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Abstract
In this paper, we extend to the three-dimensional case the numer-

ical study previously performed in a two-dimensional framework for
a complex coupled fluid-kinetic model describing respiratory aerosols.
The specificity of this model lies in the fact that it takes into ac-
count the airways humidity and the resulting hygroscopic effects on
the aerosol droplets, namely their size variation. The air is described
through a system of partial differential equations: the incompressible
Navier-Stokes equations for the air velocity, convection-diffusion equa-
tions on its temperature and water vapor mass fraction. The aerosol
distribution function solves a Vlasov-type equation and depends on
the standard kinetic variables, but also on radius and temperature
variables. After discussing again the implementation strategy, we per-
form numerical experiments, mainly in a branched structure looking
like the trachea and the first lung generation. This allows to present
various statistics on the aerosol behavior in terms of particle deposi-
tion, temperature and size variation of the droplets. We observe that
the outcome appears coherent with the two-dimensional case. Finally,
we discuss several assumptions which may lead to model simplifica-
tions, such as the fact that the water vapor mass fraction in the air
may be considered to be constant throughout the branched structure
in standard breathing conditions.



1 Introduction

The numerical simulation of an aerosol flow, and in particular the de-
position phenomenon, in the human airways is of critical importance to in-
vestigate aerosol therapy, one of the main treatments of chronic obstructive
pulmonary diseases (COPD). The key issue to this approach is to deliver a
drug to the obstructed region of the airways as efficiently as possible.

For the purposes of this technique, the medication is mixed with an ex-
cipient and water through a nebulizer system to create a large number of
droplets, the aerosol. Since the airways are a humid medium, the ques-
tion of aerosol hygroscopic properties is natural to tackle, see [12, 13, 14].
In particular, the aerosol droplets may exchange aqueous matter with the
air loaded with water vapour in the lung. And that may imply some size
variation of the droplets.

Two possible ideas for the modelling of aerosol evolution in the air are
to either consider the particles individually or as a proper fluid mixed to the
air. The former consists in following individual properties of the droplets
forming the aerosol, as in [15, 18], and results in a computational challenge
because of the very large number of physical particles under consideration.
For example, for a publicly distributed nebulizer, [4] calculates that 1010

particles can be injected in the airways in one minute. The latter point of
view gives rise to so-called two phase models, e. g. [1, 7], which may not be
able to provide accurate information on the particle deposition areas.

In this context, fluid-kinetic models appear well-suited to provide a good
description, the main reason being that the volume occupied by the aerosol
remains negligible with respect to the airways volume. We also assume that
the particles do not interact with one another and that their action on the air
can be neglected. Therefore, following the nomenclature introduced in [16],
we consider a very thin spray of particles, which was partially studied in [4].

Let us now discuss how to handle the specific hygroscopic phenomena.
After the first major attempts by [12, 13], [3] presents a set of partial differen-
tial equations which describes them as local effects. In this framework, a dis-
tribution function solving a Vlasov-type equation characterizes the aerosol.
This function depends on time, position, velocity, size, and temperature.
The fluid unknowns are, on the one hand the velocity and pressure, and on
the other hand the temperature and the water vapor mass fraction. The
former classically satisfy the incompressible Navier-Stokes equations, which
do not involve the aerosol under the very thin spray assumption. The latter
are both subject to convection and diffusion phenomena and therefore satisfy
convection-diffusion equations. The thermal and matter exchanges between
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the air and the aerosol appear as forcing terms in these equations. Therefore,
the resulting system is strongly coupled. As opposed to [12, 14], [3] does not
take into account other effects, such as turbulence.

The mathematical aspects of fluid-kinetic models has been investigated
intensively for the past decades, e. g. in [8, 9, 17]. In the context of
respiratory aerosols, see [2, 5] for example. More recently, [6] proves the
existence of global weak solutions for a more complex system than the one
under review in this article, in a time-dependent domain.

A numerical method to tackle this model is presented in the dimension
two in [3]. Our first goal is to extend this approach to a three-dimensional
framework. Then we shall focus on possible simplifications that could alle-
viate the computational effort while providing accurate results.

This article is divided into three main parts. In Section 2 we recall the
model first presented in [3], taking into account a simplification related to
the small size of the aerosol droplets. We then provide in Section 3 a few
details on the numerical scheme and its implementation in three dimensions.
Finally, Section 4 is dedicated to numerical experiments for the complete
model and under several assumptions, which provide some leads on new
relevant simplifications of the model.

2 Presentation of the model

As previously stated, this section recalls the model presented in [3] to
describe the behavior of an aerosol in the respiratory system and, more
precisely, we focus on the trachea and the first two branches of the airways.
We denote by Ω ⊂ R3 this open bounded set. Its boundary Γ = ∂Ω is
divided into three subsets, the wall Γwall, the inlet Γin and the outlet Γout,
suggesting that we focus on the inhaling part of the respiration mechanism.

We consider the aerosol as a dispersed phase and use a kinetic approach
to model it. Therefore, we introduce the aerosol distribution function f . It
depends on time t ≥ 0, position x ∈ Ω, velocity v ∈ R3, size r > 0 and
temperature T > 0, and represents the density of the particles in the phase
space Ω×R3×R∗+×R∗+. The dependence of f on the size and temperature
variables is a novelty introduced in [3] which stems from taking into account
the matter and thermal exchanges between the aerosol and the surrounding
air. Moreover, we assume that the droplets remain spherical, implying that r
can be chosen as the radius of a particle.

In order to describe the size variation phenomenon, we consider a particle
of radius r > 0. Schematically, we suppose that each droplet is divided into
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three layers: the active product, the excipient, and the water. The inner
ball with the active product has the radius rdrug > 0. The corona with the
excipient has an outer radius rex ≥ rdrug. Finally, the rest of the ball is
composed of water and has a radius r ≥ rex. We assume that rdrug and rex

remain constant and that the only size variation comes from the condensation
or evaporation of water at the surface of the particles. If we denote by ρw,
ρdrug and ρex the mass densities of water, drug and excipient, the drug mass
in a particle is 4

3πr
3
drugρdrug, the excipient mass is 4

3π(r3
ex − r3

drug)ρex and
the water mass is 4

3π(r3 − r3
ex)ρw. We assume all the mass densities to be

constant, so that the mass and mass density of a particle only depend on r
and are given by

m(r) =
4

3
π
[
r3

drugρdrug + (r3
ex − r3

drug)ρex + (r3 − r3
ex)ρw

]
, (1)

ρd(r) =
1

r3

[
r3

drugρdrug + (r3
ex − r3

drug)ρex + (r3 − r3
ex)ρw

]
. (2)

The aerosol moves inside the air, assumed to be a Newtonian and incom-
pressible fluid. Hence, the motion of the air can be described by its velocity u
and pressure p, both depending on time t ≥ 0 and position x ∈ Ω. We also
need to introduce the water vapor mass fraction in the air Yv,air and the air
temperature Tair to account for the aforementioned water vapor exchanges
with the aerosol. These quantities Yv,air and Tair also depend on time t ≥ 0
and position x ∈ Ω.

We can now write the equations governing the model. The density sat-
isfies the Vlasov-type equation

∂tf + v · ∇xf + divv[α(u− v) + g)f ] + ∂r(af) + ∂T (bf) = 0, (3)

where g is the gravitational field, α(u − v) is the drag acceleration related
to the motion of the air, and a and b respectively describe the radius and
temperature variations. We have

α(r) =
6πηr

m(r)
, (4)

where η is the constant air dynamic viscosity, and

a(r, T, Yv,air(t, x)) = −Nd(r, T, Yv,air(t, x))

ρw
, (5)

b(r, T, Yv,air(t, x), Tair(t, x)) =
3

ρd(r)cPd
r

(−Qd(r, T, Tair(t, x)

− LvNd(r, T, Yv,air(t, x)))), (6)
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where Nd denotes the water mass flux at the droplet surface, CPd
the specific

heat of the aerosol, Qd the convective flux between the air the the particle,
and Lv the latent heat of water vaporization. We have

Qd(r, T, Tair(t, x)) =
NuκairCT

2r
(T − Tair(t, x)), (7)

where Nu is the droplet Nusselt number in the air, κair the thermal conduc-
tivity of the air as a gaseous mixture, and CT the Knudsen correlation for
non-continuum effects. All these parameters are assumed to be constant.
The expression for Nd is more complex and we first need to introduce sev-
eral physical quantities. We begin by defining the water vapor saturation
pressure, as a function of T , that can be expressed in the cgs unit system by

Pv,sat(T ) = 10 exp

(
23.196− 3816.44

T − 46.13

)
. (8)

Then, we account for the Kelvin effect on the droplet surface concentration
of water vapor with

K(r, T ) = exp

(
2σ

rρd(r)RvT

)
, (9)

where Rv is the gas constant of water vapor and σ is the droplet surface
tension, assumed to be constant. We also need the water activity coefficient

S(r) =

ρw(r3 − r3
ex)

Mw

ρw(r3 − r3
ex)

Mw
+ idrug

ρdrugr
3
drug

Mdrug
+ iex

ρex(r3
ex−r3

drug)

Mex

, (10)

whereMw,Mdrug andMex are the molar masses of water, drug and excipient,
respectively, and idrug and iex are the Van’t Hoff factors of the drug and the
excipient. We can now define the mass fraction of water vapor at the droplet
surface

Yv,surf(r, T ) =
S(r)K(r, T )Pv,sat(T )

ρd(r)RvT
. (11)

The water mass flux is then given by

Nd(r, T, Yv,air(t, x)) = ρair
ShDv(Tair)Cm

2r

Yv,surf(r, T )− Yv,air(t, x)

1− Yv,surf(r, T )
, (12)
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where ρair is the air mass density, Sh the Sherwood number, Cm the mass
Knudsen number correction, and Dv is the binary diffusion coefficient of
water vapor in the air and is given, in the cgs unit system, by

Dv(Tair(t, x)) = 0.216

(
Tair(t, x)

273.15

)1.8

. (13)

Equation (3) is supplemented by the deposition condition on Γwall × R3 ×
R∗+ × R∗+

f(t, x, v, r, T ) = 0 if v · n ≤ 0, (14)

and the initial condition on Ω× R3 × R∗+ × R∗+
f(0, x, v, r, T ) = f0, (15)

where f0 : Ω× R3 × R∗+ × R∗+ → R+ is a given function.
As stated before, the air is first described through its velocity u(t, x) ∈ R3

and its pressure p(t, x) ∈ R, which solve the incompressible Navier-Stokes
equations

ρair(∂tu+ (u · ∇x)u)− η∆xu+∇xp = 0, (16)
divx u = 0. (17)

Following [3, 4], we choose to neglect the aerosol retroaction on the air since
we deal with small-sized particles. Equations (16)–(17) are supplemented
with the following boundary and initial conditions:

u = uin on R+ × Γin,
u = 0 on R+ × Γwall,

σ(u, p) · n = 0 on R+ × Γout,
(18)

u(0, ·) = u0, (19)

where σ(u, p) = ∇xu + (∇xu)ᵀ − p Id is the stress tensor, n is the outgoing
normal vector from Γ, and uin : R+ × Γin → R3, u0 : Ω→ R3 are given.

The water vapor mass fraction Yv,air satisfies the following convection-
diffusion equation on R+ × Ω

ρair(∂tYv,air + u · ∇xYv,air)− divx(Dv(Tair)∇xYv,air) = SY , (20)

where SY accounts for the water mass exchanges between the air and the
particles and is given by

SY (t, x) = ρw

ˆ
R3×R∗

+×R∗
+

4πr2Nd(r, T, Yv,air(t, x))f(t, x, v, r, T ) dv dr dT.

(21)
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Equation (20) is supplemented with the boundary conditions
Yv,air = Y in

v,air on R+ × Γin,

Yv,air = Yv,wall on R+ × Γwall,
∇xYv,air · n = 0 on R+ × Γout,

(22)

and the initial condition on Ω

Yv,air(0, ·) = Y 0
v,air, (23)

where the constants Y in
v,air, Yv,wall, Y

0
v,air ∈ (0, 1) are given.

Similarly, the air temperature Tair satisfies on R+ × Ω

ρair(∂tTair + u · ∇xTair)− κair∆xTair = ST , (24)

where ST accounts for the heat transfer between the air and the aerosol and
is given by

ST (t, x) =

ˆ
R3×R∗

+×R∗
+

4πr2Qd(r, T, Tair(t, x))f(t, x, v, r, T ) dv dr dT. (25)

Equation (24) is supplemented with the boundary conditions:
Tair = T in

air on R+ × Γin,
Tair = Twall on R+ × Γwall,

∇xTair · n = 0 on R+ × Γout,
(26)

and the initial condition on Ω

Tair(0, ·) = T 0
air, (27)

where the constants T in
air, Twall, T

0
air∈ R∗+ are given.

Equations (3)–(27) form a strongly coupled system. We aim to solve
this system numerically, provide quantitative results both for the air and
the aerosol, as well as to discuss possible simplifications in the full three-
dimensional model.

3 Numerical approach

We implement the same numerical scheme as in [3] but in three dimen-
sions. The reader is invited to refer to this article for more details about
the scheme itself. In the following, we only recall the working assumptions
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Figure 1: Schematic view of (a) the cylindrical domain, (b) the branched
structure.

and provide some remarks on the implementation. All the computations are
performed with FreeFem++ [10]1.

Our computations are performed on two distinct domains. The first one
is a cylinder of diameter D0 = 0.8 cm and length L0 = 9.4 cm, see Figure 1a.
The second one is a branched structure modelling an idealized trachea and
the first generation of the airways. The length of the trachea is `0 = 2.9 cm
and its diameter is D0. Both bronchi form an angle of 30◦ with the vertical
axis, their length is set to `1 = 1.8 cm, and their diameter is D1 = 0.6 cm,
see Figure 1b. In both cases, the center of the boundary Γin is the origin of
the space coordinate system.

The cylindrical domain mostly serves as a tool to validate our three-
dimensional code. Since there is no aerosol retroaction term in (16), a
Poiseuille profile at the inlet leads to a stationary Poiseuille flow solving the

1Note that we had to use version 3.43 as opposed to version 4.4.2 which is currently
available because the function convect did not seem to properly behave in three dimen-
sions.

8



Navier-Stokes equations in Ω. We also checked that if the initial distribution
of the particles has a cylindrical symmetry, then it is preserved through time.
Finally, we use the cylindrical domain in Section 4 to test model simplifica-
tions in a simpler geometrical and computational setting than the branched
structure.

As stated above, the aerosol retroaction term on the fluid in (16) is set
to 0, the Navier-Stokes equations (16)–(17) are uncoupled from the other
ones and can be solved independently. This hypothesis is of significant im-
portance as we are led to execute lengthy three-dimensional calculations only
once. We therefore solve (16)–(17) with initial condition u0 = 0 and, at the
domain inlet, a boundary condition uin following a Poiseuille law, oriented
vertically downwards and its modulus given, for (x, y, 0) ∈ Γin, by

|uin(x, y, 0)| = u0

(
1− x2 + y2

(D0/2)2

)
,

with u0 = 50.0 cm.s−1. When we solve the equations, the velocity seems to
reach a stationary state, at least in the domains we studied. We use this
solution in the rest of the computations.

Next, we consider the following conditions on the air temperature:

T 0
air = 310 K, T in

air = 297 K, Twall = 310 K.

Then, a comparison of the orders of magnitude of the coefficients in (20)
shows that the leading term is the diffusion one and therefore Yv,air should
rapidly reach an equilibrium and the aerosol should not have any influence,
which is confirmed by numerical simulations. For example, in the case of the
branched structure, we have

ρair

∆t
∼ 7× 10−1 g.cm−3.s−1,

ρair|u|
∆x

∼ 5× 10−1 g.cm−3.s−1,

Dv(T in
air)

(∆x)2
∼ 11 g.cm−3.s−1, |SY | ∼ 5× 10−5 g.cm−3.s−1,

where ∆t is the time step and ∆x is the average diameter of a cell of
the three-dimensional mesh. Moreover, it appears that the variation of
Dv(Tair) as Tair changes does not influence Yv,air. Therefore, we solve Equa-
tion (20) independently and Dv(Tair) is considered equal to Dv(T in

air) and
we set Y 0

v,air = Y in
v,air = 1.81% and Y wall

v,air = 3.70%. These remarks lead to
a decreasing computation time, but less significant than in the case of the
Navier-Stokes equations.
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Following Remark 7 from [4], we solve the Vlasov equation (3) thanks to
a time subcycling strategy. At each time step, we solve as many systems of
ODEs of the following form as there are numerical particles p, i. e.

ẋp(t) = vp(t), (28)
v̇p(t) = α(rp(t))(u(t, xp(t))− vp(t)) + g, (29)
ṙp(t) = a(rp(t), Tp(t), Yv,air(t, xp(t))), (30)

Ṫp(t) = b(rp(t), Tp(t), Yv,air(t, xp(t)), Tair(t, xp(t))). (31)

Note that these ODEs for a given particle p are independent from the ODEs
for all the other ones and it is therefore natural to perform a parallel com-
putation to solve them and thus greatly reduce the computation time. We
must emphasize that the number of numerical particles remains very small
with respect to the number of physical ones, which implies a slender compu-
tational cost.

Finally, in order to avoid needing a precise parametrization of the bound-
ary when dealing with the deposition condition, i.e. to be able to simply load
a mesh file and solve the equations and verify the deposition criterion below
without more precise knowledge of the domain, we define a standard notion
of distance to the considered subset Σ of Γ by solving

−∆xgΣ = 1 on Ω,
gΣ = 0 on Σ,

∇xgΣ · n = 0 on Γ\Σ,

and setting

∀x ∈ Ω, dΣ(x) =


gΣ(x)

‖∇xgΣ(x)‖ if gΣ(x)
∇xgΣ(x) < η,

η else,

and dΣ(x) = gΣ(x) = 0 if x ∈ Σ, for some η > 0. The functions dΣ ≥ 0
satisfy dΣ(x) = 0 ⇔ x ∈ Σ and enable us to discriminate between particles
near the boundary under consideration.

The deposition/exit test is therefore performed as follows at each time
step of the subcycle solving the ODEs for the particles.

• If at some time step, the droplet is outside Ω, we go back to the previous
position (still inside the domain) and compare the distances of the
particle to the wall, and both exits, and consider that the particle was
deposited or exited accordingly.
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• If the droplet remains inside Ω, we assume that it is deposited if both
the following conditions are met:

dΓwall(xp) ≤ αhmin and vp ∆t ≤ αhmin,

where hmin is the minimal diameter of a mesh cell and α > 0. Let us
emphasize the fact that ∆t is the global time step, as opposed to the
one used to the the ODEs. These conditions mean that if the particle
is close enough to the wall and its velocity is small enough, then we
consider the particle to be deposited. This is physically justified by
the fact that under these assumptions, the mucus on the wall tends to
force the adhesion of the particle to the wall, see [11].

Note that the definition of dΓwall implies to take η greater than αhmin for
the deposition test to make sense. Furthermore, we have investigated the
influence of the choice of α for values between 0.5 and 2 and have found the
deposition rate to be have a stable behavior. For instance, when a set of
initial positions of the particles leads to 3 deposited numerical particles for
α = 0.5, it leads to 19 deposited particles for α = 2. Finally, working under
the initial conditions presented above, we find that the limiting factor for
deposition is the distance to the wall rather than the velocity.

An intuitive choice would have been to say that a particle with radius rp
at position xp is deposited if dΓwall(xp) ≤ rp. This is implemented in [3] and
the numerical simulations are run on a very fine mesh. On the contrary, for
the sake of simplicity, we choose to use a mesh sufficiently fine fluid-wise but
not particle-wise. Therefore, we need to adapt the deposition condition as
described above.

We also considered the following deposition criterion

dΓwall(xp) ≤ `lash,

where `lash = 0.1 cm is the average length of a bronchial lash. It led to a
deposition rate of 20%, a different order of magnitude from the 8% obtained
in [3] and was not further investigated but should be taken into account in
further research.

4 Numerical results

4.1 Full model

As stated above, all the tests discussed below were investigated both
in the cylindrical domain and the branched structure presented in Figure 1
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and led to the same kind of comments and conclusions. Therefore, we only
present our results in the latter case.

Our experiment consists in releasing five waves of 100 numerical par-
ticles, each representing 104 physical particles, between the times ∆t =
1.53454 10−3 s and 101∆t. All the particles initially have the same ve-
locity vp(0) = 50 ez (in cm.s−1), the same radius rp(0) = 22.5 µm, and the
same temperature Tp(0) = T in

air. Their position is defined randomly in the
disk of radius D0/4 centered on the origin and lying in the plane z = 0.

As mentioned in the previous section, the air velocity u and the water
vapor mass fraction Yv,air are assumed to be stationary. Figure 2 displays
the profile of |u| and Yv,air in the cross-section y = 0 of the bifurcation.

0.6

51
|u|

(cm.s−1)

1.9%

3.7%
Yv,air

(a) (b)

Figure 2: (a) Modulus of the velocity |u| and (b) water vapor mass fraction
Yv,air in the cross-section y = 0.

In Figure 3, we show the evolution of the particles in the domain. At
first, in the trachea, the bundle of droplets assumes the shape of a paraboloid,
which is consistent with the fact that the air flow is almost Poiseuille in this
region.

The evolution of the air temperature as well as the particles is represented
in Figure 4. Again, as expected, the temperature in the trachea evolves as
if the air propagated as a Poiseuille flow, the cold wave assuming the shape
of a parabola in the cross section y = 0. We notice that the velocities of the
droplets are a little bigger than that the fluid one, because of gravitational
effects.
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z
y

x

Figure 3: Dynamics of the particles at time t = (10 + 25i)∆t, 0 ≤ i ≤ 7, i.e.
between times t0 = 1.53454 10−3 s and t7 = 2.8389 10−2 s.

Figure 5 allows to see the local effects of the particles on the air tempera-
ture as it displays the temperature at a given time (a) with and (b) without
the particles. As noticed in the two-dimensional case in [3], the droplets
temperature is higher than the cold wave and they heat the air surrounding
them as they go through the branched structure. This effect is not negligible
as the air temperature around the particles can go up to about 302 K.

Let us now present the results for the particles. The following plots
are the results of one computation. Yet we find similar behaviors, from
a statistical point of view, regardless of the initial uniform distribution of
the particles in the disk of radius D0/4. In our test case, 5 particles are
deposited, 239 exit the domain through the left branch (we use the patient’s

13



310

297

(K)

Tair

Figure 4: Dynamics of the particles and the air temperature, at times t =
(10 + 25 × i)∆t, 0 ≤ i ≤ 7. The temperature is displayed on the domain
y = 0 while the particles with a positive y coordinate are projected onto the
plane y = 0.

point of view) and 256 go through the right branch. Figure 6 displays their
trajectories. We can see that only particles at the center of the inlet are
deposited at the cusp of the branched structure and there is no deposition
on the walls of the branches. The domain being asymmetrical in the case
study of [3], we cannot draw much conclusions for the comparison of the
results. Note nonetheless that the deposition of droplets, as expected, is
lower for our three-dimensional domain.
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310
Tair

(K)

297

310
Tair

(K)

(a) (b)

Figure 5: Local effects of the aerosol on the air temperature, at time t =
0.12123 s

(a) (b) (c)

Figure 6: Particle trajectories in the reference case, the plane y = 0 (a)
towards the left branch, (b) towards the right branch, (c) until deposition.
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Figure 7: (a) Radius and (b) temperature evolution of the particles.

On Figure 7, we represent the evolution of the radius and temperature of
the particles until their exit from the domain or their deposition. Similarly
to what is described in two dimensions in [3], the first injection of particles
behaves quite differently from the other four. The explanation lies in the fact
that they encounter different air temperatures. Indeed, the first particles are
transported through hot air, the cold wave being just behind them, while the
other injections flow through cold air. Note that the entry of the particles
into each branch coincides with the spreading of radii and temperatures
among the injections.

Since we run computations with a random initial distribution of particles,
we need to repeat the experiment 10 times and average to draw conclusions
on the data we obtain. In Table 1 (Full Model column, Model B being de-
scribed below), we provide the mean percentage of deposited particles and
if particles passing through the left or right branch and the corresponding
mean times, as well as the mean radius and temperature of the droplets after
their exit or deposition. To determine the accuracy, we compute the stan-
dard deviation with two significant figures and approximate the mean value
accordingly. For example, we find a standard deviation of 0.52 10−4 cm for
the radius of the deposited particles and, consequently, the mean value is
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given as 3.26 10−4 cm. Yet, for the temperature, we obtain a very low stan-
dard deviation of 0.082 K, which is irrelevant with respect to the precision
of the numerical scheme and we therefore only provide 3 significant figures
for these data.

Mean Full Model Model B
Deposition rate 1.62 % 1.62 %
Left exit rate 49.1 % 49.1 %
Right exit rate 49.28 % 49.28 %
Radius depos. (10−4 cm) 3.26 3.37
Radius left exit (10−4 cm) 3.82 3.91
Radius right exit (10−4 cm) 3.81 3.91
Temperature depos. (K) 310 310
Temperature left exit (K) 310 310
Temperature right exit (K) 310 310
Depos. time (s) 0.1423 0.1424
Left exit time (s) 0.1935 0.1934
Right exit time (s) 0.1938 0.1937

Table 1: Statistics for the particles in the branched structure.

4.2 Potential simplifications of the model

Let us now consider simplifications that could be made to the model.
Our main focus is the effect of such modifications on the eventual deposition
and the location of the deposited particles, as well as the evolution of the
size of the droplets. The first simplification is tested in both cylindrical and
branched structure cases while the other ones are only tested in the cylinder.

4.2.1 Can we assume that the water vapor mass fraction is con-
stant in Ω?

As explained in the previous section, we consider the water vapor mass
fraction Yv,air to be constant in time. As we can see on Figure 2b, Yv,air

does not vary much in the branched structure and only differs from Ywall

close to the inlet. We now assume that Yv,air = Ywall is constant through-
out the domain. The remaining equations are (3),(16)–(17) and (24) and
constitute Model B. For our experiments, we set the particles in the same
initial conditions as above, and compare the results. We find that the global
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behavior of a droplet is not changed. If a particle exits (left or right) or
is deposited with a space-dependent Yv,air, it does so with a constant Yv,air

too. Statistics on the mean radii, temperature and deposition/exit times are
provided in Table 1 (Model B). In order to compare more accurately the
differences between the models, Table 2 provides statistics on the relative
errors that we compute for each particle of our 10 experiments. We do not
provide the values for the temperature as the mean relative error is less than
the precision that can be expected from the approximation scheme.

Mean relative error Standard deviation
Radius depos. 3.5 % 1.9 %
Radius left exit 2.7 % 1.3 %
Radius right exit 2.7 % 1.3 %
Depos. time 0.02 % 0.03 %
Left exit time 0.05 % 0.09 %
Right exit time 0.05 % 0.1 %

Table 2: Statistics on the relative errors at end time between the Full Model
and Model B.

4.2.2 Can we further assume that water vapor mass fraction at
the droplet surface is constant?

As we explained above, we have systematically validated our code in
the case of a cylindrical domain and the outcomes do not differ from the
Reference case of the branched structure (except that there is no deposition
in the cylinder). In particular, the assumption Yv,air = Ywall leads to results
similar to those of the previous paragraph. To answer the question under
review in the following, we only consider the case of a cylindrical domain.

As shown in Figure 8, the water vapor mass fraction at the droplet surface
seems to quickly reach an equilibrium. Though, for the particles in the
first injection, this value seems a little greater than for the other injections,
we now consider that Yv,surf is a constant. This simplifies the differential
equation (30) satisfied by the radius as it becomes:

ṙ =
cDv(Tair)

r

for some constant c > 0. If Dv(Tair) were constant, the radii would then be
expressed analytically thanks to a square root, which is in fact reminiscent
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Figure 8: Water vapor mass fraction at the surface of the droplet in the
cylinder. The dotted line represents the value Yv,air = Ywall.

of the profiles of Figure 7a. Yet the computations result in a droplet temper-
ature behavior that is completely different from the reference case, as shown
in Figure 9, and that does not seem physically relevant.

4.2.3 Can we assume the air and particle temperatures to be
constant?

In [3], the authors show that considering the air and particle temperatures
as constants results is 367 % increase in the deposition rate and a 155 %
increase in the final mean radius. We have considered this hypothesis in the
cylinder case and have found an increase of 30 % in the final mean radius.
Such an increase, in coherence with the two-dimensional results, is enough
to discard the hypothesis and we do not investigate further the case of a
branched structure.

Note that if we also consider Yv,surf to be constant, equal to 3.5%, then
we obtain an increase of 18 % in the final mean radius.
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Figure 9: Temperature of the particles in the cylinder for Yv,air = Ywall and
(a) Yv,surf = 0.03 and (b) Yv,surf = 0.035.

5 Conclusions

We can compare our results with those obtained in two dimensions in [3].
We find similar evolutions for the radius and temperature of the particles
in the reference case. The particles flowing through the trachea also have a
local influence on the air temperature, heating it by up to 1.6 %. Yet, the
air temperature reaches a stationary state that does not depend on the fact
that particles have been present in the domain.

As expected from the symmetry of the domain, the left and right exit rate
are almost the same. The deposition phenomenon for small-sized particles
seems to be mainly governed by the geometry of the domain and the initial
position of the particles. An increase of around 3% in the particle radius
between the Full Model and Model B does not lead to a change in the
deposition of the droplets. We cannot really comment on the deposition rate
as the domain considered in [3] was more realistic and asymmetrical. To
provide a meaningful comparison, we should compare our three-dimensional
results to two-dimensional results in a symmetrical bifurcation. We could
also create a three-dimensional mesh resembling the two-dimensional one
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from [3]. We should expect a lower deposition rate in dimension three since
the particles have more space when they come close to the walls of the branch,
see [4].

When studying simplifications of the model, we find that the water va-
por mass fraction in the air does not influence the behavior of the particles.
Indeed, when we assume it is constant, it almost does not effect the temper-
ature or trajectory of the droplets, and it induces a mean relative error on
the radii of the deposited ones around 3.5%, which can be neglected in this
context. On the contrary, considering the water vapor mass fraction at the
surface of the droplets to be constant leads to irrelevant results. Similarly if
the water vapor mass fraction in the air and the particle and air tempera-
tures are taken as constants, the changes on the radii are too significant for
this simplification to be adopted.

As was already stated in [3], further investigations should focus on the
effect of the excipient on the aerosol behavior, the effects of the geometry
(since we only considered domains with a vertical main axis), or the influence
of the initial radius on the deposition of the particles. The presence of mucus
moving towards the inlet under the influence of the motion of the bronchial
lashes should be modelled more precisely. Finally, taking into account the
variation of physical parameters or the presence of an obstruction in the
airways would improve the modelling of respiratory diseases.
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A Values of the physical constants

All the values of the physical constants used in our numerical simulations
are given in Table 3 and are the same as the ones collected in [3].

Quantity Symbol Value Unit (cgs)
Gravitation |g| 980 cm.s−2

Air mass density ρair 1.18 10−3 g.cm−3

Air specific heat cPair 1.01 107 cm2.s−2.K−1

Air thermal conductivity κair 2.60 103 erg.cm−1.s−1.K−1

Air dynamic viscosity η 1.18 10−4 g.cm−1.s−1

Water mass density ρw 0.997 g.cm−3

Drug mass density ρdrug 1.34 g.cm−3

Excipient mass density ρex 2.17 g.cm−3

Water molar mass Mw 18.0 g.mol−1

Drug molar mass Mdrug 577 g.mol−1

Excipient molar mass Mex 58.4 g.mol−1

Drug van’t Hoff coefficient idrug 2.10 –
Excipient van’t Hoff coefficient iex 2.10 –

Droplet specific heat cPd 4.18 107 cm2.s−2.K−1

Droplet mass Knudsen number correction Cm 1.00 –
Droplet temperature Knudsen correlation CT 1.00 –

Droplet Nusselt number Nu 2.00 –
Droplet Sherwood number Sh 2.00 –

Water vaporization latent heat Lv 2.26 1010 cm2.s−2

Droplet surface tension σ 72.0 dyn.cm−1

Water vapor specific gas constant Rv 4.61 106 cm2.s−2.K−1

Table 3: Value of the physical constants.
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