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Abstract

We provide bounds for the sequence of eigenvalues {λi(Ω)}i of the Dirichlet problem

L∆u = λu in Ω, u = 0 in RN \ Ω,

where L∆ is the logarithmic Laplacian operator with Fourier transform symbol 2 ln |ζ|. The
logarithmic Laplacian operator is not positively defined if the volume of the domain is large
enough. In this article, we obtain the upper and lower bounds for the sum of the first k
eigenvalues by extending the Li-Yau method and Kröger’s method respectively. Moreover, we
show the limit of the quotient of the sum of the first k eigenvalues by k ln k, is independent of
the volume of the domain. Finally, we discuss the lower and upper bounds of the k-th principle
eigenvalue, the asymptotic behavior of the limit of eigenvalues.
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1 Introduction and main results

The logarthmic Laplacian L∆ in RN (N ≥ 1) is defined by

L∆u(x) = cN

∫
RN

u(x)1B1(x)(y)− u(y)

|x− y|N
dy + ρNu(x), (1.1)

where

cN := π−N/2Γ(N/2) =
2

ωN−1

, ρN := 2 ln 2 + ψ(N2 )− γ, (1.2)

ωN−1 := HN−1(SN−1) =
∫
SN−1

dS, γ = −Γ′(1) is the Euler Mascheroni constant and ψ = Γ′

Γ is the

Digamma function associated to the Gamma function Γ. The natural domain of definition of L∆

is the set of uniformly Dini continuous functions u in RN such that∫
RN

|u(x)|
1 + |x|N

dx <∞.

The aim of this article is to provide estimates of the eigenvalues of the operator L∆ in a bounded
domain Ω ⊂ RN , which are the real numbers λ such that there exists a solution to the Dirichlet
problem {

L∆u = λu in Ω,

u = 0 in RN \ Ω.
(1.3)

1To appear in Advances in Calculus of Variations
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In recent years, there has been a renewed and increasing interest in the study of boundary
value problems involving linear and nonlinear integro-differential operators. This growing interest
is justified both by seminal advances in the understanding of nonlocal phenomena from a PDE
or a probabilistic point of view, see e.g. [2–5, 12, 13, 16, 27, 30, 31] and the references therein, and
by important applications. Among nonlocal differential order operators, the simplest and most
studied examples, are the fractional powers of the Laplacian which exhibit many phenomenological
properties. Recall that for s ∈ (0, 1) the fractional Laplacian of a function u ∈ C∞c (RN ) is defined
by

F((−∆)su)(ξ) :=

∫
RN

eix·ξ((−∆)su)(x)dx = |ξ|2sû(ξ) for all ξ ∈ RN ,

where and in the sequel both F and ·̂ denote the Fourier transform. Equivalently, (−∆)s can be
written as a singular integral operator under the following form

(−∆)su(x) = cN,s lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, (1.4)

where cN,s = 22sπ−
N
2 s

Γ(N+2s
2

)

Γ(1−s) and Γ is the Gamma function, see e.g. [31].
The fractional Laplacian has the following limiting properties when s approaches the values 0

and 1:

lim
s→1−

(−∆)su(x) = −∆u(x) and lim
s→0+

(−∆)su(x) = u(x) for u ∈ C2
c (RN ),

see e.g. [12]. It is proved in [7] a remarkable expansion at s = 0 valid for u ∈ C2
c (RN ) and x ∈ RN ,

(−∆)su(x) = u(x) + sL∆u(x) + o(s) as s→ 0+

where, formally, the operator

L∆ :=
d

ds

∣∣∣
s=0

(−∆)s (1.5)

is given as a logarithmic Laplacian; indeed,

(i) for 1 < p ≤ ∞, we have L∆u ∈ Lp(RN ) and (−∆)su−u
s → L∆u in Lp(RN ) as s→ 0+;

(ii) F(L∆u)(ξ) = 2 ln |ξ| û(ξ) for a.e. ξ ∈ RN .

Note that the problems with integral-differential operators given by kernels with a singularity of
order −N have received growing interest recently, as they give rise to interesting limiting regularity
properties and Harnack inequalities without scaling invariance, see e.g. [20]. Another important
domain of study consists in solving the Dirichlet problem with zero exterior value [7]. We refer
to [15,19] for more topics related to the logarithmic Laplacian and also [14,18] for general nonlocal
operator and related embedding results. Let H(Ω) denote the space of all measurable functions
u : RN → R with u ≡ 0 in RN \ Ω and∫∫

x,y∈RN
|x− y|≤1

(u(x)− u(y))2

|x− y|N
dxdy < +∞.

As we shall see it, H(Ω) is a Hilbert space under the inner product

E(u,w) =
cN
2

∫ ∫
x,y∈RN
|x− y|≤1

(u(x)− u(y))(w(x)− w(y))

|x− y|N
dxdy

and with the associated norm ‖u‖H(Ω) =
√
E(u, u), where cN is given in (1.2). By [11, Theorem

2.1], the embedding H(Ω) ↪→ L2(Ω) is compact. Throughout this article we identify L2(Ω) with

2



the space of functions in L2(RN ) which vanish a.e. in RN \Ω. The quadratic form associated with
L∆ is well-defined on H(Ω) by

EL : H(Ω)×H(Ω)→ R, EL(u,w) = E(u,w)− cN
∫∫

x,y∈RN
|x− y|≥1

u(x)w(y)

|x− y|N
dxdy + ρN

∫
RN

uw dx,

where ρN is defined in (1.2). A function u ∈ H(Ω) is an eigenfunction of (1.3) corresponding to the
eigenvalue λ if

EL(u, φ) = λ

∫
Ω
uφ dx for all φ ∈ H(Ω).

Proposition 1.1. [7, Theorem 1.4] Let Ω be a bounded domain in RN . Then problem (1.3) admits
a sequence of eigenvalues

λ1(Ω) < λ2(Ω) ≤ · · · ≤ λi(Ω) ≤ λi+1(Ω) ≤ · · ·

with corresponding eigenfunctions φi, i ∈ N such that the following holds:

(a) λi(Ω) = min{EL(u, u) : u ∈ Hi(Ω) : ‖u‖L2(Ω) = 1}, where

H1(Ω) := H(Ω) and Hi(Ω) := {u ∈ H(Ω) :

∫
Ω
uφi dx = 0 for i = 1, . . . i− 1} for i > 1;

(b) {φi : i ∈ N} is an orthonormal basis of L2(Ω);

(c) φ1 is positive in Ω. Moreover, λ1(Ω) is simple, i.e., if u ∈ H(Ω) satisfies (1.3) in weak sense
with λ = λ1(Ω), then u = tφ1 for some t ∈ R;

(d) lim
i→∞

λi(Ω) = +∞.

Due to lack of homogeneity of the logarithmic Laplacian there is no scaling property. As
a consequence homothety of the domain is inoperative for studying the variations of principle
eigenvalue as it is the case for the Laplacian or the fractional Laplacian. Secondly, the logarithmic
Laplacian operator is no longer positively defined if |Ω| is to large: it is proved in [7] that the
positivity of the principle eigenvalue is equivalent to the comparison principle, which does not
hold in balls with large radius. These properties of the logarithmic Laplacian operator make more
complicated the study of the asymptotics of the Dirichlet eigenvalues as we will see below, but also
make more difficult the obtention of bounds for eigenvalues.

It is well-known that the Hilbert-Pólya conjecture is to associate the zero of the Riemann Zeta
function with the eigenvalue of a Hermitian operator. This quest initiated the mathematical interest
for estimating the sum of Dirichlet eigenvalues of the Laplacian while in physics the question is
related to count the number of bound states of a one body Schrödinger operator and to estimate
their asymptotic distribution. In 1912, Weyl in [33] shows that the k-th eigenvalue µk(Ω) of Dirichlet
problem with the Laplacian operator{

−∆u = µu in Ω

u = 0 on ∂Ω,
(1.6)

has the asymptotic behavior µk(Ω) ∼ CN (k|Ω|)
2
N as k → +∞, where CN = (2π)2|B1|−

2
N . Later

on, Pólya [28] (in 1960) proved that

µk(Ω) ≥ C
(
k

|Ω|

) 2
N

(1.7)

holds for C = CN and any ”plane-covering domain” D in R2, (his proof also works in dimension
N ≥ 3) and he also conjectured that (1.7) holds with C = CN for any bounded domain in RN .

3



Rozenbljium [29] and independently Lieb [25] proved (1.7) with a positive constant C for general
bounded domain. Li-Yau [24] improved the value of the constant C obtaining C = N

N+2CN , and
with that constant (1.7) is also called Berezin-Li-Yau inequality because this constant is achieved
with the help of Legendre transform as in the Berezin’s earlier paper [1]. The Berezin-Li-Yau
inequality then is generalized in [?, 9–11, 21, 25], for degenerate elliptic operators in [8, 17, 34] for
the fractional Laplacian (−∆)s defined in (1.4) and the inequality reads

µs,k(Ω) ≥ N

N + 2s
CN

(
k

|Ω|

) 2s
N

. (1.8)

For eigenvalues of the Dirichlet problem (1.3), Laptev and Weth obtain in [23, Corollary 6.2]
the following sharp estimate:

lim
λ→+∞

e−
λ
2
NN (λ) =

|Ω|ωN−1

N(2π)N
,

where N is the counting function of eigenvalues, i.e.

N (t) =
∑
j∈N

sgn+(t− λj(Ω)) =
∑
j∈N

(t− λj(Ω))0
+.

Here sgn+(r) = 1 if r > 0, sgn+(r) = 0 if r ≤ 0 and r± = (|r| ± r)/2 denote the positive and
negative part of x ∈ R. This estimate could give the Weyl’s formula

lim
k→+∞

λk(Ω)

ln k
=

2

N

by some fundamental calculation. Furthermore lower bounds for the first eigenvalue are considered
there by a particular scaling property.

Our purpose in this article is to provide the lower and upper bounds for the sum of the first k
eigenvalues by developing the Berezin-Li-Yau methods and Kröger’s result for the Laplacian.

The fundamental point for the Berezin-Li-Yau method for the lower bound is based on the
homogeneity of |ξ|2, the expression of the Fourier symbol of Laplacian (F(−∆)). So this method
could be extended for Dirichlet eigenvalues involving the fractional Laplacian. Thanks to the
imhomogeneity of the expression of the Fourier symbol of L∆, the Berezin-Li-Yau method can not
be applied to our problem (1.3) directly. To this end, we provide some appropriate estimates for
the solutions of equations:

r ln r = c and
r

ln r − ln ln r
= t.

The estimates that we obtain provide a uniform lower bound of the sum of the first k-eigenvalues,
independently of k, an estimate which has a particular interest when these eigenvalues are negative.
More precisely, we prove the following inequalities:

Theorem 1.2. Let Ω ⊂ RNbe a bounded domain, {λi(Ω)}i∈N be the sequence of eigenvalues of
problem (1.3) obtained in Proposition 1.1 and define

dN =
2ωN−1

N2(2π)N
. (1.9)

Then there holds

(i) for any k ∈ N∗,
k∑
i=1

λi(Ω) ≥ −dN |Ω|;

(ii) if k > eNdN
2 |Ω|,

k∑
i=1

λi(Ω) > 0;
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(iii) if k ≥ ee+1NdN
2 |Ω|,

k∑
i=1

λi(Ω) ≥ 2k

N

(
ln k + ln

( 2

eNdN |Ω|

)
− ln ln

( 2k

eNdN |Ω|

))
. (1.10)

Our second interest is to give an upper bound for the sum of the first k eigenvalues. Motivated
by Kröger’s result for the Laplacian [21], we shall construct an upper bound by computing the
related Rayleigh quotient via a particular complex valued function. Together with the lower bound
(1.10), we can derive the limit of the sum of the first k eigenvalues as k → +∞. The results state
as following.

Theorem 1.3. Let Ω ⊂ RN be a bounded domain and {λi(Ω)}i∈N be the sequence of eigenvalues
of problem (1.3). Then for k > eNdN

2 |Ω|,

k∑
i=1

λi(Ω) ≤ 2k

N

(
ln(k + 1) + ln

(pN
|Ω|

)
+
ωN−1√
|Ω|

ln ln
(pN (k + 1)

|Ω|

))
, (1.11)

and

lim
k→+∞

(k ln k)−1
k∑
i=1

λi(Ω) =
2

N
, (1.12)

where pN = 2(2π)NN
ω
N−1

.

Note that the assumption that k > eNdN
2 |Ω| is required to make sure that λk0 > 0, here k0 is

the smallest positive integer k0 ≥ eNdN
2 |Ω|.

From the bounds of sum of eigenvalues from our main results, we can provide an analogous of
the Wely’s formula for the logarithmic Laplacian.

Corollary 1.4. Let Ω ⊂ RN be a bounded domain and {λi(Ω)}i∈N be the sequence of eigenvalues
of problem (1.3). Then,

(i) lim
k→+∞

λk(Ω)

ln k
=

2

N
, (1.13)

and

(ii)
2

N

(
ln k+ln

2

eNdN |Ω|

)
≤ λk(Ω) ≤ 2

N
ln k+c0

(
ln ln(k+e)

)2
+

2

N
ln
|B1|
|Ω|

, (1.14)

where c0 > 0 is independent of k and Ω.

Remark 1.5. (a) Notice that the two limits of λk(Ω)
ln k and of (k ln k)−1

∑k
i=1 λi(Ω) as k → +∞ have

the same value 2
N , which is independent of Ω;

(b) The limit (1.13) is proved by showing the inequalities

ln k + ln
2

eNdN |Ω|
− ln ln

2k

eNdN |Ω|
≤ N

2
λk(Ω) ≤ ln k + 2 + c̃0

(
ln ln(k + 1)

)2
(1.15)

for k ≥ ee+1NdN
2 |Ω|, where c̃0 > 0 is independent of k, but depends of |Ω|. Here the first and second

inequalities follow by (1.10) and (1.11) respectively, along with the monotonicity of the sequence of
eigenvalues.
Compared with (1.15), the inequalities (1.14) in Corollary 1.4 provide a sharper lower bound for
λk(Ω), and a uniform upper bound c0, thanks to related estimates of N from [23].

The rest of this paper is organized as follows. Section 2 is devoted to proving the lower bound
by developing Li-Yau’s method, and then we prove Theorem 1.2. In Section 3, we show the upper
bounds for the first k-eigenvalues in Theorem 1.3. Finally, we prove the Weyl’s limit of eigenvalues
in Corollary 1.4 and obtain the sharper bounds of λk(Ω) obtained in Section 4.
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2 Lower bounds

Let g be the auxiliary function defined by

g(r) = r ln r for r > 0.

Then g(e) = e, g(1) = 0 and g(1
e ) = −1

e and the following properties hold.

Lemma 2.1. For c ≥ −1
e , there exists a unique real number rc ≥ 1

e such that

g(rc) = c,

and we have that rc ≤ 1 + c. Furthermore,

(i) for −1
e ≤ c ≤ 0,

rc ≥ 1 + (e− 1)c ≥ 1

e
;

(ii) for 0 ≤ c ≤ e,
rc ≥ 1 +

e− 1

e
c;

(iii) for c ≥ e,
rc ≥ 1 +

e− 1

e
c

and
c

ln c
≤ rc ≤

c

ln c− ln ln c
. (2.1)

Proof. The function g is increasing and g is convex from [1
e ,+∞) onto [−1

e ,+∞). Hence rc is
uniquely determined if c ≥ −1

e and c 7→ rc is increasing from [−1
e ,+∞) onto [1

e ,+∞).

For a > 0, we define ψa(x) = (1 +ax) ln(1 +ax)−x for x > − 1
a . Then ψa(x) > 0 (resp. ψa(x) < 0)

is equivalent to 1 + ax > rx (resp. 1 + ax < rx). Note that ψ′a(x) = a(1 + ln(1 + ax)) − 1 and

ψ′′a(x) = a2

1+ax > 0. Since ψ′a(− 1
a) = −∞ and ψ′a is increasing, ψ′a(0) = a − 1 is the maximum

(resp. minimum) of ψ′a on (− 1
a , 0] (resp. on [0,∞)). Therefore, if a > 1, ψa is positive on (− 1

a , r
∗
a)

for some r∗a ∈ (− 1
a , 0), negative on (r∗a, 0) and positive on (0,∞). If 0 < a < 1, ψa is positive on

(− 1
a , 0), negative on (0, r∗a) for some r∗a > 0 and positive on (r∗a,∞). If a = 1, ψ1 is positive on

[−1
e , 0) ∪ (0,∞) and vanishes only at 0. Then ψ1 ≥ 0 which implies the first assertion.

Since e− 1 > 1 and ψe−1(−1
e ) = 0, ψe−1(x) < 0 for x ∈ (−1

e , 0). This gives (i).

Since 0 < e−1
e < 1, ψ e−1

e
is negative on (0, r∗e−1

e

) and positive on (r∗e−1
e

,∞). Since ψ e−1
e

(e) = 0,

r∗e−1
e

= e and we get (ii) and (iii).

Since g is increasing on [e,∞), (2.1) is equivalent to

c− ln c

ln ln c
≤ c ≤ c

ln c− ln ln c
ln

(
c

ln c− ln ln c

)
= c

ln c− ln(ln c− ln ln c)

ln c− ln ln c
.

Set C = ln c, then

ln c− ln(ln c− ln ln c)

ln c− ln ln c
=
C − ln(C − lnC)

C − lnC
> 1 for C > 1

and (2.1) follows. �

Lemma 2.2. Let f be a real measurable function defined in RN with 0 ≤ f ≤M1 a.e. and

2

∫
RN

ln |z| f(z)dz = M2.
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Then

(i) M2 ≥ −
2ωN−1

N2
M1,

and

(ii)

∫
RN

f(z)dz ≤
M1ωN−1

N

(
e+

N2M2

2M1ωN−1

)
=
eωN−1

N
M1 +

N

2
M2.

(iii) If we assume furthermore that M2
M1
≥ 2e2ω

N−1

N2 , there holds∫
RN

f(z)dz ≤ NM2

2

(
ln

(
N2M2

2eM1ωN−1

)
− ln ln

(
N2M2

2eM1ωN−1

))−1

.

Proof. We have

M2

2
=

∫
B1

ln |z|f(z)dz +

∫
Bc1

ln |z|f(z)dz

≥M1

∫
B1

ln |z|dz +

∫
Bc1

ln |z|f(z)dz ≥ −
ωN−1

N2
M1.

Hence (i) holds.
Let R > 0, we have that

(ln |z| − lnR)(f(z)−M11BR) ≥ 0.

By integration over RN we get

M2

2
+
M1ωN−1R

N

N2
≥ lnR

∫
RN

f(z)dz.

Since R is arbitrary,
∫
RN f(z)dz satisfies the following upper estimate∫

RN
f(z)dz ≤ inf

{
A > 0 s.t.

M2

2
+
M1ωN−1R

N

N2
−A lnR ≥ 0 for all R > 0

}
. (2.2)

Set

ΘA(R) =
M2

2
+
M1ωN−1R

N

N2
−A lnR,

then ΘA achieves the minimum if

M1ωN−1R
N

N
= A⇐⇒ R = RA :=

(
NA

ωN−1M1

) 1
N

.

Hence

ΘA(RA) =
M2

2
+
A

N
− A

N
ln

(
NA

ωN−1M1

)
. (2.3)

Put r = NA
M1ωN−1

, then

ΘA(RA) ≥ 0⇐⇒ r ln r − r ≤ N2M2

2M1ωN−1

⇐⇒ g
(r
e

)
≤ N2M2

2eM1ωN−1

. (2.4)

Then r
e ≤ rc with c = N2M2

2eM1ωN−1
, inequality rc ≤ 1 + c in Lemma 2.1 yields

r =
NA

M1ωN−1

≤ e+
N2M2

2M1ωN−1

=⇒
∫
RN

f(z)dz ≤
M1ωN−1

N

(
e+

N2M2

2M1ωN−1

)
,

7



which is (ii).

Assuming now that M2
M1
≥ 2e2ω

N−1

N2 , we can apply Lemma 2.1-(iii) and get

∫
RN

f(z)dz ≤ NM2

2

(
ln

(
N2M2

2eM1ωN−1

)
− ln ln

(
N2M2

2eM1ωN−1

))−1

,

which is (iii) and ends the proof. �

Lemma 2.3. Let
g̃(r) =

r

ln r − ln ln r
for r > e.

Then for t > ee

e−1 , there exists a unique point rt > e such that g̃(rt) = t. Furthermore,

t(ln t− ln ln t) ≤ rt < t ln t. (2.5)

Proof. Since

g̃′(r) =
1

ln r − ln ln r
− 1− (ln r)−1

(ln r − ln ln r)2

≥ 1

ln r − ln ln r

(
1− 1

ln r − ln ln r

)
> 0,

the function g̃ is increasing from (e,+∞) onto ( ee

e−1 ,+∞). Setting r∗t = t(ln t− ln ln t), then

g̃(r∗t ) =
t(ln t− ln ln t)

ln t+ ln(ln t− ln ln t)− ln ln(t(ln t− ln ln t))

≤ t(ln t− ln ln t)

ln t+ ln(ln t− ln ln t)− ln ln(t ln t)

=
ln t− ln ln t

ln t− ln ln(t ln t)
ln t−ln ln t

t

≤ t,

where the last inequality holds if

ln(t ln t)

ln t− ln ln t
≤ ln t,

and this inequality is equivalent to

h̃(τ) := τ2 − (ln τ + 1)τ − ln τ ≥ 0, τ = ln t.

Freezing the coefficient ln τ , h̃(τ) = (τ − τ1)(τ − τ2), where the τ1, τ2 depend of τ , but τ1 < 0 < τ2,
since τ1τ2 = − ln τ < 0. Because h̃(e) = e2 − 2e− 1 = 0.9584± 10−4, we have e > τ1. Hence τ > e
implies τ > τ1 which in turn implies h̃(τ) > 0. Hence r∗t ≤ rt using the monotonicity of g̃.

Let st = t ln t, then

g̃(st) =
t ln t

ln t+ ln ln t− ln ln(t ln t)
< t

using the fact that
ln ln t− ln ln(t ln t) < 0 for t > e.

Hence st ≥ rt, which ends the proof. �
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Proof of Theorem 1.2. Denote

Φk(x, y) =
k∑
j=1

φj(x)φj(y), (x, y) ∈ RN × RN ,

and

Φ̂k(z, y) = (2π)−
N
2

∫
RN

Φk(x, y)e−ix·zdx,

where Φ̂k is the Fourier transform with respect to x. Since the {φj}i∈N are orthogonal in L2(Ω),
we have the identity ∫

RN

∫
Ω
|Φ̂k(z, y)|2dzdy =

∫
Ω

∫
Ω
|Φk(x, y)|2dxdy = k.

Furthermore, we note that∫
Ω
|Φ̂k(z, y)|2dy =

∫
Ω

 k∑
j=1

φ̂j(z)φj(y)

 k∑
j=1

φ̂j(z)φj(y)

 dy

=

∫
Ω

 k∑
j,`=1

φ̂j(z)φ̂`(z)φj(y)φ`(y)

 dy

=
k∑
j=1

|φ̂j(z)|2.

(2.6)

Using again the orthonormality of the {φj}i∈N in L2(Ω), we infer by the k-dim Pythagore theorem,

∫
Ω
|Φ̂k(z, y)|2dy = (2π)−N

∫
Ω

∣∣∣∣∣∣
k∑
j=1

(∫
Ω
e−ix.zφj(x)dx

)
φj(y)

∣∣∣∣∣∣
2

dy

≤ (2π)−N |Ω|.

(2.7)

We have, from the Fourier expression of L∆ applied in the variable x,

k∑
j=1

λj(Ω) =

∫
Ω

∫
Ω

Φk(x, y)L∆Φk(x, y)dydx

= 2
k∑
j=1

∫
RN
|φ̂j(z)|2 ln |z|dz

= 2

∫
RN

(∫
Ω
|Φ̂k(z, y)|2dy

)
ln |z|dz.

Now we apply Lemma 2.2 to the function

f(z) =

∫
Ω
|Φ̂k(z, y)|2dy

with

M1 = (2π)−N |Ω| and M2 =
k∑
j=1

λj(Ω).

Part (i): By Lemma 2.2 (i),

k∑
j=1

λj(Ω) ≥ −
2ωN−1

N2(2π)N
|Ω| = −dN |Ω|,

9



where dN is the constant defined in (1.9).

Part (ii):

k =

∫
RN

f(z)dz ≤
eωN−1 |Ω|
N(2π)N

+
N

2

k∑
j=1

λj(Ω),

which implies that
k∑
j=1

λj(Ω) ≥ 2k

N
−

2eωN−1 |Ω|
N2(2π)N

.

Part (iii): for k ∈ N, if
k∑
j=1

λj(Ω) ≥
2e2ωN−1

N2
|Ω|,

then

k ≤ NM2

2

(
ln

(
N2M2

2eM1ωN−1

)
− ln ln

(
N2M2

2eM1ωN−1

))−1

.

Setting

r =
N2M2

2eM1ωN−1

and t =
Nk

eM1ωN−1

=
(2π)NNk

eωN−1 |Ω|
,

we have from (2.5) that
r ≥ rt ≥ t (ln t− ln ln t) (2.8)

for any t > ee, that is

k >
ee+1ωN−1 |Ω|

(2π)NN
=
ee+1NdN

2
|Ω|.

This implies
N2M2

2eM1ωN−1

≥ (2π)NNk

eωN−1 |Ω|

(
ln
((2π)NNk

eωN−1 |Ω|

)
− ln ln

((2π)NNk

eωN−1 |Ω|

))
,

from what we infer

k∑
j=1

λj(Ω) ≥ 2k

N

(
ln
( 2k

eNdN |Ω|

)
− ln ln

( 2k

eNdN |Ω|

))
, (2.9)

which completes the proof. �

Remark 2.4. Since the mapping k 7→ λk(Ω) is nondecreasing, we have that

λk(Ω) ≥ 1

k

k∑
i=1

λi(Ω) > 0 if k ≥ eNdN
2
|Ω|.

It is worth noticing that some similar conditions assuring the positivity of λk could be derived
from [23, Corollary 3.2], which asserts that

N (λ) ≤ eλN+1 1

(2π)N
|Ω||B1|,

which implies

λk(Ω) ≥ 1

N

(
ln
(
k

(2π)N

|Ω||B1|

)
− 1

)
> 0 if k >

e|Ω||B1|
(2π)N

.
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3 Upper bound

For any bounded complex valued functions u, v defined on Ω, there holds

L∆(uv)(x) = u(x)L∆v(x) + cN

∫
B1(x)

u(x)− u(ζ)

|x− ζ|N
v(ζ)dζ. (3.1)

Lemma 3.1. For z ∈ RN \ {0}, we denote

µz(x) = eix·z, ∀x ∈ RN ,

then
L∆µz(x) = (2 ln |z|)µz(x), ∀x ∈ RN . (3.2)

Proof. From Lemma 5.1 in the appendix, for any z ∈ RN \ {0} the function x 7→ L∆µz(x) is
continuous and bounded in RN . We first prove that for s ∈ (0, 1),

(−∆)sµz(x) = |z|2sµz(x), ∀x ∈ RN . (3.3)

Since µz is a bounded, we can consider the distribution Tµz in RN with support in Ω defined by

〈Tµz ζ〉 :=

∫
RN

µz(x)ζ(x)dx for all ζ ∈ C∞c (Ω).

Then 〈(−∆)sTµz ζ〉 := 〈Tµz , (−∆)sζ〉. Since

d

ds
(−∆)sζbs=0= L∆ζ

there holds in the sense of distributions

d

ds
(−∆)sTµzbs=0= L∆Tµz ,

in the sense that

〈L∆Tµz , ζ〉 = 〈Tµz , L∆ζ〉 =

∫
RN

µzL∆ζdx.

By definition of the Fourier transform of distributions F in the class S ′(RN ) (see [32]), there holds

〈L∆Tµz , ζ〉 =

∫
RN

eiz·xL∆ζ(x)dx = F(L∆ζ)(z) = 2 ln |z|F(ζ)(z) = 2 ln |z|
∫
RN

µz(x)ζ(x)dx

Since x 7→ L∆µz(x) is locally integrable, L∆Tµz = TL∆Tµz , hence

〈TL∆Tµz , ζ〉 =

∫
RN

L∆Tµzζdx = 2 ln |z|
∫
RN

µzζdx.

Because ζ is arbitrary this implies TL∆Tµz = 2 ln |z|µz, a.e. in RN and finally everywhere by
continuity, which is the claim. �

Next, let η0 ∈ C1(R) be a nondecreasing real valued function such that ‖η′0‖L∞ ≤ 2 satisfying

η0(t) = 1 if t ≥ 1, η0(t) = 0 if t ≤ 0.

Since Ω is a bounded domain, there exists a C1 domain O ⊂ Ω such that |O| ≥ 3
4 |Ω|. For σ > 0,

we set again
wσ(x) = η0(σ−1ρ̄(x)), ∀x ∈ RN . (3.4)

where ρ̄(x) = dist(x, ∂O). Observe that wσ ∈ H0(Ω) and

wσ → 1 in O as σ → 0+.

Thus, there exists σ1 > 0 such that for σ ∈ (0, σ1],

|Ω| >
∫

Ω
wσ dx ≥

∫
Ω
w2
σ dx >

|Ω|
2
.
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Lemma 3.2. Let

Lzwσ(x) =

∫
B1(x)

wσ(x)− wσ(ζ)

|x− ζ|N
e−iζ·zdζ,

then there holds ∣∣∣Lzwσ(x)
∣∣∣ ≤ 2ωN−1

σ
for x ∈ Ω.

Proof. Actually, if x ∈ Ω, we have that

|wσ(x)− wσ(ζ)| ≤ ‖Dwσ‖L∞ |x− ζ| ≤ σ−1‖η′0‖L∞ |x− ζ|,

then ∣∣∣ ∫
B1(x)

wσ(x)− wσ(ζ)

|x− ζ|N
e−iζ·zdζ

∣∣∣ ≤ ‖η′0‖L∞
σ

∫
B1(x)

dζ

|ζ − x|N−1
≤

2ωN−1

σ
,

since ‖η′0‖L∞ ≤ 2. This ends the proof. �

Proof of Theorem 1.3. We recall that Φk(x, y) and Φ̂k(z, y) have been defined in the proof of
Theorem 1.2. If we denote

ṽσ,z(x) := vσ(x, z) = wσ(x)e−ix·z,

the projection of vσ onto the subspace of L2(Ω) spanned by the φj for 1 ≤ j ≤ k can be written in
terms of the Fourier transform of wσΦk with respect to the x-variable:∫

Ω
vσ(x, z)Φk(x, y)dx = (2π)N/2Fx(wσΦk)(z, y).

Put
vσ,k(z, y) = vσ(z, y)− (2π)N/2Fx(wσΦk)(z, y)

and the Rayleigh-Ritz formula shows that

λk+1(Ω)

∫
Ω
|vσ,k(z, y)|2dy ≤

∫
Ω
vσ,k(z, y)L∆,yvσ,k(z, y)dy

for any z ∈ RN and σ > 0, where the right hand side is a real value∫
Ω
vσ,k(z, y)L∆,yvσ,k(z, y)dy =

∫
RN

vσ,k(z, y)L∆,yvσ,k(z, y)dy =

∫
RN

2 ln |ξ|
∣∣∣F(vσ,k)(z, ξ)

∣∣∣2dξ,
although vσ,k is a complex valued function. Then, integrating this last inequality with respect to z
in Br \B1, for r > 1, we obtain

λk+1(Ω) ≤ inf
σ>0

∫
Br\B1

∫
Ω
vσ,k(z, y)L∆,yvσ,k(z, y)dydz∫

Br\B1

∫
Ω
|vσ,k(z, y)|2dydz

.

By Pythagore’s theorem, we have that∫
Ω
|vσ,k(z, y)|2dy =

∫
Ω
|vσ(z, y)|2dy − (2π)N

∫
Ω

k∑
j=1

|Fx(wσφi)(z)|2φi(y)2dy.

Integrating over Br \B1 we obtain that∫
Br\B1

∫
Ω
|vσ,k(z, y)|2dydz ≥

ωN−1r
N

N

∫
Ω
w2
σ(y)dy − (2π)N

k∑
j=1

∫
Br\B1

|Fx(wσφi)(z)|2dz.
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On the other hand,∫
Br\B1

∫
Ω
vσ,k(z, y)L∆,yvσ,k(z, y)dydz =

∫
Br\B1

∫
Ω
vσ(z, y)L∆,yvσ(z, y)dydz

− (2π)N
∫
Br\B1

∫
Ω
Fx(wσΦk)(z, y)L∆,yFx(wσΦk)(z, y)dydz,

where∫
Br\B1

∫
Ω
Fx(wσΦk)(z, y)L∆,yFx(wσΦk)(z, y)dydz =

k∑
j=1

λj(Ω)

∫
Br\B1

|Fx(wσφj)(z)|2dz,

and ∫
Br\B1

∫
Ω
vσ(z, y)L∆,yvσ(z, y)dydz

≤
∫
Br\B1

∫
Ω
w2
σ(y)|L∆,ye

−iy·z|dydz +

∫
Br\B1

∫
Ω
wσ(y)|Lzwσ(y)|dydz

≤
∫
Br\B1

∫
Ω
w2
σ(y) ln |z|dydz +

2ωN−1

σ

∫
Br\B1

∫
Ω
wσ(y)dydz

=
ωN−1

N
%2,σ

(
rN ln r − 1

N
(rN − 1)

)
+
ω2
N−1

Nσ
%1,σ

(
rN − 1

)
≤
ωN−1

N
%2,σ r

N ln r +
ω2
N−1

Nσ
%1,σ r

N

with

%1,σ =

∫
Ω
wσ(y)dy and %2,σ =

∫
Ω
w2
σ(y)dy.

Because of Parseval’s identity, there holds∫
Br\B1

|Fx(wσφi)(z)|2dz ≤
∫

Ω
(wσφi)

2dx ≤ 1.

If k0 is the smallest positive integer such that k0 ≥ eNdN
2 |Ω|, then λk0(Ω) ≥ 0.

For k ≥ k0, we choose r > 1 such that

2ωN−1

N2
rN ln r ≥

ωN−1r
N

N
⇐⇒ r ≥ e

N
2 and

ωN−1r
N

N
|Ω| > 2(2π)Nk,

then we have that

λk+1(Ω) ≤
ω
N−1

rN

N

(
%2,σ

2
N ln rN

e + %1,σ

ω
N−1

σ

)
− (2π)N

∑k
j=1 λj(Ω)

∫
Br
|Fx(wσφj)(z)|2dz

ω
N−1

rN

N %2,σ − (2π)N
∑k

j=1

∫
Br
|Fx(wσφj)(z)|2dz

Denote

A1 =
ωN−1r

N

N

(
%2,σ

2

N
ln
rN

e
+ %1,σ

ωN−1

σ

)
and A2 =

ωN−1r
N

N
%2,σ ,

then

0 ≤
A1 − (2π)N

∑k
j=1 λj(Ω)

∫
Br
|Fx(wσφj)(z)|2dz

A2 − (2π)N
∑k

j=1

∫
Br
|Fx(wσφj)(z)|2dz

− λk+1(Ω)

=

(
A1 −A2λk+1(Ω)

)
+ (2π)N

∑k
j=1

(
λk+1(Ω)− λj(Ω)

) ∫
Br
|Fx(wσφj)(z)|2dz

A2 − (2π)N
∑k

j=1

∫
Br
|Fx(wσφj)(z)|2dz

≤

(
A1 −A2λk+1(Ω)

)
+ (2π)N

∑k
j=1

(
λk+1(Ω)− λj(Ω)

)
A2 − (2π)Nk

,
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since λk+1(Ω) ≥ λj(Ω) for j < k + 1 and
∫
Br
|Fx(wσφj)(z)|2dz ∈ (0, 1). As a consequence, we

obtain that

λk+1(Ω) ≤
ω
N−1

rN

N

(
%2,σ

2
N ln rN

e + %1,σ

ω
N−1

σ

)
− (2π)N

∑k
j=1 λj(Ω)

ω
N−1

rN

N %2,σ − (2π)Nk
, (3.5)

where
ωN−1r

N

N
%2,σ − (2π)Nk >

ωN−1r
N

N

|Ω|
2
− (2π)Nk > 0.

We fix σ = σ1 and first impose k, r > 1 such that

ωN−1r
N

N
%2,σ = (2π)N (k + 1),

and take r = k
1
N for k ≥ k0, then we recall that

λk0 ≥ 0

and

(2π)N
k+1∑
j=1

λj(Ω) ≤
2ωN−1

N2
%2,σ r

N ln
rN

e
+
ω2
N−1

N
σ−1|Ω|

1
2
√
%2,σ r

N

≤ (2π)N
2(k + 1)

N

(
ln(k + 1) + ln

pN
%2,σ

+
ωN−1

%2,σ

ln ln
pN (k + 1)

%2,σ

)
≤ (2π)N

2(k + 1)

N

(
ln(k + 1) + ln

2pN
|Ω|

+
2ωN−1√
|Ω|

ln ln
2pN (k + 1)

|Ω|

)
,

where

pN =
2(2π)NN

ωN−1

and
|Ω|
2
≤ %2,σ ≤ |Ω|.

Moreover, (1.12) follows by the lower bound (1.10) and the upper bound (1.11) directly. �

4 Further discussion

Proof of Corollary 1.4 (i). On the one hand, it follows by the nondecreasing monotonicity of
k 7→ λk(Ω) and (1.10) that

λk(Ω) ≥ 1

k

k∑
i=1

λi(Ω) ≥ 2

N

(
ln k + ln

( 2

eNdN |Ω|

)
− ln ln

( 2k

eNdN |Ω|

))
. (4.1)

On the other hand, we take m = [ k
ln ln k ] + 1 and obtain that

λk+1(Ω) ≤ 1

m

( k+m∑
j=1

λj(Ω)−
k∑
j=1

λj(Ω)
)

≤ 2

Nm
(k +m)

(
ln(k +m) + 1 + ln

(pN
|Ω|

)
+
ωN−1√
|Ω|

ln ln
(pN (k + 1 +m)

|Ω|

))

− 2

Nm
k

(
ln k + ln

( 2

eNdN |Ω|

)
− ln ln

( 2k

eNdN |Ω|

))
≤ 2

N
ln(k +m) +

2

N
(ln ln k) ln

(
1 +

1

ln ln k

)
+ c1 ln ln k + c2(ln ln k)2

≤ 2

N
ln(k + 1) +

4

N
+ c3

(
ln ln(k + 1)

)2
, (4.2)
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where c1, c2, c3 > 0 is independent of k. Thus, (1.15) holds true and we have that

lim
k→+∞

λk(Ω)

ln k
=

2

N
.

We complete the proof. �

4.1 Proof of Corollary 1.4 (ii)

With the help of some estimates in [23], we can prove the bounds (1.14) for λk(Ω).

Proposition 4.1. Let Ω be a bounded domain in RN and λk(Ω) be the k-th eigenvalue of Dirichlet
problem (1.3). Then we have that for k ≥ 1

λk(Ω) ≤ 2

N
ln k + c3

(
ln ln(k + e)

)2
+

2

N
ln

1

R
,

where R = |Ω|
|B1| . In particular,

λ1(Ω) ≤ 2 ln
1

R
+ c3,

where c3 ∈ R is independent of Ω.

Proof. Note that the constant c0 in the second inequality (1.15) could is dependent of |Ω|, but
independent of the shape of Ω. Let

ΩR = {R−
1
N x : x ∈ Ω}.

From (1.15) we obtain that

λk(ΩR) ≤ 2

N
ln k + c4

(
ln ln(k + e)

)2
, k ≥ ee+1NdN

2
|B1|,

where c4 is independent of k and ΩR. The above inequality holds for k ≥ 1 only by adjusting the
constant c4. It is shown a scaling property for logarithmic Laplacian [23, Lemma 2.5] that

λk(Ω) = λk(tΩ)− 2 ln
1

t
,

where tΩ = {tx : x ∈ Ω}. From the assumption that ΩR = R−
1
N Ω, we have that

λk(Ω) = λk(ΩR) +
2

N
ln

1

R
.

We omit the left proof. �

Proposition 4.2. Let Ω be a bounded domain in RN and λk(Ω) be the k-th eigenvalue of Dirichlet
problem (1.3). Then we have that for k ≥ 1

λk(Ω) ≥ 2

N

(
ln k + ln

2

eNdN |Ω|

)
.

In particular, λ1(Ω) ≥ 2
N

(
− ln |Ω|+ c5

)
, where c5 = ln 2

eNdN
.

Proof. It follows by [23, Lemma 2.5] that

N (λ) ≤
|Ω|ωN−1

N(2π)N
e
λ
2
N+1.

Note that
λk(Ω) ≥ λ is equivalent to N (λ) ≤ k,

and then

λk(Ω) ≥ 2

N
ln
N(2π)Nk

|Ω|ωN−1

=
2

N
ln

2k

eNdN |Ω|
.

Then all inequalities follow. �
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5 Appendix: definedness of L∆µz(x)

Lemma 5.1. Let z ∈ RN \ {0} and µz(x) = eix·z for all x ∈ RN . Then L∆µz(x) is well defined for
any x ∈ RN , and x 7→ L∆µz(x) is continuous and bounded in RN .

Proof. Since the function µz is bounded and smooth in RN , L∆µz(x) is well defined if the
following limit exists

lim
r→+∞

∫
Br(x)\B1(x)

µz(y)

|x− y|N
dy.

If it holds, we have,

L∆µz(x) = cN

∫
B1(x)

µz(x)− µz(y)

|x− y|N
dy − cN lim

r→+∞

∫
Br(x)\B1(x)

µz(y)

|x− y|N
dy + ρNµz(x).

We introduce the laplacian of µz,

∆µz(t) = ∆ei
∑
j tjzj = ∆

∏
j

eitjzj

 = −

∑
j

z2
j

∏
j

eitjzj = −|z|2µz(t).

There holds∫
Br(x)\B1(x)

µz(y)

|x− y|N
dy = µz(x)

∫
Br\B1

µz(t)

|t|N
dt = −µz(x)

|z|2

∫
Br\B1

∆µz(t)

|t|N
dt

By Green’s formula∫
Br\B1

|t|−N∆µz(t)dt =

∫
Br\B1

µz(t)∆|t|−Ndt+

∫
∂(Br\B1)

(
|t|−N ∂µz(t)

∂n
− µz(t)

∂|t|−N

∂n

)
dS(t)

We have
∆|t|−N = 2N |t|−N−2,

∂|t|−N

∂n
=

{
−Nr−N−1 on ∂Br
N on ∂B1

and

∂µz(t)

∂n
=


it.z

r
µz(t) on ∂Br

−it.zµz(t) on ∂B1

since n is the unit outward normal vector either on ∂Br or on ∂B1. Letting r →∞, we obtain

lim
r→+∞

∫
Br(x)\B1(x)

µz(y)

|x− y|N
dy = −µz(x)

|z|2

(
2N

∫
RN\B1

µz(t)

|t|N+2
dt−

∫
∂B1

(N + it · z)µz(t)dS(t)

)
.

Finally we obtain

L∆µz(x) = cN

∫
B1(x)

µz(x)− µz(y)

|x− y|N
dy + ρNµz(x)

+
cNµz(x)

|z2|

(
2N

∫
RN\B1

µz(t)

|t|N+2
dt−

∫
∂B1

(N + it · z)µz(t)dS(t)

)
.

(5.1)

The boundedness and the continuity of x 7→ L∆µz(x) follow from this formula. �
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