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Abstract

We propose and analyze a stochastic model for opinion dynamics over social networks. In the scenario considered,
each agent has an opinion level which belongs to a discrete set. At any given time, the agent takes an action 0
or 1 depending on the opinion, and this action can be seen as a binary signal that can influence the other agents
in the network. The opinion updates based on the signal from a random neighbor or from an external entity who
attempts to manipulate or control the network. In the absence of the external signal or a constant signal, this model
is shown to asymptotically produce consensus with a finite number of connected agents. Additionally, the consensus
is determined by the signal. On the other hand, when the number of agents is large, the time to achieve consensus
can become exponentially large and the dynamics exhibit population equilibrium points that are ”metastable”. These
equilibria can be observed with a finite (but large) number of agents through numerical simulations and are shown to
persist for a long duration.

Keywords: Opinion dynamics, Markov chains, agent based models, stability analysis

1. Introduction

Recent social science experiments [1, 2] have shown that information propagated via social media impact not only
the opinions and decisions of the users who directly observe this information but also their friends. The understanding
of different features related to opinion dynamics in social networks gained more and more relevance in politics and
economics. One such feature is observational learning which refers to the fact that individuals extract information
from others’ actions. This type of learning has been studied in economics [3, 4] in contexts where agents make
decisions – for example, buy product A or product B – sequentially, so that agent 2 observes the action of agent 1,
agent 3 observes the actions of agents 1 and 2 and so on. Assuming that product A is better than product B but that
each agent observes an imperfect private signal about the relative qualities of these products, rational agents can reach
a consensus on the wrong decision, i.e. there is a positive probability that all agents buy product B. Such an outcome is
called an information cascade: if enough1 agents at the beginning of the sequence have a bad private signal indicating
that B is better than A, this information is aggregated in a way that makes all subsequent agents ignore their private
information and follow the decisions of previous agents by choosing product B. Interestingly, information cascades
can also occur in networks where agents engage in observational learning [5, 6]. This motivated several researchers
from various disciplines such as sociology, mathematics, physics, computer science, and engineering to study the
dynamics of opinions in social networks. The aim of these studies is to better understand the propagation of ideas and
fads in social networks. A major issue in this framework is developing realistic models which capture the behavior of
large-scale social networks [7]. This problem is complex since it includes different hard challenges as: the dynamics
of the interaction network (who talks with whom at a given instant), the dynamics during the interaction (what is the
update rule when an individual interacts) and the heterogeneity of the network (each individual has a certain influence
and sensibility to other opinions in the network).

In early studies of the opinion dynamics, the heterogeneity is neglected and the dynamics of the network, as
well as the update rule, are simplified. For instance, DeGroot [8] considered a fixed network in which individuals

1The number of agents necessary to start an information cascade depends on the quality of their private signals.
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repeatedly update their opinion by averaging the opinions of their neighbors. Under some mild assumption on the
network structure, this dynamics always leads to consensus. After two decades this model was modified in different
manners. On one hand, Friedkin-Johnsen [9] proposed a model in which the initial condition (representing initial
beliefs, social class membership, etc) plays an important role since it weights at each step the individual opinion
evolution. On the other hand, a bounded confidence dynamics on the network topology was added to the simple
updating rule proposed by DeGroot. This results in the Deffuant [10] and the Hegselmann-Krause [11] models which
consider that each individual can be influenced only by those having opinions close their own. The main difference
between these models is that the former supposes that each agent updates its opinion by using only the opinion of
a random neighbor while the latter assumes that the update is done by averaging the opinions of all the neighbors.
These dynamics often lead to local agreements that correspond to a partitioning in the network. Hegselmann-Krause
model was adapted in [12] to a decaying confidence model that can be used both for negotiation processes or cluster
detection in a network.

While in the models above the opinion can take any real number, there exist models, in which the opinions
are restricted to a discrete set of values. These models generally come from statistical physics, and the most em-
ployed are the Ising [13], voter [14], and Sznajd [15] models. They are used to model processes in which individuals
have to choose one among a certain number of decisions. It is noteworthy that these models led to the so-called
threshold-based rules [16] that basically say that an individual adopts a certain opinion whenever a certain number of
its neighbors have this opinion. Moreover, they allowed the consideration of heterogeneity of the network by defining
an agent-dependent threshold [17] or the presence of stubborn agents [18].

It is worth noting that all the models presented above assume that each individual has access to the exact value
of the neighbor’s state. To model a more realistic behavior, a mix of discrete actions, but continuous opinion was
proposed in [19]. This model, a type of social learning, considers the opinion as a measure of confidence in the binary
choices or actions, and only these actions are accessible to the neighbors. This work was inspired by [19], but in
contrast, we provide a theoretical analysis in order to support our numerical results. In [20], a deterministic version of
[19] was studied and it was shown that this deterministic model leads to a variety of asymptotic behaviors including
consensus, oscillation of opinions or clustering according to local agreements.

In this paper, we present a theoretical analysis of the stochastic model with discrete opinion and binary actions
proposed in [19]. In order to simplify the developments, we assume that opinions can be approximated by a given
number of levels within (0, 1), while the actions can be only 0 or 1. As an example, if the opinions levels define which
car is preferred, from company A or B, an action would be buying the car, or sharing advertisements for A or B in
social media. This action is what influences other agents to shift their opinion. As in [20] we consider that extremal
opinions (close to 0 or 1) present more inertia. This corresponds to the fact that people who have higher confidence in
their action are less likely to change their opinion. Considering stochastic behavior instead of deterministic results in
a more realistic model, and discretizing the opinion space is not very restrictive since quantifying the opinion with a
precise real number is almost impossible. While many studies in the social sciences literature focus on the emergence
of a consensus in social networks [21, 22, 23], our goal here is to analyze the emergence of persistent agreements as
well as the preservation and propagation of the opinions in the network. Nevertheless, one main result of the paper
states that as long as the network is connected, in the absence of an external signal the opinions will asymptotically
reach consensus. Moreover, the consensus value is close to one of the extreme opinions 0 or 1. However, when
the number of agents is large, for certain network structures, we observe transient behavior that persists for a long
duration of time and is characterized as metastable equilibria. In the presence of a persistent constant external signal,
the opinions converge to the action corresponding to the signal asymptotically. However, when a sufficiently large
number of agents start with actions opposite to the signal, we show that a metastable equilibrium is reached with
majority action being in opposition to the signal.

Opinion dynamics is very complex and each of the existing models emphasizes some of its particular features.
We do not claim that the model proposed in this work is more realistic than existing ones but like the others it
highlights particular characteristics such as the fact that actions are visible to neighbors while opinions are often not,
the interactions between individuals are random and people with strong opinions are more difficult to influence. In this
paper, we consider a discretized version of the model from [19] which can be mathematically treated as an interactive
Markov chain. Similar approaches have been considered in the literature (see for instance [24, 25]) for other opinion
dynamics models like the ones by Hegselmann-Krause or Deffuant. In addition to classical opinion dynamics papers,
we also study the impact of an external influence or signal. In contrast with other Markov based approaches, the
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novelty of our paper comes from the fact that instead of agents accessing the opinion of the neighbors, we suppose
that only the action is accessible, which leads to very different dynamics. The main contributions of this work are
summarized as follows:

• Firstly, we propose and analyze the asymptotic behavior of a stochastic model for social learning, where
agents update their opinions based on an external signal or the action of a random neighbor. This is in
contrast to other works on opinion dynamics which assume that the opinions of neighboring agents are perfectly
observable, which may not be true in many practical situations.

• Secondly, in other OD models like [8], if a stubborn agent can influence all the agents within the network, the
consensus value is determined by the opinion of the stubborn agent which is reached asymptotically. While
this behavior holds even in our model, we have shown that agents may stay in a metastable equilibrium for an
arbitrarily long duration. From a social point of view, this transient metastable phase is the one that matters
because the lifecycle of products and duration of campaigns (either electoral or selling) are finite.

• When the number of agents is assumed to be arbitrarily large in communities with certain properties, we show
preservation and propagation of actions inside communities or clusters of agents within the social network
through the characterization of the metastable equilibria.

Some preliminary results provided in this paper were also reported without proofs in [26]. The current work goes
further by completing the analysis, considering external signals and providing more consistent illustrations. The rest
of the paper is organized as follows. Section 2 introduces the main notation and concepts necessary for the model
description detailed in Section 3. The asymptotic behaviour of the dynamics under consideration is described in
Section 4. These results are valid for general networks represented by connected graphs. Taking into account the
small world features of social networks, in Sections 5 and 6 we analyze large-scale networks with uniformly random
gossiping and clustered topology, respectively. Some numerical studies and illustrative simulations are provided in
Section 7 before presenting some concluding remarks.

2. Preliminaries

We consider a set of agents V = {1, 2, . . . ,K} who are connected through a social network and influence the
opinions of each other. The opinions of any agent belong to a discrete set Θ = {θ1, θ2, . . . , θN}. This set is structured
such that θn ∈ (0, 1)\{0.5} and θn < θn+1 for all n ∈ {1, 2, . . . ,N}. We also take N to be positive and even, i.e.
N ∈ {2, 4, . . . }. We define Θ such that θ N

2
< 0.5 and θ N

2 +1 > 0.5. Note that this definition strictly prohibits an opinion
level of 0.5. To have the opinion levels symmteric around 0.5, we also take θn = θN−n+1.

Next, we introduce some graph notions defining the interaction over the social network under consideration.

Definition 1 (Directed graph). A directed graph G is an ordered triplet (V,E, π) with V being a finite set denoting
the vertices, E ⊆ V ×V being the set of directed edges, and πi, j for any i, j ∈ V represents the trust that agent j has
on the actions of agent i. Agent j is a neighbor of agent i if and only if πi, j > 0.

We say that agent i is connected with agent j, if there exists at least one sequence (i1, i2, . . . , ip+1) such that πik, ik+1
> 0,

∀k ∈ {1, 2, . . . , p}.

Definition 2 (Strongly connected). If any two distinct agents i, j ∈ V are connected, the graph G is said to be
strongly connected.

As our opinion dynamics has stochastic elements, we also introduce Pr(·) to denote the probability and E(·) for the
expectation of a random variable. We also use almost surely to describe events that happen with probability 1 although
the set of possible exceptions to the event occurring is non-empty. In the sequel the discrete-time will be denoted by
the variable t ∈ Z≥0 representing the curent index of sampling time. In order to characterize the asymptotic and
transient behavior of the system, we also introduce some relevant stability notions.

Definition 3 (Stability notions). For any autonomous discrete-time dynamics of a stochastic variable p(t), a steady
state or an equilibrium pe is
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• an absorbing state if p(t∗) = pe implies p(t) = pe for all t > t∗ surely,

• almost surely stable if there exists ε∗ > 0 such that if ‖p(t∗) − pe‖ < ε at some t∗, then ‖p(t) − pe‖ < ε almost
surely for any finite t > t∗ and any ε ≤ ε∗.

• almost surely exponentially locally stable if there exists R, r > 0 and ε ∈ (0, 1) such that if ‖p(t∗) − pe‖ < r at
some t∗, then ‖p(t) − pe‖ < Rε(t−t∗) almost surely for any finite t > t∗.

• metastable if pe is almost surely stable but does not correspond to an absorbing state.

The notion of metastability comes from physics where systems can have local minima for their potential energy
function which is not a global minimum. Such states are called metastable as the system persists around such states
in the absence of any perturbation. A large enough perturbation can push the system out of the locally stable state.
In the context of stochastic systems and Markov chains, metastable states (or region) correspond to a state (or set of
states) of the Markov chain which have an infinitely large exit rate, i.e. the probability of reaching a state outside the
meta-stable state approaches zero [27].

3. Model

We denote the opinion of any agent i ∈ V as xi(t) ∈ Θ at time t ∈ {1, 2, . . . }. We use X(t) = (x1(t), x2(t), . . . , xK(t))
to denote the state of the network at any time t. Let b·e denote the nearest integer function. The action taken by agent
i is then given by

qi(t) = bxi(t)e.

Therefore, if an agent has an opinion more than 0.5, it will take the action 1 and 0 otherwise. Since we suppose that
0.5 < Θ, agents always pick action 1 or 0. This kind of opinion quantization is suitable for many practical applications
such as in politics where the agents must make binary decisions despite believing in their action strongly or weakly.

Let the total population share of users with opinion θn be denoted by pn(t) such that
∑

n pn(t) = 1, calculated as

pn(t) =

∑K
i=1 δxi(t),θn

K
(1)

where δi, j is the Kronecker delta function (i.e., δa,b = 0 if a , b and δa,b = 1 when a = b). Define p−(t) as the
population share of agents with action 0, and p+(t) as the population share with the action 1. We have

p−(t) =

∑K
i=1 δqi(t),0

K
=

N/2∑
n=1

pn(t) (2)

and

p+(t) =

∑K
i=1 δqi(t),1

K
=

N∑
n=N/2+1

pn(t) (3)

More generally, if we consider a set C ⊂ V, we can define the population shares of agents in C as

pC
n (t) =

∑
i∈C δxi(t),θn

|C|
. (4)

and similarly define pa
+ and pa

−.

3.1. Exogenous signal

In addition to the interaction of agents in the graph, we also account for the presence of an external exogenous
signal which sometimes influence the opinion of agents. In order to smoothly integrate the presence of these signals,
we add two agent labeled E0 and E1 to the graph which results in an extended set of agentsVE := {E0, E1, 1, 2, . . . ,K}.
We define the influence on these two agents to be only be themselves, i.e., πi,E0 = πi,E1 = 0 for all i ∈ V and
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πE0,E0 = πE1,E1 = 1. We also define XE0 (1) = θ1 and XE1 (1) = θN . These conditions implies than these agents never
change their opinion and that qE0 (t) = 0 and qE1 (t) = 1 for all t.

We have identified four cases of interest

1. πE0,i = πE1,i = 0 for all i ∈ V.
2. πE1,i = 0 for all i ∈ V and ∃ j ∈ V such that πE0, j > 0.
3. πE0,i = 0 for all i ∈ V and ∃ j ∈ V such that πE1, j > 0.
4. ∃i, j ∈ V such that πE0,i > 0 and πE1, j > 0.

The exogenous signals considered here represent external players who defend a fixed position in favor of one of
the alternatives 0 or 1, and who influence each agent in the network with some given probability at each period. For
example, these external players can be firms competing for customers or opinion leaders competing for the support of
the public on a political or social matter. Although the behavior of these players is not modeled explicitly and is taken
as an exogenous shock to the network, it is interesting to study the effect of a variation of the relative strength of their
influence on the resulting opinion dynamics.

3.2. Opinion dynamics

Now, we describe the model of opinion evolution by random gossiping. This implies that agents i ∈ V at any time
instant t ∈ Z≥0 is influenced by the external signal or the action of one random neighboring agent. This influential
agent is denoted as Ji(t) ∈ VE which includes the external influence E0 or E1. The probability of having an agent j
influencing agent i is given by π j,i, which implies

∀i, j ∈ VE , Pr(Ji(t) = j) = π j,i. (5)

Agent i will shift his opinion towards the action of Ji(t) with a certain probability fn when xi(t) = θn, the inertia
factor. That is, the opinion also measures the confidence of agents in their actions and an agent with opinion close to
0.5 is more likely to shift as he is less confident in his action. Whereas an agent with a strong opinion (close to 1 or 0)
is less likely to shift his opinion as he is more convinced by his action choice. The opinion of agent i may shift towards
the action of agent i based on the inertia factor fn ∈ (0, 1) for any n ∈ {1, 2, . . . ,N}. For example, fn = 4θn(1 − θn),
which is inspired by the model used in [19]. This factor is symmetric w.r.t. n = N/2, i.e., fn = fN+1−n and is typically
increasing from n = 1 to n = N/2 and decreasing later 2 Therefore, we can write the stochastic opinion dynamics of
any agent i ∈ V as

∀n ∈ {1, 2, . . . ,N − 1}, Pr(xi(t + 1) = θn+1|xi(t) = θn, qJi(t) = 1) = fn,
∀n ∈ {2, 3, . . . ,N}, Pr(xi(t + 1) = θn−1|xi(t) = θn, qJi(t) = 0) = fn,
∀n ∈ {2, 3, . . . ,N − 1}, Pr(xi(t + 1) = θn|xi(t) = θn) = 1 − fn,
∀n ∈ {1,N}, Pr(xi(t + 1) = θn|xi(t) = θn, qJi(t) = bθne) = 1,

Pr(xi(t + 1) = θn|xi(t) = θn, qJi(t) , bθne) = 1 − fn.

(6)

for all t ∈ Z≥0.
Before proceeding to the analysis of this Markov chain, we provide a list of notations and their meaning in Table

1 for ease of exposition.

4. Asymptotic behavior of opinions in finite networks

We denote the combined states of the overall network by αm where αm ∈ ΘK for all m ∈ {1, 2, . . . ,NK}. In other
words, for any m ∈ {1, 2, . . . ,NK} one defines αm := (θm1 , θm2 , . . . , θmK ) ∈ ΘK as the vector collecting the opinions of
the K agents in the network. Moreover, we consider that α1 = (θ1, θ1, . . . , θ1) and α2 = (θN , θN , . . . , θN).

2Note that 1
fn

would be the actual ’inertia’ as a higher fn implies a higher willingness to change its opinion.
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Symbol Meaning
Θ Set of opinion values, |Θ| = N, N even.
V Set of agents, |V| = K
fn Willingness to shift opinion with current opinion θn ∈ Θ

xi(t) Opinion of agent i at time t, xi(t) ∈ Θ

qi(t) Action of agent i at time t qi(t) = bxi(t)e ∈ {0, 1}

π j,i Probability of agent i observing action of j

pn(t) Expected fraction of population with opinion θn, pn =
∑

i∈K
E(xi(t)=θn)

K

p+(t),
p−(t)

Expected fraction of population with action 1, p+(t) =
∑

i∈K
E(qi(t)=1)

K

or action 0, p−(t) =
∑

i∈K
E(qi(t)=0)

K
pC

n (t) Expected population share within set C ⊆ K with opinion θn

pC
+(t),

pC
−(t)

Expected population share within set C ⊆ K with action 1
pC

+ =
∑

i∈C
E(qi(t)=1)
|C|

Table 1: Notations used

Now define a sequence of random variables X(t), where the realizations of X(t) belong to ΘK . From the opinion
dynamics model (6), we have:

Pr(X(t + 1) = αm|X(t) = αm′ , X(t − 1) = αm′′ , . . . ) = Pr(X(t + 1) = αm|X(t) = αm′ ) (7)

which by definition, is a Markov process and represents the opinion dynamics of all the K agents. Additionally, the
transition of each agent is independent of the other transitions yielding

Pr(X(t + 1) = αm|X(t) = αm′ ) = ΠK
k=1 Pr(xk(t + 1) = θmk |X(t) = αm′ ) (8)

Here, the term Pr(xk(t + 1) = θnk |X(t) = αm) can be calculated based on (5) and (6) as

Pr(xk(t + 1) = θnk |X(t) = αm) =



0 if |mk − nk | > 1
fmk Q−k (αm) if nk = mk − 1
fmk Q+

k (αm) if nk = mk + 1
1 − fmk if mk = nk & 1 < nk < N
1 − fmk Q+

k (αm) if mk = nk = 1
1 − fmk Q−k (αm) if mk = nk = N

(9)

where Q−k (αm) =
∑

j∈V\{k} π j,k(1 − bθm je) and Q+
k (αm) =

∑
j∈V\{k} π j,kbθm je. We use ξ(t) to denote the probability

distribution over the states (α1, α2, . . . ) at time t, i.e., for all m ∈ {1, . . . ,NK}, ξm(t) = Pr(X(t) = αm). The Markov
process in matrix form can be written as

ξ(t + 1) = Mξ(t) (10)

where M, the transition matrix has elements

Mm,n = Pr(X(t + 1) = αm|X(t) = αn)

which are obtained from (8) and (9).

Definition 4 (Absorbing state). A state αm of the Markov process (8) is called an absorbing state if and only if

Pr(X(t + 1) = αm|X(t) = αm) = 1.
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This implies that once the Markov process reaches an absorbing state, then it stays in that state and will never move
to another state in the future. Consider the following assumption.

Assumption 1. The graph defined by the probability of interactions (V,E, π) is strongly connected.

In this context, we are able to get the following result.

Proposition 1. We define α1 := (θ1, θ1, . . . , θ1) and α2 := (θN , θN , . . . , θN). Under Assumption 1, the Markov process
X(t) defined in (8) has the following characteristic for each case defined in Section 3.1:

1. πE0,i = πE1,i = 0 for all i ∈ V ⇒ both α1 and α2 are absorbing states,
2. πE1,i = 0 for all i ∈ V, ∃ j ∈ V such that πE0, j > 0⇒ α1 is the only absorbing state,
3. πE0,i = 0 for all i ∈ V, ∃ j ∈ V such that πE1, j > 0⇒ α2 is the only absorbing state,
4. ∃i, j ∈ V such that πE0,i > 0, πE1, j > 0⇒ there are no absorbing states.

Proof See Appendix A. �
The probability of reaching absorbing states α1 or α2 can be computed based on the results in [28]. Since α1 and

α2 are absorbing states, we can rewrite (10) as

ξ(t + 1) =

[
I2 0

R1 R2

]
ξ(t) (11)

where I2 is the 2 × 2 identity matrix, and R1 and R2 are the remaining elements of M (M takes this form ).

Corollary 1 (From [28]). The Markov process X(t) defined in (8), under Assumption 1, will asymptotically almost
surely reach α1 or α2 irrespective of the starting state. The probability to reach a specific absorbing state can be
calculated as B = (I′−R2)−1R1, where I′ is the (NK−2)×(NK−2) identity matrix, Bm,n,m ∈ {1, 2}, n ∈ {1, 2, . . . ,NK−2}
is the probability to reach the absorbing state αm from a non-absorbing state αn.

Also note that the absorbing states α1 and α2 are almost surely locally asymptotically stable when x(t) ∈ S 1 or
x(t) ∈ S 2 respectively, where S i = {y ∈ ΘN | byne = i − 1 ∀n ∈ V} for i = 1, 2. However, note that the number of
states of this Markov system is given by |NK |, i.e if there are 4 opinion levels and 20 agents, there will be 420 states
corresponding to a 420 × 420 sized transition matrix. This makes an analysis of the Markov chain in terms of rate of
convergence to the absorbing states or probability to converge to the absorbing states etc. computationally heavy and
almost impossible when K is large. In many social networks, K is indeed large and of the order of thousands if not
millions. This motivates us to study the large-scale limit in the following section.

As pointed out in literature [29, 30], social networks are characterized by a small world structure. In other words,
any two nodes in the network are connected through a small path. To account for this feature, in the sequel we are
considering two particular cases: uniform random interactions among all agents and clustered communications. In
the first case any agent can interact with any other agent with equal probability while in the second case we have the
generic modeling of small world networks in which agents have a large probability to interact with agents in a certain
group and small probability to interact outside the group. By focusing on these particular network typologies we are
able to obtain analytic characterizations of the opinion dynamics.

5. Uniformly random gossiping in large-scale networks

In this section we consider the case of an arbitararily large number of agents, i.e., K → ∞. In practice, this case is
common as real social networks contain large number of individuals/agents. Indeed the convergence in such networks
to the absorbing states may be very slow, and the transient behavior may be of interest, see [24, 25] for instance.
The goal of this section is to provide an approximation of the transient behavior of large-scale networks. Beside the
absorbing states emphasized before, in large networks, we prove that the system may also reach other population
equilibria, even if the individual opinion of agents vary in time. Define the population share vector for the entire set of
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agents as p(t) = (p1(t), . . . , pN(t))T (where T is the transpose) and pC(t) = (pC
1 (t), . . . , pC

N(t))T as the population share
with a set C ⊂ V for convenience.

Definition 5 (Equilibrium in population). A population vector pe denotes an equilibrium in population if p(t) = pe

implies p(t + 1) = pe.

First, we assume that πE0,i = πE0, j := π− and πE1,i = πE1, j := π+ for any i, j ∈ V. Define by λ = 1 − π− − π+,
the probability of any agent to interact with other agents in the network at a given time. We consider a uniformly
random selection of agents for gossiping, i.e., we assume πi, j = λ

K−1 for all i, j ∈ V. As every agent has an identical
probability of interacting with the rest, we can do a large number or mean field approximation (using the central limit
theorem) to study the dynamics of the population shares.

For finite K, the number of agents that shift their opinion from θm at time t to opinion θn at time t +1 is a stochastic
variable and can be expressed as the sum of K pm(t) independent and identically distributed random variables (recall
that pm(t) is the population share of agents with opinion θm). In the limit of K → ∞, the total number of agents
migrating converges to a deterministic value (the expectation) if we apply the central limit theorem as shown in the
following proposition.

Proposition 2. When X(t) has the stochastic dynamics (9) with K → ∞ and πi, j = λ
K−1 , we have

p1(t + 1) = p1(t) − f1 p1(t)
(
πE1,1 + λ

∑N
n=N/2+1 pn(t)

)
+ p2(t) f2

(
πE0,1 + λ

∑N/2
n=1 pn(t)

)
,

pm(t + 1) = (1 − fm)pm(t) + fm−1 pm−1(t)
(
πE1,1 + λ

∑N
n=N/2+1 pn(t)

)
+ fm+1 pm+1(t)

(
πE0,1 + λ

∑N/2
n=1 pn(t)

)
,

∀m ∈ {2, . . . ,N − 1}
pN(t + 1) = pN(t) − fN pN(t)

(
πE1,0 + λ

∑N/2
n=1 pn(t)

)
+ pN−1(t) fN−1

(
πE1,1 + λ

∑N
n=N/2+1 pn(t)

)
.

(12)

which holds almost surely.

Proof We transform the agent dynamics given in (9), into a deterministic population dynamics which occurs almost
surely using the central limit theorem as follows. For this, we evaluate

Pr(xi(t + 1) = θn) = (1 − fn) Pr(xi(t) = θn) + fn−1 Pr(xi(t) = θn−1) Pr(qJi(t)(t) = 1)+
fn+1 Pr(xi(t) = θn+1) Pr(qJi(t)(t) = 0) (13)

Since we have K → ∞ and πi, j = λ
K−1 for all i, j ∈ V, we have Pr(qJi(t)(t) = 1) = λp+(t) + πE1,1 and Pr(qJi(t)(t) =

0) = λp−(t) + πE0,1 for any i ∈ V. pn(t + 1) is in fact the sum of K (with K → ∞) Bernoulli variables taking the value
1 with a probability given by (13). This allows us to evaluate

E(pn(t + 1)) = fn−1 pn−1(t)(λp+(t) + πE1,1) + (1 − fn)pn(t) + fn+1 pn+1(t)(λp−(t) + πE0,1) (14)

for all n ∈ {2, 3, . . . ,N − 1}. However, since the variances of each of the K Bernoulli variables are bounded by 1/4 (all
of them are between 0 and 1), we can use the Central limit theorem (Lyapunov version), to conclude that the variance
of pn(t + 1) will be arbitararily small as K → ∞, or alternately, pn(t + 1) = E(pn(t + 1)) almost surely. Applying
similar arguments to p1(t + 1) and pN(t + 1), we get the result (12). �

With Proposition 2, we have transformed the behavior of the stochastic dynamic system (6) with an infinitely large
number of agents into an almost sure deterministic quadratic dynamical system (12) which characterizes the evolution
of the population shares of agents with a given opinion. When the number of agents K → ∞, (12) holds almost surely
and can therefore be used to study the behavior of the distribution of agents with each opinion.

5.1. Without the influence of any exogenous signal

Note that πE0,i = πE1,i = 0 for all i ∈ V for this subsection and we have λ = 1. Consider the population vectors
pe1 = (1, 0, . . . , 0), pe2 = (0, . . . , 0, 1) and pe3 = ( κf1 ,

κ
f2
, . . . , κ

fN
), where κ = 1∑N

n=1
1
fn

.

8



Theorem 1. When N ∈ {4, 6, 8, . . . }, πi, j = 1
K−1 ∀i, j ∈ V and K → ∞, the system (12) allows for exactly three

equilibria pe1 , pe2 and pe3 . pe1 and pe2 characterize the absorbing states α1 and α2 and are almost surely locally
exponentially stable equilibria, and the system also allows for one unstable equilibrium point pe3 .

Proof See Appendix B. �
Theorem 1 shows that the absorbing states are almost surely exponentially locally stable while the only other

equilibrium is unstable when πi,k = 1
K−1∀i, j ∈ V. When the number of agents is large, several works on Markov

chains like [31] have the absorbing states that are not stable, leading to metastable or quasi-stationary states that persist
for an arbitrarily long duration. However, in our model, when all agents have identical probabilities of interacting,
the absorbing states are almost surely locally exponentially stable. This suggests that the convergence time to one of
these absorbing states will be quite small, and this can be observed from our numerical results in Section 7.

Remark 1. The assumptions made in the preliminaries on θn being symmetric around 0.5 are only required to prove
the properties of pe3 . All the other results stated in Theorem 1 only require that there are at least 2 opinion levels
above and below 0.5, i.e. there exists θn, θm < 0.5 and another θn, θm > 0.5 belonging to Θ.

Proposition 3. When the number of opinion levels N is exactly 2, then every population distribution is a stable (but
not asymptotically stable) equilibrium. Additionally, for finite N, the randomness of the opinion dynamics results
in perturbations that disturb the equilibrium for any distribution other than the two corresponding to the absorbing
states.

Proof We observe that when N = 2, i.e., when there are exactly two opinion levels, equation (12) can be simplified
into

p1(t + 1) = p1(t) − f1 p1(t)p2(t) + p2(t) f2 p1(t)
p2(t + 1) = p2(t) − f2 p2(t)p1(t) + p1(t) f1 p2(t) (15)

As fn = fN+1−n is symmetric by definition, we get p1(t + 1) = p1(t) and p2(t + 1) = p2(t) for any p1(t) or p2(t). There-
fore, when there are a very large number of agents and exactly two opinion levels, any population distribution becomes
an equilibrium. These equilibrium points are neutral as they are neither stable nor unstable and any perturbation just
brings it to another equilibrium. �

The case of N = 2 corresponds to a voter model and the resulting population dynamics is that of a random walk.
Such systems have already been well studied in literature [32] and we therefore focus our attention on the case of
N > 2, i.e N ∈ {4, 6, . . . }.

5.2. With the influence of a exogenous signals
Let us consider that x is the probability for an agent to be influenced by action 1 (the influence can come from

another agent or from an exogenous signal). Then, the following function: φ : [0, 1]→ [0, 1]

φ(x) =


∑N

n=N/2+1
1
fn

( x
1−x )n−1∑N

n=1
1
fn

( x
1−x )n−1

if x < 1

1 if x = 1

, (16)

computes the equilibrium population share with action 1 provided that x does not change in time. Moreover, the
component m of the function Φ : [0, 1]→ [0, 1]N defined by

Φm(x) =


1
fm

( x
1−x )m−1∑N

n=1
1
fn

( x
1−x )n−1

if x < 1

1{N}(m) if x = 1

(17)

represents the equilibrium population share with opinion θm provided that x does not change in time. We note that
1S (s) is the indicator function which takes the value 1 when s ∈ S and 0 otherwise.
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Let us recall that λ is the probability for an agent to be influenced by agents belonging to the network (excluding the
external signals). Then, one can define the set

Λ = {λ ∈ (0.5, 1] | ∃y ∈ (0.5, 1] s.t. φ(λy) = y} (18)

collecting the values of λ that allow at least a population share y to preserve the action 1.

Theorem 2. When N ∈ {4, 6, 8, . . . }, πi, j = λ
K−1 ∀i, j ∈ V, K → ∞ and λ < 1, the equilibria of the system (12) is given

by Φ(p∗+) where p∗+ satisfies φ(λp∗+ + π+) = p∗+. Furthermore, if λ ∈ Λ, the system (12) has at least two equilibria, one
with p∗+ > 0.5 and another with p∗+ < 0.5, i.e., λ ∈ Λ is a sufficient condition for the preservation of majority opinion.
This allows us to characterize the equilibrium points of (12).

Proof Consider that x := λp+ + π+. We have 1 − x = λp− + π−. The equilibrium points p∗n of (12) can be found by
setting p∗n(t + 1) − p∗n(t) = 0 for all n resulting in

p∗n :=
1
fn

( x
1−x )n−1∑N

m=1
1
fm

( x
1−x )m−1

(19)

when x < 1 and pC∗
N = 1 when x = 1. Since we have pC

+(t) =
∑N

n=N/2+1 pC
n (t), we can write

p∗+ = φ(x)

Since x = λp+ + π+, we have that at equilibrium

p∗+ = φ(λp∗+ + π+),

and
p∗− = φ(λp∗− + π−).

Therefore p∗n = Φ(p∗+) is an equilibrium if it satisfies the above condition. Finally, if λ ∈ Λ and π+ = 0, then
p+ > 0.5 satisfying p+ = φ(λp+) exists by definition of Λ. We have φ continuous and increasing. We can use the
mean-value theorem on φ(λp+ + π+)− p+, which is greater than 0 at p+ = φ(λp+) and less than or equal to 0 at p+ = 1
(because λ + π+ ≤ 1). Therefore there exists at least one point in between satisfying the equilibrium condition. �

If multiple equilibria Φ(p∗+) exist, then the initial population distribution determines the equilibrium that is reached
almost surely. Theorem 2 states that even in the presence of a single external signal, an equilibrium point with the
majority of agents holding the opposite action to the signal can exist if λ is sufficiently high. This behavior is surprising
as in the finite number of agents regime, in the presence of a single external signal, there is only one absorbing state
for the Markov system and in this absorbing state, all agents have the same action as the external agent. In contrast,
when the number of agents is large, if λ is sufficiently large and the initial population share of agents with an action
opposite to the external agent is sufficiently large, this majority action is preserved (almost surely) due to frequent
interactions within the network.

When the opinion of agents is concerning social or economic issues, the external agents can be interpreted as
political parties or firms which can, at a cost (e.g. ads, meetings, debates), increase its own probability of influencing
voters or consumers. This can be seen as a non-cooperative game when E1 and E2 represent competing firms. As the
probabilities change, the equilibrium points are modified according to Theorem 2, and therefore, this result can be of
use to design advertising strategies and provide thresholds below which the agents continue to preserve their original
opinion (and the impact of the external signal is marginal). The exact determination of the outcomes of the games
described above needs to be addressed in future work.

6. Behavior of a generic cluster based graph

In this section, we introduce the notion of clusters of agents and analyze a generic social network model. The
notion of clusters is inspired by communities in social networks, which are groups of agents that strongly interact
with each other and interact less with agents outside the group. This is a generic way to model small world networks
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including social networks [33]. Basically, we consider that they are the union of a number of clusters (for instance,
see [12] for a cluster detection algorithm) which are weakly influencing each other.

Definition 6 (Cluster). A set of agents C is said to be a cluster with coefficient λC ∈ [0.5, 1] if the following property
is satisfied

πi, j|C| ≥ λC , ∀i, j ∈ C (20)

The case of λC = 1 corresponds to a cluster which has no influence from agents outside the cluster, i.e. the graph
is not strongly connected or C = V. However, when the number of agents is arbitrarily large, and |C|,K → ∞, then
λC → 1 is possible even when the graph is strongly connected. This is because C andV \C can have a finite number
of agents with πi, j > 0. With this definition, we are in a position to study the dynamics of opinion within a cluster in
terms of its population.

Proposition 4 (Population dynamics in C). Let C be a cluster with a coefficient λC and |C| → ∞, the population
shares of agents in C evolve almost surely with the following dynamics

pC
1 (t + 1) = pC

1 (t) + f2 pC
2 (λC pC

− + (1 − λC)(1 − σ2)) − f1 pC
1 (λC pC

+ + (1 − λC)σ1)
pC

n (t + 1) = fn−1 pC
n−1(λC pC

+ + (1 − λC)(1 − σn−1)) + fn+1 pC
n+1(λC pC

− + (1 − λC)σn+1) + fn pC
n (t)

pC
N(t + 1) = fN−1 pC

N−1(λC pC
+ + (1 − λC)(1 − σN−1)) + pC

N(t) − fN pC
N(λC pC

− + (1 − λC)σN)
(21)

for all n ∈ {2, 3, . . . ,N − 1}, and with some parameters σ1, σ2, . . . , σN ∈ [0, 1].

Proof For any agent i ∈ C, we can derive the following inequality using (20),∑
k∈C

qk(t)πk,i ≥
∑
k∈C

qk(t)
λC

|C|
= λC pC

+(t) (22)

and similarly
∑K

k=1 πk,i(1 − qk(t)) ≥ λC pC
−(t) which results in

∑K
k=1 πk,iqk(t) ≤ 1 − λC pC

−(t) or

k = 1Kπk,iqk(t) ≤ λC pC
+(t) + (1 − λC) (23)

From (6), we can always write the expectation of i having opinion θ1 at t + 1 as

E(xi(t + 1) = θ1) = Pr(xi(t) = θ1) − Pr(xi(t) = θ1) f1

 K∑
k=1

πk,iqk(t)

 + Pr(xi(t) = θ2) f2

 K∑
k=1

πk,i(1 − qk(t))

 (24)

We can rewrite this expression as

E(xi(t+1) = θ1) = Pr(xi(t) = θ1)−Pr(xi(t) = θ1) f1(λC pC
−(t)+(1−λC)ei)+Pr(xi(t) = θ2) f2(λC pC

+(t)+(1−λC)(1−ei)) (25)

where ei ∈ [0, 1]. This is possible because of the two inequalities (22) and (23). Now, we can look at pC
1 (t + 1), which

is equivalent to 1
|C|

∑
i∈C E(xi(t + 1) = θ1) in the limit of |C| → ∞. Therefore, we have

E(p1(t + 1)) =
∑

i∈C
1
|C| Pr(xi(t) = θ1) + λC

∑
i∈C

1
|C| f1 Pr(xi(t) = θ2)pC

−(t) − λC
∑

i∈C
1
|C| Pr(xi(t) = θ1) f1 pC

+(t)

+(1 − λC)
∑

i∈C
1
|C| f2 Pr(xi(t) = θ2)(1 − ei) − (1 − λC)

∑
i∈C

1
|C| Pr(xi(t) = θ1) f1ei

(26)

However, note that
∑

i∈C Pr(xi(t) = θn) is just pC
n in the limit of |C| → ∞. Additionally, as ei ∈ [0, 1] for all i, we can

write
∑

i∈C
1
|C| Pr(xi(t) = θn)ei = pC

1σn, where σn ∈ [0, 1]. This results in

E(pC
1 (t + 1)) = pC

1 (t) + f2 pC
2 (λC pC

− + (1 − λC)(1 − σ2)) − f1 pC
1 (λC pC

+ + (1 − λC)σ1) (27)

However, due to the central limit theorem, we have that

lim
|C|→∞

Pr(pC
1 (t + 1) − E(pC

1 (t + 1)) > ε) = 0 (28)
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for any ε > 0. This allows us to write that limC→∞ pC
1 (t + 1) = E(pC

1 (t + 1)) almost surely. Performing a similar
calculation for other pC

n , we can get

pC
n (t + 1) = (1 − fn)pC

n (t) + fn−1 pC
n−1(λC pC

+ + (1 − λC)(1 − σn−1)) + fn+1 pC
n+1(λC pC

− + (1 − λC)σn+1) (29)

�
This allows us to study the behavior of agents in a well-connected cluster.

6.1. Preservation of opinion

In particular, when λC → 1, we can show the following.

Proposition 5 (Preservation with λC → 1). If C is a cluster as per Definition 6, with an interconnection coefficient
λC → 1 and |C| → ∞, the population shares of agents in C allows for three distinct equilibrium points irrespective
of the actions of agents in V \ C. Two of these are metastable equilibrium points, and are given by pC = pe1 and
pC = pe2 and the third is an unstable equilibrium.

Proof For any configuration of actions for agents inV \C, we can write that almost surely,

pC
1 (t + 1) = pC

1 (t) + f2 pC
2 (λC pC

− + (1 − λ)(1 − σ2)) − f1 pC
1 (λC pC

+ + (1 − λC)σ1)
pC

n (t + 1) = (1 − fn)pC
n (t) + fn−1 pC

n−1(λC pC
+ + (1 − λC)(1 − σn−1)) + fn+1 pC

n+1(λC pC
− + (1 − λC)σn+1)

pC
N(t + 1) = pC

N(t) − fN pC
N(λC pC

− + (1 − λC)σN) + fN−1 pC
N−1(λC pC

+ + (1 − λC)(1 − σN−1))
(30)

where σ1, . . . , σN ∈ [0, 1] from Proposition 4. In the limit of λC → 1, we have

limλC→1 pC
1 (t + 1) = pC

1 (t) + f2 pC
2 pC
− − f1 pC

1 pC
+

limλC→1 pC
n (t + 1) = (1 − fn)pC

n (t) + fn−1 pC
n−1 pC

+ + fn+1 pC
n+1 pC

−

limλC→1 pC
N(t + 1) = pC

N(t) − fN pC
N pC
− + fN−1 pC

N−1 pC
+

(31)

which are mathematically identical to the dynamics of the all to all network described in (12). From theorem 1, we
know that this dynamics allows for exactly two stable equilibria corresponding to the points pC

1 = 1 and pC
N = 1.

However, since (30) is true only almost surely, the equilibrium is metastable. The third equilibrium is unstable in both
cases. �

This result implies that regardless of external opinion, agents inside C will have their own equilibria, and if all
agents in C start with action 1, they will all continue to have action 1 regardless of the opinions of external agents,
i.e., the agents inside the cluster preserve their opinion. The main property is that this equilibrium is local to the
cluster and is independent of the rest of the agents, i.e., pC = pe1 does not imply that p = pe1 , i.e., these equilibria
may not correspond to the absorbing states and are then metastable. If the graph comprises several clusters, each
cluster may preserve a local consensus at pe1 or pe2 for an arbitrarily long duration. This kind of phenomenon is often
seen in epidemic dynamics [31]. The metastable state (in population) persists for any finite duration almost surely
with an infinitely large number of agents in the cluster. The study of metastable states is highly relevant as this can
approximate the transient behavior well for a large (but finite) network.

Practically, λC → 1 implies that the number of connections fromV\C to C is finite, while |C| and K are arbitrarily
large and all agents inside C may connect to each other with a large probability. For |C| finite, the only absorbing state
of the finite Markov chain is with φN = 1 (all agents in V have an identical opinion, not just agents in C). The
equilibrium point with pC

1 = 1 in the limit of |C| → ∞ and λC → 1 is referred to as a metastable equilibrium.

Definition 7 (Action preservation). If a set C has pC
+(t0) = 1 (or 0) for some t0, then pC

+(t) > 0.5 (or < 0.5) must be
satisfied for any finite t > t0.

When λC → 1, we have seen than the cluster can indeed preserve its action as pC
+ = 1 or pC

+ = 0 are metastable
equilibria. The next step in our analysis is to find what values of λ allow action preservation for a cluster. That is,
equilibrium points for the dynamics of pC , that are not the absorbing states of the whole network.
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Theorem 3. A necessary condition for action preservation in a cluster C with coefficient λC , is that λC ∈ Λ. The
resulting metastable equilibria will satisfy pC

+ ≥ α for an initial condition with pC
+ = 1 (preserving majority action 1)

or the vice-verse for action 0.

Proof in Appendix C.
Theorem 3 gives a lower-bound on the parameter λC characterizing the ratio between the internal influence in the
cluster and external influence from outside the cluster. The action preservation inside a cluster can be achieved only
if λC is sufficiently large.

6.2. Propagation of opinion

To study the propagation of opinion from a set of agents to others, we define the set of followers.

Definition 8 (Followers). An agent j ⊂ V is a follower of cluster C with a degree γ > 0 if∑
i∈C

πi, j ≥ γ (32)

With this definition, we can now constraint the expected probability of any agent j to pick action 1.

Proposition 6 (Propagation). If agent j ∈ V \C is following C with a trust degree γ, then

φ(γpC
+) ≤ Pr(q j(t) = 1) ≤ 1 − φ(γpC

−) (33)

when t is sufficiently large so that the system is in a metastable state.

Proof The transition probabilities of the opinion of any agent j can always be written as follows

Pr(x j(t + 1) = θn+1|x j(t) = θn) = fn(γpC
+ + (1 − γ)d j)

for all n < N and
Pr(x j(t + 1) = θn−1|x j(t) = θn) = fn(γpC

− + (1 − γ)(1 − d j))

for all n > 1 where d j ∈ [0, 1], by exploiting definition 8.
Therefore, we can study the steady state distribution of the opinion of agent j, by formulating the above process

as a Markov chain. This steady state can be found as

Pr(x j(t + 1) ≥ θN/2+1) = φ(γpC
+ + (1 − γ)d j)

due to mathematical similarity with (21).
The above result implies that if γ is large enough, a tight constraint on the probability of agent j picking action

1 can be provided. This result is especially significant when the cluster C has a sufficiently large λ to preserve its
opinion resulting in pC∗

+ ≥ α > 0.5 satisfying α = φ(λCα).

7. Numerical results

For all our simulations, we use N = 4, i.e., four levels of opinions with Θ = {0.2, 0.4, 0.6, 0.8} are considered. We
also take the inertia factor to be fn = 4θn(1 − θn). We demonstrate simulation results that validate our results from
Section 5.

In Fig. 1, we consider a network where all agents are connected to each other with the same degree of influence,
i.e., πi, j = λ

K∀i, j ∈ V, πi,E0 = π− and πi,EE = π+ for all i ∈ V. We initialize the opinion levels of agents with opinion
0.4 for half of the agents and 0.6 for the rest. Fig. 1a illustrates Proposition 1 for K = 20 and we see that there are two
absorbing states when λ = 1 and no absorbing states when π+, π− > 0. Once the Markov process reaches an absorbing
state it stays there for the remaining time. On the other hand, if we use the large K approximation as in Section 5, we
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(a) Symmetric starting conditions and K = 20. When λ = 1,
there are two absorbing states which are reached in two differ-
ent simulations. When π+ = π− = 0.2, there are no absorbing
states.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time step (t)

0

0.2

0.4

0.6

0.8

1

p
+
(t

)

6 = 0:6;:+ = :! = 0:2, Sim 1
6 = 1;:+ = :! = 0, Sim 2
6 = 1;:+ = :! = 0, Sim 1
6 = 0:6;:+ = :! = 0:2, Sim 2

(b) Symmetric starting conditions and K = 200. When π+ =

π− = 0.2, the system in two simulations reach one of the two
metastable equilibrium.

Figure 1: Population share with the action 1, i.e., p+(t) plotted against t for a graph with all to all identical connections with πi, j = λ
K ∀i, j ∈ V.
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(a) Number of agents K = 50. Due to the small number
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preserve its opinion despite the external signal of 0 before
collapsing to the absorbing state α1.
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(b) Large number of agents, i.e., K = 1000 and this makes
the dynamics approximated by (12) less perturbed and it
allows for preservation with λ = 0.815 (for a long time).

Figure 2: Population share of agents in C with the action 1, i.e., pC
+ (t) plotted against t. All agents start with opinion level 0.8 and the external

signal is always 0 with π− = 1 − λ.

find p∗+ satisfying the condition in Theorem 2 when π+ = π− = 0.2. We see in Fig. 1b that when K = 200, the system
to converges to one of the two metastable equilibrium and stays there for a long duration.

For the next simulation (Fig. 2), we look at the case where we have λ < 1, π+ = 0 and π− = 1−λ. This corresponds
to the case where the finite Markov process has exactly one absorbing state α1. Here, we do simulations with K = 50
and K = 1000 with all agents in the network starting with opinion 0.8. Fig. 2a shows that for small K, i.e. 50 agents
in the network, even the external signal of π− = 0.185 can influence the agents to shift their opinion to 0 in finite time.
Fig. 2b shows that when a large number of agents are taken, i.e., K = 1000, we see that the agents in the network
preserve their majority opinion even for λ = 0.815. This illustrates Theorem 2, which states that even in the presence
of a persistent external signal, an equilibrium point with the majority of agents holding the opposite action to the
signal can exist if λ is sufficiently high. A larger number of agents reduces the stochastic perturbation to the dynamics
approximated by the central limit theorem (12). At the absorbing state the system has no more perturbations but the
metastable points are perturbed.

In Fig. 3, we plot the final expected fraction of agents with action 1, p+(T ) against the initial fraction of agents
with action 1, p+(0). The expectation is calculated by running the simulation 1000 times for each initial configuration.
We take K = 200, T = 200 (the final time considered) and by setting p1(0) = p−(0) and pN(0) = p+(0), i.e all
agents start with one of the extreme opinions. Fig. 3 illustrates that in absence of exogenous influence (π+ = π− = 0)
the probability to reach α2 increases with p+(0). Moreover, it is almost sure that the system converges to α1 when
p+(0) ≤ 0.4 and to α2 when p+(0) ≥ 0.6. When the initial population is symmetrically distributed (half at θ1 and
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half at θN) the system converges towards α1 or α2 with the same probability 0.5. On the other hand when exogenous
influence is present (π+ > 0), α2 is the only absorbing state and this is almost always reached for a larger set of initial
conditions. However, for sufficiently small π+ and p+(0), a meta-stable equilibrium with majority action 0 is reached.
When π+ ≥ 0.2, we observe that α2 is reached for all initial conditions within the considered finite final time T = 200.
This further illustrates Theorem 2 and characterizes the equilibrium reached for a given initial condition.
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Figure 3: Expected final population fraction of agents with action 1 for a given initial fraction of agents with action 1 with K = 100. As the strength
of the external signal to 1 increases, the number of initial conditions that lead to a meta-stable equilibrium with majority action 0 decreases. For
π+ ≥ 0.2, almost all initial configuration converges to the absorbing state with all agents at action 1.

Remark: Note that in Fig. 2, a global consensus is not achieved when λ is sufficiently large as the external signal
influences a small fraction to take action 0. For λ = 0.815, on average a bit more than 90% of the agents have action
1 but the remaining 10% or so are with action 0.

Finally, we study the opinion dynamics when the graph has a very specific structure, i.e. the agents are partitioned
into two clusters C1 and C2 and two other follower sets S 1 and S 2 with |S 1| = |S 2| = 100 and |C1| = 600 and
|C2| = 400, withV = C1 ∪ C2 ∪ S 1 ∪ S 2 . All agents in C1 are connected identically and in an undirected manner to
all agents in C1, S 1 and S 2, while all agents in C2 are connected identically to all agents in C2 and S 1 as shown in Fig.
4a. Therefore, C1 and C2 define clusters while S 1 is a follower set for both C1 and C2, and S 2 just follows C1. The
population share of agents in each set with action 1 is plotted in Fig. 4b, when agents in C1 start with opinion level
0.2 and all the other agents start with opinion level 0.8. This figure demonstrates both the properties of preservation
and propagation developed in Theorem 3 and Proposition 6.

Cluster 1
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Cluster 2
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Set 2
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Set 1

|S 1| = 100

(a) Graph structure: all connections between agents are of
identical strength when they exist and undirected.
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(b) This figure shows how C1 and C2 preserve their opinion while
propagating their opinion to the follower sets.

Figure 4: Opinion preservation and propagation illustrated in a structured interaction graph. S 1 following both C1 and C2 results in its average
action fluctuating between the two contrasting opinions, but with more influence from C1. S 2 following only C1 results in its action shifting from
a majority with 1 to 0.
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8. Conclusion

We have proposed and studied a model of stochastic opinion dynamics models. This model features multi-leveled
opinions of each agent, which represents the confidence of an agent in choosing an action 0 or 1. These opinions
are influenced by an external signal (which can be 0 or 1) or the internal signal (or action) of a random neighbor.
We show that for a finite number of connected agents, a global consensus is asymptotically achieved at either all
agents with the lowest opinion θ1, when the external signal is only 0 or no signal; or at all agents with the highest
opinion θN when the external signal is only 1 or no signal. On the other hand, when the number of agents is infinitely
large, the time to achieve consensus may become exponentially high as illustrated in both our analytic results and
numerical simulations with a large number of agents. Of particular interest is the case where a cluster structure exists
in the network graph (agents in the cluster are strongly interconnected and weakly connected to external agents).
For a cluster, we analytically (for an arbitrarily large number of agents) and through simulation (for a large number
of agents) demonstrate the property of preservation, i.e., when agents in a cluster start with a common opinion (or
action), a majority of agents in the cluster can preserve this action regardless of the opinion of external agents or
signals. Theoretically, this can be identified as a meta-stable equilibrium point, and this equilibrium is different from
the global consensus.

Future works will study how external signals can control the system to achieve a certain population distribution
in the network. When each of the external signals/actions correspond to an economic or political entity, we can
formulate a non-cooperative game with the utility of each player (each of the external entities in this case) depending
on the actions of the agents in the network and the cost for sending the signal.

Appendix A. Proof of Proposition 1

Proof Case 1: When πE0,i = πE1,i = 0 for all i ∈ V. Here, we can verify that α1 and α2 are absorbing states by
evaluating Pr(xk(t + 1) = θmk |X(t) = αn) through equation (9). We know Q−k (α1) = 1, Q+

k (α1) = 0, Q−k (α2) = 0 and
Q−k (α2) = 1 for any k and for any graph G. This results in

Pr(xk(t + 1) = θ1|X(t) = α1) = 1, ∀k ∈ V.

Similarly
Pr(xk(t + 1) = θN |X(t) = α2) = 1, ∀k ∈ V.

Consequently, α1, α2 are absorbing states. Now take any state β , α1, α2, then;
Case 1-A: β is such that there exists at least one k for which xk(t) , θ1, θN . This agent by (9) has a non zero probability
to shift its opinion (towards either θ1 or θN) as the graph is connected resulting in either

0 < Q+
k (β) < 1 or 0 < Q−k (β) < 1.

As agent k also has a non-zero probability to stay, β is therefore a non-absorbing state.
Case 1-B: Some of the agents have opinion θ1 while the other agents have the opinion θN (any agent with a non-
extreme opinion will result in Case 1-A). Now, since G is a strongly connected graph, there exists at least one agent
with opinion θ1 influenced by another agent with opinion θN resulting in a non-absorbing state.

Therefore there are exactly two absorbing states for the Markov process defined in (8) which are α1 and α2.
Case 2: When πE1,i = 0 for all i ∈ V, ∃ j ∈ V such that πE0, j > 0.
We can use the same arguments as in Case 1-A and 1-B to prove that any state other than α1 and α2 can not be

absorbing states. Additionally, since ∃ j ∈ V such that πE0, j > 0, α2 can not be an absorbing state as agent j will have
a non zero probability to shift its opinion to θN−1. α1 remains an absorbing state.

Case 3: Due to symmetry, we can prove the proposition result by following the arguments for Case 2 with α2
being the absorbing state.

Case 4: Here, neither α1 nor α2 remain absorbing states as there always exists at least one agent which has a
probability to shift its opinion (similar arguments as in Case 2).

16



Appendix B. Proof of Theorem 1

Proof From (12), if p+(t) = 1, it can be verified that

pN(t + 1) = pN(t) + pN−1(t) fN−1,

which is an increasing function. Similarly, as p+(t) = 1 one obtains that that pn(t) = 0, ∀n < N/2. Moreover
pn(t), ∀n < N/2 are decreasing functions as

pn(t + 1) = (1 − fn)pn(t).

We can also see that pN/2+1(t′) becomes a decreasing function when p+(t) = 1 as

pN/2+1(t + 1) = (1 − fm)pN/2+1(t) + fm−1 pN/2(t) (B.1)

and pN/2(t) = 0. Therefore, as t → ∞, and p(t) will asymptotically converge to (0, 0, . . . , 1). Similarly, we can show
that when p+(t) = 0, the system maintains p+(t′) = 0, ∀t′ > t and p(t) asymptotically converges to (0, 0, . . . , 1). These
points correspond to the same absorbing states identified in Section 4 for the original Markov system.

Next, assume that p+(t) = 0.5 and pn fn = pm fm), ∀m, n ∈ {1, 2, . . . ,N}. Substituting these values into (12) we
obtain that pn(t + 1) = pn(t), ∀n, resulting in another equilibrium. The stability of these equilibria are studied with a
linear analysis of the dynamics around these points.

First, we evaluate the Jacobian of the discrete dynamical system (12). Denote by gi(p) the dynamics of the
population with opinion θi, i.e. pi(t + 1) = gi(p). If we denote the Jacobian elements by Ji, j, where Ji, j =

∂gi
∂p j

, then for
all 1 < i ≤ N

2 , and for all N
2 < j < N, we have:

J11 = 1 + f2 p2 − f1
(∑N

n=N/2+1 pn(t)
)
, Ji,i = 1 − fi + fi+1 pi+1

J j, j = 1 − f j + f j p j−1, JNN = 1 + fN−1 pN−1 − fn
(∑N/2

n=1 pn(t)
)

We also have ,
∀ 2 < i ≤ N/2, J1i = − f1 p1

∀ N/2 < i ≤ N − 2, J1i = f2 p2

and
∀ 2 < i ≤ N/2, JNi = fN−1 pN−1

∀ N/2 < i ≤ N − 2, JNi = − fn pN .

For all i, j ∈ {2, 3, . . . ,N − 1} such that |i − j| > 1 we have

Ji j = fi+1 pi+1

when j ≤ N/2 and
Ji j = fi−1 pi−1

when j > N/2. Finally, we have

J12 = f2

p2 +

N/2∑
n=1

pn(t)


JN−1,N = fN−1

pN−1 +

N∑
n=N/2+1

pn(t)
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and for all i, j ∈ {2, 3, . . . ,N − 1} such that |i − j| = 1 we have

Ji,i+1 = fk pk + fi+1

N/2∑
n=1

pn(t)


where k = i + 1 if i + 1 ≤ N/2 and k = i − 1 otherwise; and

Ji,i−1 = fk pk + fi−1

 N∑
n=N/2+1

pn(t)


where k = i + 1 if i − 1 ≤ N/2 and k = i − 1 otherwise.

The stability of an equilibrium point is checked by studying the eigenvalues of the Jacobian matrix (evaluated at
the equilibrium points). We evaluate the Jacobian matrix at p1 = 1, pn>1 = 0 as

1 f2 0 . . .
0 1 − f2 f3 . . .
0 0 1 − f3 . . .
...

 .
Note that this is a triangular matrix and therefore has the eigenvalues 1, 1− fn for all n ∈ {2, . . . ,N}. This can be easily
verified by evaluating the determinant of the J(1, 0, . . . ) − λI. Therefore this equilibrium is stable. Since the system
is symmetric around 0.5, we can also show the same for the equilibrium with pN = 1. Note that the eigenvalue 1
corresponds to the equilibrium point itself. Since the population space is inside a simplex and not RN , we have local
asymptotic stability around (1, 0, . . . ) and (0, . . . , 0, 1) and as (12) holds almost surely, the stability property is also
almost sure.

Now, we evaluate the Jacobian at the other equilibrium, which has pn fn = κ, where κ > 0 for all n. The first
column of the Jacobian at this point is given by

(1 + κ −
f1
2
, κ +

f1
2
, κ, . . . , κ,−κ)T

The columns j for 2 ≤ j ≤ N/2 has the following form

(κ, . . . , 1 + κ +
f j

2
, κ − f j, κ +

f j

2
, . . . , κ,−κ)T

where 1 + κ +
f j

2 is the diagonal term of the Jacobian. The j-th column where N/2 < j ≤ N − 1 has the following form

(−κ, κ, . . . , 1 + κ +
f j

2
, κ − f j, κ +

f j

2
, . . . , κ)T

and the N-th column is given by

(−κ, κ, . . . , κ, κ +
f1
2
, 1 + κ −

f1
2

)T .

We observe that the Jacobian at each column has exactly one element which is −κ. This is located either at the first
row (after column index is more than N/2) or at the final row. Subtracting this matrix by 1+κ(N−2) times the identity
matrix, we have a new matrix. For the new matrix, the sum of each column is 0 and therefore has determinant zero.
This shows that one of the eigenvalues of the matrix above is 1 + κ(N − 2). Therefore, when N > 2, since κ > 0, this
point is unstable. �

Appendix C. Proof of Theorem 3

We first prove a preliminary result before proving Theorem 3.
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Lemma 1. The function φ(x) has values φ(x) = x only at x = 0, 0.5, 1. Additionally, φ(x) is increasing, φ(x) < x when
x ∈ (0, 0.5) and φ(x) > x when x ∈ (0.5, 1).

Proof Note that φ(0) = 0, φ(1) = 1 and φ(0.5) = 0.5. Additionally, it can be verified that φ(x) is continuous in x. We
will now show that φ(x) = x is never satisfied at any point other than at 0, 0.5, 1. Setting φ(x) = x and 1− φ(x) = 1− x
in (17) and dividing, we get

N∑
n=N/2+1

(1 − x)
1
fn

(
x

1 − x
)n−1 =

N/2∑
n=1

x
1
fn

(
x

1 − x
)n−1 (C.1)

since fn = fN+1−n by definition, we have

0 =

N/2∑
n=1

(2x − 1)
1
fn

(
x

1 − x
)n−1(1 − (

x
1 − x

)N−n) (C.2)

which can never be satisfied unless x = 0 or x = 0.5. Additionally, we can easily verify that φ(x) < x when x → 0.
Since φ(x) is a continuous function, φ(x) > x is not possible in the interval (0, 0.5). Similarly, φ(x) < x is not possible
in the interval (0.5, 1). �

Now we provide the proof of Theorem 3.

Proof Consider the situation in which all agents outside C have action 0. This results in σn in (21) being 0 for all n.
If we denote by x := λpC

+ , (21) can be rewritten as

pC
1 (t + 1) = pC

1 (t) + f2 pC
2 (1 − x) − f1 pC

1 x
pC

n (t + 1) = (1 − fn)pC
n (t) + fn−1 pC

n−1x + fn+1 pC
n+1(1 − x)

pC
N(t + 1) = pC

N(t) − fn pC
N(1 − x) + fN−1 pC

N−1x
(C.3)

Now the equilibrium points pC∗
n of (21) can be found by setting pC

n (t + 1) − pC
n (t) = 0 resulting in

pC∗
n :=

1
fn

( x
1−x )n−1∑N

m=1
1
fm

( x
1−x )m−1

(C.4)

when x < 1 and pC∗
N = 1 when x = 1. Since we have pC

+(t) =
∑N

n=N/2+1 pC
n (t), we can write

pC∗
+ = φ(x)

However, at equilibrium, x = λC pC∗
+ , which means that pC∗

+ at equilibrium must satisfy pC∗
+ = φ(λC pC∗

+ ). One
trivial solution to this equation is when pC∗

+ = 0 and this corresponds to the absorbing state as all agents outside C
also have action 0, which will result in all agents having opinion θ1 asymptotically. However, if some other pC∗

+ > 0
exists satisfying this equation, this corresponds to a potential metastable equilibrium.

We have thus shown that if all agents outside C have action 0, a metastable equilibrium exists only if λ is such
that pC∗

+ = φ(λC pC∗
+ ) is satisfied for pC∗

+ > 0. Denote this pC∗
+ by α, i.e. α = φ(λCα). Next, we will prove that an

equilibrium point with pC∗
+ ≥ α exists for any action profile ofV \C.

Denote by pC:α
n the equilibrium points when σn = 0. Then, for any σn ∈ [0, 1], we have

pC∗
n+1

pC∗
n

=
fN

fn+1

x + (1 − λC)σn+1

1 − x − (1 − λC)σn
(C.5)

which can be proven by induction as follows. For n = 1, we have

pC∗
2

pC∗
1

=
f1
f2

x + (1 − λ)σ1

1 − x − (1 − λC)σ2
(C.6)
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For any n > 1, we have

fn+1 pC∗
n+1(1 − x − (1 − λC)σn+1) = fn pC∗

n − fn−1 pC∗
n−1(x + (1 − λC)σn−1) (C.7)

if we assume that (C.5) is true for n − 1, then we get

fn+1 pC∗
n+1(1 − x − (1 − λC)σn+1) = fn pC∗

n − fN pC∗
n (1 − x − (1 − λC)σn1) (C.8)

which satisfies (C.5) for n. Since σn ≥ 0 and 0.5 < λ ≤ 1, we have that

pC∗
n+1

pC∗
n
≥

fN

fn+1

x
1 − x

=
pC:α

n+1

pC:α
n

(C.9)

This implies that
∑N

N/2+1 pC∗
n ≥ α as we have

∑N
1 pC∗

n = 1, with the
∑N

N/2+1 pC∗
n = α when (C.9) are a set of equalities.

This implies that regardless of external opinions, the cluster C allows an equilibrium pC∗
n with pC∗

+ ≥ α if λC is
such that ∃α ∈ (0, 1] satisfying α = φ(λCα). By symmetry, we can show the same result for preservation of action 0.

Finally, we will prove that an α > 0 satisfying α = φ(λCα) must also be larger than 0.5. Using Lemma 1, since
φ(x) is a continuous function, φ(x) > x is not possible in the interval (0, 0.5). Similarly, φ(x) < x is not possible in the
interval (0.5, 1). This implies that any α satisfying α = φ(λCα) must have α > 0.5, which concludes our proof. �
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