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1. Introduction. The build-up method is a powerful technique to construct selfdual codes over fields and rings [START_REF] Han | Construction of self-dual codes over F 2 + uF 2[END_REF][START_REF] Kim | Euclidean and hermitian self-dual MDS codes over large finite fields[END_REF]. Starting from a self-dual code of length n, it builds a self-dual code of length n + 2 by a simple recursion. This method was used successfully over a non-unital non commutative ring in [START_REF] Alahmadi | The buildup construction of quasi self-dual codes over a non-unital ring[END_REF]. In this article, we adapt this method to generate quasi self-dual (QSD) codes over the ring I, a non-unital, commutative ring of order 4 [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF]. QSD codes are defined in that reference as self-orthogonal codes of length n, and size 2 n . This special concept plays an analogous role in I to that played by self-dual codes over fields and unital rings. Of special interest is the subclass of Type IV codes, namely QSD codes with all weights even, which exists for several rings of order four [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF][START_REF] Alahmadi | Type IV codes over a non-unital ring[END_REF]. A relaxation of that concept that is special to the ring I is that of quasi Type IV codes (QTIV), that is to say QSD codes with an even torsion code [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF]. While the build up constructions do not seem to preserve the class of Type IV codes, they are shown here to preserve the wider class of QTIV codes. As a result, we classify QSD codes of length at most 6. We also classify Type IV codes and QTIV codes of length n ≤ 6. The material is organized as follows. The next section collects some necessary facts and notations about codes, rings, modules, and duality. Section 3 derives the main construction. Section 4 contains numerical data. Section 5 concludes the article, and points out some open problems.

2. Background material.

2.1. Binary codes. Denote by wt(x) the Hamming weight of x ∈ F n 2 . The dual of a binary linear code C is denoted by C ⊥ and defined as

C ⊥ = {y ∈ F n 2 | ∀x ∈ C, (x, y) = 0}
, where (x, y) = n i=1 x i y i , denotes the standard inner product. A code C is selforthogonal if it is included in its dual: C ⊆ C ⊥ . A code is even if all its codewords have even weight. All self-orthogonal binary codes are even, but not all even codes are self-orthogonal. Two binary codes are equivalent if there is a permutation of coordinates that maps one to the other. 2.2. Rings. Following [START_REF] Fine | Classification of finite rings of order p 2[END_REF] we define a ring on two generators a, b by its relations From this table, we infer that this ring is commutative, and without an identity element for the multiplication. It is local with maximal ideal J = {0, b}, and residue field F 2 = {0, 1}, the finite field of order 2. Thus we have a b-adic decomposition as follows. Every element i ∈ I can be written

I = a, b | 2a = 2b = 0, a 2 = b, ab = 0, .
i = as + bt,
where s, t ∈ F 2 and where we have defined a natural action of F 2 on I by the rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ I. Thus a = 1a, c = 1c and c = a1+b1. Note that for all r ∈ I, this action is "distributive" in the sense that r(s ⊕ t) = rs + rt, where ⊕ denote the addition in F 2 . On occasion we will use the inner product notation (x, r)

for x ∈ F n 2 , r ∈ I n to denote (x, r) = n i=1 x i r i = xi=1 r i .
Denote by α : I → I/J F 2 the map of reduction modulo J. Thus α(0) = α(b) = 0, and α(a) = α(c) = 1. This map is extended in the natural way in a map from I n to F n 2 .

Modules.

A linear I-code C of length n is an I-submodule of I n . It can be described as the I-span of the rows of a generator matrix. With that code we associate two binary codes of length n :

1. the residue code defined by res(C) = {α(y) | y ∈ C}, 2. the torsion code defined by tor(C) = {x ∈ F n 2 | bx ∈ C}. It is easy to check that res(C) ⊆ tor(C) [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF]. It is traditional to denote by k 1 the dimension of the residue code and k 1 + k 2 that of the torsion code.

A simple application of the first isomorphism theorem [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF], shows that

|C| = |res(C)||tor(C)| = 2 2k1+k2 .
An additive code of length n over F 4 is an additive subgroup of F n 4 . It is an F 2 vector space with 4 k elements for some k ≤ n (here 2k is an integer, but k may be half-integral). Using a generator matrix G, such a code can be cast as the F 2 -span of its rows. To every linear I-code C is attached an additive F 4 -code φ(C) by the alphabet substitution

0 → 0, a → ω, b → 1, c → ω 2 ,
where

F 4 = F 2 [ω], extended naturally to F n 4 .
It can be checked that for all x ∈ I n , we have T r(φ(x)) = α(x), and thus res(C) = T r(φ(C)), where T r() denotes the usual trace from F 4 down to F 2 . Similarly, we see that tor(C) is the so-called subfield subcode of φ(C) that is

F n 2 ∩ φ(C).
We use the Magma notation ( Cf. the Handbook section of [16])

[< 0, 1 >, • • • , < i, A i >, • • • , < n, A n >]
for the weight distribution of a quaternary code, where A i is the number of codewords of weight i. Two I-codes are permutation equivalent if there is a permutation of coordinates that maps one to the other. 

C ⊥ = {y ∈ I n | ∀x ∈ C, (x, y) = 0}.
Thus the dual of a module is a module. A code is self-dual if it is equal to its dual.

Remark 1. The repetition code of length 2 is defined by R 2 := {00, aa, bb, cc}. Its dual is R ⊥ 2 = {00, aa, bb, cc, 0b, b0, ac, ca}, a supercode of R 2 of size 8. In length one, we have J ⊥ = I.

A code C is self-orthogonal if ∀x, y ∈ C, (x, y) = 0. Clearly, C is self-orthogonal iff C ⊆ C ⊥ . A code of length n is quasi self-dual if it is self-orthogonal and of size 2 n .
Following a terminology from [START_REF] Dougherty | Type IV self-dual codes over rings[END_REF], a quasi self-dual code over I with all weights even is called a Type IV code.

Remark 2. The repetition code of length 2 is quasi self-dual over I and is of Type IV. This shows, by taking direct sums of codes, that Type IV codes over I exits for all even lengths. We see that J is a quasi self-dual code over I. This shows, again by taking direct sums, that QSD codes exist for all integer lengths. Following a terminology introduced in [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF], we shall call a QSD code with an even torsion code quasi Type IV (QTIV). Every Type IV code is quasi Type IV but not conversely as the next example shows. 

Construction.

In this section we discuss two kinds of construction methods for quasi self-dual codes over I. The following theorem is the first one, constructing quasi self-dual codes of length increased by two, with one more generator.

Theorem 1. Let C 0 denote a quasi self-dual code of length n and over I, with generating set r 1 , . . . , r k . Let x be a fixed vector in F n 2 satisfying (x, x) = 1. (Thus any x of odd Hamming weight works). Write

y i = (x, r i ) for 1 ≤ i ≤ k. The I-span of the following k + 1 vectors is a quasi self-dual code C of length n + 2.
(a, 0, ax), (y 1 , y 1 , r 1 ), . . . , (y k , y k , r k ).

Proof. First, we check that C is self-orthogonal.

• the first vector is orthogonal to itself by definition of x, since a 2 +a 2 (x, x) = 0.

THE BUILD-UP CONSTRUCTION OVER

A COMMUTATIVE NON-UNITAL RING 5

• the last k vectors are orthogonal to each other and to themselves by selforthogonality of C 0 , since y i y j + y i y j + (r i , r j ) = 0. • the first vector is orthogonal to the last k vectors by definition of the y i 's since ay i + (ax, r i ) = ay i + a(x, r i ) = ay i + ay i = 0.

Hence C is self-orthogonal. We claim that |C| = 4|C 0 | = 2 n+2 . Indeed define C 0 as the generator span of the last k generators. Write S y = (y, 0, yx), for all y ∈ I.

Then it can be seen that the construction in the theorem is equivalent to

C = ∪y∈I (S y + C 0 ),
where ∪ denotes disjoint union. Thus C is quasi self-dual of length n + 2.

The next result shows that this construction preserves the quasi Type IV property.

Corollary 1. If C 0 is QTIV then C obtained from the previous theorem is also QTIV.

Proof. Since C 0 is quasi Type IV, then tor(C 0 ) is an even code. If tor(C 0 ) is even so is tor( C 0 ), since we are only adding two equal coordinates. Because S b = b(1, 0, x) we see that tor(C) = tor( C 0 ) ∪((1, 0, x) + tor( C 0 )). Since (x, x) = 1, the vector (1, 0, x) has even weight. Thus tor(C) is even, and C is quasi Type IV.

The second kind of construction also constructs QSD codes of length two more, but with two more generators. Theorem 2. Let C 0 be a quasi self-dual code of length n over I and G 0 = (r i ) be a k × n generator matrix for C 0 , where r i is the i-th generator of G 0 , 1 ≤ i ≤ k. Let x be a fixed vector in F n 2 . For 1 ≤ i ≤ k, let y i = ((x, r i ), (x, r i )) be a vector of length 2. Then the following generators (b, 0, bx), (0, b, bx), (y 1 , r 1 ), . . . , (y k , r k ). generate a quasi self-dual code C over I of length n + 2

Proof. Firstly, we show that C is self-orthogonal.

• The first generator is orthogonal to itself since b 2 + b 2 (x, x) = 0. Similarly the second generator is orthogonal to itself. • The first generator is orthogonal to the second generator as b 2 (x, x) = 0.

• The first (or, the second) generator is orthogonal to any one of the last k generators since b(x, r i ) + (bx, r i ) = 0. • The last k generators are orthogonal to each other and to themselves by selforthogonality of C 0 since (y i , y j ) + (r i , r j ) = (x, r i )(x, r j ) + (x, r i )(x, r j ) = 0 Hence, the set of k generators generates a self-orthogonal code C. We claim that |C| = 4|C 0 | = 2 n+2 . Indeed define C 0 as the row span of the last k generators. Write S y = (y, 0, yx), T y = (0, y, yx) for all y ∈ I. Then it can be seen that the construction in the theorem is equivalent to C = ∪y,z∈J (S y + T z + C 0 ). Therefore, C is quasi self-dual code of length n + 2 Like for the first construction, we have a result on quasi Type IV codes.

  Thus, I has characteristic two, and consists of four elements I = {0, a, b, c}, with c = a + b. The addition table is immediate from these definitions + 0 a b c 0 0 a b c a a 0 c b b b c 0 a c c b a 0 The multiplication table is as follows. × 0 a b c 0 0 0 0 0 a 0 b 0 b b 0 0 0 0 c 0 b 0 b THE BUILD-UP CONSTRUCTION OVER A COMMUTATIVE NON-UNITAL RING 3
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Example 1 .

 1 The code with the three generators  a b a b 0 b b 0 b 0 0 b   is QSD but notType IV as the sum of first and second row has odd weight. But its torsion code is an even code. Thus, it is quasi Type IV.

A. ALAHMADI, A. ALKATHIRY, A. ALTASSAN, A. BONNECAZE, H. SHOAIB, P. SOL É

A. ALAHMADI, A. ALKATHIRY, A. ALTASSAN, A. BONNECAZE, H. SHOAIB, P. SOL É

Corollary 2. If C 0 is QTIV then C obtained from the previous theorem is also QTIV if (x, x) = 1.

Proof. Since C 0 is quasi Type IV, tor(C 0 ) is even. If tor(C 0 ) is even so is tor( C 0 ). Because both S b = b(1, 0, x) and T b = b(0, 1, x) are multiples of a binary vector by b, we see that

Since, by hypothesis, (x, x) = 1, the vectors (1, 0, x) and (0, 1, x) have even weight. Thus, tor(C) is even, and C is QTIV.

Remark 3. The number of codes generated from a given C 0 depends on the number of choices for x. Thus Theorem 1 generates 2 n-1 codes, and Theorem 2 generates 2 n codes.

4. Numerical results. In this section, we continue the classification of inequivalent codes given in [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF] for n < 4, by means of the methods described in this paper up to n = 6. It is an open problem to know if the build-up methode can produce enough inequivalent codes in higher lengths.

We take for granted that QSD codes containing odd weight vectors cannot be Type IV.

Recall from [START_REF] Alahmadi | Quasi Type IV codes over a non-unital ring[END_REF] the following results.

• For n = 1 there is just one code generated by the matrix (b).

• For n = 2 there are two Type IV codes with weight distribution [< 0, 1 >, < 2, 3 >]. • For n = 3 there are four QSD codes with weight distributions In view of the super-exponential number of codes generated by this method, more computing power might be needed to extend the numerical results to higher lengths .