. Springer.

Sørensen, J. N. & Shen, W. Z. 2002 Numerical modeling of wind turbine wakes. J. Fluids
Eng. 124, 393–399.
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