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Abstract
We provide bounds for the sequence of eigenvalues {\;(€2)}; of the Dirichlet problem

Lau=Mu in Q, u=0 in RV \Q,

where L, is the logarithmic Laplacian operator with Fourier transform symbol 21n|{|. The
logarithmic Laplacian operator is not positively definitive if the volume of the domain is large
enough, hence the principle eigenvalue is no longer always positive. We also give asymptotic
estimates of the sum of the first k£ eigenvalues. To study the principle eigenvalue, we construct
lower and upper bounds by a Li-Yau type method and calculate the Rayleigh quotient for some
particular functions respectively. Our results point out the role of the volume of the domain
in the bound of the principle eigenvalue. For the asymptotic of sum of eigenvalues, lower and
upper bounds are built by a duality argument and by Kroger’s method respectively. Finally,
we obtain the limit of eigenvalues and prove that the limit is independent of the volume of the
domain.
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1 Introduction and main results

Let LA be the logarthmic Laplacian in RY, N > 1, defined by

Laute) = ey [ MOB@UZIO

RN \x—y\N

! chenhuyuan@yeah.net
2veronl@univ-tours.fr

(1.1)



where

- 2
en =m MPD(N/2) = ——,  py =22+ 0(5) -7, (1.2)
N-1
Wy, = HN7L(SN-L) = LN—l dS, v = —T"(1) is the Euler Mascheroni constant and ) = 1% is the

Digamma function.

The aim of this article is to provide estimates of the eigenvalues of the operator L, in a bounded
domain © C RY which are the real numbers A such that there exists a solution to the Dirichlet
problem

Lau=Xu in
(1.3)

u=0 in RM\Q

In recent years, there has been a renewed and increasing interest in the study of boundary
value problems involving linear and nonlinear integro-differential operators. This growing interest
is justified both seminal advances in the understanding of nonlocal phenomena from a PDE or
a probabilistic point of view, see e.g. [3-6, 14, 15,21, 32,35, 36] and the references therein, and
by important applications. Among nonlocal differential order operators, the simplest and most
studied examples, are the fractional powers of the Laplacian which exhibit many phenomenological
properties. Recall that, for s € (0, 1), the fractional Laplacian of a function u € C°(RY) is defined
by

F((=Ayu)(©) = |g2*a(¢)  for all € € RY,

where and in the sequel both F and ~ denote the Fourier transform. Equivalently, (—A)® can be
written as a singular integral operator under the following form
(—A)*u(z) = ey lim ulw) = uly) (1.4)

N+2 ’
e—0t RN\ B, (x) |$—y| +2s

N+2s
where cy s = ZQSW*%SFIE 135)) and I' is the Gamma function, see e.g. [36].
The fractional Laplacian has the following limiting properties when s approaches the values 0

and 1:

lim (=A)’u(z) = —Au(z) and lim (—A)°u(z) = u(x) for u € C2(RY),

s—1— s—0t

see e.g. [14]. Recently, [8] shows a further expansion at s = 0 that for v € C2(R") and z € RY,
(—A)u(x) = u(x) + sLau(z) + o(s) as s— 0T

where, formally, the operator

is given as a logarithmic Laplacian; indeed,
(i) for 1 < p < oo, we have Lou € LP(RY) and (_A)% — Lau in LP(RY) as s — 07;
(ii) F(Lau)(&) =2In¢|u(€) for ae. &€ € RV,

Note that the problems with integral-differential operators given by kernels with a singularity of
order —N have received growing interest recently, as they give rise to interesting limiting regularity
properties and Harnack inequalities without scaling invariance, see e.g. [24]. Another important
domain of study consists in understanding the eigenvalues of the Dirichlet problem with zero exterior
value [8]. We refer to [?,19] for more topics related to the logarithmic Laplacian and also [16, 23]
for general nonlocal operator and related embedding results. Let H(£2) denote the space of all
measurable functions v : RV — R with v = 0 in RV \ Q and

[ EDZ g

lz —y|<1



As we shall see it, H(Q2) is a Hilbert space under the inner product

() = N // . — u(y))(w(x) _“’(y))dmy,

z—y|<1 |x_y‘N

where cy is given in (1.2), with associated norm |Ju|g) = \/€(u,u). By [13, Theorem 2.1], the
embedding H(Q)) < L?(2) is compact. Throughout this article we identify L?(2) with the space
of functions in L?(R™) which vanish a.e. in RV \ Q. The quadratic form associated with L, is
well-defined on H(S2) by

& H(Q) x H(Q) - R, Ep(u,w) =E(u,w) —cn //z JerN |N)dmdy—|—p / uw dz,
RN

lz —yl>1

where pp is defined in (1.2). A function u € H((2) is an eigenfunction of (1.3) corresponding to the
eigenvalue X if

Er(u,¢) = )\/Quqbd$ for all ¢ € H().

Proposition 1.1. [8, Theorem 1.4] Let Q be a bounded domain in R . Then problem (1.8) admits
a sequence of eigenvalues

A1) <A(Q) < - S A(Q) S A () < -+
and corresponding eigenfunctions ¢;, i € N such that the following holds:

(a) ANi(2) = min{&L(u,u) + v € H;(Q) : [lullp2q) = 1}, where

Hi(Q) :=H(Q) and H(Q) := {u e H() : /ugbida::Ofori:l,...i—l} fori>1;
Q

(b) {¢; : i € N} is an orthonormal basis of L?(S2);

(c) ¢1 is positive in Q. Moreover, \1(2) is simple, i.e., if u € H(Q) satisfies (1.3) in weak sense
with A = A\1(Q), then u = tpy for some t € R;

(d) lim X\;(Q) = +o0.
1—00

Due to lack of the homogenous property for the logarithmic Laplacian operator, the effect of the
domain for the principle eigenvalue can’t be expected as the Laplacian or fractional Laplacian, just
by scaling the domain by their homogeneous property of such operators. Secondly, the logarithmic
Laplacian operator is no longer positively definitive if || is to large, since it is proved in [8] that
the positivity of the principle eigenvalue is equivalent to the comparison principle, which does not
hold for balls with large radius. These properties of the logarithmic Laplacian operator enrich
the asymptotics of the Dirichlet eigenvalues as we will see below, but also make more difficult the
obtention of bounds for eigenvalues.

Observe that the inclusion H(O;) C H(O3z) implies that the mapping O +— A{(O) is nonin-
creasing, i.e. A\1(01) > A(O2) if O1 C Oz. Our first results deal with upper and lower bounds
on the the principle eigenvalue and they are connected both with the measure and the distortion
of the domain. We denote by H* the k-dimensional Hausdorff measure in RN and for simplicity
HY(E) = |E| for any Borel set E C RY. We also define the signed distance function to 9 by

dist(z,09) if x € Q,
pz) = . . —c (1.6)
—dist(z,08) if x € Q

and, for v > 0, the internal and external foliations of 92 by

TF = {xGRN:p(x) :y} cQ (1.7)

v
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and

v

T, = {x eRY :p(z) = —1/} C QF, (1.8)
respectively, and T, = T,F U T}, .

Theorem 1.2. Let Q be a bounded domain in RN and \(Q) be the principle eigenvalue of Dirichlet
problem (1.3) obtained in Proposition 1.1.

(i) For R > 2, if we assume that Br C Q C Bag, and that there exists co > 1 depending only on N
such that for any v € [0, 3), there holds

1
— RNV < HNTHTF) < RN if N> 2. (1.9)
€o

Then for R > max {2, 2560 }, we have that
N—-1

1
M) <wy ,In = + 21(R), (1.10)
where 4
_ dcy 2
21(R) = pn +wy_, In2 + 7 (1 + 2wN1R>'

(ii) For R € (0,31), if we assume again that Br C Q C Bag, and that there exists co > 1 such that
for any |v| € [0, %], there holds

1
—RNTV< HNNT,) < RN if N > 2. (1.11)
€o

Then 1

)\1(9) §4ln§—|—61, (112)

where ¢ > 0 independent of R.

Since the function z; is decreasing, estimate (1.10) indicates that there exists R* such that
A1(2) < 0 when R > R*. Furthermore,

2
AM(2) <w, ,In = + pN + O(Ril) as R — oo.

f‘g ) with the
Q

particular function v = we(x) = min{max{op(x),0},1}, where p is defined in (1.6) and o > 0.

However, the dominating term of upper bounds arises from cy [ RN %dm when R is

|z —yl>1

Our upper bounds are obtained by considering the Rayleigh quotient A;(€2) <

large, while it does from &(wy, wy) for R > 0 small enough.

Next we prove lower bounds of the principle eigenvalue.

Theorem 1.3. Assume that ) is a bounded domain in RN and \1(Q) is the principle eigenvalue
of Dirichlet problem (1.3) obtained in Proposition 1.1. Let

2w

_ N-1 1.1
an N2(2m)N (1.13)
Then we have that
(4)
A () > —dn|9;
A(Q) > 0;



(iid) if 9 < =2

es+1NdN i

A (Q) > % <1n (€Nd2N|Q|) ~Inn (eNd2NQ|>> ’

where e is the Euler number.

We summarize our results by the following table of the main asymptotic term of principle
eigenvalue with respect to the volume of domain €2 from the upper bound in Theorem 1.2 and the
lower bound in Theorem 1.3 in the particular where €2 = Br where 0 < rg < 1 < Ry < +oc:

R (05 TO) (R07 +OO)
Upper bound of A(Q2) | 4In§ | wy ,In5

1 2ew
Lower bound of A1(Q) | 2Ing | — = RN

The main order asymptotic of principle eigenvalue with respect to R.

From above table we note that the lower bound of principle eigenvalue for large value R is rather
unprecise.

The Hilbert-Polya conjecture is to associate the zero of the Riemann Zeta function with the
eigenvalue of a Hermitian operator. This quest initiated the mathematical interest for estimating
the sum of Dirichlet eigenvalues of the Laplacian while in physics the question is related to count
the number of bound states of a one body Schrédinger operator and to study their asymptotic
distribution. In 1912, Weyl in [37] shows that the k-th eigenvalue pu(€2) of Dirichlet problem

2

with the Laplacian operator has the asymptotic behavior u(Q) ~ Cn(k|Q])¥ as k — 400, where
Cy = (27)%|By1|"~. Later, Pélya [33] (in 1960) proved that

(@) ZC(W 114

holds for C = Cy and any ”plane-covering domain” D in R?, (his proof also works in dimension
N > 3) and he also conjectured that (1.14) holds with C' = Cy for any bounded domain in RY.
Rozenbljium [34] and independently Lieb [29] proved (1.14) with a positive constant C' for general
bounded domain. Li-Yau [28] improved the constant C' = NLHCN, and with that constant (1.14)
is also called Berezin-Li-Yau inequality because this constant is achieved with the help of Legendre
transform as in the Berezin’s earlier paper [2]. The Berezin-Li-Yau inequality then is generalized
in [11-13,25,29,31], for degenerate elliptic operators in [9,22,38] for the fractional Laplacian (—A)*
defined in (1.4) and the inequality reads

2s

N k\N
Q) > —FCn|—= . 1.15
Due to the expression of the Fourier symbol of L,, Berezin-Li-Yau method can not be applied to
our problem (1.3). Our results are based on the appropriate estimates for the solutions of equations:
r
rlnr=¢c and —— =1t
Inr —Inlnr
The estimates that we obtain provide a uniform lower bound of the sum of the first k-eigenvalues,
independently of k, an estimate which has a particular interest when these eigenvalues are negative.
More precisely, we have the following inequalities:



Theorem 1.4. Let Q C R¥be a bounded domain, {\;(Q)}ien be the sequence of eigenvalues of
problem (1.3) obtained in Proposition 1.1 and dy be given in (1.13). Then there holds

(i) for any k € N*,

k
ST X(Q) > —dn|Q;
=1
(id) if k > D0,
k
D oXi(Q) > 0;
=1
. 6eJrl
(13i) if k > +W|Q|,
. 2k 2 2k
> = (lmk+n(———— ) —Inln (————) ). 11
;A( 2N <n i n(eNdN|Q|) nn(eNde)) (1.16)

Using the monotonicity of the sequence of eigenvalues, we deduce the following lower bound for
Ak (2) from Theorem 1.4 part (ii7).

Corollary 1.5. Under the assumption of Theorem 1.4, for k > %\QL we have that
)\k(Q) >0
and

2 2 2k
M(Q) > —[Ink+In(———=) —Inln (| ———— . 1.17
) 2 5 (n + “(eNdNym) n n(eNdN\m)) (1.17)

Our goal is to provide an upper bound for the sum of eigenvalues. Motivated by Kroger’s result
for the Laplacian [25], we prove the following upper bound.

Theorem 1.6. Let Q C RY be a bounded domain and {\;(Q)}ien be the sequence of eigenvalues
of problem (1.3). Then for k > ko := eV dn|€],

k
2k PNY | Yy py(k+1)
() < — <ln(k +1)+In(—=)+ Inln (———= (1.18)
; N (ym) V9] ( |9 )
and i
lim (klnk)™" ) " M\(Q) = 2 (1.19)
k—+o00 =1 N’
where py = 2(5”&
N-1

Note that from (1.19) the limit of the sum of the first k-eigenvalues does not depend on the
volume of 2. Finally, we build the Wely’s formula for the logarithmic Laplacian and indeed we
have the following asymptotic estimate.

Theorem 1.7. Let @ C RY be a bounded domain and {\;(Q)}ien be the sequence of eigenvalues

of problem (1.3). Then
o AR() 2
e TN (1:20)

It is worth noting that

(a) we have the same limits of Alkn(%) and (kInk)~! Zle Ai(2) as k — +o0;



(b) Weyl’s estimate (1.20) is derived by the lower bound and the upper bound of the first k-
eigenvalues directly.

Usually, the asymptotic behavior of eigenvalues is derived by the counting functions. Inversely,
the estimates of counting functions could be deduced by the asymptotic behavior of eigenvalues.
Let NV (t) be the counting function of {\;(€Q)}ren, counts the number of eigenvalues below ¢ > 0,

ie.
N(t) =3 sgni(t = 2i(2) = (¢ = ()} (1.21)
JjeN jeN
Here sgny(r) = 1if r > 0, sgny(r) = 0if r < 0 and r1 = (|r| £ 7)/2 denotes the positive and
negative part of x € R. The counting function can also be expressed by introducing the trace of
an operator

N(t) =tr(La —1t)°.

Note that from the bounds of A\;(£2), we can obtain estimates for the counting function

lim N(t)e_(%""s)t =0 and lim inf]\/'(t)e_(%_é)t = +o00.

t——+o0 t—+o00

By analyzing the asymptotic behavior of 3, (t — A;(£2))+.

The rest of this paper is organized as follows. In Section 2, we build the upper bound of
the principle eigenvalue of Theorem 1.2 by considering particular test functions in the Rayleigh
quotient. Section 3 is devoted to proving the lower bound by developing Li-Yau’s method, and
then we prove Theorem 1.3, Theorem 1.4 and Corollary 1.5. In Section 4, we show the upper
bounds for the first k-eigenvalues in Theorem 1.6 and prove the Wely’s limit of eigenvalues in
Theorem 1.7. Finally, we obtain the estimates for the counting function.

2 Upper bounds for the principle eigenvalue

2.1 Large domain: proof of Theorem 1.2-(i)

Set
n(t) = min{max{0,t},1} for all ¢t € R,

and, for o > 0,
we(z) = (o tp(x)) for all z € RY. (2.1)

Note that w, € H(2), w, — 1 in © as o — 0T, and for o € (0,2R],
We(x) = %p(m) for all x € Q.
Since |n'| < 1 and the signed distance function p is a contraction mapping, there always hols
|we () — we(y)] < %]w —y| forall x,ycRY. (2.2)
By definition of A;(€2),

. gL(waywo)
Q) < inf LW Wo)
M) < Ik e 2da

[ wt@ds =07 [ paa.
Q Q
while if ¢ < 2R, there holds

/wi(x)deUQ/ p2dx+/ dx
Q Qo N2

= 02/ pPdz + Q| — Q0]
Qo

If 0 > 2R, we have



where

Qg:{xGRN:O<p<$)<U}CQ. (2.4)
Then

/ w2 (z)dx = 0_2/ p2d + Q| — ||
Q Qo
> 10 - (9,

Taking o < %, using (1.9) and the co-area formula since |Vp(z)| = 1, we have that

) — 10, = / V() |de = |9 - / NN (T;dt
ON\Qo

0

N
> [ — coo RV = | - —27

!BR\

N— 1

since N|B1| = w,_,. Hence, under the assumption of Theorem 1.2-(i), we have that

N
/ w?(z)dz > <1 o Ao ) Q| for all o € (0,1). (2.5)
0 w R

N—-1
Concerning the term &1 (wq, w,), we have the following upper bound.
Lemma 2.1. Under the assumption of Theorem 1.2-(i), let o = %, then we have that

4 R
Er(we,wy) < CO\Q] + (pN ., In 5) / wdz. (2.6)
Q

Proof. We recall that

Wy (x)we (y
Er(wy, we) :5(wo,wo)—cN//z,y€RN ()’]E[)dacdy+p]v/w dx

lz —yl>1 ‘ Q

and our proof is divided into two parts.
Step 1 : Note that for z,y € RY such that |2 —y| < 1, we have that

wo(2) —we(y)| =0, V(z,y) € (2\ Q)? U ().
Using (2.2), we have that

_ N —wo(y))”
g(w0'7 wO’ - // yERN ’.CL' 7 y|N d‘,rdy

z—y|<1

<ecnyo~ / / lz —y> Ndydzx
Bi(z

—1Q
_RO'|’

4CO|Q‘

thanks to the identity cyw =2.

Step 2 : We have that

Wo ()W (y) // Wo ()W (y)
en |, 7dydx =cN 7d dx.
/Lgiﬂfgl | y|N Q JONBS(x) |J} - y|N

Note that for o = %, we have that

N-1

wal

inf |Q\ (Q, UB > |0 N-1 )
;}elgl \ (2 U B1(x))] > Q] — COR N



Set
Dl(a,:r) = (Q \ Bl(x)) N Qo' = Qo— N Bf(l‘)

and
Ds(o,x) = (2 \ Bi(x)) N (2\ Q) = Q2N Q5 N Bf(x).

Then D (o, 2) N Da(o,z) =0, D1(0,x) UDs(0,z) = QN BS(x). If z € Br, then
2
Br(z) N Bf(x) C Da(0o,z), which implies
2

1 1 R
——dy 2/ dy = In —
/DQ(M) |z —y|NV B (@)nBj (@) |z —y[N oy

and

we(y) / op(y) / 1 R
———dy = ——2—dy + —dy > wy In—,
/Qch |z — y|N D1(o,x) |90 - y|N Da(o,x) |z — y’N M

since the first term of the right-hand side is positive. Thus, we obtain

we(y) R/
————dydxr > w In— | wy(z)dx
//W) g e g e

wN_llng /ng(x)d:z

\]

As a consequence and since o = 7, we infer that

4
Er(we,wy) < CO\Q] + (pN —wy_,In g) / w2dz.
Q

R
We complete the proof. O
Proof of Theorem 1.2-(i). Since R > 52— we have that
-1
(1— Neo ) <14 N
4w, R 2wy R
and
Er(wg,ws) _ 4Nco co -1 R
A (Q) < Wo) (1- ) —wy o
1) < Jowi(z)de = R 4w, R TN Wy D 2
460 NC()
< - NllnR+pN+leln2+E<1+2w R),
N-1
which is the result. O

2.2 Small domain: proof of Theorem 1.2 -(ii)

The following upper estimate of £r,(w,, w,) holds.

Lemma 2.2. Under the assumptions of Theorem 1.2-(ii), there exists co > 0 independent of R

— i R 2Bwy
such that for o = min {Z’ Neo },

1
Er(we,wy) < (QIHE +02>|Q| —I—,ON/ w?, dx. (2.7)
Q



Proof. Since 2 C Bsp and R < i, there holds

Er(we, wy) = E(We, wy) + pN/ w?, dx.
0

For » > 0, we denote
Qb ={z e RV : |p(x)] <7} and Q*" ={z e RV : p(z) > —r} = QUQ",
and for r; > r9 > 0 set
A2 = P\ Q22 = {2 e RN : —ry > p(z) > —r1 ).
Note that for r > 2R, Q C Q" = Q2" since Q C Bar. When o € (0, %], we set
D= {(z,y) e RN xRN s.t. |z —y| <1 and |w,(z) — wy(y)| > 0}.
Then D C Dy U Dy, where
Dy = (% x Q*7) U (9% x Q1) and Dy = (A x Q) U (Q x AY).

Using (2.2), |Q2%7| < |Bagryo ()], we obtain from the definition of D; and since cyw,_, = 2,

2 Dl |$ - y| Ql.o QQO‘

< CNO'_Q/ / |z — y|>Ndyda
QLo JBapyo(x)
2R

CNWy_4 2101,0

= — 2 (— +1)°|Q"
(2 1Rt
2R

< 2c0(*= +1)*RN" g
g

N 2
< Neweor 2R 101
R o

On the other hand,

_ 2
CN// (wo () w;,v(y)) dxdy < CN/ / |z — y| Ndydx
2 D2 ":L‘ - y| Al,a 9]

ey / / @ — "N dady
QJare

2
S 2|Q|h’l*,
g

since for any y € Q, z € A% = x € By(y) \ B, (y), which implies

2
/ |x—y|Ndx§/ |:U—y|7Nal:U:wN_1 In —
Ale B2(y)\Bs (y) g

Taking 0 = go R with
1 Wy
min
= 2N Co

2
C — Wo
E(wy, wy) = N// JenN ’x_ ’N( D) vy

we obtain that

-yl <1

Nceyego 2R

< ([ IZNEOE 2
< (—EE(E A+ 42l )ym

< (2111% + cz)ym,

10



where ¢y = %ﬂ + 41n2, which yields (2.7). O
N-1
End of the proof of Theorem 1.2-(ii). Estimate (2.5) is valid, hence, if 0 = goR, we derive that

1— Nag <114
Ruy_, — 2

1
/ w?(z)dz > =|Q).
Q 2

Therefore,

Er(wy, wy) 1 1
M) < ———"F—L<2(2In = =4ln—+2
1( )_fgwg(x)da:_ < nR+02)+pN nR+ c2 + PN,

which ends the proof. O

3 Lower bounds

Let
g(r)=rlnr for r >0,

then g(e) = e, g(1) =0 and g(1) = —1.
Lemma 3.1. Forc > —%, there exists a unique point ro > % such that
g(TC) =¢,

and we have that r. <1+ c. Furthermore,
(i) for =1 <c <0,

1
re>14+(e—1)c> —;
e
(73) for 0 < c <,
e—1
re > 1+ c;
e
(iii) for c > e,
-1
re > 1+ c
e

and
(3.1)

. < - -
Ine e = Inc—Inlne

Proof. The function g is increasing in [%,+oo) with value in [—%,4—00). Hence r. is uniquely
determined if ¢ > —%, ¢ — 1¢ is increasing from [—%, +00) onto [%, +00), and ¢ is convex.

For a > 0, we define ¢(z) = (1 + az)In(l + az) —  for z > —1. Then ¢4(z) > 0 (resp.
q(x) < 0) is equivalent to 1+ax > r, (resp. 1+ax < r,). Note that ¢/ () = a(1+1n(1+ax))—1.
Since 1), (—1) = —oo and 4, is increasing, ¢/,(0) = a—1 is the maximal (resp. minimal) value of 1/,
on (—%,0] (resp. on [0,00)). Therefore, if a > 1, 1), is positive on (—é,r;) for some 1} € (—é,O),
negative on (r¥,0) and positive on (0,00). If 0 < a < 1, v, is positive on (—1,0), negative on
(0,7%) for some r; > 0 and positive on (r;,00). If a = 1, 91 is positive on [—+,0) U (0,00) and
vanishes only at 0. Then v > 0 implies the first assertion.

Since e —1 > 1 and pe—1(—2) =0, ¢e_1(z) < 0 for z € (—1,0). This gives (i).

Since 0 < <1 < 1, 1/1% is negative on (0,7%_,) and positive on (ri_,,00). Since ¢e-1(e) =0,

e e €

rt_, = e and we get (ii) and (iii).

Since g is increasing on [e, 00), (3.1) is equivalent to

Inc

c ) _ Inc—In(lnc—1Inlnc)

Inlne — = lnec—Inlne n(lnc—lnlnc Inc—Inlne

11



Set C' = Inc, then

Inc—In(lnc—Inlnc) B C —In(C —1n0C)
Inc—Inlne - C—_InC >1 for C>1

and (3.1) follows. O

Lemma 3.2. Let f be a real-valued function defined in RN with 0 < f < My and

2/]RN In|z| f(z)dz = Mo.

Then (i)
Qwal
(i)
Miw N2M, ew N
dz < —1N1 = — My + Mo
/RNf(Z)Z— N (6+2M1wN_1> N T
2
iii) assuming more that 22 > 2 “N=1 there holds
M N
N M N2M, N2M, -
/ f(z)dz< —2(In 2 ) —Inln(-—> 2 .
RN 2 2eMiw,_, 2eMiwy_,

Proof. We have

M-
s :/31 m\z|f(z)azz+/Bf In || £ (2)dz

wal
ZMl/ ln|z|dz—|—/ In|z|f(z)dz > — N2 M;.
B B

Hence (i) holds.
For R > 0 we have that
(In|z] —=InR)(f(2) — Milp,) > 0.

By integration over RV we get

M, Mw, RN
— _ > .
5 T N2 InR ox f(z)dz

The estimate from above of [,y f(2)dz is obtained by

M RN
f(2)dz < inf {A S0st Mo Miwy U
RN

: S — AR > 0 for a11R>0}. (3.2)

Set

M, Mw, RN
01 = g7 + T

then © 4 achieves the minimum if

— AlnR,

Hence
(3.3)



— NA
Put r = Moy | then

N2M2 r N2M2
OA(RA) >0 <= rhr—r<—— < <f)<7. 3.4
a(Ra) 2 rrers 2Miwy g e/ = 2eMiw, (3-4)

Then £ < r. with ¢ = %A]\Z%, inequality 7. < 1+ ¢ in Lemma 3.1 yields

r =

NA N2M, Mw, N2 M,
— < _— = dz < ——— N1
Mo, =T 2w [ B s —g (e 9 Mw ) !

N-1 N-1

which is (ii).

2
Assuming now that % > 2 ;’; =L we can apply Lemma 3.1-(iii) and get
N M, N2M, N2My \)
/ f(z)dz < In —Inln { ——— ,
RN 2 2€M1(.UN71 2€M1w]\],1
which is (iii) and ends the proof. O

Lemma 3.3. Let ,

for r > e.

g(r)

Then fort > e%el, there exists a unique point ry > e such that g(ry) = t. Furthermore,

- Inr —Inlnr

t(lnt —Inlnt) <r, < tlnt. (3.5)

Proof. Since

B 1 B 1—(lnr)~!
~ Inr—Inlnr (Inr —Inlnr)?

g'(r)

1 1
> 1— )
_lnr—lnlnr< Inr —Inlnr >0,

the function g is increasing from (e, +00) onto (%, +00). Setting 7 = t(lnt — Inlnt), then

B t(Int —Inlnt)

~ Int+In(Int —Inlnt) — Inln(¢t(Int — InInt))
< t(Int —Inlnt)

“Int+In(Int —Inlnt) — Inln(tInt)

g(r7)

~ Int—Inlnt
- In(¢tInt)
Int —In Int—Inlnt

<t,
where the last inequality holds if

In(tlnt)
T <,
Int —Inlnt

which is equivalent to
hr):=72—=(nT+1)7—In7>0, 7=Int.

Freezing the coefficient In 7, h(7) = (7 —71)(7 — 72), where the 71, T2 depend of 7, but 71 <0 < 7,
since 7179 = — InT < 0. Because h(e)~: e? —2e—1=0.9584 + 10~%, we have e > 7. Hence 7 > ¢
implies 7 > 7y which in turn implies h(7) > 0. Hence r} < r; using the monotonicity of §.
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Let sy = tInt, then

3(s0) = tInt <t
T = 0t + Inlnt — Inln(tInt)

by the fact that
Inlnt —Inln(tlnt) <0 for ¢t >e.

Hence s; > r¢, which ends the proof. O
Proof of Theorem 1.4. Denote

k
ry) = ¢i(@)ei(y), () €QxQ,
j=1

and
B(zy) = (21) % / By (z,y)c > d,
]RN

where </15k is the Fourier transform with respect to . Hence we have that

/ / Bz, ) 2dzdy = / / By y) Pdady = k
RN JQ QJ0

by the orthonormality of the {¢;}ien in L*(2). Furthermore, we note that

Using again the orthonormality of the {¢;};en in L?(£2), we infer by the k-dim Pythagore theorem,
N 2

[ Buteay = en [ Z( / e%ﬂmdw) o) dy

7j=1

2 (3.7)
27‘(‘ NZ/ zmz¢J

< (2m)” Nlﬂ\-

We have, from the Fourier expression of L,

Z)\j(Q):/Q/Qq)k(x,y)LACI)k(:v,y)dydm
k
2 185(2) 2 In]2|dz

=2 [ ([ ButePay) el
RN Q

14



Now we apply Lemma 3.2 to the function

f(z) = /Q By (2 )2dy
with i
My=(2m)"NQ and My=>_ X(Q).
j=1

Part (i): By Lemma 3.2 (7),

k
2w
Ai(Q) > -2 Q] = —dn|Q
D00 = a1 = il
where dy is constant defined in (1.13).
Part (i7):
ewy | N b
k= d = Q
[ 16 < S TS @),
R e
which implies that
k
2k 2ew, |9
. Q = N—-1
ZAJ( 2N N2(2m)N
7=1
Part (ii7): for k € N, if
K 2¢%w
S = o),
j=1
then
N M. N2M. N2 M. !
k<=2 (I 2 ) -l ( 2 :
2 2eMiw,_, 2eMwy_,
Setting
N2 M, Nk 2m)N Nk
r=———-— and t= = ,
2eMw,,_, eMiw, , ewy |9
we have from (3.5) that
r>ry>t(lnt —Inlnt), (3.8)
for any t > €€, i.e.
e+1 9 e+l
k>€ wall ‘ _ € dN|Q|.

2m) NN 2
This implies

N2M. 2m)N N 2m)N N 2m)N N
2, (2m) Nk <ln<( m) k) —lnln(< m) k))
2€M1wN—l ewal‘Q’ ewNA’Q‘ ewal‘Q’
from what we infer
k
2k 2k 2k
(> —=(ln({——— ) —Inln{———+ :
;AJ( 12N <n(eNdN|Q|) . n(eNdNym))’ (3:9)
which completes the proof. O

Proof of Theorem 1.3 and Corollary 1.5. It is clear that Theorem 1.4 with k£ = 1 implies
Theorem 1.3. From the inequality (3.9) we derive

k
. 1 2 2%k 2%
=Y @) 2 = (I e ) - .
M) = — M) = <ln <eNdN\Qy> tnln (eNdN]Q|>>

Since k — A\ () is nondecreasing, we conclude Corollary 1.5. U
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4 Wey’s limits
4.1 Upper bounds for the sum of eigenvalues

For any bounded complex valued functions u,v defined on 2, there holds

u(z) = u(C)

La(uw)(x) = u(z)Lav(x) + CN/ A v(¢)dC. (4.1)
Bi(x) ‘1’ - C’
Lemma 4.1. For z € RV, we denote
(o) = 65, Vo RV,

then

Lapz(z) = (2In|2))p.(2), Vo eRY, (4.2)
Proof. Step 1: we claim that for

(~A)s(a) = |2 p(a), Vo e RY. (4.3)

Without loss of generality, it is enough to prove (4.3) with z = te;, where ¢ > 0 and e; =
(1,0,---,0) € RV, For this, we write

ve(x) = po(zy) = €,z = (z1,2') e R x RV7L
For N > 2 it implies by [7, Lemma 3.1] that
(=A)%v(x) = (=A)gvi(21).

Now we claim that
(—A)gve(w1) = t*v(z1), Va1 €R. (4.4)

Indeed, observe that —Ag := —(v¢) 2,2, = t2v¢ in R and then

(l&1]* = )0 (&) = F (—Arvs — t20r) (&1) = 0,
which implies that
supp(2y) C {+£t},

which in turn implies

(161 = 295(60) = 0 = F ((~A)gve — *'0r) (&),
and finally
((—A)jve — t%°0,) (61) =0 in R,
which yields

(—A)*v(x) = (=A)jv, = t%v(x), VzeRY,
Step 2: we show (4.2). From the property (1.5) of LA since u, is bounded,

(=A)ps(x) = [2[*ps (@)
—AYu,(x) — uy(x z[?s —
_ A i) oL,

— Lapz(z) — (21n|2|)p2 () as s — 0%,

0=
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hence,
LA,Uz(‘r) - (2111’2’)#2(%'), Ve RNy

which is the claim. g
Next, let 7o € C1(R) be a nondecreasing real value function such that ||nj|/z~ < 2 satisfying
170(t> =1 if ¢ Z 1, 7’]0(15) =0 if ¢ S 0.

Since € is a bounded domain, there exists a C! domain O C € such that |O| > %\Q] For o > 0,
we set again
we(z) =no(o~'p(z)), VaeRY, (4.5)

where p(z) = dist(z, 00). Observe that w, € Hy(2) and
we =1 in O as o — 0",

Thus, there exists 1 > 0 such that for o € (0, 01],

Q
|Q|>/wodfc2/w§d:ﬂ>||.
0 0 2

L.we(x) = /B ( )wff(x)_wff(oeig.zdc’

z = ¢V

Lemma 4.2. Let

then there holds
2WN—1

g

for x € Q.

(x)) <
Proof. Actually, if x € 2, we have that
|wo () = wo Q)] < || Dwellr< |z — ¢ < o7 ngll o]z — ¢,

then

wU (C) eiC2 HT/OHLOo / d¢ 2(")N—l
d < )
‘/Bl |9C—C\N C‘ o Jp@lC—zN"1 T o

since ||ng||ee < 2. This ends the proof. O

4.2 Proof of Theorem 1.6 and 1.7

Proof of Theorem 1.6. We recall that ®(z,y) and ZI;k(z, y) have been defined in the proof of

Theorem 1.4. If we denote

Ug,2(T) == v5(2,2) = wg(:n)eix'z,

the projection of v, onto the subspace of L?*(Q) spanned by the ¢; for 1 < j < k can be written in
terms of the Fourier transform of w,®; with respect to the z-variable:

/Qvg(a;,z)tﬁk(m,y)dx = 2m) N2 Fo(we®r) (2, ).

Put
Ua,k(za y) = UO‘(Z7 y) - (QW)N/2fz(wU(I)k)(Z7 y)

and the Rayleigh-Ritz formula shows that

/\k+1(9)/9|va,k(z,y)2dy§/Qvo,k(z,y)LA,yva,k(z,y)dy
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for any z € RY and o > 0, where the right hand side is a real value

- - 2
| voriLarartz iy = [ varGlayvastdy = [ 2l Flun) 0| de
Q RN RN

although v} is complex valued function. Then, integrating this last inequality with respect to z
in B, \ By, for r > 1, we obtain

/ / Vo (o) Dyt (2 ) dyd
Aep1(Q) < inf ZEABLIL

o>0
g / / v (2, y)|Pdydz
Br\Bi JQ

By Pythagore’s theorem, we have that
k
/ [vo k(2 y)Pdy = / g (2.9)Pdy — (2m)Y / > Fe(wa i) (2)[*i(y)?dy,
Q Q Qi
integrating over B, \ Bj implies that

/ /!vakzy!dyd2>
’I‘\Bl

On the other hand,

/ /vak 2,Y)La yVo (2, y)dydz =
’I‘\Bl

[ i
~(2m)Y /B " / T (10000) (2, ) sy Fo (w0, ®1) (2, y) iy,

k
N Folwydi)(2)|?dz.
>;/T\Blr (woi)(2)

)LA yUO'(Z y)dydz

where

[ R ydydz—Z)\ V[ RGP

B:\B1
and
/ /UU(Zay)LA7yUU(Z7y)dde
T\Bl Q
/ /w LAy 1yz|alydz+/ /wg ) Lowe(y)|dydz
T\Bl Q T\Bl
/ /w ln|z]dydz+ / /wg )dydz
'r\ Q T\Bl
. Wn_1 N . i N _
=N 020 (r Inr N(r 1)) N ( 1)
wal N w12\771
S N o’ Inr + Ng Lo
with

010 Z/Qwa(y)dy and o,, Z/ng(y)dy-

Because of Parseval’s identity, there holds

[\ Flwes@)ds < [ (o<1
B;\B1 Q
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We fix a number kg € N such that \g, > 1. To this end, we can choose ko by (1.17) such that

2kq
=W s,
€NdN’Q| -

and 2k 2k N
In (m) ~lnln <76NdN\Q]> =5

For simplicity, we may fix kg := %eN *1dn|Q|. And by increasing monotonicity, we have that A, > 1

for k > k.
For k > ko, we choose r > 1 such that

N N

2w Wy_ T Wy, T
NNy > Nﬁ er>e? and %MI > 2(2m)Vk,

N2

then we have that

N

w T N Whr
<Y (0 B+ 00, 2550 ) = 21N L8 N () [, 1P (w6)(2) Pz
k+1 = w rN
N —o0,, — N YN [ 1 Fe(wed;)(2)Pd2
Denote A — waer 2 1 rN Wy, d A — waer
1= N Q275N n ? + Ql,ff p an 2 = N g27(;-7

then
AL = 2m)N SR N(9Q) [, 1Fa(wady) (2)Pd
Ay = mN Ty [, 1 Falwad) (=) d
(A1 = A22 i1 () + N L5y (Meia () = () [y, 1Fa(wo6)(2) 2z
Az = 2mN Ty [, | Felwody)(2) Pz

(A1 = AoA 1 () + 2m)N S5 (Mean (9) = (@)
Ag - (27T)Nk‘

= Mer1(92)

<

since Ag1(Q2) > Aj(Q) for j < k+ 1 and [g | Fu(we¢)(2)[?dz € (0,1). As a consequence, we
obtain that

w T’N w
2 (e I 4o, ) - 2mV Th 4 (@)
Mer1(Q) < —% ) (4.6)
0., — 2mNk

where N N
Q
0y — 2m)NEk > WNJ\}TU — 20Nk > 0.

w r

N—-1

N
We fix 0 = 01 and first impose k, r > 1 such that

0, = (2m) N (k4 1),

and take r = kW for k > ko := “NI¥|Q| then we have that

)\kOZO
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and

k+1
+ 2w rN 2

w
(QW)N Z)\J(Q) < ]\1]\72—1 0.+ TN In ? + %U_”Q’%\/ETN
j=1
2 1 1
= (ZW)NLH(IH(IC—G— 1)+ In PN Yo 1n1npN(k + ))
N Q2,D’ QQ’U ‘92,0'
2(k+1) 2pn | 2wy, 2pn(k+1)
< @nV 2 (In(k+ 1) +1n 2 4 22 )
N e Vel 2]
where .
2(2m)N N Q
py = 2EOIN 4 B,
Wy ’

Moreover, (1.19) follows by the lower bound (1.16) and the upper bound (1.18) directly. O
Proof of Theorem 1.7. Note that (1.17) reads as

2 2 2k
> = = )= a— .
(@) = + <lnk+ln (eNdNym) ln1n<€NdN‘Q|>> (4.7)

Using (1.18) and the monotonicity of j — A;(2), we take m = [ =] 4+ 1 and obtain

k+m

)‘k+1(9)3%<§ A () = )‘j(Q))
j=1 j=1
2 p Wyt pn(k+1+m)
SM(k—l-m)(ln(k—l—TrL)%-l—i—ln(K]zV’)—l—\/@lnln(N Q) ))

- %k (lnk—i—ln (eNd2N]Q|> —Inln <eNd2]k\:/\Q]>)

2 2 1 )
< Ik +m) + L (nnk)In (1+ m) + 61 Inlnk 4 do(Inln k)

2 4
< Ikt <+ ds(inin k)%, (4.8)
where 91, 02, 63 > 0. Thus, we have that

N(Q) 2

I _ =
rotse Tnk N

We complete the proof. O

4.3 Discussion about the counting function

From the asymptotic behavior (1.20) of A, (£2), we obtain some asymptotic estimates fot the counting
function when k£ — oo.

Theorem 4.3. Let Q C RY be a bounded domain and {\;(Q)}ien be the sequence of eigenvalues
of problem (1.3). Then for any 6 > 0

lim ./\/'(t)e_(%""s)t =0 and lim inf/\f(t)e_(%_é)t = +o00. (4.9)
t——+o0

t——+o0

Proof. From (1.20), for any € € (0, 7% ), there exists ke > 0 such that for k > k.

2 2
(N —e)lnk < A\ (Q) < (N+e)lnk,

20



and let t > 0 be such that

Vink < Ae(Q) < £ < Aorr () < (= + ) In(k + 1),

S N

which implies
p 2
eVt —1<k<eN©
This means
%t %t
evte —1<N(t)<eN©
Therefore, we have that for any § > 0,
lim N(t)e(%+5)t =0 and lim /\/’(t)e(%_‘s)t = +o00,

t——+o0 t——+o00

which ends the proof. O

Remark 4.4. (i) From the upper bound (4.8) and the lower bound (1.16) there exists 64 > 0 such
that for k > ko

2 2
Nlnk —dslnlnk < A (Q) <t < Ap11(Q) < (N +e)ln(k+1)+dslnlnk.

Similar arguments could be applied to improve the asymptotic behavior of N.

(ii) Another approach is to analyze the asymptotic behavior of 3, n(t — A;(€2))+.
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