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Abstract

In this paper we propose the first multi-armed bandit algorithm based on re-
sampling that achieves asymptotically optimal regret simultaneously for different
families of arms (namely Bernoulli, Gaussian and Poisson distributions). Unlike
Thompson Sampling which requires to specify a different prior to be optimal in
each case, our proposal RB-SDA does not need any distribution-dependent tuning.
RB-SDA belongs to the family of Sub-sampling Duelling Algorithms (SDA) which
combines the sub-sampling idea first used by the BESA [1] and SSMC [2] algo-
rithms with different sub-sampling schemes. In particular, RB-SDA uses Random
Block sampling. We perform an experimental study assessing the flexibility and
robustness of this promising novel approach for exploration in bandit models.

1 Introduction

A K-armed bandit problem is a sequential decision-making problem in which a learner sequentially
samples from K unknown distributions called arms. In each round the learner chooses an arm
At ∈ {1, . . . ,K} and obtains a random reward Xt drawn from the distribution of the chosen arm,
that has mean µAt . The learner should adjust her sequential sampling strategy A = (At)t∈N (or
bandit algorithm) in order to maximize the expected sum of rewards obtained after T selections. This
is equivalent to minimizing the regret, defined as the difference between the expected total reward of
an oracle strategy always selecting the arm with largest mean µ? and that of the algorithm:

RT (A) = µ?T − E

[
T∑
t=1

Xt

]
= E

[
T∑
t=1

(µ? − µAt)

]
.

An algorithm with small regret needs to balance exploration (gain information about arms that have
not been sampled a lot) and exploitation (select arms that look promising based on the available
information). Many approaches have been proposed to solve this exploration-exploitation dilemma
(see [3] for a survey), the most popular being Upper Confidence Bounds (UCB) algorithms [4, 5, 6]
and Thompson Sampling (TS) [7, 8]. TS is a randomized Bayesian algorithm that selects arms
according to their posterior probability of being optimal. These algorithms enjoy logarithmic regret
under some assumptions on the arms, and some of them are even asymptotically optimal in that they
attain the smallest possible asymptotic regret given by the lower bound of Lai & Robbins [9], for
some parametric families of distributions. For distributions that are continuously parameterized by
their means, this lower bound states that under any uniformly efficient algorithm,

lim inf
T→∞

RT (A)

log(T )
≥

∑
k:µk<µ?

(µ? − µk)

kl(µk, µ?)
., (1)

where kl(µ, µ′) is the Kullback-Leibler divergence between the distribution of mean µ and that of
mean µ′ in the considered family of distributions. For arms that belong to a one-parameter exponential
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family (e.g. Bernoulli, Gaussian, Poisson arms) kl-UCB using an appropriate divergence function [6]
and Thompson Sampling using an appropriate prior distribution [10, 11, 12] are both asymptotically
optimal in the sense that their regret matches that prescribed by the lower bound (1), for large values
of T . Yet, a major drawback of theses algorithms is that their optimal tuning requires the knowledge
of the families of distributions they operate on. In this paper, we overcome this issue and propose an
algorithm that is simultaneously asymptotically optimal for several families of distributions.

In the past years, there has been a surge of interest in the design of non-parametric algorithms that
directly use the empirical distribution of the data instead of trying to fit it in an already defined
model, and are therefore good candidates to meet our goal. In [13], the authors propose the General
Randomized Exploration (GRE) framework in which each arm k is assigned an index µ̂k,t sampled
from a distribution p(Hk,t) that depends on the history of past observed rewards for this armHk,t,
and the arm with largest index is selected. GRE includes Thompson Sampling (for which p(Hk,t) is
the posterior distribution given a specified prior) but also allows for more general non-parametric
re-sampling schemes. However, the authors of [13, 14] show that setting p(Hk,t) to be the non-
parametric Bootstrap [15] leads to linear regret. They propose variants called GIRO and PHE which
perturb the history by augmenting it with fake samples. History perturbation was already suggested
by [16] and is also used by Reboot [17], with a slightly more complicated bootstrapping scheme.
Finally, the recently proposed Non Parametric TS [18] does not use history perturbation but instead
sets µ̂k,t as a weighted combination of all observations inHk,t and the upper bound of the support,
where the weights are chosen uniformly at random in the simplex of dimension |Hk,t|.
Besides Reboot [17], which has been analyzed only for Gaussian distributions, all other algorithms
have been analyzed for distributions with known bounded support, for which they are proved to have
logarithmic regret. Among them, Non Parametric TS has strong optimality property as its regret is
proved to match the lower bound of Burnetas and Katehakis [19] for (non-parametric) distribution
that are bounded in [0,1]. In this paper, we propose the first re-sampling based algorithm that is
asymptotically optimal for several classes of possibly un-bounded parametric distributions. We
introduce a new family of algorithms called Sub-Sampling Duelling Algorithms, and provide a regret
analysis for RB-SDA, an algorithm based on Random Block sub-sampling. In Theorem 3.1, we show
that RB-SDA has logarithmic regret under some general conditions on the arms distributions. These
conditions are in particular satisfied for Gaussian, Bernoulli and Poisson distribution, for which we
further prove in Corollary 3.1.1 that RB-SDA is asymptotically optimal.

The general SDA framework that we introduce is inspired by two ideas first developed for the BESA
algorithm by [1] and for the SSMC algorithm by [2]: 1) the arms pulled are chosen according to the
outcome of pairwise comparison (duels) between arms, instead of choosing the maximum of some
index computed for each arm as GRE algorithms do, and 2) the use of sub-sampling: the algorithm
penalizes arms that have been pulled a lot by making them compete with the other arms with only a
fraction of their history. More precisely, in a duel between two arms A and B selected nA and nB
times respectively, with nA < nB , the empirical mean of arm A is compared to the empirical mean
of a sub-sample of size nA of the history of arm B. In BESA the duels are organized in a tournament
and only the winner is sampled, while SSMC uses rounds ofK−1 duels between an arm called leader
and all other arms. Then the leader is pulled only if it wins all the duels, otherwise all the winning
challengers are pulled. Second difference is that in BESA the sub-sample of the leader’s history is
obtained with Sampling Without Replacement, whereas SSMC selects this sub-sample as the block
of consecutive observations with smallest empirical mean. Hence BESA uses randomization while
SSMC does not. Finally, SSMC also uses some forced exploration (i.e. selects any arm drawn less
than
√

log r times in round r). In SDA, we propose to combine the round structure for the duels used
by SSMC with the use of a sub-sampling scheme assumed to be independent of the observations in
the history (this generalizes the BESA duels), and we get rid of the use of forced exploration.

The rest of the paper is structured as follows. In Section 2 we introduce the SDA framework and
present different instances that correspond to the choice of different sub-sampling algorithms, in
particular RB-SDA. In Section 3 we present upper bounds on the regret of RB-SDA, showing in
particular that the algorithm is asymptotically optimal for different exponential families. We sketch
the proof of Theorem 3.1 in Section 4, highlighting two important tools: First, a new concentration
lemma for random sub-samples (Lemma 4.2). Second, an upper bound on the probability that the
optimal arm is under-sampled, which decouples the properties of the sub-sampling algorithm used,
and that of the arms’ distributions (Lemma 4.3). Finally, Section 5 presents the results of an empirical
study comparing several instances of SDA to asymptotically optimal parametric algorithms and other
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algorithms based on re-sampling or sub-sampling. These experiments reveal the robustness of the
SDA approaches, which match the performance of Thompson Sampling, without exploiting the
knowledge of the distribution.

2 Sub-sampling Duelling Algorithms

In this section, we introduce the notion of Sub-sampling Duelling Algorithm (SDA). We first
introduce a few notation. For every integer n, we let [n] = {1, . . . , n}. We denote by (Yk,s)s∈N the
i.i.d. sequence of successive rewards from arm k, that are i.i.d. under a distribution νk with mean µk.
For every finite subset S of N, we denote by Ŷk,S the empirical mean of the observations of arm k

indexed by S: if |S| > 1, Ŷk,S := 1
|S|
∑
i∈S Yk,i. We also let Ŷk,n as a shorthand notation for Ŷk,[n].

A round-based algorithm Unlike index policies, a SDA algorithm relies on rounds, in which
several arms can be played (at most once). In each round r the learner selects a subset of arms
Ar = {k1, ..., kir} ⊆ {1, . . . ,K}, and receives the rewards Xr = {Yk1,Nk1 (r), ..., Ykir ,Nkir (r)}
associated to the chosen arms, where Nk(r) :=

∑r
s=1 1(k ∈ As) denotes the number of times arm k

was selected up to round r. Letting r̂T ≤ T be the (random) number of rounds used by algorithm A
before the T -th arm selection, the regret of a round-based algorithm can be upper bounded as follows:

RT (A) = E

[
T∑
t=1

(µ? − µAt)

]
≤ E

[
r̂T∑
s=1

K∑
k=1

(µ? − µk)1(k ∈ As)

]

≤ E

[
T∑
s=1

K∑
k=1

(µ? − µk)1(k ∈ As)

]
=

K∑
k=1

(µ? − µk)E [Nk(T )] . (2)

Hence upper bounding E[Nk(T )] for each sub-optimal arm provides a regret upper bound.

Sub-sampling Duelling Algorithms A SDA algorithm takes as input a sub-sampling algorithm
SP(m,n, r) that depends on three parameters: two integers m ≥ n and a round r. A call to
SP(m,n, r) at round r produces a subset of [m] that has size n, modeled as a random variable that is
further assumed to be independent of the rewards generated from the arms, (Yk,s)k∈[K],s∈N∗ .

In the first round, a SDA algorithm selects A1 = [K] in order to initialize the history of all
arms. For r ≥ 1, at round r + 1, a SDA algorithm based on a sampler SP, that we refer to as
SP-SDA, first computes the leader, defined as the arm being selected the most in the first r round:
`(r) = argmaxkNk(r). Ties are broken in favor of the arm with the largest mean, and if several arms
share this mean then the previous leader is kept or one of these arms is chosen randomly. Then the
set Ar+1 is initialized to the empty set and K − 1 duels are performed. For each "challenger" arm
k 6= `(r), a subset Ŝrk of [N`(r)(r)] of size Nk(r) is obtained from SP(N`(r)(r), Nk(r), r) and arm
k wins the duels if its empirical mean is larger than the empirical mean of the sub-sampled history of
the leader. That is

Ŷk,Nk(r) > Ŷ`(r),Ŝrk
=⇒ Ar+1 = Ar+1 ∪ {k} .

If the leader wins all the duels, that is if Ar+1 is still empty after the K − 1 duels, we set Ar+1 =
{`(r)}. Arms in Ar+1 are then selected by the learner in a random order and are pulled if the total
budget of pulls remains smaller than T . The pseudo-code of SP-SDA is given in Algorithm 1.

To properly define the random variable Ŝrk used in the algorithm, we introduce the following proba-
bilistic modeling: for each round r, each arm k, we define a family (Srk(m,n))m≥n of independent
random variables such that Srk(m,n) ∼ SP(m,n, r). In words, Srk(m,n) is the subset of the leader
history used should arm k be a challenger drawn n times up to round r dueling against a leader that has
been drawnm times. With this notation, for each arm k 6= `(r) one has Ŝrk = Srk

(
N`(r)(r), Nk(r), r

)
.

We recall that in the SDA framework, it is crucial that those random variables are independent from
the reward streams (Yk,s) of all arms k. We call such sub-sampling algorithms independent sampler.

Particular instances We now present a few sub-sampling algorithms that we believe are interesting
to use within the SDA framework. Intuitively, these algorithms should ensure enough diversity in
the output subsets when called in different rounds, so that the leader cannot always look good,

3



Algorithm 1 SP-SDA

Require: K arms, horizon T, Sampler SP
t← K, r ← 1, ∀k,Nk ← 1,Hk ← {Yk,1} (Each arm is drawn once)
while t < T do
r ← r + 1, A ← {}, `← leader(N,H, `) (Initialize the round)
for k 6= ` ∈ 1, ...,K do

Draw Ŝr
k ∼ SP(N`, Nk, r) (Choice of the sub-sample of ` used for the duel with k)

if Ŷk,Nk > Ŷ`,Ŝr
k

then
A ← A∪ {k} (Duel outcome)

end if
end for
if |A| = 0 then
A ← {`}

end if
if |A| > T − t then
A ← choose(A, T − t) (Randomly selects a number of arm that does not exceed the budget)

end if
for a ∈ A do

Pull arm a, observe reward Ya,Na+1

t← t+ 1, Na ← Na + 1,Ha ← Ha ∪ {Ya,Na} (Update step)
end for

end while

and challengers may win and be explored from time to time. The most intuitive candidates are
random samplers like Sampling Without Replacement (WR) and Random Block Sampling (RB): the
first one returns a subset of size n selected uniformly at random in [m], while the second draws
an element n0 uniformly at random in [m − n] and returns {n0 + 1, ..., n0 + n}. But we also
propose two deterministic sub-sampling: Last Block (LB) which returns {m− n + 1, ...,m}, and
Low Discrepancy Sampling (LDS) that is similar to RB with the first element n0 of the block at a
round r defined as dur(m− n)e with ur a predefined low discrepancy sequence [20] (Halton [21],
Sobol [22]). We believe that these last two samplers may ensure enough diversity without the need for
random sampling. These four variants of SDA will be compared in Section 5 in terms of empirical
efficiency and numerical complexity. For RB-SDA, we provide a regret analysis in the next sections,
highlighting what parts may or may not be extended to other sampling algorithms.

Links with existing algorithms The BESA algorithm [1] with K = 2 coincides with WR-SDA.
However beyond K > 2, the authors of [1] rather suggest a tournament approach, without giving a
regret analysis. WR-SDA can therefore be seen as an alternative generalization of BESA beyond
2 arms, which performs much better than the tournament, as can be seen in Section 5. While the
structure of SSDA is close to that of SSMC [2], SSMC is not a SP-SDA algorithm, as its sub-sampling
algorithm heavily relies on the rewards, and is therefore not an independent sampler. Indeed, it outputs
the set S = {n0 + 1, . . . , n0 + n} for which Ŷ`(r),S is the smallest. The philosophy of SSMC is a bit
different than that of SSDA: while the former tries to disadvantage the leader as much as possible,
the latter only tries to make the leader use different parts of its history. Our experiments reveal that
the SSMC approach seems to lead to a slightly larger regret, due to a bit more exploration in the
beginning. Finally, we emphasize that alternative algorithms based on re-sampling (PHE, Reboot,
Non-Parametric TS) are fundamentally different to SDA as they do not perform sub-sampling.

On the use of forced exploration In[2], SSMC additionally requires some forced exploration:
each arm k such that Nk(r) is smaller than some value fr is added to Ar+1. SSMC is proved to be
asymptotically optimal for exponential families provided that fr = o(log r) and log log r = o(fr).
In the next section, we show that RB-SDA does not need forced exploration to be asymptotically
optimal for Bernoulli, Gaussian and Poisson distributions. However, we show in Appendix H that
adding forced exploration to RB-SDA is sufficient to prove its optimality for any exponential family.
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3 Regret Upper Bounds for RB-SDA

In this section, we present upper bounds on the expected number of selections of each sub-optimal
arm k, E [Nk(T )], for the RB-SDA algorithm. They directly yield an upper bound on the regret
via (2). To ease the presentation, we assume that there is a unique optimal arm1, and denote it by 1.

In Theorem 3.1, we first identify some conditions on the arms distribution under which RB-SDA
has a regret that is provably logarithmic in T . In order to introduce these conditions, we recall
the definition of the following balance function, first introduced by [1]. αk(M, j) is equal to the
probability that arm 1 loses a certain amount M of successive duels against M sub-samples from
arm k that have non-overlapping support, when arm 1 has been sampled j times.
Definition. Letting νk,j denote the distribution of the sum of j independent variables drawn from νk,
and Fνk,j its corresponding CDF, the balance function of arm k is

αk(M, j) = EX∼ν1,j
((

1− Fνk,j (X)
)M)

.

Theorem 3.1 (Logarithmic Regret for RB-SDA). If the arms distributions ν1, . . . , νk are such that

1. the empirical mean of each arm k has exponential concentration given by a certain rate
function Ik(x) which is continuous and satisfies Ik(x) = 0 if and only if x = µk:

∀x > µk,P
(
Ŷk,n ≥ x

)
≤ e−nIk(x) and ∀x < µk,P

(
Ŷk,n ≤ x

)
≤ e−nIk(x) ,

2. the balance function of each sub-optimal arm k satisfies

∀β ∈ (0, 1),

T∑
t=1

b(log t)2c∑
j=1

αk(
⌊
βt/(log t)2

⌋
, j) = o(log T ) .

Then, for all sub-optimal arm k, for all ε > 0, under RB-SDA

E[Nk(T )] ≤ 1 + ε

Ik(µ1)
log(T ) + o(log T ) .

If the distributions belong to the same one-dimensional exponential family (see e.g. [6] for a presen-
tation of some of their important properties), the Chernoff inequality tells us that the concentration
condition 1. is satisfied with a rate function equal to Ik(x) = kl(x, µk) where kl(x, y) is the
Kullback-Leibler divergence between the distribution of mean x and the distribution of mean y in
that exponential family. In Appendix G, we prove that Gaussian distribution with known variance,
Bernoulli and Poisson distribution also satisfy the balance condition 2., which yields the following.
Corollary 3.1.1. Assume that the distribution of all arms belong to the family of Gaussian distribu-
tions with a known variance, Bernoulli or Poisson distributions. Then under RB-SDA for all ε > 0,
for all sub-optimal arm k,

E[Nk(T )] ≤ 1 + ε

kl(µk, µ1)
log(T ) + oε,µ(log(T )).

Corollary 3.1.1 permits to prove that lim supT→
RT (RB-SDA)

log(T ) ≤
∑K
k=2

(µ1−µk)
kl(µk,µ1) , which is matching

the Lai & Robbins lower bound (1) in each of these exponential families. In particular, RB-SDA is
simultaneously asymptotically optimal for different examples of bounded (Bernoulli) and un-bounded
(Poisson, Gaussian) distributions. In contrast, Non-Parametric TS is asymptotically optimal for
any bounded distributions, but cannot be used for Gaussian or Poisson distributions. Note that the
guarantees of Corollary 3.1.1 also hold for the SSMC algorithm [2], but we prove that RB-SDA
can be asymptotically optimal without forced exploration for some distributions. Moreover, as will
be seen in Section 5, algorithms based on randomized history-independent sub-sampling such as
RB-SDA tend to perform better than deterministic algorithms such as SSMC.

Theorem 3.1 also shows that RB-SDA may have logarithmic regret for a wider range of distributions.
For example, we conjecture that a truncated Gaussian distribution also satisfy the balance condition

1as can be seen in the analysis of SSMC [2], treating the general case only requires some additional notation.

5



2.. On the other hand, condition 2. does not hold for Exponential distribution, as discussed in
Appendix G.4. But we show in Appendix H.2 that any distribution that belongs to a one-dimensional
exponential family satisfies a slightly modified version of this condition, which permits to establish
the asymptotic optimality of a variant of RB-SDA using forced exploration.

Finally, we note that it is possible to build on RB-SDA to propose a bandit algorithm that has
logarithmic regret for any distribution that is bounded in [0, 1]. To do so, we can use the binarization
trick already proposed by [11] for Thompson Sampling, and run RB-SDA on top of a binarized
history H′k for each arm k in which a reward Yk,s is replaced by a binary pseudo-reward is Y ′k,s
generated from a Bernoulli distribution with mean Yk,s. The resulting algorithm inherits the regret
guarantees of RB-SDA applied to Bernoulli distributions.

Characterizing the set of distributions for which the vanilla RB-SDA algorithm has logarithmic regret
(without forced exploration or a binarization trick) is left as an interesting future work.

4 Sketch of Proof

In this section, we provide elements of proof for Theorem 3.1, postponing the proof of some lemmas
to the appendix. The first step is given by the following lemma, which is proved in Appendix D.
Lemma 4.1. Under condition 1., for any SP-SSDA algorithm (using an independent sampler), for
every ε > 0, there exists a constant Ck(ν, ε) with ν = (ν1, . . . , νk) such that

E[Nk(T )] ≤ 1 + ε

I1(µk)
log(T ) + 32

T∑
r=1

P
(
N1(r) ≤ (log(r))2

)
+ Ck(ν, ε) .

The proof of this result follows essentially the same decomposition as the one proposed by [2] for the
analysis of SSMC. However, it departs from this analysis in two significant ways. First, instead of
using properties of forced exploration (that is absent in RB-SDA), we distinguish whether or not arm
1 has been selected a lot, which yields the middle term in the upper bound. Then, the argument relies
on a new concentration result for sub-samples averages, that we state below. Lemma 4.2, proved
in Appendix C, crucially exploits the fact that a SP-SDA algorithm is based on an independent
sampler. Using condition 1. allows to further upper bound the right-hand side of the two inequalities
in Lemma 4.2 by terms that decay exponentially and contribute to the constant Ck(ν, ε).
Lemma 4.2 (concentration of a sub-sample). For all (a, b) such that µa < µb, for all ξ ∈
(µa, µb) and n0 ∈ N, under any instance of SP-SDA using an independent sampler, it holds that

r∑
s=1

P
(
Ŷa,Na(s)≥ Ŷb,Ŝs

b
(Nb(s),Na(s))

, Nb(s)≥Na(s), Na(s)≥n0

)
≤

r∑
j=n0

P
(
Ŷa,j ≥ ξ

)
+ r

r∑
j=n0

P(Yb,j ≤ ξ) ,

r∑
s=1

P
(
Ŷb,Nb(s)≤ Ŷa,Ŝsa(Na(s),Nb(s))

, Na(s)≥Nb(s), Nb(s)≥n0

)
≤

r∑
j=n0

P
(
Ŷb,j ≤ ξ

)
+ r

r∑
j=n0

P(Ya,j ≥ ξ) .

So far, we note that the analysis has not been specific to RB-SDA but applies to any instance of
SDA. Then, we provide in Lemma 4.3 an upper bound on

∑T
t=1 P

(
N1(t) ≤ (log t)2

)
which is

specific to RB-SDA. This sampler is randomized and independent of r, hence we use the notation
RB(m,n) = RB(m,n, r). The strength of this upper bound is that it decouples the properties of the
sub-sampling algorithm and that of the arm distributions (through the balance function αk).
Lemma 4.3. Let Xm,H,j be a random variable giving the number of non-overlapping sub-samples

of size j obtained in m i.i.d. samples from RB(H, j) and define cr = b r/(log r)2−1
2K c− 1. There exists

γ ∈ (0, 1) and a constant rK such that with βr,j =
⌊
γr/j(log r)2

⌋
,

T∑
r=1

P(N1(r) ≤ (log r)2) ≤ rK +

T∑
r=rK

blog r2c∑
j=1

[
(K − 1)P (Xcr,cr,j < βr,j) +

K∑
k=2

αk (βr,j , j)

]
.

To prove Lemma 4.3 (see Appendix E), we extend the proof technique introduced by [1] for the
analysis of BESA to handle more than 2 arms. The rationale is that if N1(r) ≤ (log r)

2 then arm
1 is not the leader and has lost "many" duels, more precisely at least a number of successive duels
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proportional to r/ (log r)
2. A fraction of these duels necessarily involves sub-samples of the leader

history that have non-overlapping support. Exploiting the independence of these sub-samples brings
in the balance function αk.

In order to conclude the proof, it remains to upper bound the right hand side of Lemma 4.3. Using
condition 2. of balanced distributions the terms depending on αk sum in o(log T ) and negligibly
contribute to the regret. Upper bounding the term featuring Xm,H,j amounts to establishing the
following diversity property of the random block sampler.
Definition (Diversity Property). Let Xm,H,j be the random variable defined in Lemma 4.3 for a
randomized sampler SP. SP satisfies the Diversity Property for a sequence Nr of integers if

T∑
r=1

(log r)2∑
j=1

P
(
XNr,Nr,j < γr/(log r)2

)
= o(log T ) .

We prove in Appendix F that the RB sampler satisfies the diversity property for the sequence cr,
which leads to

∑T
t=1 P

(
N1(t) ≤ (log t)2

)
= o(log(T )) and concludes the proof of Theorem 3.1.

We believe that the WR sampler also satisfies the diversity property (as conjectured by [1]). While
Lemma 4.3 should apply to WR-SDA as well, a different path has to be found for analyzing the
LDS-SDA and LB-SDA algorithms, that are based on deterministic samplers and also perform well
in practice. This is left for future work.

5 Experiments

In this section, we perform experiments on simulated data in order to illustrate the good performance
of the four instances of SDA algorithms introduced in Section 2 for various distributions. The Python
code used to perform these experiments is available on Github.

Exponential families First, in order to illustrate Corollary 3.1.1, we investigate the performance of
RB-SDA for both Bernoulli and Gaussian distributions (with known variance 1). Our first objective
is to check that for a finite horizon the regret of RB-SDA is comparable with the regret of Thompson
Sampling (with respectively a beta and improper uniform prior), which efficiently uses the knowledge
of the distribution. Our second objective is to empirically compare different variants of SDA to
other non-parametric approaches based on sub-sampling (BESA, SSMC) or on re-sampling. For
Bernoulli and Gaussian distribution, Non-Parameteric TS coincides with Thompson Sampling, so
we focus our study on algorithms based on history perturbation. We experiment with PHE [14] for
Bernoulli bandits and ReBoot [17] for Gaussian bandits, as those two algorithms are guaranteed to
have logarithmic regret in each of these settings. As advised by the authors, we use a parameter
a = 1.1 for PHE and σ = 1.5 for ReBoot.

We ran experiments on 4 different Bernoulli bandit models: 1) K = 2, µ = [0.8, 0.9], 2) K = 2,
µ = [0.5, 0.6], 3) K = 10, µ1 = 0.1, µ2,3,4 = 0.01, µ5,6,7 = 0.03, µ8,9,10 = 0.05, 4) K = 8
µ = [0.9, 0.85, . . . , 0.85] and 3 different bandits models with N (µk, 1) arms with means: 1) K = 2
µ = [0.5, 0], 2) K = 4, µ = [0.5, 0, 0, 0], 3) K = 4, µ = [1.5, 1, 0.5, 0]. For each experiment,
Table 1 and Table 2 report an estimate of the regret at time T = 20000 based on 5000 independent
runs (extended tables with standard deviations can be found in Appendix A.1). The best performing
algorithms are highlighted in bold. In Figure 1 and Figure 2 we plot the regret of several algorithms as
a function of time (in log scale) for t ∈ [15000; 20000] for one Bernoulli and one Gaussian experiment
respectively. We also add the Lai and Robbins lower bound t 7→ [

∑
k(µ? − µk)/kl(µk, µ?)] log(t).

Table 1: Regret at T = 20000 for Bernoulli arms
Benchmark SDA

xp TS PHE BESA SSMC RB WR LB LDS

1 11.2 25.9 11.7 12.3 11.5 11.6 12.2 11.4
2 22.9 24.0 22.1 24.3 22.0 21.5 24.0 21.8
3 94.2 248.1 88.1 100.1 89.0 86.9 100.7 89.2
4 108.1 216.5 147.5 119.9 105.1 106.9 119.6 106.8

Figure 1: Regret as a function of time
for Bernoulli experiment 3
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Table 2: Regret at T = 20000 for Gaussian arms
Benchmark SDA

xp TS ReBoot BESA SSMC RB WR LB LDS

1 24.4 92.2 25.3 26.9 25.6 24.7 25.1 26.5
2 73.5 277.1 122.5 74.8 71.0 71.1 74.6 69.0
3 49.7 190.9 72.1 51.3 50.4 50.0 51.2 48.6

Figure 2: Regret as a function of time
for Gaussian experiment 2
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In all of these experiments, we notice that SDA algorithms are indeed strong competitors to Thompson
Sampling (with appropriate prior) for both Bernoulli and Gaussian bandits. Figures 1 and 2 further
show that RB-SDA is empirically matching the Lai and Robbins’ lower bound on two instances,
just like SSMC and Thompson Sampling, which can be seen from the parallel straight lines with
the x axis in log scale. The fact that the lower bound is above shows that it is really asymptotic and
only captures the right first order term. The same observation was made for all experiments, but
is not reported due to space limitation. Even if we only established the asymptotic optimality of
RB-SDA, these results suggest that the other SDA algorithms considered in this paper may also be
asymptotically optimal. Compared to SDA, re-sampling algorithms based on history perturbation
seem to be much less robust. Indeed, in the Bernoulli case, PHE performs very well for experiment
2, but is significantly worse than Thompson Sampling on the three other instances. In the Gaussian
case, ReBoot always performs significantly worse than other algorithms. This lack of robustness is
also corroborated by additional experiments reported below in which we average the performance of
these algorithms over a large number of randomly chosen instances.

Turning our attention to algorithms based on sub-sampling, we first notice that WR-SDA seems to
be a better generalization of BESA with 2 arms than the tournament approach currently proposed,
as in experiments with K > 2, WR-SDA often performs significantly better than BESA. Then we
observe that SSMC and SDA algorithms have similar performance. Looking a bit closer, we see
that the performance of SSMC is very close to that of LB-SDA, whereas SDA algorithms based on
“randomized” (or pseudo-randomized for LDS-SDA) samplers tend to perform slightly better.

Truncated Gaussian Theorem 3.1 suggests that RB-SDA may attain logarithmic regret beyond
exponential families. As an illustration, we present the results of experiments performed with
Truncated Gaussian distributions (in which the distribution of arm k is that of Yk = 0 ∨ (Xk ∧ 1)
where Xk ∼ N (µk, σ

2)). We report in Table 8 the regret at time T = 20000 (estimated over
5000 runs) of various algorithms on four different problem instances: 1) µ = [0.5, 0.6], σ = 0.1,
2) µ = [0, 0.2], σ = 0.3, 3) µ = [1.5, 2], σ = 1 4) µ = [0.4, 0.5, 0.6, 0.7], σ = 1. We include
Non-Parametric TS which is known to be asymptotically optimal in this setting (while TS which uses
a Beta prior and a binarization trick is not), PHE, and all algorithms based on sub-sampling. We again
observe the good performance of SSMC and SDA algorithms across all experiments. They even
outperform NP-TS in some experiments, which suggests SDA algorithms may be asymptotically
optimal for a wider class of parametric distributions.

Table 3: Regret at T = 20000 for Truncated Gaussian arms
Benchmark SDA

xp TS NP-TS PHE BESA SSMC RB WR LB LDS

1 21.9 4.2 22.3 1.4 1.5 1.4 1.4 1.5 1.4
2 13.3 8 19.5 4.6 4.7 4.4 4.5 4.6 4.3
3 9.7 7.8 48.5 7.8 7.6 7.1 7.7 8.2 7.1
4 86.6 70 86 76.5 69.5 64.9 64.8 68.7 63.2

Bayesian Experiments So far we tried our algorithms on specific instances of the distributions we
considered. It is also interesting to check the robustness of the algorithms when the means of the
arms are drawn at random according to some distribution. In this section we consider two examples:
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Bernoulli bandits where the arms are drawn uniformly at random in [0, 1], and Gaussian distributions
with the mean parameter of each arm itself drawn from a gaussian distribution µk ∼ N (0, 1). In
both cases we draw 10000 random problems with K = 10 arms and run the algorithms for a time
horizon T = 20000. We experiment with TS, SSMC, RB-SDA and WR-SDA and also add the
IMED algorithm ([23]) which is an asymptotically optimal algorithm that uses the knowledge of
the distribution. We do not add LDS-SDA and LB-SDA as they are similar to RB-SDA and SSMC,
respectively. In the Bernoulli case, we also run the PHE algorithm, which fails to compete with the
other algorithms. This is not in contradiction with the results of [14] as in the Bayesian experiments
of this paper, arms are drawn uniformly in [0.25, 0.75] instead of [0, 1]. Actually, we noticed that
PHE with parameter a = 1.1 has some difficulties when several arms are close to 1.

Table 4: Average Regret on 10000 random
experiments with Bernoulli Arms
T TS IMED PHE SSMC RB WR

100 13.8 15.1 16.7 16.5 14.8 14.3
1000 27.8 31.9 39.5 34.2 31.8 30.9
10000 45.8 51.2 72.3 55.0 51.1 50.6
20000 52.2 57.6 85.6 61.9 57.7 57.3

Table 5: Average Regret on 10000 random
experiments with Gaussian Arms
T TS IMED WR RB SSMC

100 41.2 45.1 38.3 38.1 40.6
1000 76.4 82.1 72.7 70.4 76.2
10000 118.5 124.0 115.8 111.8 120.1
20000 132.6 138.1 130.2 125.7 135.1

Results reported in Tables 4 and 5 show that RB-SDA and WR-SDA are strong competitors to TS
and IMED for both Bernoulli and Gaussian bandits. Recall that these algorithm operate without the
need for a specific tuning for each distribution, unlike TS and IMED. Moreover, observe that in the
Bernoulli case, TS further uses the same prior as that from which the means are drawn.

Computational aspects To choose a sub-sampling based algorithm, numerical consideration can
be taken into account. First, compared to Thompson Sampling, all sub-sampling based algorithm
require to store the history of the observation. But then, the cost of sub-sampling varies across
algorithms: in the general case RB-SDA is more efficient than WR-SDA as the latter requires to
draw a random subset while the former only needs to draw the random integer starting the block.
However, for distributions with finite supports WR-SDA can be made as efficient as TS using
multivariate geometric distributions, just like PHE does. If one does not want to use randomization
then LDS-SDA could be preferred to RB-SDA as it uses a deterministic sequence. Finally, LB-SDA
has the smallest computational cost in the SDA family and while its performance is very close to
that of SSMC, it can avoid the cost of scanning all the sub-sample means in this algorithm. The
computational cost of these two algorithms is difficult to evaluate precisely. Indeed, they can be made
very efficient when the leader does not change, but each change of leader is costly, in particular for
SSMC. The expected number of such changes is proved to be finite, but for experiments with a finite
time horizon the resulting constant can be big. Finally, Non-Parametric TS has a good performance
for Truncated Gaussian, but the cost of drawing a random probability vector over a large history is
very high.

More experiments In Appendix A we enhance this empirical study: we show some limitations of
SDA for exponential distributions and propose a fix using forced exploration as in SSMC.

6 Conclusion

We introduced the SDA framework for exploration in bandits models. We proved that one particular
instance, RB-SDA, combines both optimal theoretical guarantees and good empirical performance for
several distributions, possibly with unbounded support. Moreover, SDA can be associated with other
samplers that seem to achieve similar performance, with their own specificity in terms of computation
time. The empirical study presented in the paper also shows the robustness of sub-sampling approach
over other types of re-sampling algorithms. This new approach to exploration may be generalized
in many directions, for example to contextual bandits or reinforcement learning, where UCB and
Thompson Sampling are still the dominant approaches. It is also particularly promising to develop
new algorithm for non-stationary bandit, as such algorithms already store the full history of rewards.
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A Complement of Experiments

A.1 Additional Figures for Bernoulli, Gaussian and Truncated Gaussian arms

We enhance the tables of Section 5 with the standard deviation (reported in parenthesis) of the regret
at time T = 20000 on the 5000 trajectories.

Table 6: Regret and at T = 20000 for Bernoulli arms, with standard deviation
Benchmark SSDA

xp TS PHE BESA SSMC RB WR LB LDS

1 11.2 25.9 11.7 12.3 11.5 11.6 12.2 11.4
(10.) (87.9) (12.1) (7.3) (10.1) (10.2) (7.4) (9.0)

2 22.9 24.0 22.1 24.3 22.0 21.5 24.0 21.8
(29.2) (22.0) (25.2) (38.2) (34.5) (17.3) (24.6) (24.5)

3 94.2 248.1 88.1 100.1 89.0 86.9 100.7 89.2
(15.8) (25.5) (89.2) (20.0) (19.8) (21.7) (21.3) (21.8)

4 108.1 216.5 147.5 119.9 105.1 106.9 119.6 106.8
(45.1) (89.8) (209.8) (40.8) (41.1) (42.1) (42.7) (47.7)

Table 7: Regret and at T = 20000 for Gaussian arms, with standard deviation
Benchmark SDA

xp TS ReBoot BESA SSMC RB WR LB LDS

1 24.4 92.2 25.3 26.9 25.6 24.7 25.1 26.5
(17.1) (23.4) (27.1) (52.8) (62.8) (20.6) (17.9) (140.2)

2 73.5 277.1 122.5 74.8 71.0 71.1 74.6 69.0
(107.8) (41.3) (585.5) (34.7) (152.2) (50.2) (35.1) (50.4)

3 49.7 190.9 72.1 51.3 50.4 50.0 51.2 48.6
(26.9) (29.6) (410.3) (23.7) (156.5) (33.3) (22.4) (41.6)

Table 8: Regret at T = 20000 for Truncated Gaussian arms
Benchmark SDA

xp TS NP-TS PHE BESA SSMC RB WR LB LDS

1 21.9 4.2 22.3 1.4 1.5 1.4 1.4 1.5 1.4
(20.4) (0.6) (2.6) (1.7) (0.7) (1.1) (0.8) (0.7) (0.8)

2 13.3 8 19.5 4.6 4.7 4.4 4.5 4.6 4.3
(7) (1.8) (3.8) (3.3) (2.3) (4.6) (3.1) (2.4) (2.9)

3 9.7 7.8 48.5 7.8 7.6 7.1 7.7 8.2 7.1
(10.1) (4.5) (217.8) (9.4) (5) (10) (13.4) (27.5) (5.8)

4 86.6 70 86 76.5 69.5 64.9 64.8 68.7 63.2
(57.8) (39.4) (53.7) (113.9) (40.9) (60.5) (43.9) (39.1) (51.1)

For Bernoulli arms and Truncated Gaussian, the standard deviations of SDA are very similar to
that of Thompson Sampling, while the trajectories of PHE and BESA have much more variance in
experiment 1 and 4, and on experiments 3 and 4 respectively. For Gaussian arms we remark the low
variability of ReBoot, but at the cost of a non-competitive regret. SDA are less homogeneous in this
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case: some algorithms have large variance for some instances (LDS-SDA on experiment 1, RB-SDA
on experiments 2 and 3). Note that TS also has a high variability in experiment 2.

We believe that this is due to the nature of the Gaussian distribution, and in particular to its balance
function: in Appendix G we prove that αk(M, j) does satisfy Assumption 2. of Theorem 3.1,
however the upper bound derived for αk(M, j) is much larger than the one for Bernoulli distribution,
which justifies that “bad runs” in which a good arm looses many duels are more likely to happen
in that case, and can explain the larger variance. If one wants to reduce the variance of the regret
of SDA we recommend the use of some asymptotically negligible forced exploration, as presented
for exponential distribution in Appendix A.2, and for which we prove that the algorithm remains
asymptotically optimal in Appendix H.

Finally, as in Section 5, we plot the regret of several algorithms as a function of time (in log
scale) for t ∈ [10000, 20000], this time for the Truncated Gaussian distributions. These plots
illustrate the fact that some SDA algorithms may achieve asymptotic optimality for this dis-
tribution too, even if it does not belong to a one-parameter exponential family. Indeed, the
rate of the regret of all SDA seem too match both the rate of the regret of Non-Parametric
TS, which is optimal for this family, and the Burnetas and Katehakis lower bound whose ex-
pression is

(∑
k 6=k?

EX∼νk∗ [X]−EX∼νk [X]

KL(νk,νk∗ )

)
log(T ) in this particular case, with KL(νk, νk∗) =

p0,k log
(
p0,k
p0,∗

)
+ (1− p1,k) log

(
1−p1,k
1−p1,∗

)
+
∫ 1

0
fk(x) log

(
fk(x)
f∗(x)

)
dx. px,k is the value of the CDF

of the underlying Gaussian random variable associated with νk in x, and fk(x) the density of this
variable in x.

Figure 3: SDA vs NP-TS on TG expe 2 Figure 4: SDA vs NP-TS on TG expe 4

A.2 Experiments with Exponential Arms

In Appendix G, we prove that exponential distributions are not balanced (i.e. do not satisfy Assump-
tion 2. of Theorem 3.1), so our theoretical results on the regret of RB-SDA do not apply. However, it
is still interesting to test our algorithms for these distributions in order to see if it still achieves a good
performance. We performed 6 experiments, with the following mean parameters: 1) µ = [1.5, 1], 2)
µ = [0.2, 0.1], 3) µ = [11, 10], 4) µ = [4, 3, 2, 1], 5) µ = [0.4, 0.3, 0.2, 0.1], 6) µ = [5, 4, 4, 4]. It is
interesting to remark that the standard deviation of an exponential distribution is equal to its mean, so
with similar gaps problems are harder when the means are high.
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Table 9: Average Regret with Exponential Arms (with std)
xp TS IMED BESA SSMC RB WR LB LDS

1 48.2 40.0 45.7 41.9 44.8 45.4 46.6 45.5
(191.8) (78.4) (114.1) (84.2) (121.4) (134.4) (176.8) (109.7)

2 3.8 3.4 4.2 3.6 4.1 3.9 3.9 5.4
(9.9) (3.6) (25.1) (41.9) (14.3) (13.4) (8.7) (49.5)

3 832.8 779.9 820.5 856.9 848.4 778.4 846.7 877.7
(1065.1) (896.9) (1304.6) (1111.0) (1533.3) (1118.7) (1150.1) (1708.7)

4 258.3 234.6 525.4 251.3 272.6 262.1 263.8 258.4
(519.6) (126.6) (2115.1) (328.3) (692.2) (524.4) (477.9) (599.0)

5 25.6 24.0 55.7 25.6 25.5 25.0 26.5 24.7
(51.2) (33.6) (219.9) (23.6) (46.7) (24.0) (36.8) (37.6)

6 618.7 603.6 1184.2 627.9 595.7 616.0 652.6 605.9
(672.3) (576.8) (3096.4) (755.6) (790.7) (780.2) (685.3) (871.4)

First, we notice that the performance of the SDA in terms of the average regret are reasonable,
although less impressive than with the other distributions we tested. IMED is almost always the best
algorithm in these experiments, and SSMC performs pretty well on many examples (which is not
surprising as SSMC is proved to be asymptotically optimal for exponential distributions). We remark
that there is much more variability in the results of RB-SDA, WR-SDA and LDS-SDA than before,
where they performed quite similarly. For instance, we notice that on example 3, LDS-SDA and
RB-SDA are much worse than WR-SDA. A look at the quantile table for this experiment, which
displays the empirical quantiles of RT estimated over 5000 runs, shows that this is due to a small
number of "bad" trajectories for these algorithms:

Table 10: Quantile Table for Experiment 3 with Exponential Arms
% of runs TS IMED SSMC RB WR LB LDS

20% 319.8 336.0 335.0 261.0 290.0 326.0 261.8
50% 626.0 650.0 661.0 532.0 568.5 642.0 536.0
80% 1122.0 1080.0 1142.0 1006.0 1019.0 1143.2 1020.2
95% 1924.1 1704.0 1846.0 2199.0 1817.2 1869.1 2134.1
99% 4209.4 2632.9 3536.8 6813.1 4146.0 3762.3 7396.7

We see that up to the 80% quantile, RB-SDA and LDS-SDA are even significantly better than IMED.
This is very different when we look at the 95% and 99% quantiles, which are much greater for our 2
algorithms (even 2.5 times greater for the 99% quantile).

We believe that this very high variability prevents RB-SDA to have a logarithmic regret for expo-
nential arms. Still, the regret is not as bad as being linear, as using the fact that the balance function
αk(M, j) is of order exp(−jC)/M permits to prove that

∑T
r=1 P(N1(r) < log2(r)) = O(log2(T ))

(which requires to choose a different βr,j in Lemma 4.3). But we also found a solution to obtain
(asymptotically optimal) linear regret, which consists in adding an asymptotically negligible amount
of forced exploration as the SSMC algorithm does. This exploration in o(log T ) avoids trajectories
where the optimal arm has a very bad first observation and is not drawn for a very long time. In
Appendix H, we prove the asymptotic optimality of RB-SDA with forced exploration fr =

√
log r

for any one-dimensional exponential family. In practice, adding this amount of forced exploration to
SDA algorithms leads to the following results:
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Table 11: Average Regret with Exponential Arms: SDA with forced exploration
xp RB WR LB LDS

1 44.9 42.5 42.4 45.0
(167.3) (107.4) (60.5) (176.0)

2 3.6 3.4 4.0 3.6
(9.2) (2.2) (27.9) (11.2)

3 837.5 788.5 827.7 832.3
(1466.1) (1222.1) (1055.3) (1514.6)

4 244.8 238.9 251.7 246.0
(403.3) (250.8) (248.5) (323.4)

5 23.6 25.1 25.4 24.9
(33.4) (41.0) (23.4) (42.2)

6 578.9 595.1 631.2 577.8
(651.9) (561.3) (446.4) (652.7)

Hence, adding forced exploration results in a noticeable improvement for SDA algorithms, with
RB-SDA, WR-SDA and LDS-SDA becoming competitive with IMED (or even slightly better) on
most examples. Observe that LB-SDA has again comparable performance with SSMC with this new
feature. This is not surprising as we implemented the SSMC algorithm with the same amount of
forced exploration fr =

√
log r .
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B Notation for the Proof

General notations:

• K number of arms
• νk distribution of the arm k, with mean µk
• we assume that µ1 = maxk∈[K] µk so we call the (unique) optimal arm "arm 1"

• Ik(x) some rate function of the arm k, evaluated in x. For 1-parameter exponential families
this function will always be the KL-divergence between νk and the distribution from the
same family with mean x.

• Nk(r) number of pull of arm k up to (and including) round r.
• Yk,i reward obtained at the i-th pull of arm k.

• Ŷk,i mean of the i-th first reward of arm k, Ŷk,S mean of the rewards of k on a subset of
indices S ⊂ [Nk(r)]: Ŷk,S = 1

|S|
∑
s∈S Yk,s. If |S| = i, then Yk,i and Yk,S have the same

distribution.
• `(r) leader at round r + 1, `(r) = argmaxk∈[K]Nk(r).

• SP(m,n, r) sub-sampling algorithm, or Sampler, which returns a sequence of n unique
elements out of [m].

• (Srk(m,n))m≥n a family of independent random variables such that Srk(m,n) ∼
SP(m,n, r).

• Ar set of arms pulled at a round r.
• Rr regret at the end of round r.

Notations for the regret analysis, part relying on concentration:

• Grk = ∪r−1
s=1{`(s) = 1} ∩ {k ∈ As+1} ∩ {Nk(s) ≥ (1 + ε)ξk log r}

• Hrk = ∪r−1
s=1{`(s) = 1} ∩ {k ∈ As+1} ∩ {Nk(s) ≥ Jk log r}

• Zr = {`(r) 6= 1}, the leader used for the duels in round r + 1 is sub-optimal
• Dr = {∃u ∈ [br/4c, r] such that `(u− 1) = 1}, the leader has been optimal at least once

between br/4c and r
• Bu = {`(u) = 1, k ∈ Au+1, Nk(u) = N1(u) − 1 for some arm k}, the optimal arm is

leader in u but loses its duel again some arm k, that have been pulled enough to possibly
take over the leadership at next round

• Cu = {∃k 6= 1, Nk(u) ≥ N1(u), Ŷk,Su1 (Nk(u),N1(u)) ≥ Ŷ1,N1(u)}, the optimal arm is not
the leader and has lost its duel against the sub-optimal leader.

• Lr =
∑r
u=br/4c 1Cu

Notations for the regret analysis, control of the number of pulls of the optimal arm:

• rj round of the j-th play of the optimal arm
• τj = rj+1 − rj
• Erj := {τj ≥ r/ log r2 − 1}

• M1
j,r =

[
rj + 1, rj +

⌊
r/ log r2−1

2

⌋]
• M2

j,r =
[
tj +

⌈
r/ log r2−1

2

⌉
, rj +

⌊
r/ log r2

⌋
− 1
]

• Ikj,r = {s ∈M2
j,r : `(s− 1) = k}

• Wk
s,j =

{{
Ŷ1,j < Ŷk,Ss1(Nk(s),j)

}
, Nk(s) ≥ cr,K , N1(s) = j

}
• Fk,rj,M =

{
∃i1, ..., iM ∈ Ikj,r : ∀m < m′ ∈ [M ], Sim1 (Nk(im), j) ∩ Sim′1 (Nk(im′), j) = ∅

}
• CDF: Cumulative Distribution Function, PDF: Probability Density Function and PMF:

Probability Mass Function.
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C Concentration Result: Proof of Lemma 4.2

We first recall the probabilistic model introduced in Section 2: for each round r, each arm k, we
define a family (Srk(n,m))n>m of independent random variables such that Srk(n,m) ∼ SP(n,m, r).
Those random variables are also independent from the reward streams (Yk,s)s≥0 of all arms k.

Srk(n,m) is the subset of the leader history that is used should arm k be a challenger drawn m times
up to round r duelling against a leader that has been drawn n times. With this notation, letting `(r)
be the leader after r rounds, at round r + 1, for all k 6= `(r),

(k ∈ Ar+1) ⇔
(
Ŷk,Nk(r) > Ŷ`(r),Srk(N`(r)(r),Nk(r))

)
.

Let k be an arm such that µk < µ1. We denote by [n1, nk] the set of subset of {1, . . . , n1} of size nk.
We define an event

Qsk = {Nk(s) ≥ n0, `(s) = 1, Ŷk,Nk(s) > Ŷ`(s),Ssk(N1(s),Nk(s))}.

Noting that {Ŷk,Nk(s) > Ŷ`(s),Ssk(N1(s),Nk(s))} ⊂ {Ŷk,Nk(s) ≥ ξ} ∪ {Ŷ`(s),Ssk(N1(s),Nk(s)) ≤ ξ} for
all ξ ∈ R, we can write Qsk ⊂ Q

s,1
k ∪Q

s,2
k where

Qs,1k = {Nk(s) ≥ n0, `(s) = 1, Ŷk,Nk(s) > ξ}
and Qs,2k = {Nk(s) ≥ n0, `(s) = 1, Ŷ`(s),Ssk(N1(s),Nk(s)) ≤ ξ}.

This yields
∑r
s=1 P(Qsk) ≤

∑r
s=1 P(Qr,1k ) +

∑r
s=1 P(Qr,2k ), which will later provide the two terms

in the bound of the lemma. The first one does not involve sub-sampling and can be upper bounded as:
r∑
s=1

P(Qs,1k ) ≤ E
r∑
s=1

1(Nk(s) ≥ n0)1(N1(s) > Nk(s))1
(
Ŷk,Nk(s) ≥ ξ

)
1 (k ∈ As+1)

≤ E
r∑

s=n0

r∑
nk=n0

1 (Nk(s) = nk, k ∈ As+1)1
(
Ŷk,nk ≥ ξ

)
≤ E

r∑
nk=n0

1
(
Ŷk,nk ≥ ξ

) r∑
s=n0

1 (Nk(s) = nk, k ∈ As+1)︸ ︷︷ ︸
≤1

≤
r∑

nk=n0

P
(
Ŷk,nk ≥ ξ

)
,

where in the last inequality we use that the event (Nk(s) = n) ∩ (k ∈ As+1) can happen at most
once for s ∈ {n0, . . . , r} (a similar trick was used for example in the analysis of kl-UCB [24]).

Upper bounding the second term Br =
∑r
s=1 P(Qr,2k ) is more intricate as it involves both Nk(s)

and N1(s). With a similar method we get:

Br ≤ E
r∑

s=n0

r∑
nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

1 (Nk(s) = nk, k ∈ As+1)1 (N1(s) = n1)1 (Ssk(n1, nk) = S)1
(
Ŷ`,S ≤ ξ

)

≤ E
r∑

nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

1
(
Ŷ`,S ≤ ξ

) r∑
s=n0

1 (Nk(s) = nk, k ∈ As+1)1 (Ssk(n1, nk) = S)

= E
r∑

nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

1
(
Ŷ`,S ≤ ξ

) r∑
s=n0

E [1 (Nk(s) = nk, k ∈ As+1)1 (Ssk(n1, nk) = S) |F ] ,

where F is the filtration generated by the reward streams. Nk(s) may have a complicated distribu-
tion with respect to this filtration but this is not a problem here. Indeed, Ssk(n1, nk) is by design
independent of this filtration, and one can write
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Br ≤ E
r∑

nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

1
(
Ŷ1,S ≤ ξ

) r∑
s=n0

P (Ssk(n1, nk) = S)E [1 (Nk(s) = nk, k ∈ As+1) |F ]

= E
r∑

nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

1
(
Ŷ1,S ≤ ξ

) r∑
s=n0

P (Ssk(n1, nk) = S)1 (Nk(s) = nk, k ∈ As+1)

=

r∑
nk=n0

r∑
n1=nk

∑
S∈[n1,nk]

P
(
Ŷ1,S ≤ ξ

) r∑
s=n0

P (Ssk(n1, nk) = S)E (1 (Nk(s) = nk, k ∈ As+1))

=

r∑
nk=n0

r∑
n1=nk

P
(
Ŷ1,n1

≤ ξ
) r∑
s=n0

 ∑
S∈[n1,nk]

P (Ssk(n1, nk) = S)

E (1 (Nk(s) = nk, k ∈ As+1))

=

r∑
nk=n0

r∑
n1=nk

P
(
Ŷ1,n1

≤ ξ
)
E

r∑
s=n0

1 (Nk(s) = nk, k ∈ As+1)︸ ︷︷ ︸
≤1

≤
r∑

nk=n0

r∑
n1=nk

P
(
Ŷ1,n1

≤ ξ
)

≤ r
r∑

n1=nk

P
(
Ŷ1,n1 ≤ ξ

)
.

Here we have used the independence of the Ssk(m,n) from the reward streams and the fact that for
every subset S of size n1, Ŷk,n1

and Ŷk,S have the same distribution. We can conclude as follows,
proving the lemma:

r∑
s=1

P(Qrk) ≤
r∑
s=1

P(Qr,1k ) +

r∑
s=1

P(Qr,2k )

≤
r∑

nk=n0

P
(
Ŷk,nk ≥ ξ

)
+ r

r∑
n1=n0

P
(
Ŷ1,n1 ≤ ξ

)
.

D Regret Decomposition: Proof of Lemma 4.1

We recall that we assume that arm 1 is the only optimal arm: µ1 = maxk∈[K] µk. The proof in this
section follows the path of the proof in [2] for SSMC, but hinges on the new concentration result
of Lemma 4.2. Moreover, some parts need to be adapted to handle the properties of an independent
sampler instead of the duelling rule used in SSMC. As in [2], we introduce the following events:

• GTk = ∪T−1
r=1 {`(r) = 1} ∩ {k ∈ Ar+1} ∩ {Nk(r) ≥ (1 + ε)ξk log T}

• HTk = ∪T−1
r=1 {`(r) = 1} ∩ {k ∈ Ar+1} ∩ {Nk(r) ≥ Jk log T}

• Zr = {`(r) 6= 1}, the leader used at round r + 1 is sub-optimal.

These events directly provide an upper bound of the number of pulls of a sub-optimal arm k:

E[Nk(T )] = E[Nk(T )1HTk ] + E[Nk(T )1GTk 1H̄Tk ] + E[Nk(T )1ḠTk ]

≤ TP(HTk ) + (1 + Jk log T )P(GTk ) + 1 + (1 + ε)ξk log T + 2

T−1∑
r=1

P(Zr) (3)
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Indeed, due to the definition of each event we have:

Nk(T )1ḠTk ≤ 1 +

T−1∑
r=1

1(k∈Ar+1)1(`(r)6=1)∪(Nk(r)<(1+ε)ξk log(T ))

≤ 1 +

T−1∑
r=1

1(k∈Ar+1)1(Nk(r)<(1+ε)ξk log(T )) +

T−1∑
r=1

1(`(r)6=1)

≤ 1 + (1 + ε)ξk log T +

T−1∑
r=1

1Zr

and similarly

Nk(T )1GTk 1H̄Tk ≤

(
1 + Jk log T +

T−1∑
r=1

1Zr

)
1GTk

≤ (1 + Jk log T )1GTk +

T−1∑
r=1

1Zr

Choosing ξk = 1/I1(µk) the bound in (3) exhibits the term in 1+ε
I1(µk) log T in Lemma 4.1. To obtain

the result, it remains to upper bound

TP(HTk ) + (1 + Jk log T )P(GTk ) + 2

T−1∑
r=1

P(Zr)

for an appropriate choice of Jk. To do so, we shall first use the concentration inequality Lemma 4.2
to upper bound the terms involving GTk and HTk by problem-dependent constants (Appendix D.1),
and then we carefully handle the terms in Zr (Appendix D.2).

D.1 Upper Bounds on P(GTk ) and P(HTk )

We first fix some real numbers Jk and ω, ωk in (µk, µ1) to be specified later. We also fix ξk =
1/I1(µk). Starting with GTk , we apply the second statement in Lemma 4.2 for arm k and arm 1 with
n0 = (1 + ε)ξk log r and ξ = ωk:

P(GTk ) ≤
T−1∑
r=1

P (`(r) = 1, k ∈ Ar+1, Nk(r) ≥ (1 + ε)ξk log T )

≤
T−1∑
r=1

P
(
N1(r) ≥ Nk(r), Ŷk,Nk(r) > Ŷ1,Sr1 (N1(r),Nk(r)), Nk(r) ≥ (1 + ε)ξk log T

)
≤ T

1− e−I1(ωk)
e−(1+ε)ξkI1(ωk) log T +

1

1− e−Ik(ωk)
e−(1+ε)ξkIk(ωk) log T .

Similarly, we obtain

P(HTk ) ≤ T

1− e−I1(ω)
e−JkI1(ω) log T +

1

1− e−Ik(ω)
e−JkIk(ω) log T .

Our objective is to bound TP(HTk ) and log(T )P(GTk ) by constants. This is achieved for instance if
TP(HTk ) −→

T→+∞
0 and log(T )P(GTk ) −→

T→+∞
0. The following conditions are sufficient to ensure

these properties:

• (1 + ε)ξkI1(ωk) > 1

• (1 + ε)ξkIk(ωk) > 0

• JkI1(ω) > 2

• JkIk(ω) > 1
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These conditions are met with the following values:

• ω = 1
2 (µ1 + maxk 6=1 µk)

• Jk > max( 1
Ik(ω) ,

2
I1(ω) )

• µk < ωk < µ1 chosen such that (1+ε)I1(ωk) > Ik(ωk). We are sure that such value exists
if we choose ωk close enough to µk, thanks to the continuity of the rate functions and the
fact that Ik(µk) = 0 and I1(µk) 6= 0 (assumed in Assumption 1. of Theorem 3.1).

Choosing these values, both the terms in GTk and HTk in (3) are part of the constant Ck(ν, ε) in
Lemma 4.1. We can now focus on upper bounding

∑T−1
r=1 P(Zr), which is more challenging.

D.2 Upper Bound on
∑T−1
r=1 P(Zr)

The first steps of this part of the proof are again similar to [2]. The definition of the leader as the arm
with the largest history gives the following property, that will be very useful for the analysis:

`(r) = k ⇒ Nk(r) ≥
⌊ r
K

⌋
− 1

So if an arm k is the leader at a given round it has been drawn a linear amount of time at this round.
Intuitively, this will provide very interesting concentration guarantees for the leader after a reasonable
amount of rounds, that we are going to use in this section. For every r ≥ 8, we define ar = b r4c and
use the decomposition

P (Zr) = P (Zr ∩ Dr) + P
(
Zr ∩ D̄r

)
, (4)

where Dr is the event that the optimal has been leader at least once in [ar, r]:

Dr = {∃u ∈ [ar, r] such that `(u) = 1}.

We now explain how to upper bound the sum of the two terms in the left hand side of (4).

D.2.1 Controlling P(Zr ∩ Dr): arm 1 has been leader between br/4c and r

We introduce a new event

Bu = {`(u) = 1, k ∈ Au+1, Nk(u) = N1(u)− 1 for some arm k}

If Dr happens, then the event Zr can be true only if the leadership has been taken over by a
sub-optimal arm at some round between ar and r, that is

Zr ∩ Dr ⊂ ∪ru=ar{Z̄u,Zu+1} ⊂ ∪ru=arB
u

We now upper bound
∑T−1
r=8

∑r
u=ar

P(Bu). We use the notation br = bar/Kc, where we recall
ar = br/4c. Then we write Bu = ∪Kk=2Buk := {`(u) = 1, k ∈ Au+1, Nk(u) = N1(u)− 1}},
which fixes a specific suboptimal arm. For any wk in (µk, µ1), one can write

T−1∑
r=8

r∑
u=ar

P(Bu
k ) = E

T−1∑
r=8

r∑
u=ar

1(`(u) = 1)1(k ∈ Au+1)1(N1(u) = Nk(u) + 1)

≤ E
T−1∑
r=8

r∑
u=ar

1(N1(u) ≥ br)1(Ȳk,Nk(u) ≥ Ȳ1,Su
k
(N1(u),Nk(u)))1(N1(u) = Nk(u) + 1)1(k ∈ Au+1)

≤ E
T−1∑
r=8

r∑
u=ar

1(N1(u) ≥ br)1(Ȳk,Nk(u) < wk)1(N1(u) = Nk(u) + 1)1(k ∈ Au+1) (5)

+ E
T−1∑
r=8

r∑
u=ar

1(N1(u) ≥ br)1(Ȳ1,Su
k
(N1(u),Nk(u)) > wk)1(N1(u) = Nk(u) + 1)1(k ∈ Au+1) (6)
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We now separately upper bound each of these two terms. First,

(5) ≤ E
T−1∑
r=8

r∑
u=ar

r∑
nk=br−1

1(Nk(u) = nk)1(k ∈ Au+1)1(Ȳk,nk < wk)

≤ E
T−1∑
r=8

r∑
nk=br−1

1(Ȳk,nk < wk)

r∑
u=ar

1(Nk(u) = nk)1(k ∈ Au+1)︸ ︷︷ ︸
≤1

≤
T−1∑
r=8

r∑
nk=br−1

P(Ȳk,nk < wk)

≤
T−1∑
r=8

r∑
nk=br−1

exp (−nkIk(wk))

≤ e(2+1/K)Ik(ωk)

(1− e−Ik(ωk))(1− e−Ik(ωk)/4K)

Then, letting [m,n] denote the set of subset of [n] of size m,

(6) ≤ E
T−1∑
r=8

r∑
u=ar

r∑
nk=br−1

1(Ȳ1,Suk (nk+1,nk) > wk)1(Nk(u) = nk)1(k ∈ Au+1)

≤ E
T−1∑
r=8

r∑
u=ar

r∑
nk=br−1

∑
S∈[nk,nk+1]

1(Ȳ1,S > wk)1(Suk (nk + 1, nk) = S)1(Nk(u) = nk)1(k ∈ Au+1)

≤ E
T−1∑
r=8

r∑
u=ar

r∑
nk=br−1

∑
S∈[nk,nk+1]

1(Ȳ1,S > wk)1(Nk(u) = nk)1(k ∈ Au+1)

≤ E
T−1∑
r=8

r∑
nk=br−1

∑
S∈[nk,nk+1]

1(Ȳ1,S > wk)

r∑
u=ar

1(Nk(u) = nk)1(k ∈ Au+1)︸ ︷︷ ︸
≤1

≤
T−1∑
r=8

r∑
nk=br−1

∑
S∈[nk,nk+1]

P(Ȳ1,S > wk)

≤
T−1∑
r=8

r∑
nk=br−1

(nk + 1)P(Ȳ1,nk > wk)

≤
T−1∑
r=8

(r + 1)

r∑
nk=br−1

exp (−nkI1(wk))

≤ e(2+1/K)I1(ωk)

(1− e−I1(ωk))(1− e−I1(ωk)/4K)2

Here we have used that there are nk + 1 subsets in [nk, nk + 1] and that P(Ȳ1,S > wk) = P(Ȳ1,nk >
wk) for all such subsets. Choosing ωk such that I1(ωk) = Ik(ωk) (which is possible given the
continuity assumptions on the two rate functions), we obtain

T−1∑
r=8

P (Zr ∩ Dr) ≤
T−1∑
r=8

r∑
u=ar

P(Bu) ≤
K∑
k=2

2e(2+1/K)I1(ωk)

(1− e−I1(ωk))(1− e−I1(ωk)/4K)2
. (7)

D.2.2 Controlling P(Zr ∩ Dr): arm 1 has not been leader between br/4c and r

The idea in this part is to leverage the fact that if the optimal arm is not leader between bs/4c and s,
then it has necessarily lost a lot of duels against the current leader at each round. We then use the
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fact that when the leader has been drawn "enough", concentration prevents this situation with large
probability. We introduce

Lr =

r∑
u=s0

1Cu

for the event Cu = {∃a 6= 1, Na(u) ≥ N1(u), Ŷa,Su1 (Na(u),N1(u)) ≥ Ŷ1,N1(u)}. One can prove the
following inequality:

P(Zr ∩ D̄r) ≤ P(Lr ≥ r/4) .

Proof. Under D̄r arm 1 is a challenger for every round u ∈ [ar, r]. Then, each time Cu is not true
arm 1 wins its duel against the current leader and is pulled. Hence, if {Lr < r/4} then we necessarily
have {N1(r) > r/2} and arm 1 is leader in round r. Hence, {Zr ∩ D̄r} ∩ {Lr < r/4} = ∅, which
justifies the inequality.

Now, as in [2] we use the Markov inequality to get:

P(Lr ≥ r/4) ≤ E(Lr)
r/4

=
4

r

r∑
u=br/4c

P(Cu) .

By further decomposing the probability of P(Cu) in two parts depending on the value of the number
of selections of arm 1, we obtain the upper bound

P(Zr ∩ Dr) ≤ 4

r

r∑
u=br/4c

P
(
N1(u) ≤ (log u)2

)
+

4

r

r∑
u=br/4c

P
(
Cu, N1(u) ≥ (log u)2

)
︸ ︷︷ ︸

Br

.

We now upper bound the quantity Br defined above by using Lemma 4.2. For each a, for any ωa
such that ωa ∈ (µa, µ1), one can write

Br ≤
r∑

u=br/4c

P(Cu, N1(u) ≥ (logbr/4c)2)

≤
K∑
a=2

r∑
u=br/4c

P(Ya,Su1 (Na(u),N1(u)) > Ŷ1,N1(u), N1(u) ≥ log(br/4c)2, Na(u) > N1(u))

≤
K∑
a=2

(
1

1− e−I1(ωa)
e−(logbr/4c)2I1(ωa) +

r

1− e−Ik(ωa)
e−(logbr/4c)2Ia(ωa)

)
.

Choosing each ωa such that I1(ωa) = Ia(ωa), we obtain:

4

r

T∑
r=8

Br ≤
T∑
r=8

K∑
a=2

4(r + 1)

r(1− e−I1(ωa))
e−(logbr/4c)2Ia(ωa)

≤
K∑
a=2

T∑
r=8

6

1− e−I1(ωa)
e−(logbr/4c)2Ia(ωa),

and for each a the series in r is convergent as for any constant C, C log(r) ≤ (logbr/4c)2 for r large
enough. Hence, there exists some constant D(ν) where ν = (ν1, . . . , νK) such that 4

r

∑T
r=8Br ≤

D(ν). It follows that
T∑
r=8

P(Zr ∩ Dr) ≤
T∑
r=8

4

r

r∑
u=br/4c

P
(
N1(u) ≤ (log u)2

)
+D(ν) .

We now transform the double sum in the right-hand side into a simple sum by counting the number
of times each term appears in the double sum:

T∑
r=8

4

r

r∑
u=br/4c

P
(
N1(u) ≤ (log u)2

)
=

T∑
r=8

(
r∑
t=1

4

t
1(t ∈ [r, 4r])

)
P(N1(r) ≤ (log r)2) .
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Noting that
∑r
t=1

4
t1(t ∈ [s, 4s]) ≤ (4s− s+ 1)× 4

s ≤ 16, we finally obtain:

T∑
r=8

P(Zr ∩ Dr) ≤ 16

T∑
r=1

P
(
N1(r) ≤ (log(r))2

)
+D(ν). (8)

Combining (7) and (8) yields
T∑
r=1

P (Zr) ≤ 16

T∑
r=1

P
(
N1(r) ≤ (log(r))2

)
+D′k(ν)

for some constant D′k(ν) that depends on k and ν, which contributes to the final constant Ck(ν, ε)
in Lemma 4.1. Plugging this inequality in Equation (3) concludes the proof of Lemma 4.1.

E Probability that the Optimal Arm is not Drawn Enough: Proof of
Lemma 4.3

We start with a decomposition that follows the steps of [1] for BESA with 2 arms that we generalize
for K arms.

We first denote by rj the round of the jth play of arm 1 with r0 = 0 and let τj = rj+1 − rj . We
notice that τ0 ≤ K as all arms are initialized once. Then:

P
(
N1(r) ≤ (log r)2

)
≤ P

(
∃j ∈ {1, ..., log r2} : τj ≥ r/(log r)2 − 1

)
≤

(log r)2∑
j=1

P
(
τj ≥ r/(log r)2 − 1

)

Proof. If we assume that ∀j τj ≤ r/(log r)2 − 1 then tlog r2 =
∑log r2

j=0 τj < r, which yields
N`(r) > log r2 + 1.

We now fix j ≤ (log r)2 and upper bound the probability of the event

Ej := {τj ≥ r/ log r2 − 1} .

On this event arm 1 lost at least r/ log r2 consecutive duels between rj + 1 and rj+1 (either as a
challenger of as the leader) which yields

P(Ej) ≤ P
(
∀s ∈ {rj + 1, ..., rj + br/ log r2 − 1c} :{Ŷ1,j ≤ Ŷ`(s),Ss1(N`(s)(s),j), N1(s) = j,N`(s)(s) ≥ j}

∪{`(s) = 1, N1(s) = j})
The important change compared to the proof of [1] is that with K > 2, 1) we don’t know the identity
of the leader and 2) the leader is not necessarily pulled if it wins its duel against 1.

Now we notice that when r is large, the time range considered in Ej is large. By looking at the second
half of this time range only, we can ensure that the leader has been drawn a large number of times.
More precisely, introducing the two intervals

M1
j,r =

[
rj + 1, rj +

⌊
r/ log r2 − 1

2

⌋]
M2

j,r =

[
tj +

⌈
r/ log r2 − 1

2

⌉
, tj +

⌊
r/ log r2

⌋
− 1

]
it holds that

P(Ej) ≤ P(∀s ∈M2
j,r : {Ŷ1,j ≤ Ŷ`(s),Ss1(N`(s)(s),j), N1(s) = j,N`(s)(s) ≥ j}∪{`(s) = 1, N1(s) = j}) .

But we know that onM2
j,r the leader must has been selected at least 1

K

(
j +

⌈
r/ log r2−1

2

⌉)
times.

Let rK be the first integer such that log2(r) < 1
K−1

⌈
r/ log r2−1

2

⌉
, for every r ≥ rK , as j ≤ log2(r),
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the leader has been selected strictly more than j times, which prevents arm 1 from being the leader
for any round inM2

j,r. Hence, for r ≥ rK , for all j ≤ log2(r),

P(Ej) ≤ P
(
∀s ∈M2

j,r : {Ŷ1,j ≤ Ŷ`(s),Ss1(N`(s)(s),j), N1(s) = j,N`(s)(s) ≥ j}
)
.

To remove the problem of the identity of the leader we would like to find a way to fix our attention on
one arm. To this extent, we notice that during an interval of length |M2

j,r|, if there are only K − 1

candidates for the leader then one of them must have been leader at least mr := |M2
j,r|/(K − 1)− 1

times during this range. We also know that at any round inM2
j,r, the leader satisfies N`(s)(s) ≥

(tj + b r/ log r2−1
2 c)/K − 1 ≥ (b r/ log r2−1

2 c)/K − 1 =
|M1

j,r|
K − 1 := cr. Observe that mr > cr.

Finally, we introduce the notation

Ikj,r = {s ∈M2
j,r : `(s) = k}

for the set of rounds inM2
j,r in which a particular arm k is leader. From the above discussion, we

know that there exists an arm k such that |Ikj,r| ≥ mr.

To ease the notation, we introduce the event

Wk
s,j =

{{
Ŷ1,j < Ŷk,Ss1(Nk(s),j)

}
, Nk(s) ≥ cr, N1(s) = j

}
and write

P(Ej) ≤ P

( ⋂
s∈M2

j,r

K⋃
k=2

{`(s) = k, 1 /∈ As)}

)

≤ P

(
K⋂
k=2

⋂
s∈Ikj,r

Wk
s,j

)

≤ P

 K⋃
k=2

|Ikj,r| > mr,
⋂

s∈Ikj,r

Wk
s,j




≤
K∑
k=2

P

|Ikj,r| > mr,
⋂

s∈Ikj,r

Wk
s,j

 .

Finally, we define for any integer M the event that we can find M pairwise non-overlapping sub-
samples in the set of the sub-samples of arm k drawn in rounds s ∈ Ikj,r:

Fk,rj,M =
{
∃i1, ..., iM ∈ Ikj,r : ∀m < m′ ∈ [M ], Sim1 (Nk(im), j) ∩ Sim′1 (Nk(im′), j) = ∅

}
Introducing Hk

j,r = mins∈Ikj,r Nk(s), the minimal size of the history of arm k during rounds in Ikj,r
(which is known to be larger than cr as k is leader in these rounds), one has

P(Ej) ≤
K∑
k=2

P
(
|Ikj,r| > mr,∩s∈Ikj,rWs,j ∩ {Fk,rj,M ∪ F̄

k,r
j,M}

)
≤

K∑
k=2

P
(
|Ikj,r| ≥ mr, H

k
j,r ≥ cr, F̄

k,r
j,M

)
+

K∑
k=2

P
(
|Ikj,r| > mr,∩s∈Ikj,rWs,j ∩ Fk,rj,M

)
(9)

Upper bound on the first term in (9) The probability P
(
|Ikj,r| ≥ mr, H

k
j,r ≥ cr, F̄

k,r
j,M

)
can be

upper bounded by

P
(

#
{

pairwise non-overlapping subsets in (Ss1(Nk(s), j))s∈Ikj,r

}
< M

∣∣∣ {|Ikj,r| > mr, H
k
j,r ≥ cr

})
.

This probability can be related to some intrinsic properties of the sampler SP(H, j). To formalize
this, we introduce the following definition.
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Definition. For every integers N,H, j such that H > j, XN,H,j is a random variable which counts
the maximum number of non-overlapping subsets among N i.i.d. samples from SP(H, j).

Letting H1, . . . ,Hmr be integers that are all larger than cr, and letting S1, . . . , Smr be independent
subsets such that Si ∼ SP(Hi, j), the above probability is upper bounded by

P (# {pairwise non-overlapping subsets in (Si)
mr
i=1} < M)

which is itself upper bounded by P (Xmr,cr,j < M).

This last inequality is quite intuitive: if one draws subsets of size j from histories that may be larger
than cr, there is more “room” for non-overlapping subsets than if we always draw them from the
same history of size cr. For Random Block sampling, where the drawn subset is fully determined
by the random position of its first element, to formalize this intuition it is sufficient to prove that if
Xi, Yi are two sequences of random variables such that Xi is uniform in [Hi − j] and Yi is uniform
in [H − j], where Hi ≥ H , the random variable that counts the maximal number of elements in the
sequence (Yi) whose pairwise distance are larger than j is stochastically dominated by that the same
random variable but for the sequence (Xi). We performed numerical experiments that confirm that
this last condition holds.

Upper bound on the second term in (9) On the event
(
|Ikj,r| > mr,∩s∈Ikj,rWs,j ∩ Fk,rj,M

)
, one

can define ı̃1, . . . , ı̃M the first M rounds in Ikj,r for which the subsets S̃m := S ı̃m(Nk (̃ım), j) are
pairwise non-overlapping and we get

P
(
|Ikj,r| > mr,∩s∈Ikj,rWs,j ∩ Fk,rj,M

)
≤ P

(
∀m ∈ [M ], Ŷ1,j ≤ Ŷk,S̃m

)
.

By definition the subsets S̃m are pairwise non-overlapping, hence the sub-samples Ŷk,S̃m are inde-
pendent. We prove that this probability can be in fact upper bound by the balance function we defined
in section 3.

Indeed, introducing X ∼ ν1,j and an independent i.i.d. sequence Zi ∼ νk,j , one can write

P
(
|Ikj,r| > mr,∩s∈Ikj,rWs,j ∩ Fk,rj,M

)
≤ P(X < min

i∈[M ]
Zi)

= EX∼ν1,j
Z∼ν⊗jk,j

[
M∏
i=1

1X≤Zi

]

= EX∼ν1,j

[
EZ∼ν⊗jk,j

[∏
i

1X≤Zi

∣∣∣∣∣X
]]

= EX∼ν1,j
[
(1− Fk,j(X))

M
]

= αk(M, j).

Conclusion Putting things together, we have proved that

P(Ej) ≤ (K − 1)P (Xmr,cr,j < M) +

K∑
k=2

αk(M, j),

where XN,H,j and αk(M, j) are introduced in Definition E and 3 respectively. If we replace M by
the sequence βr,j we have

T∑
r=1

P(N1(r) ≤ log r2) ≤ rK +

T∑
r=rK

log r2∑
j=1

[
(K − 1)P (Xmr,cr,j < βr,j) +

K∑
k=2

αk(βr,j , j)

]

≤ rK +

T∑
r=rK

log r2∑
j=1

[
(K − 1)P (Xcr,cr,j < βr,j) +

K∑
k=2

αk(βr,j , j)

]

as cr ≤ mr, which proves Lemma 4.3.

This definition allows to analyze separately the properties of the sub-sampling algorithms and the
properties of the distribution family for randomized samplers.
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F Proof that RB-SDA Satisfies the Diversity Property

We recall that Xm,H,j denotes the maximal number of pairwise non-overlapping subsets obtained in
m i.i.d. samples from RB(H, j). In this section we aim at upper bounding the probability of

P
(
Xm,H,j ≤ γr/(log r)2

)
for some values of m, H , j, that will be fixed later. This probability depends on several parameters,
with straightforward effects:

• The probability decreases with the length of the history size H .

• The probability increases with the size j of each sub-sample.

• The probability decreases with the total number of sub-samples we draw m. Intuitively if m
is large enough every sample of size j in the history will be drawn.

First step with j = 1: in this case the distribution of the m subsets of size 1 is actually the
distribution of sampling with replacement in H . The question of the number of different items drawn
with sampling without replacement has been studied in [25], from which we use the following result:

Result 1: for any k ∈ [H], P(Xm,H,1 = k) = H!
(H−k)!×Hm × Sk,m, where Sk,m is the Stirling

number of the second kind for k,m.

We use this result with further assumptions that are specific to our problem and will ease the
computation: H = m = O(r/(log r)2). To ease the notation we continue to use H , and write
γt/(log t)2 = αH for some α ∈ (0, 1).

We first look at P(XH,H,1 = αH). According to [26] the following inequality holds

Sk,H ≤
1

2

(
H

k

)
kH−k ,

This allows to upper bound the expression in result 1:

P(XH,H,1 = k) ≤ 1

2

(
k

H

)H−k (
H

k

)

We now want to bound
(
H
k

)
. As k is small compared with H , it is natural to use(

H

k

)
≤ Hk

k!

We then bound 1/k! by its Stirling approximation and add a multiplicative constant c along the way:(
H

k

)
≤ c Hk

√
2πk × kk

ek

Refactoring provides

P(XH,H,1 = k) ≤ c

2

(
k

H

)H−2k
ek√
2πk

Then we notice that if k ≤ H − 2k we get:

P(XH,H,1 = k) ≤ c

2
√

2πk

(
ke

H

)H−2k

Now we can replace k by αH (assume it’s an integer for the simplicity of notations), such that 1)
α ≤ 1

3 ⇒ H(1− 3α) > 0 and αe < 1.
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If k ≤ αH , αe ≤ 1 and (1− 2α) > 0 then:
(
ke
H

)H−2k ≤ (αe)H−2k. We have:

P(XH,H,1 ≤ αH) ≤ c

2
√

2π

bαHc∑
k=0

(αe)
H−2k

≤ c

2
√

2π

bαHc∑
k=0

(αe)H−2(bαHc−k))

≤ c

2
√

2π
(αe)H−2bαHc 1

1− (αe)2

≤ c

2
√

2π

1

1− (αe)2
exp (−(1− 2α)H log(1/(αe)))

(10)

From XH,H,1 to XH,H,j This result is enough to get general properties for Random Block Sam-
pling. Indeed, as the process of RBS consists in only drawing the first element of the block used in
the duel we can see that the previous bound also applies to the number of unique starting points. With
this property, the Random Block Sampler satisfies for all x > 0:

P
(
Xm,H,j ≤

⌊
x

j

⌋)
≤ P (Xm,H,1 ≤ x)

Proof. Assume that the Random Block Sampler provides x blocks with different starting points. Let’s
further assume that x is an integer and try to identify the sequence of starting times ti = (t1, ..., tx)
that minimizes the number of mutually non-overlapping samples: the value of t1 is not important due
to the symmetry of the problem. Then if we want to reduce the possibilities to get non-overlapping
sample we want to choose a value for t2 that 1) makes the blocks [t1, t1 + j] and [t2, t2 + k] non-
overlapping and 2) makes things easier to continue this process for t3, ..., tm. It seems intuitive to
choose either the block starting at t1 + 1 or at t1 − 1 as we cover the minimum amount of space with
the constraint that t2 6= t1. If we repeat this choice until m blocks are chosen and reorder the blocks
properly, we get a sequence of starting points [t1, t1 + 1, ...t1 +m] that are all different and minimize
the total amount of space covered by the block. Even in this setup, we can find exactly

⌊
m
j

⌋
mutually

non-overlapping blocks as for instance all [t1 + kj, t1 + (k+ 1)j − 1], [t1 + k′j, t1 + (k′ + 1)j − 1]

blocks are non-overlapping for k 6= k′ and (k, k′) ∈ [0,
⌊
m
j

⌋
− 1].

We can finally prove the following for Random Block sampling.
Lemma F.1 (Diversity Property for Random Block Sampling). If we choose a constant γ ≤ 1/3× 1

2K
then Random Block Sampling satisfies the diversity property.

Proof. For γ ≤
⌊
1/3× 1

2K

⌋
, there exists α > 0 such that:

P(Xcr,cr,j ≤ γ/j(r/(log r)2)) ≤ P(Xcr,cr,j ≤ α/jcr)
≤ P(Xcr,cr,1 ≤ αcr)
= o(r−2)

The last line comes from the expression obtained in Equation (10), and allows to conclude that∑T
r=1

∑(log r)2

j=1 P(Xcr,cr,j ≤ α/j(r/(log r))2) = o(log T )

G Analysis of the Balance Function for Some Distributions

For the simplicity of the notation we write the balance function α(M, j) for any distribution and any
instance of these distributions. The family of distributions and the notation for their parameter will
always mentioned at the beginning of the corresponding sub-section.

In the next parts we use the notationG(x) = 1−F (x) where F denotes the CDF of some distribution.
For some arm distribution νi the distribution of the sum of j independent observations drawn from νi
is denoted by νi,j . With this notation, for two arms 1 and 2 we write:

α(M, j) = EZ∼ν1,j (G2,j(Z)M )
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G.1 The Bernoulli Distribution is Balanced

We prove the following lemma, which bears strong similarity with an upper bound given by [10] for
a similar quantity in their analysis of Thompson Sampling.

Lemma G.1 (Bound on α(M, j)). For two Binomial distributions ν1 ∼ B(j, µ1) and ν2 ∼ B(j, µ2)
such that µ1 > µ2 and for any integer M > 1: ∃λ > 1 such as

EX∼ν1,j
(

(1− Fj,µ2(X))
M
)
≤ Cλ0,λ

1

Mλ
e−jdλ,µ1,µ2 +

(
1

2

)M

Where Cλ,µ1,µ2 > 0, and Fj,µ2 is the CDF of a Binomial B(j, µ2).

Proof. We use the same notation as before: G2(k) = 1− F2(k) and f1, f2 as the PMF of ν1, ν2.

We first use a common property of Binomial distributions, ∀k > djµ2e: G(k) ≤ 1
2 . So we can

directly write:

EX∼ν1
(

(1− Fj,µ2
(X))

M
)
≤
(

1

2

)M
+

bjµ2c∑
k=0

f1(k)G2(k)M︸ ︷︷ ︸
(A)

Using convexity we get: G(k)M ≤ exp (−MF2(k)), hence

(A) ≤
bjµ2c∑
k=0

f1(k) exp (−MF2(k))

Then we use that for λ > 1, ∀x > 0: xλe−x ≤
(
λ
e

)λ
= Cλ, so:

(A) ≤ Cλ
Mλ

djµ2e∑
k=0

f1(k)

F2(k)λ
≤ Cλ
Mλ

djµ2e∑
k=0

f1(k)

f2(k)λ

As in [10], we compute:

f1(k)

f2(k)λ
≤ µk1(1− µ1)j−k

µλk2 (1− µ2)λ(jk)

≤
(

1− µ1

(1− µ2)λ

)j (
µ1(1− µ2)λ

µλ2 (1− µ1)

)k
=

(
1− µ1

(1− µ2)λ

)j
Rλ(µ1, µ2)k

with Rλ(µ1, µ2) = µ1(1−µ2)λ

µλ2 (1−µ1)
. We then notice that we can choose λ > 1 such that Rλ(µ1, µ2) > 1.

It is true for any λ > 1 if µ2 ≤ 0.5, and for 1 < λ < log µ1

1−µ1
/ log µ2

1−µ2
if µ2 > 0.5.

28



Plugging that expression into the sum gives:

(A) ≤ Cλ
Mλ

djµ2e∑
k=0

f1(k)

f2(k)λ

≤ Cλ
Mλ

(
1− µ1

(1− µ2)λ

)j djµ2e∑
k=0

Rλ(µ1, µ2)k

=
Cλ
Mλ

(
1− µ1

(1− µ2)λ

)j
Rλ(µ1, µ2)bjµ2c+1 − 1

Rλ(µ1, µ2)− 1

≤ Cλ
Mλ

(
1− µ1

(1− µ2)λ

)j
Rλ(µ1, µ2)

Rλ(µ1, µ2)− 1
Rλ(µ1, µ2)jµ2

=
Cλ
Mλ

Rλ(µ1, µ2)

Rλ(µ1, µ2)− 1

(
1− µ1

(1− µ2)λ

)j(1−µ2)(
µ1

µλ2

)jµ2

=
Cλ
Mλ

Rλ(µ1, µ2)

Rλ(µ1, µ2)− 1
e−jdλ(µ2,µ1)

=
Cλ,µ1,µ2

Mλ
e−jdλ(µ2,µ1)

where dλ(µ2, µ1) = λ (µ2 logµ2 + (1− µ2) log(1− µ2))− (µ2 logµ1 + (1− µ2) log(1− µ1)) =
KL(µ2, µ1)−(λ−1)H(µ2), KL(µ2, µ1) denotes the KL-divergence between ν2 and ν1, and H(µ2) =
EX∼ν2,j (log f2(X)). We need to choose λ as:

λ < 1 +
KL(µ2, µ1)

H(µ2)
= λ0(µ1, µ2)

Note that those quantities correspond to the Bernoulli distributions, the j is not involved here. In [10],
the authors explain that this condition is more restrictive than the previous one so we can state that
∀λ < λ0(µ1, µ2):

EX∼ν1,j
(

(1− Fj,µ2
(X))

M
)
≤
(

1

2

)M
+
Cλ,µ1,µ2

Mλ
e−jdλ(µ2,µ1)

This is enough to prove that the Bernoulli distribution is balanced by replacing M by bβt/(log t)2c
in the expression in Lemma G.1 and summing on t and j. The power term is in o(t(log t2)), while
the other term is the term of a convergent geometric series in j multiplied by a term in o(1/t) in t,
which is enough to get the result.

G.2 The Poisson Distribution is Balanced

We can actually use the same sketch of proof as for Bernoulli distributions, using that for 2 Poisson
random variables:

p1,j(k)

p2,j(k)λ
=e−j(θ1−λθ2)

(
k!

nk

)λ(
θ1

θλ2

)k
≤ e−j(θ1−λθ2)

(
θ1

θλ2

)k
So:

d0,j∑
k=0

p1,j(k)

p2,j(k)λ
≤ e−j(θ1−λθ2)

d0,j∑
k=0

(
θ1

θλ2

)k
≤ θλ2
|θ1 − θλ2 |

e−j(θ1−λθ2) ×max

{
1,

(
θ1

θλ2

)d0,j}
,
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where d0,j = θ2j − 1. Now we remark that if we choose λ ∈ (1, θ1/θ2) we have 2 possibilities: 1)
we can choose λ such that the second term equals one, hence we can bound the whole term by a
constant without further conditions, or 2) ∀λ ∈ (0, θ1, θ2):

(
θ1
θλ2

)
> 1. Let us focus on the second

case, we study the term e−j((θ1−λθ2)−θ2(log θ1−λ log θ2)). As for Bernoulli distributions, we identify
the KL-divergence between ν2 and ν1 and write:

(θ1 − λθ2)− θ2(log θ1 − λ log θ2) = KL(ν2, ν1)− (λ− 1)θ2(1− log θ2)

So if log θ2 > 1 we can choose any λ > 1. In the other case we have to restrict our choice of λ to get:

λ < 1 +
KL(ν2, ν1)

θ2(1− log(θ2))

So with an appropriate choice for λ Poisson distributions are balanced with the same argument that
makes Bernoulli distributions balanced.

G.3 The Gaussian Distribution is Balanced

For the Gaussian distribution we leverage the fact that both the PDF and CDF of any Gaussian
distribution can be expressed with the PDF and CDF of the standard normal distribution. With such
decomposition, we can express α(M, j) as a function of these CDF/PDF and use some properties of
the normal distribution.

We use the notations f andG for the PDF and CDF of theN (0, 1) distribution, ∆ for the gap between
the two arms, and compute the expectation:

α(M, j) =

∫ +∞

−∞
f1,j(x)G2,j(x)Mdx

≤
∫ z

−∞
f1,j(x)G2,j(x)Mdx+G2,j(z)

M , ∀z ∈ R

≤
∫ z

−∞
f

(
x− µ1,j√

j

)
G

(
x− µ2,j√

j

)M
dx+G2,j(z)

M

≤
∫ z−µ2,j√

j

−∞
f
(
y −

√
j∆
)
G(y)Mdy +G2,j(z)

M

At this step we use two things: 1) the normal distribution satisfies f(x− a) = e−a
2+2axf(x) for all

a, x, and 2) h : x→ (M + 1)f(x)G(x)M is a probability distribution of CDF x→ 1−G(x)M+1.
We continue the computation with:

α(M, j) ≤ e−j∆
2

M + 1

∫ z−µ2j√
j

−∞
e
√
j∆yh(y)dy +G2,j(z)

M

≤ e−j∆
2

M + 1
e
√
j∆

z−µ2j√
j (1−G

(
z − µ2j√

j

)M+1

) +G

(
z − µ2j√

j

)M
≤ e−j∆

2

M + 1
e
√
j∆

z−µ2j√
j +G

(
z − µ2j√

j

)M
As the inequality is true for all z ∈ R, it holds that,

∀y ∈ R, α(M, j) ≤ e−j∆
2

M + 1
e
√
j∆y +G (y)

M
.

Now let yM be such as G(yM ) = 1 − 1√
M

. This value ensures that the second term satisfies

G(yM )M ≤ e−
√
M = o(M−2). Observe that yM = F−1( 1√

M+1
). Using the following equivalent

of the quantile function of the normal distribution when the quantile is small (see for instance [27]):

F−1(p) = −
√

log
1

p2
− log log

1

p
+ log 2π + op→0(1) ,
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there exists a constant C ∈ R such that yM ≤ −C
√

logM − log logM + log 4π. This yields

α(M, j) ≤ e−j∆
2

M + 1
e−C

√
j∆
√

logM−log logM+log 4π + e−
√
M

Noting that for all k ∈ N∗,

k log logM = o(C
√
j∆
√

logM − log logM + log 4π)

we get that ∀k ∈ N∗:

α(M, j) = o

(
e−j∆

2

(M + 1)(logM)k

)

This is sufficient to prove that the Gaussian distribution is balanced. Indeed, as for the Bernoulli
distribution this term sums as a convergent geometric series in j, and with M = O(t/(log t)2) we
can make the sum in t a convergent Bertrand Series.

G.4 The Exponential Distribution is Not Balanced

For j = 1, a direct calculation yields

α(M, 1) =
1

1 +
(
µ1

µ2

)
M
.

Using this, we now prove that the series in Assumption 2. of Theorem 3.1 is in Ω(log(T )), hence the
balance condition is not satisfied. As all the αk(M, j) are positive, one can write

T∑
t=1

b(log t)2c∑
j=1

αk(
⌊
βt/(log t)2

⌋
, j) ≥

T∑
t=1

αk(
⌊
βt/(log t)2

⌋
, 1)

=

T∑
t=2

1

1 +
(
µ1

µk

)
bβt/(log t)2c

≥
T∑
t=2

1

1 +
(
µ1

µk

)
βt/(log t)2

≥ C

T∑
t=2

1

t
= O(log(T )),

where C is some small enough constant that depend on µ1, µk and β.

H Sketch of Proof with Forced Exploration

In this section, we explain how the proof of Theorem 3.1 is modified when we add forced exploration
with fr =

√
log r, that is when in every round r+1 we add toAr+1 every arm k such thatNk(r) ≤ fr.

It is easy to verify that the proof of Lemma 4.1 remains unchanged, as it is inspired by the analysis
of SSMC which also uses forced exploration. We now explain how forced exploration modifies the
proof of Lemma 4.3 and how we upper bound the resulting new terms for any exponential family.

H.1 Handling Forced Exploration in Lemma 4.3

The idea is to use the same proof sketch as without forced exploration. We note f(r) =
√

log r the
forced exploration rate and f−1(r) = exp(r2) its inverse function.

Let us consider the round ar = f−1(f(r)− 1). At this round, the value of exploration function is
f(r)− 1 =

√
log r − 1, which means that the number of pulls of arm 1 is at least b

√
log r − 1c ≥√

log r − 2.
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Now we look at the length of the interval r − ar:
r − ar =r − f−1(f(r)− 1)

=r − exp((
√

log r − 1)2)

=r − exp(log r − 2
√

log r + 1)

=r(1− exp(−2
√

log r + 1))

∼r when r → +∞
As r − ar is equivalent to r when r is large, for any constant γ > 0 there exists a round rγ such
that for r > rγ : r − ar > γr. This means that after the round ar arm 1 faces a linear amount of
duels, and has an history of at least j = b

√
log r − 1c samples. Introducing br the random variable

giving the first time when N1(br) = b
√

log r − 1c, we necessarily have br ≤ ar. We now use that
N1(r) ≤ (log r)2 ⇒

∑b(log r)2c−1
j=1 τj ≤ r, which further implies

br +

b(log r)2c−1∑
j=
√

log r−1

τj ≤ r ⇒
b(log r)2c−1∑
j=
√

log r−1

τj ≤ r − br

We can then use the same proof as in Appendix E:

P
(
N1(r) ≤ (log r)2

)
≤ P

(
∃j ∈ {b

√
log r − 1c, ..., b(log r)2c − 1} : τj ≥

r − br
(log r)2 − b

√
log r − 1c

}
)

≤ P
(
∃j ∈ {b

√
log r − 1c, ..., b(log r)2c − 1} : τj ≥

r − ar
(log r)2 − b

√
log r − 1c

}
)

≤ P
(
∃j ∈ {b

√
log r − 1c, ..., b(log r)2c − 1} : τj ≥

r − ar
(log r)2

}
)

≤ P
(
∃j ∈ {b

√
log r − 1c, ..., b(log r)2c − 1} : τj ≥

γr

(log r)2
}
)

The constant γ does not change the sketch of proof, and we finally have:

T∑
r=1

P(N1(r)) ≤ (log r)2) ≤ r′K +

T∑
r=r′

K

(log r)2∑
j=bfrc−1

[
(K − 1)P(Xcr,cr,j < Mr,j) +

K∑
k=2

αk(Mr,j , j)

]
(11)

for any sequence Mr,j , and a new constant r′K . Observe that the sum in j does not start in 1 as it does
in the statement of Lemma 4.3 in the absence of forced exploration. This justifies the introduction of
the generalized balance condition in Appendix H.2

H.2 Exponential Families Satisfy a Generalized Balanced Condition

To conclude the proof as in Theorem 3.1, as Random Block Sampling satisfies the Diversity Property,
from (11) (with the choice Mr,j =

⌊
βr/(log r)2

⌋
) it is sufficient to prove that one-dimensional

exponential families satisfy the following generalized balance condition.
Definition (generalized balance condition). If SDA is defined with a forced exploration rate fr then
the generalized balance condition for the rate fr is:

∀β ∈ (0, 1),

T∑
r=1

b(log r)2c∑
j=fr

αk(
⌊
βr/(log r)2

⌋
, j) = o(log T ) .

The following lemma proves that this holds in particular for the choice fr =
√

log(r), which
permits to prove that RB-SDA with this forced exploration sequence is asymptotically optimal for
distributions that belong to any one-dimensional exponential family.
Lemma H.1 (Generalized balance condition on exponential families). If the exploration rate fr
satisfies fr

log log r → +∞ then any exponential family of distributions with one parameter satisfies the
generalized balance condition.
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Proof. A distribution that belong to a one-dimensional exponential family has a density fθ(y) =
f(x, 0)eη(θ)y−ψ(θ) for some natural parameter θ ∈ R.

We observe that for any y1, ..., yj ∈ Rj , if
∑j
i=1 yi ≤ µk:

j∏
u=1

fθ1(yu) =

j∏
u=1

e(η(θ1)−η(θk))yu−(ψ(θ1)−ψ(θk))fθk(yu) ≤ e−jI1(µk)

j∏
u=1

fθk(yu)

This inequality ensures that for all x, u ∈ R, if F−1
k,j (u) ≤ µk:

F1,j(x) ≤ e−jI1(µk)Fk,j(x)⇒ F1,j(F
−1
k,j (u)) ≤ e−jI1(µk)u

So for exponential families a strictly positive gap between two distributions leads to an exponential
decrease of the ratio of the CDF of the sum. If we use the fact that for all u ∈ R:

αk(M, j) =

∫ +∞

−∞
f1,j(x)G2,j(x)MdP(x)

≤
∫ u

−∞
f1,j(x)G2,j(x)M +

∫ +∞

u

f1,j(x)G2,j(x)MdP(x)

≤ F1,j(u) +G2,j(u)M

Then ∀β ∈ (0, 1) and for all sequence ur:

T∑
r=1

b(log r)2c∑
j=fr

αk(
⌊
βr/(log r)2

⌋
, j) ≤

T∑
r=1

b(log r)2c∑
j=fr

(1− ur)bβr/(log r)2c + e−jI1(µk)ur

≤
T∑
r=1

log(r)2(1− ur)bβr/(log r)2c +

T∑
r=1

e−frI1(µk)

1− e−I1(µk)
ur

We now choose ur of the form ur = (log r)k

r . Indeed, for the first term we get:

log(r)2(1− ur)bβr/(log r)2c ≤ log(r)2 exp

(
−
⌊
βr/(log r)2

⌋ (log r)k

r

)
≤ log(r)2 exp

(
−(βr/(log r)2 − 1)

(log r)k

r

)
≤ ζk(log r)2 exp

(
−β(log r)k−2

)
= o(r−1) for k > 2

where ζk is an upper bound for exp( (log r)k

r ). From now on we work with k = 3. For the second
term we have to study ure−I1(µk)fr :

ure
−I1(µk)fr = exp (log ur − I1(µk)fr)

= exp (3 log log r − log r − I1(µk)fr)

We see that ure−I1(µk)fr = o(r−1) if 3 log log r − I1(µk)fr → 0. This condition is achieved if
fr/ log log r → +∞, hence an exploration rate satisfying this condition ensures the generalized
balance condition for any exponential family of distributions with one parameter for this rate.

We point out the fact that this forced exploration is not necessary in SDA, as we proved that
some distributions (Bernoulli, Gaussian, Poisson) directly satisfy the balance condition defined in
Assumption 2. of Theorem 3.1. We leave for future research an in-depth analysis of the properties of
different families of distribution that could exhibit general conditions for the use of forced exploration
(or not) in the SDA family.
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