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We propose a non-convex variational model for the superresolution of Optical Coherence Tomography (OCT) images of the murine eye, by enforcing sparsity with respect to suitable dictionaries learnt from high-resolution OCT data. The statistical characteristics of OCT images motivate the use of α-stable distributions for learning dictionaries, by considering the non-Gaussian case, α = 1. The sparsity-promoting cost function relies on a non-convex penalty -Cauchy-based or Minimax Concave Penalty (MCP) -which makes the problem particularly challenging. We propose an efficient algorithm for minimizing the function based on the forward-backward splitting strategy which guarantees at each iteration the existence and uniqueness of the proximal point. Comparisons with standard convex 1 -based reconstructions show the better performance of non-convex models, especially in view of further OCT image analysis.

INTRODUCTION

OCT is an in vivo non-invasive imaging technique based on low-coherence interferometry that allows to detect ophthalmic structures at micrometer resolution. OCT images show sections of the multiple layers of the retinal tissue as well as the inner eye region (vitreous) so they are particularly suited for the detection of anomalies and deformations in the eyes as well as in the follow-up of ophthalmic diseases in early and later stages such as Multiple Sclerosis, Diabetes, Alzheimer's disease, Parkinson disease, or Glaucoma [START_REF] Wang | Super-resolution in optical coherence tomography[END_REF]. However, the poor spatial resolution and the multiplicative nature of the (speckle) noise observed in OCT images often limits the possibility of an accurate image analysis, which makes the use of both super-resolution (SR) and denoising/despeckling imaging techniques crucial for the subsequent image analysis [START_REF] Wang | Super-resolution in optical coherence tomography[END_REF], often based on accurate (and often manual) layer segmentation. In this paper, we propose a non-convex variational framework for the super resolution of real murine OCT images based on sparse representations with respect to pre-computed high-resolution OCT dictionaries. The SR problem is formulated as the inverse problem of retrieving the original high-resolution (HR) image from a given low-resolution (LR) one where we account also for the presence of blur and background noise. We further assume that the entries of the desired HR image are symmetric-αstable random variables and thus the OCT image can be well represented by only a few atoms of the given HR dictionary learned by α-stable distributions following [START_REF] Pad | Dictionary learning based on sparse distribution tomography[END_REF]. In our framework, the super-resolution is performed patch-wise as part of the reconstruction procedure as presented in [START_REF] Yang | Image super-resolution via sparse representation[END_REF], differently from the alternative approach presented in [START_REF] Wang | Super-resolution in optical coherence tomography[END_REF] for SR of OCT images, where the upscaling is obtained via an interpolation step which is preliminary to the patch extraction. We enforce sparsity by means of a non-convex regularisation term, and, in particular, we consider the separable Cauchy-based penalty and the MCP, which both depend on a scalar positive parameter which modulates the non-convex behaviour. Following [START_REF] Karakus | Convergence guarantees for non-convex optimisation with cauchy-based penalties[END_REF], we efficiently solve the non-convex problem by means of a forward-backward splitting algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] where the existence and uniqueness of the proximal point are guaranted by suitable conditions introduced on the model and algorithmic parameters. This is different from the recent Convex-Non-Convex (CNC) approaches [START_REF] Lanza | Convex image denoising via non-convex regularization with parameter selection[END_REF] where conditions on the overall convexity of the total objective functional are derived, while preserving the non-convex behaviour of the regularisation term. The proposed strategy, working in a pure non-convex regime, guarantees, on the other hand, convergence to a stationary point. We show quantitative and qualitative comparisons with reconstructions obtained by means of the 1 -norm based model and different dictionaries.

SR VIA SPARSE REPRESENTATION

The task of recovering a HR OCT image X ∈ R r h ×c h from a noisy, and blurred LR input Y ∈ R r l ×c l can be modeled mathematically as an inverse image reconstruction problem whose ill-posedness, as described in [START_REF] Yang | Image super-resolution via sparse representation[END_REF], can be overcome by representing X in a sparse way with respect to a given (overcomplete) dictionary. The overall problem can be thus mod-elled by introducing the following constraints.

1) Reconstruction Constraint: the input image Y is linked to the desired HR image X via the model

Y = N (S q (H(X))) + η (C1)
where H : R r h ×c h → R r h ×c h is the blur operator corresponding to the point spread function (PSF) of the optical acquisition system considered, S q : R r h ×c h → R r h /q×c h /q is a downsampling operator defined in terms of a factor q ∈ N which maps the blurred image H(X) ∈ R r h ×c h into a coarser grid by averaging. As any imaging technique that is based on detection of coherent waves, OCT images are subject to the presence of speckle noise [START_REF] Michailovich | Despeckling of medical ultrasound images[END_REF], thus N (•) stands for a multiplicative (speckle) noise degradation process, which is not considered in this work, while η ∈ R r h /q×c h /q denotes an additive component which represents white Gaussian background noise.

2) Sparsity Constraint: We assume that every (square) patch x extracted from X ∈ R r h ×c h can be represented as a sparse linear combination of n d atoms of a given overcomplete dictionary D ∈ R np×n d which has been previously learned in terms of HR training images. Using a vectorised notation for any patch x ∈ R np , this assumption translates in:

x ≈ Da for a ∈ R n d with a 0 << n d . (C2)
To learn the dictionary D, we consider the approach presented in [START_REF] Pad | Dictionary learning based on sparse distribution tomography[END_REF] where general α-Stable distributions are used as prior PDFs. In particular, we set the parameter α = 1 so that the underlying distribution is assumed to be Cauchy.

We combine (C1) with (C2) to compute the sparse coefficient vector a for each given LR square patch y ∈ R np/q 2 extracted from the observed image Y , thus getting the following optimisation problem a * ∈ arg min

a∈R n d 1 2 y-S q (H(Da)) 2 2 +λ n d i=1 φ γ (a i ) , (P)
where φ γ is a numerically tractable version of the 0 pseudonorm in (C2) promoting sparsity and depending on a parameter γ > 0, and λ > 0 is a regularisation parameter.

The solution a * of the optimisation problem (P) is the sparse coefficient vector representing the HR patch x ∈ R np under the over-complete dictionary D.

SPARSE NON-CONVEX REGULARISATIONS

We describe in this section two popular sparsity-promoting, non-convex and parametric penalty functions φ γ : R → R + in (P) which are considered in the proposed SR framework. Among the non-convex sparsity-promoting regularizers characterized by tunable degree of non-convexity, the MCP is considered one of the most interesting and effective penalties [START_REF] Lanza | Convex image denoising via non-convex regularization with parameter selection[END_REF]. As a natural alternative to the MCP we propose the Cauchybased penalty, assuming that the desired solution vector a * is distributed as an n d -dimensional Cauchy distribution with parameter γ; it is therefore easy to derive an instance of (P) following, e.g., [START_REF] Karakus | Convergence guarantees for non-convex optimisation with cauchy-based penalties[END_REF].

The Cauchy distribution belongs to the family of α-stable distributions (with α = 1) which are heavy-tailed and have been exploited in imaging applications, see e.g. [START_REF] Pad | Dictionary learning based on sparse distribution tomography[END_REF]. Differently from other probability distributions in the family, in the case of Cauchy distribution there exists a closed-form probability density function whose negative log-likelihood for t ∈ R reads:

φ γ (t) = φ C γ (t) = log γ 2 + t 2 γ . (1) 
As illustrated in Figure 1a the parameter γ controls the spread of the distribution: the smaller γ, the narrower and more peaked the shape of the distribution. We remark that the function φ γ in (1) is non-convex except for a small and limited interval around the origin and increases unbounded at a logarithmic rate. In Figure 1b we report the behaviour of the Cauchy penalty when used as a relaxations of the 0 pseudonorm in comparisons with other classical choices as 1 -norm, rat, log, exp, MCP, see [START_REF] Lanza | Convex image denoising via non-convex regularization with parameter selection[END_REF] for details. Finally, we remark that the only convex function is the 1 -norm function, which corresponds to φ γ (t) = |t|.

The Minmax Concave Penalty introduced in [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF] has been successfully applied to several signal and image recovery problems. The function φ γ in this case reads:

φ γ (t) = φ M CP γ (t) = -1 2γ t 2 + 2 γ t if |t| < √ 2γ, 1 if |t| ≥ √ 2γ, (2) 
where γ > 0 modulates the concavity of the regulariser.

FORWARD-BACKWARD ALGORITHM

For every patch, we solve the non-convex problem (P) by means of a Forward-Bacwkard (FB) splitting algorithm, then we recombine the patches together via sliding averaging. Algorithm 1 illustrates the pseudocode where D, and S q denote suitably resized matrices computed by the operators D and S q , respectively. The blur matrix H is related to the PSF of the OCT scan which is estimated as described in [START_REF] Michailovich | Despeckling of medical ultrasound images[END_REF].

The convergence of the FB algorithm is subordinated to a sufficiently small step size µ in the forward step [F], and the existence of a unique minimizer of the backward step [B]. Regarding µ, according to [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forwardbackward splitting, and regularized Gauss-Seidel methods[END_REF], the range of step size values that guarantees convergence is (0, 1/L), where 0 < L = (S q HD) T S q HD denotes the Lipschitz constant of the quadratic fidelity term. In order to have a uniquely defined proximal point at each backward step [B] we look for a parameter value γ such that:

prox λµΦγ (x) = arg min u∈R n d J(u) := x -u 2 2 2λµ + n d i=1 φ γ (u i )
is a singleton (i.e. J(•) is strongly convex). By the separability of the penalty Φ γ (•) :=

n d i=1 φ γ (•)
we first observe that the proximal point can be computed component-wise on each i-th component, i = 1, . . . , n d . Then, we follow the strategy in [4, Theorem 2] and choose, for both the Cauchy (1) and the MCP (2) penalties, a parameter γ such that J is strictly convex, which guarantees the uniqueness of proximal point. Balancing the positive second derivatives in the first term (fidelity) against the negative second derivatives in the regularization term of J, we find that the strict convexity is guaranteed when the following condition holds for τ > 1:

γ = τ γ, γ := √ λµ 2 if φ γ = φ C γ , λµ if φ γ = φ M CP γ . ( 3 
)
Note that, in both cases, a closed form expression of the proximal points can be easily computed by simply looking for solutions of the corresponding optimality conditions. In the case of Cauchy regularisation the solution can be computed using Cardano's method for solving the cubic optimality condition [START_REF] Wan | Segmentation of noisy colour images using cauchy distribution in the complex wavelet domain[END_REF], while for MCP a closed formula is proposed in [START_REF] Zhang | Nearly unbiased variable selection under minimax concave penalty[END_REF]. The extension of this algorithmic strategy to the design of converging FB algorithms for general non-convex parametric regularisers φ γ is left for future research. We remark that (3) does not affect the overall non-convexity of the original problem (P). Hence, only convergence to a stationary point can be guaranteed.

For each given LR patch y, once the sparse vector a is obtained, the reconstructed HR patch x is computed by enforcing the condition (C2). Note that by definition, the HR patch computations are independent between each other and as such they can be parallelised. As a final step, the reconstructed SR image is generated by aggregating all the HR patches together and locally averaging according to the number of overlapping patches at each location. This was shown in [START_REF] Wang | Super-resolution in optical coherence tomography[END_REF] to produce reconstruction results with less artefacts.

Algorithm 1 FB splitting for patch-based sparse OCT SR Input: Y , D, S q , µ ∈ (0, 1/L), λ > 0, γ ∈ (γ, +∞) Output: X * % Super-resolved OCT image Estimate PSF as in [START_REF] Michailovich | Despeckling of medical ultrasound images[END_REF] and get H Extract overlapping patches of size

√ np q × √ np q
For each patch y:

a 0 = 0 For k = 0, 1, . . . do: b k+1 = a k -µD T H T S T q (y -S q HDa k ) [F] a k+1 = prox λµΦγ (b k+1 )
[B] until convergence x = Da % Generate the HR patch end X * is obtained by sliding average of the HR patches

NUMERICAL RESULTS

In this section we discuss the performance of the patch-based sparse OCT SR Algorithm 1 when applied to the case of Cauchy, MCP and 1 regularisation and for different choices of the dictionary D. The quantitative assessment of the SR performance for all tests is based on the comparison between the obtained SR image X * ∈ R r h ×c h and a reference HR version X 0 ∈ R r h ×c h of the input image in terms of Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). We remark that these comparisons are useful to assess only the SR capabilities of the different approaches considered. Due to the lack of reference ground-truth images, in practical situations, however, a qualitative visual evaluation performed by a practitioner is still required to assess the computed results in view of further analysis (typically, layer segmentation).

Dictionaries and parameters. We considered 4 dictionaries denoted by D(n p , n d ) which vary according to the number of atoms n d ∈ {300, 600} and the dimension of each atom n p ∈ {64, 256}. The reason behind this choice is to assess how the features of the dictionary affect the resulting reconstruction and to identify which combination is the most suitable for the image analysis task (typically, segmentation or detection) one aims to perform next. To build the dictionaries, we used a sample of 60 noise-free HR OCT images as a training set and applied the SparseDT approach described in [START_REF] Pad | Dictionary learning based on sparse distribution tomography[END_REF] with the assumption that the underlying data distribution corresponds exactly to the Cauchy Distribution. We consider a SR model with magnification factor q = 4, so that Y ∈ R 256×128 and X * ∈ R 1024×512 . The FB iterations stop as soon as the tolerance 10 -5 is satisfied or whenever the maximum number of 300 iterations is reached. Recalling the condition (3), we set τ = 1.01, we let λ vary in the range [10 -7 , 1]. Table 1 reports the PSNR and SSIM values of the solutions obtained by the possible combinations of the 4 dictionaries and the 3 penalties for two test images which we refer to as OCT1 and OCT2. We notice that the best quantitative results are obtained in correspondence of the dictionaries with n p = 64, while, on the contrary, the dictionaries with n p = 256 generally lead to lower quantitative values, but more visually satisfying results, especially in view of further processing of the image such as segmentation and detection. We report the results in Fig. 2 where we frame some details in yellow, blue and green showing respectively some cells suspended in the vitreous, the separation between the vitreous and the retina and finally a portion of the upper layer region. We remark that the combination of D(256, 600) and a non-convex penalty achieves remarkable results in separating the layers of the retinal structure, with Cauchy being the one better removing background noise at the cost of a slight smoothing in the layer region, which can help layer classification analysis. We support our discussion reporting in Fig. 3 the kmeans segmentation of the reconstructed images for OCT1 and OCT2 with k = 3, which corresponds to the regions of interest: background, layers and textured layers.

CONCLUSIONS

We considered a non-convex variational model for patchbased SR of highly-degraded real murine OCT images promoting sparsity w.r.t. to a heavy-tailed Cauchy dictionary. We enforce sparsity by means of separable non-convex parametric regularisations and assess the performance of the SR model both quantitatively and visually. By imposing a condition on the model/algorithmic parameters preserving the overall non-convexity of the composite functional, we guarantee the existence of a unique proximal point. Possible extensions involve generalisation to other regularisers and application to the analysis of OCT data. 
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 1 Fig. 1: (a) Cauchy PDF for varying γ > 0. (b) Plots of different penalty functions relaxations of the 0 pseudo-norm.

Fig. 2 :

 2 Fig. 2: OCT1 Super-Resolution reconstructions (q = 4).

Fig. 3 :

 3 Fig. 3: Segmentation with k-means, k = 3, before (LR) and after SR for different regularisations: Cauchy, MCP, 1.
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Table 1 :

 1 D (256,300) D (64,300) D (256,600) D (64,600) PSNR values for the reconstruction of the two test images.

	OCT1	Cauchy MCP 1	19.923 19.871 19.928	20.079 20.124 20.288	19.059 20.386 19.259	20.395 20.386 20.376
	OCT2	Cauchy MCP 1	19.560 19.512 19.564	19.893 19.747 20.001	18.694 17.657 19.300	20.200 20.148 20.185
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