
HAL Id: hal-02977750
https://hal.science/hal-02977750v1

Preprint submitted on 25 Oct 2020 (v1), last revised 3 Apr 2022 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stellar Resolution: Multiplicatives - for the linear
logician, through examples

Boris Eng

To cite this version:
Boris Eng. Stellar Resolution: Multiplicatives - for the linear logician, through examples. 2020.
�hal-02977750v1�

https://hal.science/hal-02977750v1
https://hal.archives-ouvertes.fr

Stellar Resolution: Multiplicatives
For the linear logician, through examples

Boris Eng

The stellar resolution is an asynchronous model of computation used in
Girard’s Transcendental Syntax [7, 10, 8, 9, 11] which is based of Robinson’s
resolution [14]. Similarly to classical realisability, we obtain a new model
of linear logic with computational objects as its foundation: proofs, cut-
elimination, formulas/types, correctness and provability are reconstructed
very naturally. In this paper, we investigate the case of the multiplicative
fragment of linear logic.

1 Stellar Resolution

1.1 Frequently Asked Questions

• What is the Transcendental Syntax about? The Transcendental Syntax is a pro-
gramme initiated by Girard which can be seen as the successor of his Geometry of
Interaction (GoI) programme [3, 2, 1, 4, 5, 6] studying linear logic from the math-
ematics of the cut-elimination. In the same idea, the Transcendental Syntax aims
at giving a fully computational foundation for logic where entities such as formu-
las, proofs, correctness, truth are reconstructed from scratch with a computational
model as it is done in classical realisability for instance. One can understand it as
a reverse engineering of logic from its computational behaviours.

• Where does the model of stellar resolution come from? We use ”stellar” for Girard’s
terminology and ”resolution” for its similarities the resoltion-based models. The
GoI began with a mathematical study of the cut-elimination procedure through
the use of operator algebras. In the third article of GoI, Girard discovered a simpli-
fication based on first-order unification: the model of flows which is basically unary
first-order resolution. The stellar resolution is simply an extension of this model.
One may choose another model of computation as a basis of the Transcendental
Syntax but the stellar resolution is a natural and convenient one.

• Is it related to any other works? The stellar resolution is able to simulate models of
computation which are also dynamical systems: abstract tile assembly models [13]
which are used in DNA computing [17] but also the computational model of Wang

1

tiles [16]. From our realisability construction, one can imagine methods of typing
and implicit complexity analysis of these models. The stellar resolution can also be
seen as a generalisation of the model of flows used in GoI and of Seiller’s interaction
graphs [15]. The reconstruction of types/formulas follow the constructions of the
model of realisability.

• Why is it interesting? The stellar resolution generalises flows and interaction
graphs which have an applications in implicit computational complexity. The
Transcendental Syntax programme should be able to produce a more refined notion
of type/formula but also, more interestingly, to provide a computational content
for first-order logic in the sense of the Curry-Howard correspondence, something
which has not be done yet. Such an interpretation of first-order logic may have
applications in descriptive complexity.

1.2 Stars and constellations

We define rays by the following grammar:

r ::= +a(t1, ..., tn) | −a(t1, ..., tn) | t

where +/− are polarties, a is a function symbol called a colours and t1, ..., tn are first-
order terms.

A star is a finite and non-empty multiset of rays σ = [r1, ..., rn] and a constellation
Σ = σ1 + ... + σm is a (potentially infinite) multiset of stars. We consider stars to be
equivalent up to renaming and no two stars within a constellation share variables: these
variables are local in the sense of usual programming.

Example 1. This is basically a reformulation of first-order resolution. We write sn for
n applications of the symbol s (for instance s3(0) = s(s(s(0)))). A colour is a predicate
and the polarity represents the distinction input/ouput or hypothesis/conclusion. The
absence of polarity means that the predicate is isolated and cannot be connected. Let’s
take two logic programs and their associated constellation to illustrate the model:

add(0, y, y).

add(s(x), y, s(z)) :- add(x, y, z).

?add(s^n(0), s^m(0), r).

Σn,m
N = [+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)] + [−add(sn(0), sm(0), r), r]

parent(d, j). parent(z, d). parent(s, z). parent(n, s).

ancestor(x, y) :- parent(x, y).

ancestor(x, z) :- parent(x, y), ancestor(y, z).

?ancestor(j, r).

2

Σfamily = [+parent(d, j)] + [+parent(z, d)] + [+parent(s, z)] + [+parent(n, s)]+

[+ancestor(x, y),−parent(x, y)] + [+ancestor(x, z),−parent(x, y),−ancestor(y, z)]+

[−ancestor(j, r), r]

More graphically, a star may be depicted as an actual star: for [t1, ..., t5].

1.3 Evaluation of constellations

+ -

=⇒

Graphically, we evaluate a constellation by connecting rays together when they are
matchable and of opposite polarity. The two stars will fuse and the connected rays will
disappear. The rays of the remaining star is affected by a ”reaction” of this fusion.

To do so, from a constellation Σ, we can construct its unification graph Σ[A] for a set
of colours A telling us which rays can be connected together. It is a graph of stars σ ∈ Σ
with edges between two stars whenever there are two rays r1, r2 of opposite polarity such
that their underlying terms (without colour) are matchable. The edge is then labelled
with the equation r1

.
= r2.

Example 2. We give a representation of the unification graphs corresponding to the
constellations of example 1:

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z)) +add(sn(0), sm(0), r) r

+parent(d, j)

+parent(z, d)

+parent(s, z)

+parent(n, s)

−parent(x, y) +ancestor(x, y)

−parent(x, y) −ancestor(y, z) +ancestor(x, z)

−ancestor(j, r) r

We can then make actual connexions between occurrences of stars following the uni-
fication graph of a constellation. Such a connexion, called a diagram (written δ) is
connected and usually a tree (when considering logic) where all star variables have to
be made distinct. They represent computations to be done.

Example 3. Partial computation of 2 + 2 (0 recursion):

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

3

Complete computation of 2 + 2 (1 recursion):

−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

Over computation of 2 + 2:
−add(0, y, y) +add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z))

+add(x, y, z) −add(s(x), y, s(z)) +add(s2(0), s2(0), r) r

There are two equivalent ways to reduce diagrams by observing that each edge define
a unification equation:

Fusion We can reduce the links step by step by solving the underlying equation, pro-
ducing a solution θ. The two linked stars will fuse by making the connected rays
disappear. The susbstitution θ is finally applied on the rays of the resulting star.
This is exactly the resolution rule.

Actualisation The set of all edges define a unification problem. The solution θ of this
problem is then applied on the star of free rays (unconnected rays).

Example 4 (fusion). The full fusion of the diagram representing a complete computation
of 2 + 2 from example 3 is described below (we make the exclusion of variable explicit for
illustration):

−add(0, y1, y1) +add(x2, y2, z2) −add(s(x2), y2, s(z2))

+add(x3, y3, z3) −add(s(x3), y3, s(z3)) +add(s2(0), s2(0), r) r

↓ θ = {x3 7→ s(x2), y3 7→ y2, z3 7→ s(z2)}

−add(0, y1, y1) +add(x2, y2, z2) −add(s(s(x2)), y2, s(s(z2))) +add(s2(0), s2(0), r) r

↓ θ = {x2 7→ 0, z2 7→ y2}

−add(s(s(0)), y2, s(s(y2))) +add(s2(0), s2(0), r) r

↓ θ = {y2 7→ s(s(0)), r 7→ s(s(s(s(0))))}

s(s(s(s(0))))

4

Example 5 (actualisation). If we take the diagram δ representing a complete computa-
tion in the example 3, it generates the following problem:

P(δ) = {add(0, y1, y1)
.
= add(x2, y2, z2), add(s(x2), y2, s(z2))

.
= add(x3, y3, z3),

add(s(x3), y3, s(z3))
.
= add(s2(0), s2(0), r)}

which is solved by a unification algorithm such as the Montanari-Martelli algorithm [12]
in order to obtain a finale substitution:

→∗ {x2
.
= 0, y2

.
= y1, z2

.
= y1, x3

.
= s(x2), y2

.
= y3, z3

.
= s(z2),

s(x3)
.
= s2(0), y2

.
= s2(0), s(z3)

.
= r}

→∗ {y2
.
= y1, z2

.
= y1, x3

.
= s(0), y2

.
= y3, z3

.
= s(z2), s(x3)

.
= s2(0), y2

.
= s2(0), s(z3)

.
= r}

→∗ {z2
.
= y1, x3

.
= s(0), y1

.
= y3, z3

.
= s(z2), s(x3)

.
= s2(0), y2

.
= s2(0), s(z3)

.
= r}

→∗ {x3
.
= s(0), y1

.
= y3, z3

.
= s(y1), s(x3)

.
= s2(0), y1

.
= s2(0), s(z3)

.
= r}

→∗ {y1
.
= y3, z3

.
= s(y1), s(s(0))

.
= s2(0), y1

.
= s2(0), s(z3)

.
= r}

→∗ {z3
.
= s(y3), s(s(0))

.
= s2(0), y3

.
= s2(0), s(z3)

.
= r}

→∗ {s(s(0))
.
= s2(0), y3

.
= s2(0), s(s(y3))

.
= r}

→∗ {y3
.
= s2(0), s(s(y3))

.
= r}

→∗ {s(s(s2(0)))
.
= r}

→∗ {r .
= s(s(s2(0)))}

The solution of this problem is the substitution θ = {r 7→ s4(0)} which is applied on the
star of free rays [r]. The result [s4(0)] of this procedure is called the actualisation of δ.
This can be thought as a chemical reaction having an effect on the non-involved entities.

The normalisation or execution Ex(Σ) (figure 1) of a constellation Σ constructs the set
of all possible correct (the underlying unification problem doesn’t fail) saturated (no stars
can be added to extend it) diagrams and actualise them all in order to produce a new
constellation called the normal form. In logic programming, we can interpret the normal
form as a subset of the application of resolution operator [?] corresponding to a certain
class of clauses we can infer using the resolution rule. If the set of correct saturated
diagrams is finite (or the normal form is a finite constellation), the constellation is said
to be strongly normalising.

Example 6. For Σ2,2
N (example 1), one can check that we have Ex(Σ2,2

N) = [s4(0)] because
only the complete computation of example 3 succeed and all other saturated diagrams
represents partial or over computations and fail.

Σ
set of diagrams−→ ∪∞k=0Dk

restriction−→ D′1, ..., D
′
n ⊆ ∪∞k=0Dk

actualisation−→ σ1 + ...+ σn

Figure 1: Illustration of the execution of a strongly normalising constellation where the
restriction only keep the correct and saturated diagrams. The resulting con-
stellation is Ex(Σ).

5

2 Interpretation of the computional content of MLL

The idea comes from the Geometry of Interaction: the `/⊗ cuts can be seen as ad-
ministrative/inessential cuts since all they do is basically a rewiring on the premises of
the ` and ⊗ nodes connected together. By eliminating all such cuts, we end up with
a set of axioms connected by cuts. These axioms represent the essential and computa-
tional part of a proof-structure. To simulate the dynamic of cut-elimination, we consider
proof-structures post multiplicative cut-elimination. We translate the axioms and the
cuts into stars:

1. A formula A conclusion of axiom becomes a ray +c.pA(t) where t represents the
”address” of A relatively to the conclusions of the proof-structure (without con-
sidering cuts).

2. An axiom becomes a binary star containing the address of its formulas. It is
coloured with c+ for ”positive computation”.

3. A cut between A and A⊥ becomes a binary star [−c.pA(x),−c.pB(x)] it is coloured
with −c for ”negative computation” in order to connect them to axioms.

Example 7. Let’s encode the following cut-elimination S →∗ S ′ of MLL proof-structures:

A⊥1 A1

`
A⊥1 `A1

A⊥2 A3A2 A⊥3

⊗

A2 ⊗A⊥3
cut

ax ax ax

→
A⊥1 A1 A⊥2 A3A2 A⊥2

cut

cut

ax ax ax

→∗
A⊥2 A3

ax

The address of A⊥1 is pA⊥1 `A1
(l·x) because it is located on the left-hand side of A⊥1 `A1.

The address of A⊥3 is pA2⊗A⊥3
(r · x) and the one for A3 is pA3(x). The proof-structure S

is encoded as:

[+c.pA⊥1 `A1
(l · x),+c.pA⊥1 `A1

(r · x)] + [+c.pA⊥2
(x),+c.pA2⊗A⊥3

(l · x)]+

[+c.pA2⊗A⊥3
(r · x),+c.pA3(x)] + [−c.pA⊥1 `A1

(x),−c.pA2⊗A⊥3
(x)]

and its unification graph is:

+c.pA⊥1 `A1
(l · x) +c.pA⊥1 `A1

(r · x) +c.pA⊥2
(x) +c.pA2⊗A⊥3

(l · x) +c.pA2⊗A⊥3
(r · x) +c.pA3(x)

−c.pA⊥1 `A1
(x) −c.pA2⊗A⊥3

(x)

Since a ray can only be connected to a unique other ray, one occurrence of cut isn’t
sufficient in order to make a saturated diagram. We have to duplicate the cut star, which
corresponds exactly to the second step of S →∗ S ′. One can check that the only correct
diagram is the following one (the left matches with the left and the right with the right):

6

+c.pA⊥1 `A1
(l · x) +c.pA⊥1 `A1

(r · x) +c.pA⊥2
(x) +c.pA2⊗A⊥3

(l · x) +c.pA2⊗A⊥3
(r · x) +c.pA3(x)

−c.pA⊥1 `A1
(x) −c.pA2⊗A⊥3

(x) −c.pA⊥1 `A1
(x) −c.pA2⊗A⊥3

(x)

The matching is perfect so the connected rays are removed and we end up with

[+c.pA⊥2
(x),+c.pA3(x)]

corresponding to S ′. We can remark that in this case, the normalisation computes the
set of all maximal paths. This corresponds to the interpretation of the cut-elimination
in GoI.

Example 8. If we have the following reduction S → S ′:

A⊥1 A1

`
A⊥1 `A1

A2 A⊥3

⊗

A2 ⊗A⊥3
cut

ax
ax

→ A⊥1 A1 A2 A⊥3

cut

cut

ax
ax

The constellation corresponding to S is

[+c.pA⊥1 `A1
(l · x),+c.pA2⊗A⊥3

(l · x)] + [+c.pA2⊗A⊥2
(r · x),+c.pA⊥1 `A1

(r · x)]+

[−c.pA⊥1 `A1
(x),−c.pA2⊗A⊥3

(x)]

When trying to make a saturated diagram by following the shape of the proof-structure,
we end up with:

+c.pA⊥1 `A1
(l · x) +c.pA2⊗A⊥3

(l · x) +c.pA2⊗A⊥3
(r · x) +c.pA⊥1 `A1

(r · x)

−c.pA⊥1 `A1
(x) −c.pA2⊗A⊥3

(x) −c.pA⊥1 `A1
(x) −c.pA2⊗A⊥3

(x)

which contains two cycles and is the translation of S ′. These cycles can be unfolded as
many times as we want by reusing some stars. It is impossible to leave a free ray since
all diagrams can always be extended by adding further occurrences of stars. Therefore,
all diagrams are closed and doesn’t define a correct diagram (the star of free is undefined
because no empty star can exist). We finally have Ex(S) = ∅.

3 Interpretation of the logical content of MLL

3.1 The correctness criterion of Danos-Regnier

We translate the correctness criterion of Danos-Regnier [?] into the stellar resolution to
show that it can be described very naturally by the unification of terms.

7

Switching Vehicle Test

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

A B A⊥ B⊥
ax

ax

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

Figure 2: The vehicule and test corresponding to a Danos-Regnier switching graph.

A⊥1 A1

`
A⊥1 `A1

A2 A⊥3

⊗

A2 ⊗A⊥3

ax
ax

The upper part made of axioms appearing in a proof-structure is called the vehicle
and the lower-part is the gabarit. With the Danos-Regnier switchings (called ordeals),
only the lower-part (basically a syntax tree) is changed so a proof-structure may be
divided into two parts: the vehicle is the tested and gabarit is a set of test against the
vehicle. The vehicle holds the computational part of a proof and the test its logical part
(type/formula). This test vehicule/gabarit produces a certification: if all tests pass, we
have a proof-net. This is Girard’s ”usine”. Note that testing is symmetric: a gabarit is
a also tested by a vehicle.

Ordeals are translated in a very natural way by translating their nodes into constel-
lations (the fractional notation is purely esthetical):

• AF = [−t.addrS(Cd
e),+c.qCd

e
(x)] where A is a conclusion of axiom,

• (A`L B)F = [−c.qA(x)] + [−c.qB(x),+c.qA`B(x)],

• (A`R B)F = [−c.qA(x),+c.qA`B(x)] + [−c.qB(x)],

• (A⊗B)F = [−c.qA(x),−c.qB(x),+c.qA⊗B(x)],

• We add [−c.qA(x), pA(x)] for each conclusion A

The translation of a proof-structure of conclusion ` A1, ..., An is said to be correct when
for each translation of switching graph, their union normalises into [pA1(x), ..., pAn(x)].

Example 9. Here is an example with the switching graph and the test of figure 2:

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

[
−t.pA⊗B(l·x)

+c.qA(x)] + [−t.pA`B(l·x)
+c.qB(x)] + [

−t.pA⊗B(r·x)
+c.q

A⊥ (x)
] + [−t.pA`B(r·x)

+c.q
B⊥ (x)

]+

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)] + [

−c.q
A⊥ (x)] + [

−c.q
B⊥ (x)

+c.q
A⊥`B⊥ (x)

]+

[
−c.qA⊗B(x)
pA⊗B(x)] + [

−c.q
A⊥`B⊥ (x)

p
A⊥`B⊥ (x)

]

8

When connected to the vehicle

[+t.pA⊗B(l · x),+t.pA⊥`B⊥(l · x)] + [+t.pA⊗B(r · x),+t.pA⊥`B⊥(r · x)]

we obtain the following unification graph:

+t.pA⊗B(l · x) +t.pA⊥`B⊥(l · x) +t.pA⊗B(r · x) +t.pA⊥`B⊥(r · x)

[
−t.pA⊗B(l·x)

+c.qA(x)] [
−t.pA⊗B(r·x)
+c.q

A⊥ (x)
] [−t.pA`B(l·x)

+c.qB(x)] [−t.pA`B(r·x)
+c.q

B⊥ (x)
]

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x)] [

−c.q
A⊥ (x)] + [

−c.q
B⊥ (x)

+c.q
A⊥`B⊥ (x)

]

[
−c.qA⊗B(x)
pA⊗B(x)] [

−c.q
A⊥`B⊥ (x)

p
A⊥`B⊥ (x)

]

structurally corresponding to the following switching graph:

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

Since the matching of the constellation is perfect (with equations of the shape t
.
= t)

and that the unification graph is a tree, only the free rays will be kept in the normal form.
We obtain [pA⊗B(x), pA⊥`B⊥(x)].

The essential point of the translation is that the corresponding unification graph will
have the same shape as a switching graph.

Example 10. If we have the following test instead:
A A⊥

⊗

A⊗A⊥

[
−t.p

A⊗A⊥ (l·x)
+c.qA(x)] + [

−t.p
A⊗A⊥ (r·x)

+c.q
A⊥ (x)

]+

[
−c.qA(x) −c.q

A⊥ (x)

+c.q
A⊗A⊥ (x)

] + [
−c.q

A⊗A⊥ (x)

p
A⊗A⊥ (x)

]

When connected to the vehicle [+t.pA⊗A⊥(l · x),+t.pA⊗A⊥(r · x)], a loop appears in
the unification graph and since the matching is perfect, we can construct infinitely many
correct diagrams. The constellation isn’t strongly normalisable.

9

3.2 Interpretation of formulas

In order to reconstruct the types/formulas, we follow the construction of model of real-
isability. In the traditional type theory, types have a normative/constrictive role: they
prevent some unwanted connexions to happen. In our reconstruction of types, similarly
to realisabiliy, types have a descriptive role: they describe the common behaviour of
a collection of computational objects (constellations in our case). We obtain a more
refined idea of type but also a more complicated one to reason with. We can think of it
as a kind of liberalised typing free from constraints but which is also very chaotic.

We work with set of constellations corresponding to kind of ”pre-types”.

Orthogonal. First, we need to choose a criterion of orthogonality opposing constella-
tions. We choose the strong normalisation but others choices (leading to different
idea of correctness) can be chosen. If we have a set of constellation A, its orthog-
onal, written A⊥, is the set of all constellations which are strongly normalising
when interacting with the constellations of A.

Conducts. A conduct (or type/formula) A is a set of constellations orthogonal to an-
other set B i.e A = B⊥. It means that it interacts well (with respects to the
orthogonality) with another pre-type. It is equivalent to say that A = A⊥⊥. The
intuition is that the interaction between a pre-type and its dual (seen as the set of
its tests) is closed.

Atoms. We define atoms with a basis of interpretation Φ associating of each type variable
Xi a distinct conduct Φ(Xi). It represents a choice of formula for each variable.

Tensor The tensor A⊗B of two conducts is constructed by pairing all the constellations
of A with the ones of B by using a multiset union of constellations. The conduct
A and B have to be disjoint in the sense that they can’t be connected together by
two matching rays.

Par and linear implication As usual in linear logic, the par and linear implication are
defined from the tensor and the orthogonal: A`B = (A⊥ ⊗B⊥)⊥ and A(B =
A⊥ `B.

Alternative linear implication An alternative but equivalent definition of the linear im-
plication A (B is the set of all constellations Σ such that if we put them together
with any constellation of A, the execution produces a constellation of B.

Example 11. Let A = {[+a.x]} be a set containing one constellation.

• Ex([+a.x] + [+b.x]) = ∅ therefore [+a.x]⊥[+b.x] and [+b.x] ∈ A⊥.

• Ex([+a.x] + [a.x, x]) = [x] therefore [+a.x]⊥[−a.x, x] and [−a.x, x] ∈ A⊥.

• Ex([+a.x] + [−a.x,+a.x]) isn’t strongly normalising therefore [−a.x,+a.x] 6∈ A⊥.

10

Example 12. When taking the translation Σ ∈ A of the vehicle of a proof-net of con-
clusion A, it is strongly normalising when interacting with the gabarit G corresponding
to the set of constellations containing the ordeals for A. The set of all constellation with
which it strongly normalises is A⊥. Therefore, we have G ⊆ A⊥. It is a materialisation
of the fact that the ordeals for A represent a partial proof of A⊥.

Example 13. Let Σ+
N = [+add(0, y, y)] + [+add(s(x), y, s(z)),−add(x, y, z)] be a con-

stellation. Let QAdd = {[−add(sn(0), sm(0), r), r] | n,m ∈ N} and AAdd = {[sn(0)] |
n ∈ N}. Let’s take a constellation [−add(sn(0), sm(0), r), r] and connect it with Σ+

N. All
diagrams corresponding to Σ+

N with n occurrences of [+add(s(x), y, s(z)),−add(x, y, z)]
can be reduced to a star [sn+m(0)]. It is easy to check that all other diagram fails. There-
fore for all Σ ∈ QAdd, Ex(Σ · Σ+

N) ∈ AAdd and Σ+
N⊥Σ. One can even check that we

also have Σ+
N ∈ QAdd⊥⊥ (AAdd. This provides a kind of naive typing for logic

programs.

References

[1] Jean-Yves Girard. Geometry of interaction II: deadlock-free algorithms. In Inter-
national Conference on Computer Logic, pages 76–93. Springer, 1988.

[2] Jean-Yves Girard. Geometry of interaction I: interpretation of system f. In Studies
in Logic and the Foundations of Mathematics, volume 127, pages 221–260. Elsevier,
1989.

[3] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,
92(69-108):6, 1989.

[4] Jean-Yves Girard. Geometry of interaction III: accommodating the additives. Lon-
don Mathematical Society Lecture Note Series, pages 329–389, 1995.

[5] Jean-Yves Girard. Geometry of interaction IV: the feedback equation. In Logic
Colloquium, volume 3, pages 76–117, 2006.

[6] Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite factor. The-
oretical Computer Science, 412(20):1860–1883, 2011.

[7] Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcendental syn-
tax. preprint, 2013.

[8] Jean-Yves Girard. Transcendental syntax II: non-deterministic case. 2016.

[9] Jean-Yves Girard. Transcendental syntax III: equality. 2016.

[10] Jean-Yves Girard. Transcendental syntax I: deterministic case. Mathematical Struc-
tures in Computer Science, 27(5):827–849, 2017.

[11] Jean-Yves Girard. Transcendental syntax IV: logic without systems. 2020.

11

[12] Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(2):258–282,
1982.

[13] Matthew J Patitz. An introduction to tile-based self-assembly and a survey of recent
results. Natural Computing, 13(2):195–224, 2014.

[14] John Alan Robinson et al. A machine-oriented logic based on the resolution prin-
ciple. Journal of the ACM, 12(1):23–41, 1965.

[15] Thomas Seiller. Logique dans le facteur hyperfini: géometrie de l’interaction et
complexité. PhD thesis, Aix-Marseille Université, 2012.

[16] Hao Wang. Proving theorems by pattern recognition II. Bell system technical
journal, 40(1):1–41, 1961.

[17] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, Citeseer, 1998.

12

	Stellar Resolution
	Frequently Asked Questions
	Stars and constellations
	Evaluation of constellations

	Interpretation of the computional content of MLL
	Interpretation of the logical content of MLL
	The correctness criterion of Danos-Regnier
	Interpretation of formulas

