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Resource Constrained Sensor Attacks by Minimizing Fisher Information

Ingvar Ziemann, Henrik Sandberg

Abstract— We analyze the impact of sensor attacks on a
linear state estimation problem subject to variance and sparsity
constraints. We show that the maximum impact in a leader-
follower game where the attacker first chooses the distribution
of an adversarial perturbation and the defender follows by
choosing an estimator is characterized by a minimum Fisher
information principle. In general, this is a nonlinear variational
problem, but we show that it can be reduced to a finite-
dimensional mixed integer SDP.

I. INTRODUCTION

One of the main challenges of designing secure cyber-
physical systems (CPS) is related to analyzing the risk or
potential damage an adversary can cause and how to maintain
good operating performance in the presence of adversarial
attacks. This is often referred to as impact analysis [1]. One
such class of attacks correspond to the adversary manipulat-
ing sensor outputs, to potentially cause harm down the line
by introducing misinformation. To this end, we will introduce
a new type of resource limited adversarial attack based on
minimizing Fisher information and analyze its impact on
state reconstruction performance. We show that optimizing
this information quantity is equivalent to a leader-follower
game, in which the adversary first selects the distribution
of their perturbation after which the defender chooses an
estimator. However, the minimization of Fisher information1

is in general a non-convex infinite-dimensional problem. To
resolve this, we present a finite-dimensional reduction which
involves solving either a sequence of Semidefinite Programs
(SDP) or a single mixed-integer SDP.

a) Related Work: Closely related to our work is the im-
pact assessment problem considered in [2] and [3] in which
the authors treat a deterministic maximum impact attack to
linear systems subject to 2-norm constraints. Interestingly,
the authors of [2] also incorporate sparsity constraints in
their analysis which relate to compressive sensing type
of arguments [4], for instance by introduction of the so-
called security index, [5]. Another line of work focuses on
stealthy maximum impact attacks by incorporating detector
threshholds, see for instance [6], [7], [8] and [9]. Particularly
pertintent here are the results of [8] which similarly take
an operational impact perspective and consider down-the-
line control performance whereas we consider estimation
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1To be precise, the maximization of the trace of the inverse of Fisher
information.

performance. Due to our emphasis on estimation perfor-
mance and Fisher information, we are also able to draw
on well-established statistical principles such as from robust
estimation [10], [11] and [12]. Similar models can also be
found in the literature on minimax estimation [13], [14] or
in the compressive sensing literature, see e.g. [15] for a
(Bayesian) model similar to ours.

b) Contribution: With this in mind, our work aims to
expand on the existing secure CPS literature, and also bring
closer together this branch of work with classical statistical
principles. Specifically:

• We characterize in terms of a mixed integer SDP a worst
case adversarial attack subject to variance and cardinal-
ity constraints and show that this attack minimizes a
certain information functional.

• Further, we derive a matching estimator which together
with the worst case attack constitute a solution of a
leader-follower game in which the adversary first selects
a distribution of their attack after which the defender
selects an estimator.

• On a more technical note, our SDP characterization of
the distribution optimizing the trace of inverse Fisher
information may also be of independent interest, as
this quantity also plays a key role in certain privacy-
preserving mechanisms, e.g. in [16],[17],[18]. By con-
trast, previous results were only able to characterize
this distribution for scalar random variables, [10], or
considered relaxed problems [16].

An interesting feature of our results is also that while there
exists a solution to the leader-follower game, the derived
estimator will in general not be robust (minimax) in the
presence of sparsity constraints. In this way, our results can
be understood as a lower bound on the impact an adversary
can achieve.

c) Notation: For any integer i, we write [i] = {1, . . . i}.
If S ⊂ [i], S⊥ denotes the complement of S in [i]. We
use � (and �) for (strict) inequality in the matrix positive
definite partial order. By ‖ ·‖ we denote the standard 2-norm
and by ‖ · ‖∞ the matrix operator norm. For any positive
semi-definite matrix Q, we write ‖ · ‖Q for the 2-(semi-
)norm weighted by Q and † is used to denote the Moore-
Penrose pseudoinverse. We denote {ei} the standard basis
in Euclidean space. Further, we write E for the expectation
operator and ∗ for the convolution between two (probability)
measures. For derivatives, we use ∂x for the transpose of
the gradient with respect to the vector x; i.e. ∂x is used
to represent a column vector of first derivative operators. All
(in)equalities not under an expectation are in this paper taken
to hold almost surely.



II. PROBLEM FORMULATION

We suppose x ∈ Rn is a deterministic unknown variable
to be estimated. The operator only has access to imperfect
observations, y ∈ Rp given by the measurement equation

y = Hx+ Fa+ w (1)

where a ∈ Rm is an adversarial perturbation which has
distribution µa, H ∈ Rp×n, F ∈ Rp×m and where w ∈ Rp
is an N(0,Σw) disturbance with Σw � 0.

The adversary is assumed resource constrained in the sense
that
A1. The adversary can only impact s sensors at once,

(Fa)i 6= 0 for at most s indices. To be pre-
cise, the distribution of (Fa)i is supported by
span{ei}, card{ei} ≤ s.

A2. The adversary has an energy constraint Ea>Ca ≤ σ2,
σ2 ∈ R, C � 0.

We suppose the goal of the operator is to construct an
estimator x̂ = x̂(y) of x, such that the statistical risk

E‖x− x̂‖2 = trE(x− x̂)(x− x̂)> (2)

is minimized. On the other hand, the adversary seeks to
maximize this quantity. To make the problem nontrivial, we
need to rule out estimators of the form x̂ = x independent
from the observed y:
A3. The estimator x̂ of x is unbiased; that is Ex̂ = x and

its risk is given by (2).
A4. It is assumed throughout that the unknown variable x

is observable through H; x ⊥ kerH .
A4’. H has full column rank.

Remark 2.1: We note that A4 can be replaced by A4’
without loss of generality. To see this, let P be the projection
onto (kerH)⊥ = im(H>). Note that PP> = Idim imH>

and P>P acts as the identity on the subspace (kerH)⊥.
Since x = P>Px, by redefining variables as Hred = HP>

and xred = Px we obtain an equivalent measurement system
y = Hredxred + Fa+ w.

By virtue of this remark, it suffices to prove all results
that follow under A4’, noting that the simple transformation
described above extends them also to A4.

We will consider this problem mainly from the adversary’s
perspective. That is, we consider a leader-follower game
where the adversary goes first and selects the distributions
µa satisfying A1 and A2 upon which the operator selects an
estimator satisfying A3. This game is equivalent to

max
µa

min
x̂

trE(x− x̂)(x− x̂)>

subject to A1-A3, A4’. Since we always have max min ≤
min max, it follows that our game can be interpreted as a
lower bound on the maximum impact an adversary can inflict
in terms of estimation performance. Note also that, since
the adversary goes first, no deterministic attack ad can be
optimal, as this essentially corresponds to the strategy δad
where δad is a point mass at ad. Since the defender knows
the distribution δad , they can simply subtract ad from their
measurement.

Before proceeding, let us consider an example motivating
the problem’s relevance.

Example 2.2: Let us consider the DC power flow depicted
in the figure below. Analysis of such networks is common-
place in the power systems state estimation literature, [19].

x3 x1

x2

Suppose the system operator wishes to reconstruct the
voltage phase angles at x1, x2, x3 and that noisy active
power flow measurements are available at the grey squares.
This can be formulated as y, w ∈ R5, x ∈ R3 with noisy
measurements, so that y = Hx+ Fa+ w with

H =


1 −1 0
1 0 −1
0 1 −1
2 −1 −1
−1 2 −1

 , Σw = I5.

Let us assume further that the attacker has possibility to
corrupt one of these measurements, so that a ∈ R5, F = I5
and that the adversary’s constraints are Ea>a = 1 and
card{ai 6= 0} ≤ 1 (i.e., s = 1). We return to, and solve,
this example in Section IV.

Example 2.3: Consider a linear dynamical system

Xt+1 = HtXt +BtAt +Wt, Yt = CXt, t = 1, . . . , T

with unknown initial condition X0 = x. This can also be
handeled by the model (1), simply by converting them into
Toeplitz form, i.e. writing y = (Y1, . . . , YT ) as a linear
combination of a = (A1, . . . , At), w = (W1, . . . ,WT ).

a) Operational Interpretation of the Constraints: From
an operational point of view, the constraint A1 is rather it
clear; it signifies the belief that the adversary has limited
resources in terms of the number of sensors they can corrupt.
However, the operator is not sure precisely which these
are. Constraint A2, on the other hand, deserves further
justification. More specifically, one may ask why an ad-
versary launching a cyber-attack would have a seemingly
physical constraint on its input energy. To give A2 an
operational justification, suppose that the system operator
runs an anomaly detection scheme such as a chi-squared
detector, which is commonly considered in the literature,
e.g. [7]. In this case, the covariance of a directly impacts
the detection probability of the attack and A2 can thus be
understood as to embody the adversary’s desire to remain
undetected (with some probability depending on C). As for
A3, it is merely one way to ensure that estimators of the form
x̂ = x are inadmissible. It is not hard to see that our results
remain valid if one removes A3 and instead replaces (2)



with supx trE(x− x̂)(x− x̂)> instead of the unbiasedness
assumption. The final assumption A4 is necessary for the
existence of an unbiased estimator. Without it, x cannot in
general reconstructed without extra side information.

III. LEAST INFORMATIVE DISTRIBUTIONS

We begin our process toward finding a solution of
the game under A1-A3 and A4’ by considering certain
estimation-theoretic principles. We will consider attacks
which are least informative about x in a certain sense, and
then later show that these attacks actually are part of the
required saddle-point.

It is a classical result in statistics that for unbiased esti-
mators, it holds true that

E(x− x̂)(x− x̂)> � J†x
where Jx(p) is the Fisher information (matrix). This in-
equlity is known as the Cramér-Rao bound.

Definition 3.1: Suppose that x ∈ Θ where Θ is an open
subset of Rn. Let {p(y;x)} be a family of densities over Rm
depending smoothly on x. Then Fisher information (matrix)
is defined as

Jx(p) =

∫
Rp

∂x log p(y;x)[∂x log p(y;x)]>p(y;x)dy (3)

whenever the integral exists.
This note investigates a class of attacks which are least

informative about x in the sense that the strategy of the
adversary is characterized by the distribution of the random
variable which is worst possible in terms of the bound
(3). With this in mind, we now seek to characterize the
distributions which maximize the trace of J†x(p), where, in
our model, p(y;x) corresponds to the density of y in (1).

Definition 3.2: If µa is the probability measure of a in (1)
and p(y;x) corresponds to the density of y in (1), we say that
µa is least informative about x if it maximizes tr(Jx(p))†

subject to the constraints A1 and A2.
Observe that a priori, we cannot guarantee the existence

of the integral (3). The next lemma shows that this is well-
defined.

Lemma 3.3: For any non-degenerate normal random vari-
able w, the probability measure of the random variable
Fa+w admits a C∞ density, say q, with respect to Lebesque
measure.

Proof: Let µFa be the probability measure of the
variable Fa and γΣw

be the normal measure with covariance
Σw. The distribution of the Fa+w is given by the µFa∗γΣw

which has a C∞ density with respect to Lebesque measure
by a well-known property of Gaussian convolutions since
γΣw

has a C∞ density.
Since Fa+w admits a C∞ density q, Fisher information

of the model (1) exists and can be further simplified.
Lemma 3.4: Let q be the density of Fa + w. Fisher

information of the model (1) is given by

Jx(p) = H>J(q)H (4)

where

J(q) =

∫
Rp

∂x log q(v)[∂x log q(v)]>q(v)dv. (5)

Proof: Note that p(y;x) = q(y −Hx), from which it
follows that

Jx(p) =

∫
Rp

∂x log p(y;x)[∂x log p(y;x)]>p(y;x)dy

=

∫
Rp

∂x log q(y −Hx)[∂x log q(y −Hx))]>q(y −Hx)dy

=

∫
Rp

H>∂x log q(v)[∂x log q(v)]>Hq(v)dv.

The least informative distribution is thus given by the
following optimization problem.

supµa
tr(H>J(q)H)†

s. t. Ea>Ca ≤ σ2

q = µFa ∗ γΣw

the support of the distribution of Fa
satisfies (Fa)i 6= 0 for at most s indices

(6)

where µa is the probability measure of a.
There are a three major issues with Problem (6). First, the

mapping q 7→ tr(H>J(q)H)† is non-convex, and second,
even if there were no further constraints, this objective is
non-linear and infinite-dimensional making it rather hard to
solve for. Moreover, there is a third issue relating to the
sparsity constraint A1 which also breaks convexity of the
problem. We will now turn to reducing and relaxing to a
finite-dimensional mixed integer semidefinite program.

a) Reduction to a Finite-Dimensional Convex Objec-
tive: Our reduction relies on arguments due to [12] which
show that Fisher information of any probability model is
lower-bounded (in semidefinite order) by a Gaussian model
with the same mean and covariance matrix. Since this
Gaussian model is admissible as a strategy for the adversary,
we can restrict the optimization in Problem (6) to Gaussian
measures, which (if mean zero) are completely characterized
by their covariance matrices. Observe also that if q is
Gaussian with covariance Σq , we have Jq = Σ†q , where Jq is
given by (5). These observations yield the following lemma.

Lemma 3.5: Problem (6) is equivalent to

maxΣa�0 tr
(
H−2

imH(Σ̃11 − Σ̃12Σ̃−1
22 Σ̃>12)

)
s. t. tr ΣaC ≤ σ2

Σ̃Fa+w = Σ̃Fa + Σ̃w

the support of the distribution of Fa
satisfies (Fa)i 6= 0 for at most s indices

(7)

where U,HimH and Σ̃Fa+w are given by (8) and (9). In this
case, the least informative distribution is N(0,Σ∗a) where Σ∗a
solves the problem.

Proof: By the results of [12] we have

H>J(q)H � H>Σ−1
Fa+wH

and equality holds if the distribution of Fa + w is normal.
We may thus restrict the domain of the objective to mean
zero Gaussian variables. Moreover, by the chain rule for



Fisher information, we may further restrict attention to those
a which are independent of w. In this case, the objective
becomes

tr(H>Σ−1
Fa+wH)−1

where the inverses exist due the positive-definiteness of
Σw and the full column rank of H . Let us now change
coordinates by introducing the range-nullspace SVD of H
as

H =
[
UimH UkerH>

] [HimH

0

]
VimH> , (8)

or simply H = UHsV . Now let

Σ̃Fa+w =

[
Σ̃11 Σ̃12

Σ̃21 Σ̃22

]
= UΣFa+wU

> (9)

with Σ̃11 ∈ Rn×n and Σ̃22 ∈ R(p−n)×(p−n). Then, if we
denote the block-entries of Σ̃−1 as Σ̃invij ,

(H>Σ−1
Fa+wH)−1 =

(
V >imH>

[
HimH 0

] [ U>imH

U>kerH>

]

× Σ−1
Fa+w

[
UimH UkerH>

] [HimH

0

]
VimH>

)−1

=

(
V >imH>

[
HimH 0

] [Σ̃inv11 Σ̃inv12

Σ̃inv21 Σ̃inv22

] [
HimH

0

]
VimH>

)−1

=
(
V >imH>HimHΣ̃inv11 HimHVimH>

)−1

.

Since further Σ̃inv11 = (Σ̃11 − Σ̃12Σ̃−1
22 Σ̃>12)−1 by the Schur

complement formula (since Σ̃ � 0, these inverses exist), we
have that

tr(H>Σ−1
Fa+wH)−1

= tr
(
H−1

imH(Σ̃11 − Σ̃12Σ̃−1
22 Σ̃>12)H−1

imH

)
. (10)

Observing that ΣFa+w = FΣaF
>+Σw by independence

and if we let Σ̃Fa = UΣFaU
>, Σ̃w = UΣwU

> we also
have Σ̃Fa+w = Σ̃Fa + Σ̃w.

Remark 3.6: The change of coordinates (8) induces the
equivalent measurement equation

ỹ = U−1y =

[
ỹ1

ỹ2

]
=

[
HimH

0

]
x̃+ U−1Fa+ U−1w

where x̃ = VimH>x.
b) Reduction to Mixed Integer SDP: Problem (7) still

has awkward dependencies through Σ̃−1
22 and the coupling

Σ̃Fa+w = Σ̃Fa + Σ̃w. Our first theorem shows that this
can helped and that the least informative distribution for our
problem can be found by solving a number of semidefinite
programs.

Theorem 3.7: Problem (6) is equivalent to the mixed
integer semidefinite program

max
R�0,

Σ̃Fa�0,

S⊥⊂[p]

tr
(
H−2

imHR
)

s. t.

[
Σ̃Fa,11 + Σ̃w,11 −R Σ̃Fa,12 + Σ̃w,12

Σ̃>Fa,12 + Σ̃>w,12 Σ̃Fa,22 + Σ̃w,22

]
� 0

tr Σ̃FaUF
†,>CF †U> ≤ σ2

tr Σ̃FaU(I − FF †)U> = 0

tr e>i U
>Σ̃FaUei = 0,∀i ∈ S⊥

|S⊥| = p− s
(11)

where U,HimH and Σ̃w are given by (8) and (9). In this case,
the least informative distribution is N(0, F̃ †U>Σ̃∗FaUF

†>)
where Σ̃∗Fa solves the problem.

Proof: We replace the Schur complement in the objec-
tive with a variable, R. Let R � (Σ̃11− Σ̃12Σ̃−1

22 Σ̃>12), which
can be written as the LMI[

Σ̃11 −R Σ̃12

Σ̃>12 Σ̃22

]
� 0

which, since Σ̃Fa+w = Σ̃Fa + Σ̃w is equivalent to[
Σ̃Fa,11 + Σ̃w,11 −R Σ̃Fa,12 + Σ̃w,12

Σ̃>Fa,12Σ̃>w,12 Σ̃Fa,22 + Σ̃w,22

]
� 0

and thus yields the desired LMI.
Next, we need to convert tr ΣaC ≤ σ2 into the variable

Σ̃Fa. However, since F has full column rank,

Σa = F †FΣaF
>F †> = F †ΣFaF

†> = F †U>Σ̃FaUF
†>.

Moreover, the constraint Σ̃Fa+w = Σ̃Fa+Σ̃w can be elim-
inated by requiring that ΣFa is in the range of the mapping
Σ 7→ FΣF>, which holds if and only if ker ΣFa ⊆ kerF>.
In turn, this condition is equivalent to tr ΣFa(I−FF †) = 0,
or trU>Σ̃FaU(I − FF †) = 0, since I − FF † is the
orthogonal projector onto the kernel of F> and since the
variable Σ̃Fa is positive definite.

Finally, the constraint (Fa)i 6= 0 for at most s indices can
also be written in terms of a sequence of linear inequalities
in Σ̃Fa. To do so, note first that (Fa)i 6= 0 for at most s
indices is equivalent to (Fa)i = 0 for at least p− s indices.
Moreover, (Fa)i = e>i Fa where we recall that ei denotes
i:th standard basis vector for Rp. Now, e>i Fa = 0 almost
surely if and only if

0 = E tr(e>i Fa)(e>i Fa)> = tr e>i FEaa
>Fei

= tr e>i FEΣaF
>ei = tr e>i ΣFaei

= tr e>i U
>Σ̃FaUei.

Hence (Fa)i 6= 0 for at most s indices if and only if
tr e>i U

>Σ̃FaUei = 0 for all i ∈ S⊥ for some S⊥ ⊂ [p]
and |S⊥| = p− s.



IV. GAME-THEORETIC INTERPRETATION

Returning to the leader-follower game introduced in Sec-
tion II, we now show that it is optimal for the adversary to
select µa = N(0,Σ∗a) where Σ∗a = F̃ †U>Σ̃∗FaUF

†,> is a
solution of Theorem 3.7.

Theorem 4.1: For any choice of µa satisfying A1 and A2
and any unbiased estimator (A3) x̂ of x satisfying A4 we
have that

max
µa

min
x̂

trE(x− x̂)(x− x̂)> (12)

is given by (7). In addition, any solution of Theorem 3.7
yields the optimal µa of (12) and the optimal x̂ is given by

x̂ = (H>ΣFa+wH)−1H>Σ−1
Fa+wy (13)

where ΣFa+w is the covariance of Fa+ w.
Proof: Let x̂ be given by (13) and observe the chain

of inequalities

E(x− x̂)(x− x̂)> = (H>Σ−1
Fa+wH)−1 � [Jx(p)]−1,

where the first equality is a standard result for this choice
of x̂ (see e.g. [20], Theorem 13.2) and the second inequality
follows by Theorem 6.1 (or Cramér-Rao). Hence the error
tr(H>Σ−1

Fa+wH)−1 is always attainable, whereas, if a is
Gaussian, the second inequality is tight and no better error
is attainable. By Theorem 3.7 it follows that (11) gives the
value of (12).

Notice that the solution µa in general is not unique. To
see this, let us reconsider Example 2.2.

Example 4.2 (Example 2.2 continued): Observe that The-
orems 3.7 and 4.1 together imply that the solution to the
leader follower game with measurement equation

y =


1 −1 0
1 0 −1
0 1 −1
2 −1 −1
−1 2 −1

x+ a+ w (14)

with Ea>a ≤ 1, card{ai 6= 0} ≤ 1, and y, a, w ∈ R5, x ∈
R3 can be restricted to Gaussian attacks and that the optimal
attacks are necessarily of the form a ∼ N(0, Ei) where Ei =
(Ejk) = (δjki); i.e., the entire perturbation budget is spent
on one channel i ∈ [5]. Moreover, since H in (14) does not
have full rank, we factor out the nullspace of H as described
in Remark 2.1 to form the reduced matrix

Hred ≈


−1.41 0
−0.71 1.22
0.71 1.22
−2.12 1.22
2.12 1.22

 .
Concretely, Hred is formed using the matlab commands
[U S V ] = svd(H);
P = V(:,1:2);
Hred = H * V(:,1:2);

since the third column of V formed in the code above spans
the nullspace of H .

Hence, we only need to evaluate

Vi = tr(H>red(Σ + Ei)
−1Hred)

−1, i ∈ [5]

to decide the solution of the game. A straightforward com-
putation shows that V1 ≈ 0.26, V2 = V3 ≈ 0.28, V4 = V5 ≈
0.3. Hence, from the adversary’s perspective, it is optimal to
attack the fourth or fifth measurement.

It is tempting to ascribe robustness properties to the esti-
mator x̂ of Theorem 4.1. However, the solution derived does
not in general constitute a Nash equilibrium. We illustrate
this by the following example.

Example 4.3: Suppose y, x, a, w ∈ R2 with

y =

[
2 1
1 2

]
x+ a+ w, Σw = I2

and that the adversary has the constraints Ea>a ≤
1, card{ai 6= 0} ≤ 1. As in Example 4.2 we only need
to compute

Vi = tr(H>(Σw + Ei)
−1H)−1 = 5/3, i ∈ [2].

Suppose that the attacker plays N(0, E1) and that the
defending player chooses the estimator x̂ = (H>(Σw +
E1)H)−1H>(Σw+E1)−1y in this case, as computed above,
the leader-follower game has value V1 = 5/3. On the other
hand, if the adversary deviates and instead plays N(0, E2),
the risk of the estimator x̂ = (H>(Σw+E1)H)−1H>(Σw+
E1)−1y is E‖x̂ − x‖2 > 5/3 (see [20]). Indeed, if the
defender goes first, by symmetry, the best they can do is
to use the estimator x̂ = (H>H)−1H>y (see [14]).

Example 4.3 shows why Theorem 4.1 cannot in general
give us a Nash equilibrium, the reason being that the cardi-
nality constraint on the adversarial perturbation making the
strategy set of the adversary non-convex. For instance, in the
example above, N(0, E1) and N(0, E2) are both admissible,
but no convex combination of these measures αN(0, E1) +
(1− α)N(0, E2), α ∈ (0, 1) is admissible. In particular, the
usual convexity assumptions needed for minimax theorems
do not hold, see e.g. [21]. More practically, in the example
above, a minimax defender would need to defend against
αN(0, E1) and αN(0, E2) attacks simultaneously, and the
only reasonable estimator for this is x̂ = (H>H)−1H>y,
which is sub-optimal for either attack considered in isolation.

V. CONCLUSION

We introduced a model for sensor attacks on cyber-
physical systems based on an estimation objective. It was
shown that the maximal impact in the associated leader-
follower game is characterized by the distribution minimizing
Fisher information and that this distribution can be found by
solving a mixed integer SDP.

Future Work: We saw Example 4.3 that the attack-
estimator pair which achieves max min is not necessarily
min max. Essentially, this is due to the sparsity assumption-
which breaks convexity of the problem and thus induces a
gap between max min and min max. Our work can in some
sense be interpreted as giving a lower bound for the maxi-
mum impact, whereas characterizing the min max, a game



in which the estimator is selected first, could complement
this viewpoint to give the corresponding upper bound. In
particular, it would be interesting to see if such a solution
also has a characterization in terms of Fisher information.
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VI. APPENDIX

Covariance bound on Fisher information: We frequently
use the following Theorem due to [12].

Theorem 6.1: Let y ∈ Rp be a square integrable random
variable with parametrized density p(y;x), x ∈ Θ ⊂ Rm.
Define

µ(x) =

∫
yp(y;x)dy,

Σ(x) =

∫
(y − µ(x))(y − µ(x))>p(y;x)dy,

Jx(p) =

∫
∂x log p(y;x)[∂x log p(y;x)]>p(y;x)dy.

Then

Jx(p) � [∂xµ(x)]>Σ−1(x)[∂xµ(x)]

where the left hand side is interepreted as infinity, if it does
not exist.
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