
HAL Id: hal-02977750
https://hal.science/hal-02977750v3

Preprint submitted on 25 Jan 2021 (v3), last revised 3 Apr 2022 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stellar Resolution: Multiplicatives - for the linear
logician, through examples

Boris Eng

To cite this version:
Boris Eng. Stellar Resolution: Multiplicatives - for the linear logician, through examples. 2021.
�hal-02977750v3�

https://hal.science/hal-02977750v3
https://hal.archives-ouvertes.fr

Stellar Resolution: Multiplicatives
For the linear logician, through examples

Boris Eng

The stellar resolution is an asynchronous model of computation used in
Girard’s Transcendental Syntax [15, 18, 16, 17, 20] which is based on Robin-
son’s first-order clausal resolution [25]. By using methods of realisability for
linear logic, we obtain a new model of multiplicative linear logic (MLL) based
on sort of logic programs called constellations which are used to represent
proofs, cut-elimination, formulas/types, correctness and provability very nat-
urally. A philosophical justification of these works coming from the Kantian
inspirations of Girard would be to study the conditions of possibility of logic,
that is the conditions from which logical constructions emerge.

Contents

1 Stellar Resolution 2

1.1 Frequently Asked Questions . 2
1.2 Stars and constellations . 3
1.3 Evaluation of constellations . 4

2 Encoding of some models of computation 7

2.1 Wang tiles . 7
2.2 Boolean circuits . 8
2.3 Non-deterministic automata . 9

3 The Geometry of Interaction 9

3.1 Cut-elimination and permutations . 9
3.2 Correctness and partitions . 10

4 Interpretation of the computational content of MLL 11

5 Interpretation of the logical content of MLL 12

5.1 The correctness criterion of Danos-Regnier 12
5.2 What is a proof? . 15
5.3 Interpretation of formulas . 15

1

6 Full linear logic and beyond 17

1 Stellar Resolution

1.1 Frequently Asked Questions

• What is the Transcendental Syntax about? The Transcendental Syntax is a pro-
gramme initiated by Girard which can be seen as the successor of his Geometry of
Interaction (GoI) programme [11, 10, 9, 12, 13, 14] studying linear logic from the
mathematics of the cut-elimination. In the same idea, the Transcendental Syntax
aims at giving a fully computational foundation for logic where entities such as
formulas, proofs, correctness, truth are reconstructed from scratch with a compu-
tational model as it is done in classical realisability for instance. One may see it
as a kind of reverse engineering of linear logic.

• Where does the model of stellar resolution come from? We use ”stellar” for Gi-
rard’s terminology of stars and constellations and ”resolution” for its similarities
with other resolution-based models [21, 27]. The GoI began with a mathemati-
cal study of the cut-elimination procedure through the use of infinite-dimensional
spaces and operator algebras in order to handle the non-linearity of full linear
logic. In the third article of GoI [12], Girard introduced a simplification based on
first-order unification: the model of flows [4] which is basically unary first-order
resolution, well-known among computer scientists. The stellar resolution is simply
an extension of this model which, unlike flows, is able to speak about correctness
in a satisfactory way. One may choose another model of computation as a basis of
the Transcendental Syntax but the stellar resolution is a natural and convenient
one.

• Isn’t it identical to first-order resolution or logic programming ? At first, our
model is identical to Robinson’s first-order resolution using disjunctive clauses.
The difference is that our model is purely computational (no reference to logic)
and that we use it for a different purpose (no interest in reaching the empty clause
but rather the set of atoms we can infer). Moreover, our model will be extended
in future works, thus justifying the use of a new name.

• Is it related to any other works? The stellar resolution is able to simulate models
of computation which are also dynamical systems: abstract tile assembly models
[24] which are used in DNA computing [29] but also the computational model of
Wang tiles [28]. From our realisability construction, one can imagine methods of
typing and implicit complexity analysis of various models. The stellar resolution
can also be seen as a generalisation of the model of flows used in the GoI and of
Seiller’s interaction graphs [26]. The reconstruction of types/formulas follow the
constructions of the model of realisability for linear logic (as in Ludics). Both
Ludics and the Transcendental Syntax takes into account the idea of location of

2

formulas within a proof so they are very close: the former is an abstraction of
sequent proofs and the later of proof-nets.

• Why is it interesting? The stellar resolution generalises flows and interaction
graphs which have an applications in implicit computational complexity [5, 2, 3].
The Transcendental Syntax programme should be able to produce a more refined
notion of type/formula but also, more interestingly, a computational and axiom-
free reformulation of predicate logic with a better treatment of equality (not as mere
predicate), a finite treatment of quantifiers, and a logical and computational status
for first-order individuals (encoded as multiplicative propositions of a particular
shape). Such an interpretation of predicate logic may also have applications in
descriptive complexity. The case of MLL alone adds nothing more than already
existing models of MLL but we have the hope that it can lead to more interesting
things in future works.

1.2 Stars and constellations

We define rays by the following grammar:

r ::= +a(t1, ..., tn) | −a(t1, ..., tn) | t

where +/− are polarities, a is a function symbol called a colours and t1, ..., tn are first-
order terms.

A star is a finite and non-empty multiset of rays φ = [r1, ..., rn] and a constellation
Φ = φ1 + ... + φm is a (potentially infinite) multiset of stars. We consider stars to be
equivalent up to renaming and no two stars within a constellation share variables: these
variables are local in the sense of usual programming.

Example 1. We encode a logic program. We write sn for n applications of the symbol s
(for instance s3(0) = s(s(s(0)))). A colour is a predicate and the polarity represents the
distinction input/output or hypothesis/conclusion. The absence of polarity means that
the predicate is isolated and cannot be connected. We take two logic programs and their
associated constellation to illustrate the model:

add(0, y, y).

add(s(x), y, s(z)) :- add(x, y, z).

?add(s^n(0), s^m(0), r).

Φn,m
N

= [+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)] + [−add(sn(0), sm(0), r), r]

parent(d, j). parent(z, d). parent(s, z). parent(n, s).

ancestor(x, y) :- parent(x, y).

ancestor(x, z) :- parent(x, y), ancestor(y, z).

?ancestor(j, r).

3

Φfamily = [+parent(d, j)] + [+parent(z, d)] + [+parent(s, z)] + [+parent(n, s)]+

[+ancestor(x, y),−parent(x, y)] + [+ancestor(x, z),−parent(x, y),−ancestor(y, z)]+

[−ancestor(j, r), r]

More graphically, a star may be depicted as an actual star: for [t1, ..., t5].

1.3 Evaluation of constellations

+ -

=⇒

Graphically, we evaluate a constellation by connecting rays together when they are
matchable and of opposite polarity. The two stars will fuse and the connected rays will
disappear. The rays of the remaining star is affected by a ”reaction” of this fusion.
Think of a chemical or nuclear reaction.

To do so, from a constellation Φ, we can construct its dependency graph D[Φ;A] for a
set of colours A telling us which rays can be connected together. It is a graph with stars
φ ∈ Φ as vertices and with edges between two stars whenever there are two rays r1, r2 of
opposite polarity such that their underlying terms (without colour) are matchable. The

edge is then labelled with the equation r1
?
= r2.

Example 2. We give a more friendly representation of the dependency graphs corre-
sponding to the two constellations of example 1:

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z)) +add(sn(0), sm(0), r) r

+parent(d, j)

+parent(z, d)

+parent(s, z)

+parent(n, s)

−parent(x, y) +ancestor(x, y)

−parent(x, y) −ancestor(y, z) +ancestor(x, z)

−ancestor(j, r) r

We can then make actual connexions between occurrences of stars following the de-
pendency graph of a constellation. Such a connexion, called a diagram (written δ) have
to be a tree (this condition can be relaxed in some cases) where all star variables are
made distinct. They represent the possible (partial) executions of a program. Formally,
it is defined by a graph homomorphism from a tree to a dependency graph.

4

Example 3. Partial computation of 2 + 2 (0 recursion):

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

Complete computation of 2 + 2 (1 recursion):

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

Over computation of 2 + 2:
−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

Note that in the case of Φn,m
N

, there is infinitely many diagrams.

There are two equivalent ways of reducing diagrams by observing that each edge define
a unification equation:

Fusion We can reduce the links step by step by solving the underlying equation, pro-
ducing a solution θ. The two linked stars will fuse by making the connected rays
disappear. The substitution θ is finally applied on the rays of the resulting star.
This is exactly the resolution rule.

Actualisation The set of all edges defines a big unification problem. The solution θ of
this problem is then applied on the star of free rays (unconnected rays).

Example 4 (fusion). The full fusion of the diagram representing a complete computation
of 2+2 from example 3 is described below (we make the exclusion of variable explicit for
illustration):

−add(0, y1, y1) +add(x2, y2, z2) −add(s(x2), y2, s(z2))

+add(x3, y3, z3) −add(s(x3), y3, s(z3)) +add(s2(0), s2(0), r) r

↓ θ = {x3 7→ s(x2), y3 7→ y2, z3 7→ s(z2)}

−add(0, y1, y1) +add(x2, y2, z2) −add(s(s(x2)), y2, s(s(z2))) +add(s2(0), s2(0), r) r

↓ θ = {x2 7→ 0, z2 7→ y2}

−add(s(s(0)), y2, s(s(y2))) +add(s2(0), s2(0), r) r

5

↓ θ = {y2 7→ s(s(0)), r 7→ s(s(s(s(0))))}

s(s(s(s(0))))

Example 5 (actualisation). If we take the diagram δ representing a complete computa-
tion in the example 3, it generates the following problem:

P(δ) = {add(0, y1, y1)
?
= add(x2, y2, z2), add(s(x2), y2, s(z2))

?
= add(x3, y3, z3),

add(s(x3), y3, s(z3))
?
= add(s2(0), s2(0), r)}

which is solved by a unification algorithm such as the Montanari-Martelli algorithm [23]
in order to obtain a finale substitution:

→∗ {x2
?
= 0, y2

?
= y1, z2

?
= y1, x3

?
= s(x2), y2

?
= y3, z3

?
= s(z2),

s(x3)
?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {y2
?
= y1, z2

?
= y1, x3

?
= s(0), y2

?
= y3, z3

?
= s(z2), s(x3)

?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {z2
?
= y1, x3

?
= s(0), y1

?
= y3, z3

?
= s(z2), s(x3)

?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {x3
?
= s(0), y1

?
= y3, z3

?
= s(y1), s(x3)

?
= s2(0), y1

?
= s2(0), s(z3)

?
= r}

→∗ {y1
?
= y3, z3

?
= s(y1), s(s(0))

?
= s2(0), y1

?
= s2(0), s(z3)

?
= r}

→∗ {z3
?
= s(y3), s(s(0))

?
= s2(0), y3

?
= s2(0), s(z3)

?
= r}

→∗ {s(s(0))
?
= s2(0), y3

?
= s2(0), s(s(y3))

?
= r}

→∗ {y3
?
= s2(0), s(s(y3))

?
= r}

→∗ {s(s(s2(0)))
?
= r}

→∗ {r
?
= s(s(s2(0)))}

The solution of this problem is the substitution θ = {r 7→ s4(0)} which is applied on the
star of free rays [r]. The result [s4(0)] of this procedure is called the actualisation of δ.
This can be thought as a chemical reaction having an effect on the non-involved entities,
leaving a kind of residual.

The normalisation or execution Ex(Φ) (figure 1) of a constellation Φ constructs the set
of all possible correct (the underlying unification problem doesn’t fail) saturated (no stars
can be added to extend it) diagrams and actualises them all in order to produce a new
constellation called the normal form. In logic programming, we can interpret the normal
form as a subset of the application of resolution operator [22] corresponding to a certain
class of clauses we can infer using the resolution rule. If the set of correct saturated
diagrams is finite (or the normal form is a finite constellation), the constellation is said
to be strongly normalising.

Example 6. For Φ2,2
N

(example 1), one can check that we have Ex(Φ2,2
N

) = [s4(0)] because
only the complete computation of example 3 succeed and all other saturated diagrams
represents partial or over computations and fail.

6

Φ
set of diagrams

−→ ∪∞
k=0Dk

restriction
−→ D′

1, ...,D
′
n ⊆ ∪∞

k=0Dk
actualisation

−→ φ1 + ...+ φn

Figure 1: Illustration of the execution of a strongly normalising constellation where the
restriction only keep the correct and saturated diagrams. The resulting con-
stellation is Ex(Φ).

2 Encoding of some models of computation

It seems that our model is able to encode naturally the models of computation which are
also dynamical systems but also dynamical/reducible hypergraphs (proof-nets, boolean
circuits, Seiller’s interaction graphs etc).

2.1 Wang tiles

The idea is to encode a Wang tile [28] as a star of 4 rays. Two sides of matchable
colours will be represented as two matchable rays. We still have to be careful with our
definitions:

• the connexions of our stars are too free and may not follow the topological con-
straints of tiling in N2. We have to encode coordinates in N2.

• the colours of rays do not match the colours of the Wang tiles. In our model, we
use the polarity together with a colour to represent a direction in the axis of N2:
+v,+h,−v,−h where v stands for ”vertical axis” and h for ”horizontal axis”.

Let ti = (ciw, c
i
e, c

i
s, c

i
n), i = 1, . . . , k, be a finite set of Wang tile. We encode each Wang

tile in N2 by the star:

(ti)⋆ = [−h(ciw(x), x, y),−v(cis(y), x, y),+h(cie(s(x)), s(x), y),+v(cin(s(y)), x, s(y))]

A constellation will be a set of tiles and its corresponding dependency graph is simply
describe the possible connexions. All finite tilings will correspond to correct saturated
diagrams. Note that we have to consider a less strict definition of diagram: we allow
them to be general graphs (especially, grid-like).

For more generality, we can think of an encoding of coordinates in Z2 or consider a
bijection from N to Z2. For instance, the set W = { } will be translated as:

W⋆ = [−h(y(x), x, y),−v(b(y), x, y),+h(r(s(x)), s(x), y),+v(y(s(y)), x, s(y))]+

[−h(r(x), x, y),−v(b(y), x, y),+h(g(s(x)), s(x), y),+v(g(s(y)), x, s(y))]

We can see that the two red sides can be connected together because the corresponding
rays have an opposite polarity but the underlying terms are matchable.

More interestingly, this definition can be extended with the more general abstract tile
assembly model [29] with any temperature.

7

2.2 Boolean circuits

The idea is to first encode a graph representing the structure of a boolean circuit then
to connect the translation with a constellation containing the implementation of the
computational content of the nodes.

V AR(y, id) := [−val(x), y(x),+c(x, id)]

SHARE(id1, id2, id3) := [−c(x, id1),−c(x, id2),+c(x, id3)]

AND(id1, id2, id3) := [−c(x, id1),−c(y, id2),−and(x, y, r),+c(r, id3)]

OR(id1, id2, id3) := [−c(x, id1),−c(y, id2),−or(x, y, r),+c(r, id3)]

NEG(id1, id2) := [−c(x, id1),−neg(x, r),+c(r, id2)]

C(id) := [−c(x, id), r(x)] CONST (k, id) := [+c(k, id)]

QUERY (k, id) := [+c(k, id), r(k)]

where id, id1, id2, id3 are encodings of natural numbers representing identifiers and where
we have a star V AR(y) for each variable y we want in our boolean circuit.

We consider the following constellation representing a kind of ”module” (as in any
programming language) providing the definition of propositional logic:

ΦPL = [+val(0)] + [+val(1)] + [+neg(0, 1)] + [+neg(1, 0)]+

[+and(0, 0, 0)] + [+and(0, 1, 0)] + [+and(1, 0, 0)] + [+and(1, 1, 1)]

[+or(0, 0, 0)] + [+or(0, 1, 1)] + [+or(1, 0, 1)] + [+or(1, 1, 1)]

We can observe that by changing the module, we can adapt the model of arithmetic
circuits working with a particular field F . Syntax and semantics live in the same world
and can interact! We can also internalise the id within the colour. For instance, c(x, id)
becomes cid(x).

We use the star C to represent the conclusion, the star CONST (k) to force a variable
to have a particular value and the star QUERY (k) (instead of a conclusion star C) to
ask for a particular output. For instance QUERY (1) ask for satisfiability.

For instance, here is a circuit satisfying x ∨ ¬x where n = sk(0) :

Φem = V AR(x, 0) + SHARE(0, 1, 2) +NEG(2, 3) +OR(1, 3, 4) +QUERY (1, 4)

The constellation Φem+ΦPL will normalise by taking as input 0 or 1 for x. We finally
have Ex(Φem + ΦPL) = [x(0)] + [x(1)] telling us that for the two valuations x 7→ 0 and
x 7→ 1, the circuit produces the output 1.

8

2.3 Non-deterministic automata

The idea is to represent the transitions by binary bipolar stars.
Let Σ be an alphabet and w ∈ Σ∗ a word. If w = ε then w⋆ = [+i(ε)] and if

w = c1...cn then w⋆ = [+i(c1 · (... · (cn · ε)))]. We use the binary function symbol · which
is right-associative.

Let A = (Σ, Q,Q0, δ, F) be a non-deterministic finite automata. We define its trans-
lation A⋆:

• for each q0 ∈ Q0, we have [−i(w),+a(w, q0)].

• for each qf ∈ F , we have [−a(ε, qf), accept].

• for each q ∈ Q, c ∈ Σ and for each q′ ∈ δ(q, c) with c ∈ Σ, we have the star
[−a(c · w, q),+a(w, q′)].

For instance, the following automaton A accepting binary words ending by 00:

q0start q1 q2

0, 1

0 0

is translated as:

A⋆ = [−i(w),+a(w, q0)] + [−a(ǫ, q2), accept]+

[−a(0 · w, q0),+a(w, q0)] + [−a(1 · w, q0),+a(w, q0)]+

[−a(0 · w, q0),+a(w, q1)] + [−a(0 · w, q1),+a(w, q2)]

With the word [+i(0·0·0)], there are two possible diagrams for the two possible transi-
tions. Both will finally be unified without problems to the right transitions corresponding
to the automaton and their actualisation will be accept. Therefore Ex(A⋆+[+i(0·0·0)]) =
[accept, accept].

3 The Geometry of Interaction

3.1 Cut-elimination and permutations

The geometry of interaction study generalisations of proof-nets by keeping only their
essential parts. When considering cut-elimination, axioms induce a permutation on the
atoms conclusion of axiom rules. In the spirit of Ludics, these atoms are called loci
(plural of locus) and they represent kind of physical locations within a proof.

The `/⊗ cuts can be seen as administrative/inessential cuts since all they do is
basically a rewiring on the premises of the ` and ⊗ nodes connected together. Therefore,
such a cut ultimately reduces as a permutation/edge between two loci as well. We observe
that the loci are the support of the proof, the locations where a kind of interaction can
take place.

9

1 2 3 4 5 6 7 8

Seiller [26] studied the geometry of interaction through connexions of graphs where the
cut-elimination becomes the computation of all maximal paths. In this setting, proof-
nets simply speaks about locations and paths between them and truth/correctness is
about cycles and connectivity.

The stellar resolution generalises this idea by encoding hypergraphs. In the case of
cut-elimination, we only need edges between addresses/loci. The above graph becomes:

Φ = [+c(1),−c(3)] + [+c(4),+c(5)] + [+c(2),+c(6)] + [+c(7),+c(8)]

[−c(1),−c(2)] + [−c(3),−c(4)]

If we compute the corresponding dependency graph D[Φ;−], it will induce exactly the
same graph as above. We represent edges between two locations as the matchability
of two rays. The execution Ex(Φ) will produce [+c(5),+c(6)] + [+c(7),+c(8)] which
corresponds to the expected normal form (set of maximal paths).

3.2 Correctness and partitions

If we want to handle correctness in a satisfactory and natural way, we have to shift to
partitions instead of permutations [8, 1]. Permutations can still be retrived: a permuta-
tion {x1 7→ y1, ..., xn 7→ yn} on X ⊆ N representing a proof naturally induces a partition
of binary sets {{x1, y1}, ..., {xn, yn}} in X.

A Danos-Regnier switching induces a partition depending on how it separates or
groups atoms:

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

The above switching corresponds to the partition {{1, 2}, {3}, {4}}. Partitions are
related by orthogonality: two partitions are orthogonal if the graph constructed with
sets as nodes and where two nodes are adjacent whenever they share a common value is
a tree. Testing an axiom-partition ”block” against several switching-partitions ”blocks”
is sufficient to talk about correctness.

Since stars are not limited to binarity, we can naturally represent general permutations:
[−c(1),−c(2)]+[−c(3)]+[−c(4)] (the polarities have to be different from the constellation
representing the axioms). However, in this case, all diagrams are closed (no free rays).
We have to specify where the conclusions are located: [−c(1),−c(2), A⊗B] + [−c(3)] +
[−c(4), A⊥ ` B⊥]. The Danos-Regnier criterion becomes ”a constellation representing

10

a proof-structure is correct if and only if its execution against all the constellations
representing its switchings produces the star of its conclusions”.

4 Interpretation of the computational content of MLL

We set a basis of representation B with unary symbols pA for all formulas of MLL, and
constants l, r to represent the address of a locus relatively to the tree structure of the
lower part of a proof-structure. We use a binary symbol · to glue constants together.
Any other isomorphic basis can be considered as well.

To simulate the dynamic of cut-elimination we translate the axioms and the cuts into
stars:

1. A locus A becomes a ray +c.pA(t) where t represents the ”address” of A relatively
to the conclusions of the proof-structure (without considering cuts).

2. An axiom becomes a binary star containing the address of its formulas. It is
coloured with +c for ”positive computation”.

3. A cut between A and A⊥ becomes a binary star [−c.pA(x),−c.pB(x)] it is coloured
with −c for ”negative computation” in order to connect them with axioms.

Example 7. We encode the following cut-elimination S →∗ S ′ of MLL proof-structures:

A⊥
1 A1

`

A⊥
1 `A1

A⊥
2 A3A2 A⊥

3

⊗

A2 ⊗A⊥
3

cut

ax ax ax

→
A⊥

1 A1 A⊥
2 A3A2 A⊥

2

cut

cut

ax ax ax

→∗

A⊥
2 A3

ax

The address of A⊥
1 is pA⊥

1
`A1

(l·x) because it is located on the left-hand side of A⊥
1 `A1.

The address of A⊥
3 is pA2⊗A⊥

3

(r · x) and the one for A3 is pA3
(x). The proof-structure S

is encoded as:

[+c.pA⊥
1
`A1

(l · x),+c.pA⊥
1
`A1

(r · x)] + [+c.pA⊥
2

(x),+c.pA2⊗A⊥
3

(l · x)]+

[+c.pA2⊗A⊥
3

(r · x),+c.pA3
(x)] + [−c.pA⊥

1
`A1

(x),−c.pA2⊗A⊥
3

(x)]

and its dependency graph is:

+c.pA⊥
1
`A1

(l · x) +c.pA⊥
1
`A1

(r · x) +c.pA⊥
2

(x) +c.pA2⊗A⊥
3

(l · x) +c.pA2⊗A⊥
3

(r · x) +c.pA3
(x)

−c.pA⊥
1
`A1

(x) −c.pA2⊗A⊥
3

(x)

Since a ray can only be connected to a unique other ray, one occurrence of cut isn’t
sufficient in order to make a saturated diagram. We have to duplicate the cut star, which
corresponds exactly to the second step of S →∗ S ′. One can check that the only correct
diagram is the following one (the left matches with the left and the right with the right):

11

+c.pA⊥
1
`A1

(l · x) +c.pA⊥
1
`A1

(r · x) +c.pA⊥
2

(x) +c.pA2⊗A⊥
3

(l · x) +c.pA2⊗A⊥
3

(r · x) +c.pA3
(x)

−c.pA⊥
1
`A1

(x) −c.pA2⊗A⊥
3

(x) −c.pA⊥
1
`A1

(x) −c.pA2⊗A⊥
3

(x)

The matching is perfect so the connected rays are removed and we end up with

[+c.pA⊥
2

(x),+c.pA3
(x)]

corresponding to S ′. We can remark that in this case, the normalisation computes the
set of all maximal paths. This corresponds to the interpretation of the cut-elimination
in the GoI.

Example 8. If we have the following reduction S → S ′:

A⊥
1 A1

`

A⊥
1 `A1

A2 A⊥
3

⊗

A2 ⊗A⊥
3

cut

ax
ax

 A⊥
1 A1 A2 A⊥

3

cut

cut

ax
ax

The constellation corresponding to S is

[+c.pA⊥
1
`A1

(l · x),+c.pA2⊗A⊥
3

(l · x)] + [+c.pA2⊗A⊥
2

(r · x),+c.pA⊥
1
`A1

(r · x)]+

[−c.pA⊥
1
`A1

(x),−c.pA2⊗A⊥
3

(x)]

When trying to make a saturated diagram by following the shape of the proof-structure,
we end up with:

+c.pA⊥
1
`A1

(l · x) +c.pA2⊗A⊥
3

(l · x) +c.pA⊥
1
`A1

(r · x) +c.pA2⊗A⊥
3

(r · x)

−c.pA⊥
1
`A1

(x) −c.pA2⊗A⊥
3

(x) −c.pA⊥
1
`A1

(x) −c.pA2⊗A⊥
3

(x)

which contains two cycles and it is indeed the translation of S ′. These cycles can be
unfolded as many times as we want by reusing some stars. It is impossible to leave a
free ray since all diagrams can always be extended by adding further occurrences of stars.
Therefore, all diagrams are closed and they can’t define a correct diagram (the star of
free is undefined because the empty star doesn’t exist in our model). We finally have
Ex(S) = ∅.

5 Interpretation of the logical content of MLL

5.1 The correctness criterion of Danos-Regnier

We translate the correctness criterion of Danos-Regnier [6] into the stellar resolution to
show that it can be described very naturally by the unification of terms.

12

Switching Vehicle Test

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

A B A⊥ B⊥

ax
ax

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

Figure 2: The vehicle and test corresponding to a Danos-Regnier switching graph.

A⊥
1 A1

`

A⊥
1 `A1

A2 A⊥
3

⊗

A2 ⊗A⊥
3

ax
ax

The upper part made of axioms appearing in a proof-structure is called the vehicle
and the lower-part is the gabarit (other name for format). With the Danos-Regnier
switchings (called ordeals), only the lower-part (basically a syntax tree) is changed so a
proof-structure may be divided into two parts: the vehicle is the tested and gabarit is a
set of test against the vehicle. The vehicle holds the computational part of a proof and
the test its logical part (type/formula). This test vehicle/gabarit produces a certification:
if all tests pass, we have a proof-net. This is Girard’s ”usine” (factory). Note that testing
is symmetric: a gabarit is also tested by a vehicle.

It is reminescent of testing in programming. A program is tested by another program
and we expect the result of the testing to satisfy some property. It is exaclty the same
here with constellations instead of programs.

Ordeals are translated in a very natural way by translating their nodes into constel-
lations:

• A⋆ = [−t.addrS(C
d
e),+c.qCd

e
(x)] where A is a conclusion of axiom,

• (A`L B)⋆ = [−c.qA(x)] + [−c.qB(x),+c.qA`B(x)],

• (A`R B)⋆ = [−c.qA(x),+c.qA`B(x)] + [−c.qB(x)],

• (A⊗B)⋆ = [−c.qA(x),−c.qB(x),+c.qA⊗B(x)],

• We add [−c.qA(x), pA(x)] for each conclusion A

The translation of a proof-structure of conclusion ⊢ A1, ..., An is said to be correct when
for each translation of switching graph, their union normalises into [pA1

(x), ...,+c.pAn
(x)].

Example 9. Here is an example with the switching graph and the test of figure 2:

13

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

[
−t.pA⊗B(l·x)

+c.qA(x)] + [
−t.p

A⊥`B⊥ (l·x)

+c.qB(x)] + [
−t.pA⊗B(r·x)
+c.q

A⊥(x)] +

[
−t.p

A⊥`B⊥(r·x)

+c.q
B⊥(x)]+

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)] + [

−c.q
A⊥(x)

] + [
−c.q

B⊥(x)

+c.q
A⊥`B⊥ (x)]+

[
−c.qA⊗B(x)
pA⊗B(x)] + [

−c.q
A⊥`B⊥(x)

p
A⊥`B⊥ (x)]

When connected to the vehicle

[+t.pA⊗B(l · x),+t.pA⊥`B⊥(l · x)] + [+t.pA⊗B(r · x),+t.pA⊥`B⊥(r · x)]

we obtain the following dependency graph:

+t.pA⊗B(l · x) +t.pA⊥`B⊥(l · x) +t.pA⊗B(r · x) +t.pA⊥`B⊥(r · x)

[
−t.pA⊗B(l·x)

+c.qA(x)] [
−t.pA⊗B(r·x)
+c.q

A⊥(x)] [
−t.p

A⊥`B⊥ (l·x)

+c.qB(x)] [
−t.p

A⊥`B⊥ (r·x)

+c.q
B⊥(x)]

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)] −c.q

A⊥(x) −c.q
B⊥(x)

+c.q
A⊥`B⊥(x)

[
−c.qA⊗B(x)
pA⊗B(x)] [

−c.q
A⊥`B⊥ (x)

p
A⊥`B⊥(x)]

structurally corresponding to the following switching graph:

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

Since the matching of the constellation is perfect (with equations of the shape t
?
= t)

and that the dependency graph is a tree, only the free rays will be kept in the normal
form. We obtain [pA⊗B(x), pA⊥`B⊥(x)].

The essential point of the translation is that the corresponding dependency graph will
have the same shape as a switching graph.

Example 10. If we have the following test instead:
A A⊥

⊗

A⊗A⊥

[
−t.p

A⊗A⊥(l·x)

+c.qA(x)] + [
−t.p

A⊗A⊥(r·x)

+c.q
A⊥(x)]+

[
−c.qA(x) −c.q

A⊥(x)

+c.q
A⊗A⊥(x)] + [

−c.q
A⊗A⊥(x)

p
A⊗A⊥(x)]

When connected to the vehicle [+t.pA⊗A⊥(l · x),+t.pA⊗A⊥(r · x)], a loop appears in
the dependency graph and since the matching is perfect, we can construct infinitely many
correct diagrams. The constellation isn’t strongly normalisable.

14

5.2 What is a proof?

We started from very general untyped objects, the constellation and reconstructed the
elementary bricks of multiplicative linear logic. Our framework is general enough to
write a lot of things which were impossible to write with proof-structures:

• an atomic proof ⊢ A as the constellation {[pA(x)]}

• an n-ary axiom as the constellation {[pA1
(x), ..., pAn

(x)]}

• a standalone A⊗B link [pA(x)] + [pB(x)]

• a standalone A`B link [pA(x), pB(x)] (actually an axiom)

This is very similar to partitions, as presented by Acclavio and Maieli [1].
Note that our simulation of cut-elimination and correctness normalises into coloured

constellations but it is possible to remove the colours in order to keep a canonical rep-
resentation of proofs.

We can finally define what the full translation of a proof-structure is. A proof-structure
is translated into a triple ΦV ⊎ ΦC ⊎ ΦG where:

• ΦV is the uncoloured vehicle made of translations of axioms

• ΦC is the uncoloured translation of cuts

• ΦG is coloured translation of all ordeals

We see that proof-structures can be considered as being made of three components. We
will then colour the components depending on if we want to perform a cut-elimination
or test the correctness. This shows that proof-structures, although being considered
untyped, actually come with a kind of pre-made type.

5.3 Interpretation of formulas

In order to reconstruct the types/formulas, we follow the construction of model of real-
isability.

• In the traditional type theory, types have a normative/constrictive role: they
prevent some unwanted connexions to happen during the computation. This is
Church-style typing to which Girard is often referring to as ”essentialist”.

• In our reconstruction of types, similarly to realisability, types have a descriptive
role: they describe the common behaviour of a collection of computational objects
(constellations in our case). We obtain a more refined idea of type but also a more
complicated one to reason with. We can think of it as a kind of liberalised typing,
free from constraints, but which is also very chaotic. This is Curry-style typing
which can type pure/untyped terms. This is Girard’s ”existentialism”.

15

We work with set of constellations corresponding to kind of ”pre-types”. The theory
of types/formulas lies on a choosen and subjective definition of orthogonality. Which is
a relation describing what constellations can be put against each other or can be tested
against each other. Several choices can be made. For instance:

• Φ⊥Φ′ when |Ex(Φ ⊎ Φ′)| < ∞ (strong normalisation) corresponds to MLL+MIX
correctness.

• Φ⊥Φ′ when |Ex(Φ ⊎ Φ′)| = 1 corresponds to MLL correctness.

Starting from a definition of orthogonality, we can reconstruct MLL types/formulas:

Pre-type A pre-type is a set of constellations. They corresponds to classes of computa-
tional behaviours/objects.

Orthogonal . If we have a set of constellation A, its orthogonal, written A⊥, is the
set of all constellations which are strongly normalising when interacting with the
constellations of A. It corresponds to linear negation.

Type. A type (or formula) A is the orthogonal of another pre-type B i.e A = B⊥.
It means that it interacts well (with respects to the orthogonality) with another
pre-type. It is equivalent to say that A = A⊥⊥ meaning that it is closed by
interaction.

Atoms. We define atoms with a basis of interpretation Φ associating of each type vari-
able Xi a distinct conduct Φ(Xi). It represents a choice of formula for each vari-
able. A more satisfactory way to handle variables is to consider second order
quantification, in which case we need further correctness tests. Since our atoms
are represented by rays (thus concrete entities), Girard even consider a type of
constants ”fu (katakana)” [19] which is auto-dual.

Tensor The tensor A⊗B of two conducts is constructed by pairing all the constellations
of A with the ones of B by using a multiset union of constellations Φ1 ⊎ Φ2. The
conduct A and B have to be disjoint in the sense that they can’t be connected
together by two matching rays. Note that the cut is the same thing but the
constellations can interact.

Par and linear implication As usual in linear logic, the par and linear implication are
defined from the tensor and the orthogonal: A`B = (A⊥ ⊗B⊥)⊥ and A⊸ B =
A⊥ `B.

Alternative definition for linear implication An alternative but equivalent definition of
the linear implication A⊸ B is the set of all constellations Φ such that if we put
them together with any constellation of A, the execution produces a constellation
of B.

Example 11. Let A = {[+a.x]} be a pre-type of one constellation. We consider that
Φ⊥Φ′ whenever Φ ⊎ Φ′ is strongly normalising.

16

• Ex([+a.x] + [+b.x]) = ∅ therefore [+a.x]⊥[+b.x] and [+b.x] ∈ A⊥.

• Ex([+a.x] + [a.x, x]) = [x] therefore [+a.x]⊥[−a.x, x] and [−a.x, x] ∈ A⊥.

• Ex([+a.x] + [−a.x,+a.x]) isn’t strongly normalising therefore [−a.x,+a.x] 6∈ A⊥.

Example 12 (Automata). From the previous encoding of automata we can observe
a duality between automata and words. It induces an orthogonality: A⋆⊥w⋆ when
Ex(A⋆ + w⋆) 6= ∅. An automaton becomes orthogonal to all the words it accepts and a
word is orthogonal to all the automata which recognise it.

Example 13 (MLL correctness). When taking the translation Φ ∈ A of the vehicle of
a proof-net of conclusion A, it is strongly normalising when interacting with the gabarit
G corresponding to the set of constellations containing the ordeals for A. The set of
all constellations with which it strongly normalises is A⊥. Therefore, we have G ⊆
A⊥. It is a materialisation of the fact that the ordeals for A represent partial proofs of
A⊥. Conversely, all the constellations representing proofs certified by the Danos-Regnier
criterion are contained in G⊥.

Example 14 (Logic programming). Let

Φ+
N

= [+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)]

be a constellation. We consider the strong normalisation of the union of two constel-
lations as orthogonality. Let QAdd = {[−add(sn(0), sm(0), r), r] | n,m ∈ N} and
AAdd = {[sn(0)] | n ∈ N}. Take a constellation [−add(sn(0), sm(0), r), r] and connect
it with Φ+

N
. All diagrams corresponding to Φ+

N
with n occurrences of

[+add(s(x), y, s(z)),−add(x, y, z)]

can be reduced to a star [sn+m(0)]. It is easy to check that all other diagram fails.
Therefore, for all Φ ∈ QAdd, Ex(Φ⊎Φ+

N
) ∈ AAdd and Φ+

N
⊎Φ. If QAdd and AAdd

are proven to be types (we need a more specific orthogonality) then Φ+
N

∈ QAdd ⊸

AAdd.

6 Full linear logic and beyond

In this paper, we used only a small part of the power of stellar resolution. Multiplicative
linear logic only needs constants instead of addresses but stellar resolution offer a large
variety of addresses and a mechanism of matching allowing us to imagine exotic ways of
connecting things. We may also use encoding of logic programs or imagine proof search
with proof-nets.

In order to represent the exponentials (the computational part was already studied
independently by Duchesne [7] and Bagnol [4]), addresses have to consider an auxiliary
term: pA(t) becomes pA(t ·u) where u represents the identifier of the copy of A. A proof
using contraction will duplicate +c.pA(t) into +c.pA(t · (l · y)) and +c.pA(t · (r · y)).

17

These copies can be erased by a cut with +c.pA(x) (weakening). The dereliction stops
the possibility of duplication by transforming +c.pA(t · (u · y)) into +c.pA(t · (u · d)).

The Transcendental Syntax finally shows us that logic may be about simple things
such as locations, connexions, interaction, dynamics, testing, matching and errors: quite
concrete and tangible things, reminiscent of the biological and physical world.

References

[1] Matteo Acclavio and Roberto Maieli. Generalized connectives for multiplicative
linear logic. In 28th EACSL Annual Conference on Computer Science Logic (CSL
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[2] Clément Aubert and Marc Bagnol. Unification and logarithmic space. In Rewriting
and Typed Lambda Calculi, pages 77–92. Springer, 2014.

[3] Clément Aubert, Marc Bagnol, and Thomas Seiller. Unary resolution: Character-
izing ptime. In International Conference on Foundations of Software Science and
Computation Structures, pages 373–389. Springer, 2016.

[4] Marc Bagnol. On the resolution semiring. PhD thesis, Aix-Marseille Université,
2014.

[5] Patrick Baillot and Marco Pedicini. Elementary complexity and geometry of inter-
action. Fundamenta Informaticae, 45(1-2):1–31, 2001.

[6] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive for
Mathematical logic, 28(3):181–203, 1989.

[7] Etienne Duchesne. La localisation en logique: géométrie de l’interaction et
sémantique dénotationnelle. PhD thesis, Aix-Marseille 2, 2009.

[8] Jean-Yves Girard. Multiplicatives. 1987.

[9] Jean-Yves Girard. Geometry of interaction II: deadlock-free algorithms. In Inter-
national Conference on Computer Logic, pages 76–93. Springer, 1988.

[10] Jean-Yves Girard. Geometry of interaction I: interpretation of system f. In Studies
in Logic and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier,
1989.

[11] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,
92(69-108):6, 1989.

[12] Jean-Yves Girard. Geometry of interaction III: accommodating the additives. Lon-
don Mathematical Society Lecture Note Series, pages 329–389, 1995.

[13] Jean-Yves Girard. Geometry of interaction IV: the feedback equation. In Logic
Colloquium, volume 3, pages 76–117, 2006.

18

[14] Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite factor. The-
oretical Computer Science, 412(20):1860–1883, 2011.

[15] Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcendental syn-
tax. preprint, 2013.

[16] Jean-Yves Girard. Transcendental syntax II: non-deterministic case. 2016.

[17] Jean-Yves Girard. Transcendental syntax III: equality. 2016.

[18] Jean-Yves Girard. Transcendental syntax I: deterministic case. Mathematical Struc-
tures in Computer Science, 27(5):827–849, 2017.

[19] Jean-Yves Girard. La logique 2.0. 2018.

[20] Jean-Yves Girard. Transcendental syntax IV: logic without systems. 2020.

[21] Robert Kowalski. A proof procedure using connection graphs. Journal of the ACM
(JACM), 22(4):572–595, 1975.

[22] Alexander Leitsch. The resolution calculus. Springer Science & Business Media,
2012.

[23] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(2):258–282,
1982.

[24] Matthew J Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing, 13(2):195–224, 2014.

[25] John Alan Robinson et al. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, 1965.

[26] Thomas Seiller. Logique dans le facteur hyperfini: géometrie de l’interaction et
complexité. PhD thesis, Aix-Marseille Université, 2012.

[27] Sharon Sickel. A search technique for clause interconnectivity graphs. IEEE Trans-
actions on Computers, (8):823–835, 1976.

[28] Hao Wang. Proving theorems by pattern recognition —II. Bell system technical
journal, 40(1):1–41, 1961.

[29] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, Citeseer, 1998.

19

	Stellar Resolution
	Frequently Asked Questions
	Stars and constellations
	Evaluation of constellations

	Encoding of some models of computation
	Wang tiles
	Boolean circuits
	Non-deterministic automata

	The Geometry of Interaction
	Cut-elimination and permutations
	Correctness and partitions

	Interpretation of the computational content of MLL
	Interpretation of the logical content of MLL
	The correctness criterion of Danos-Regnier
	What is a proof?
	Interpretation of formulas

	Full linear logic and beyond

