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Abstract. IoT devices have  been the target of 100 million attacks in the first
half of 2019 [1]. According to [2],  there will be more than 64 billion Internet of
Things (IoT) devices by 2025.   It is  thus crucial to secure IoT networks  and
devices, which include significant devices like medical kit or autonomous car.
The problem is complicated by the wide range of possible attacks and their
evolution, by the limited computing resources and storage resources available
on devices.  We begin by introducing the context  and a survey of  Intrusion
Detection System (IDS) for IoT networks with a state of the art. So as to test
and compare solutions, we consider available public datasets and select the
CIDDS-001  Dataset.  We  implement  and  test  several  machine  learning
algorithms and show that it is relatively easy to obtain reproducible results
[20] at the state-of-the-art. Finally, we discuss embedding such algorithms in
the IoT context and point-out the possible interest of very simple rules. 

Keywords: Internet of Things, IoT, IDS, NIDS, Intrusion Detection System, rules, 
CIDDS-001

1 Introduction

The problem of securing electronic devices is as old as computers exist, but with
time computers  have  gained  more  and  more  resources,  so  IDS  in  these  devices
became more efficient. Now, a lot of different small devices without the power of
modern computers are connected to a network and are the target of many attacks.
Moreover, every IoT system is different and has specific worries depending on the
type of the attack (DDoS, Blackhole, Sybil Attack…) they want to be protected from.
Wireless  Sensor  Networks  (WSN)  for  instance  has  unique  characteristics  such  as
limited power supply,  low transmission bandwidth,  small  memory size,  and data
storage [3]. It is thus crucial to develop and deploy new IDS. 

Section 2 presents  a brief  review of  the literature  and Section 3 presents  the
problem of  selecting  or  simulating a  dataset  to  test  IDS.  Section  4  presents  the
implementation, tests, and results of several machine learning algorithms for outlier
detection for CIDDS-001 dataset. Section 5 presents some simple decision rules that
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can  be  introduced  in  an  IoT  network  to  work  like  an  IDS.  Section  6  presents  a
summary of the conclusions and future work.

2 Related work

Doshi et al. [4] simulate IoT networks with raspberry Pi and virtual machines. They
collect  network  data  from their  system and  test  this  data  with  5  algorithms:  K-
nearest neighbors, Support Vector Machine (SVM) with linear kernel, decision tree,
random forest, and neural network. The specificity of their work is to use stateful
features and they get up to 30% better performance compared to without these
features.
Hussain  et  al.  [5]  list  for  each problem many surveys  that  use  machine learning
techniques (table IV on the document). For anomaly and intrusion detection:

-  K-means clustering and Decision Tree [6]
-  Artificial Neural Network ANN [7]
- Novelty and Outlier Detection [8]
- Decision Tree [9]
- Naive Bayes [9], [10]

Butun et al. [3] classify the IDS methodology of IDS in 3 categories:
1 - Anomaly Based detection:
We create an activity profile for each member of the network and a certain amount
of deviation is reported as an anomaly. This method is adequate to detect never
known attacks but we need to update the profiles periodically because the network
behavior can change rapidly. 
2 - Misuse based detection
A signature (profile) of the previously known attack is used and is used as a reference
to flag the next attacks. The disadvantage of this method is that it cannot detect new
type of attacks, but the false positive rate is very low.
3 - Specification based detection
That’s  a  mix  of  the  previous  ones,  “a  set  of  specifications  and  constraints  that
describe the correct operation of a program or protocol is defined.” [3] But it takes a
lot of time to develop special rules to get a low false-positive rate.
Some surveys have unclear results, sometimes there is no result. There are also very
few simulations and implementations in real systems. 

3 Dataset

Selecting  a  dataset  to  design  and  evaluate  NIDS  ML-based  algorithms  is  not
immediate and may be a full part challenge. 

One of the most used datasets is the KDD cup99 set, but it still presents defaults,
as emphasized by Tavallaee et al. [11]:

- a lot of redundant measures
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- some parts of the train set were used as test sets in some studies
- set is too long forcing to take only part of the set.

Ring et al.  [12] did an exhaustive list  of network-based detection data set and
compared them. One of  the recent and not too heavy dataset  is  the CIDDS-001
(Coburg Intrusion Detection Data Set) [13] which was described as follows:

“The  CIDDS-001  data  set  was  captured  within  an  emulated  small  business
environment  in  2017,  contains  four  weeks  of  unidirectional  flow-based  network
traffic, and comes along with a detailed technical report with additional information.
As special feature, the data set encompasses an external server which was attacked
in the internet. In contrast to honeypots, this server was also regularly used by the
clients from the emulated environment. The CIDDS-001 data set is publicly available
and contains SSH brute force, DoS and port scan attacks as well as several attacks
captured from the wild." [12]

The dataset contains 14 features as follow.  

Table 1. Features within the CIDDS-001 data set, from [13] 

   

In our experiment, we used the “Class” attribute as the target for classification,
removed  the  AttackType,  AttackID  and  AttackDescription  features  which  are
obviously  correlated  with  the  “attacker”  class.  Furthermore,  since  IPs  were
anonymized, they do not convey information so we also removed them. We also use
“Date first seen” as the x-axis. Finally, we transformed Flags, Class and Proto, which
are categorical features, into “dummy variables” by one-hot encoding.

In the CIDDS-01 dataset, we used the internal-week1 subset of observations, as it
contains 42 of the 92 attacks on the entire dataset.

Anomalies are labeled as victim or attacker. However, this file has more than 8
million rows and less than 20% are anomalies. Hence we face a case of imbalanced
classes. In such a case, the more represented class can have a “masking effect” on
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the others; this has been studied in [14] for this dataset. Given the high number of
instances available, rebalancing the classes can be simply done by subsampling the
majority class (otherwise, one can also oversample the minority classes by creating
new, synthetic, instances). In our case, we decided to (a) shuffle the data, (b) keep
half of the data for a final evaluation (c) subsample the other half to keep about
180000 instances per class. 

4 Experiments and results

The experiments were carried out using Google Colaboratory with 32GB of ram and

the Tensor Processing Unit acceleration material.

The metrics that were used to evaluate the performance of the algorithm include

the  classification  accuracy,  precision,  recall  and  F1-score.  These  metrics  are

expressed by the equations below, 

Accuracy =
TP+TN

TP+TN+FP+FN

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1-score =
2.Precision .Recall
Precision+Recall

where, TP, TN, FP and FN stand for true positives, true negatives, false positives and

false negatives, respectively.

We shuffle the set and we take 33% of the set as the test set and 66% as the train

set.  Then,  we  classify  the  traffic  with  4  algorithms:  K-Nearest  Neighbors  (KNN),

Decision Tree (DT),  Random Forest  (RF)  and Neural  Network  (NN).  We used the

python sklearn package to do our test.

For the KNN, we use only 1 neighbour with a uniform weight function. We get a

global accuracy of 99.27%; other metrics are reported Table 2.
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Table 2. Results with the K Nearest Neighbour  algorithm 

KNN precision recall f1-score

attacker 0.9633 0.9972 0.9799

normal 0.9996 0.9916 0.9956

victim 0.9573 0.9988 0.9976

For the Decision Tree, we used the default parameters, which is the Gini criterion

for measuring the quality of a split and maximum expansion of nodes.  We already

obtained a global accuracy of 99.89%; other performance metrics are given Table 3. 

Table 3. results with the Decision Tree  algorithm 

DT precision recall f1-score

attacker 0.9956 0.9982 0.9969

normal 0.9998 0.9990 0.9994

victim 0.9946 0.9996 0.9970

For instance, we get something as shown in Fig. 1  for the beginning of the tree:

Fig. 1. First nodes of the decision tree
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The decision tree has a depth of 31, a total of 563 nodes and 282 leaves, thus 281

tests. From this tree, it is possible to deduce, and even generate automatically, a

classification script (see the source code [20] for an example). Running this code on

an instance will predict the classification with 99.88% accuracy.

For the RF, we selected the best parameters using a grid search strategy, which

consists of computing the performance, by cross validation, on a grid of possible

parameters values, and then selecting the best estimator. We used global accuracy

as the performance metric. In particular, we used 800 trees with a max depth of 20.

We get a global accuracy of 99.95%, with the performances reported in Table 4. 

Table 4. results with the Random Forest algorithm 

RF precision recall f1-score

attacker 0.9982 0.9981 0.9982

normal 0.9997 0.9996 0.9997

victim 0.9981 0.9993 0.9997

An interesting outcome of the random forest is that we can extract which are the

most important features in computing the classification. The features are shown by

importance on Fig. 2. 
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Fig. 2. Relative importance of features in the CIDDS-01 dataset. 

For the Neural Network, we used the multi-layer perceptron classifier.  This model

optimizes the log-loss function using LBFGS or stochastic gradient descent. We used

100 neurons in the hidden layer with the rectified linear unit function for the hidden

layer activation function. The maximum iteration was set to 200. We finally obtained

a global  accuracy of  99.25% ;  performances metrics  for  the different  classes  are

shown Table 5.

Table 5. Results with the Neural Network algorithm 

NN precision recall f1-score

attacker 0.9929 0.9938 0.9933

normal 0.9906 0.9962 0.9934

victim 0.9914 0.9883 0.9899

For the CIDDS-01 dataset and the ML-based algorithms, we obtained very high

accuracies. As mentioned in [12], for this particular dataset, balancing the classes or
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not has a very tight influence on the accuracy, which is already so high. Anyway, by a

careful selection of the hyperparameters we recover results similar to the best RF-

WHICD in [14] (where only two classes normal/attacker were considered). 

Table 6. Comparison with related work

Survey Approach Accuracy (%)

Verma and Ranga [15] 2NN 99.60

Verma and Ranga [16] DT 99.90

Tama and Rhee [17] DNN-10-FCV 99.90

Idhammad et al. [18] Entropy+RF 99.54

Abdulhammed et al. [14] RF-WHICD 99.99

Proposed KNN KNN-1 99.27

Proposed DT DT 99.89

Proposed RF RF 99.95

Proposed NN NN 99.25

5 Rules

The most accurate algorithm is the RF with 99.95% accuracy. However, it may be
difficult to embed on an IoT and it lacks interpretability. The problem of extracting
simple rules  from a forest  of decision trees has been considered in the machine
learning  community.  The  goal  was  to  find a  trade-off between  the  modelization
power of random forests and some simple rules interpretable as in a (small) decision
tree. The Skope rules Python library [19] enables us to extract  such rules from a
random forest. In our experiments, we took all the instances to train the model and
extract the rules.
For the victim class, the skope rules are:

- Bytes > 100
- Duration <= 0.03749999962747097
- Flags == ASF

And for the attacker class, the identified rules are:
- Dst Pt <= 261
- Duration <= 0.032500000670552254
- Flags == APSF

With  these  very  simple  rules,  we  already  get  a  global  accuracy  of  86.88%.
Furthermore,  by  a  simple  inspection  of  data,  we  discovered  that  adding  the
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instances flagged with AR (class victim) or S (class attacker) TCP flags enables us to
improve the accuracy to 98.45%, with only 0.35% are miss classifications. 

6 Conclusion

We  have  considered  the  problem  of  detecting  anomalies  or  intrusions  in  IoT
networks.  We have  first  presented  the  context  and  reviewed  approaches  in  the
literature.  We  have  focused  on  machine  learning-based  methods  that  can  learn
directly from data and find what are the important features, without resorting to
specialized models of the network or specialized signatures. We have then selected a
dataset of network activity with several attacks, which is regularly used to develop
NIDS and as a benchmark of  proposals.  Using standard open-source libraries,  we
have implemented and evaluated several ML-based algorithms, with performances
that  are  at  the  state-of-the-art.  The  sources  are  available  and  results  easily
reproducible [20]. 

Using and implementing such solutions in an IoT network requires to consider the
possible computational overhead. For a router or network supervisor, we need a
network traffic module to capture the incoming network, and the classifiers, once
trained by a decision tree or a random forest, can probably be implemented. For the
IoT devices themselves, where consumption and computational costs can be more
severely  constrained,  it  is  possible  to  use  a  decision  tree  classifier  (at  most  20
comparison tests and a 840 lines program in Python) or even to use the very simple
rules (3 tests) derived from a random forest, with a 98.5% accuracy and a low false-
positive rate. Testing these ideas on real devices and real data is the objective of
future efforts. 
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