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THE CONTINUUM DIRECTED POLYMER IN LEVY NOISE

QUENTIN BERGER AND HUBERT LACOIN

ABSTRACT. We present in this paper the construction of a continuum directed polymer
model in an environment given by space-time Lévy noise. One of the main objectives
of this construction is to describe the scaling limit of discrete directed polymer in an
heavy-tail environment and for this reason we put special emphasis on the case of a-
stable noises with a € (1,2). Our construction can be performed in arbitrary dimension,
provided that the Lévy measure satisfies specific (and dimension dependent) conditions.
We also discuss a few basic properties of the continuum polymer and the relation between
this model and the Stochastic Heat Equation with multiplicative Lévy noise.
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1. INTRODUCTION

The aim of this paper is to build a continuum model which describes the scaling limit
of directed polymers in Z¢ with an environment which has infinite second moment: the
continuum directed polymer in a space-time Lévy noise. Our construction can be thought
as an extension to arbitrary noise and dimension of that presented in [2] of a continuum
polymer in dimension 1 with Gaussian white noise. In a companion paper [8], we prove
that the scaling limit of the directed polymer in Z¢ with heavy tailed environment is indeed
the continuum model constructed in the present paper.

Whereas the construction in [2] is directly based on the solution of the Stochastic Heat
Equation (SHE) with multiplicative noise, our approach here needs to be slightly different
since the solution of SHE with a general Lévy noise (see [21] for recent developpements)
does not display sufficient regularity. Our continuum model is thus defined via a mar-
tingale approximation of the noise obtained by truncating the “small jumps” part of the
noise. This construction is not specific to directed polymers and can possibly be applied
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2 QUENTIN BERGER AND HUBERT LACOIN

to describe the scaling limit of a wide variety of disordered models with heavy tailed
noise, including the disordered pinning model (see [16l [17] for the construction of the
corresponding Gaussian scaling limits).

In order to motivate our construction, we provide a brief introduction to the directed
polymer model, the notion of its scaling limit and review some literature on the subject.

1.1. Directed polymer in a random environment (the discrete model). Let us
consider 1 = (Mn.z)pen zezd @ discrete (1 + d)-dimensional field of i.i.d. random variables,
with law denoted by P. We assume that

Pln>-1]=1 and E[n]=0. (1.1)

With some harmless abuse of notation, we let 1 denote a generic random variable with
the same law as 7, ,. We consider the following (1 + d)-dimensional (discrete) directed
polymer model, in environment (1n,.)pen zezd- Let S = (Si)i=o0 be the simple symmetric
random walk on Z¢, with law denoted by P. Given a parameter 3 € (0, 1) (which allows
to tune the disorder’s intensity) we define the partition function ZX/, P by

N
Zp = E[ [T+ Bnn,sn)] ; (1.2)
n=1
and the associated polymer (Gibbs) measure P?\/, 5 by
dPy ;X
Brgy._
dP (5) = 71 H (1+ Bin,s,)- (1.3)

NHB n=1

The environment 7 can be thought as a field of impurities, and under P?\/, 5 the law of the
random walk is modified so that it favors visits to (space-time) sites where 7 assumes a
larger value. Assumptions are merely practical: they ensure that 1+ 38n, g, is always
positive and imply that E[Z} 5] = 1.

The directed polymer model has a long history, dating back to [34], see [24] for an exten-
sive review. In many directed polymer references (including [24]) the setup is slightly dif-
ferent and the Gibbs weights are rather written in an exponential form exp( 22[21 Tn.S» )
instead of ngl (1 + 577n,Sn) used here. For most purposes the two formalisms are equiv-
alent, but the latter turns out to be the adequate one for the specific problem we wish to
study (we discuss this point later in the introduction, see Remark .

Localization transition. A major point of focus in the directed polymer model has been
the localization transition from a high temperature diffusive phase (small 8) to a low
temperature localized phase (large ). This phase transition can be studied via the free-
energy p(f) = —limy_q %E[log ZX/,B]; we refer to [25, Prop. 2.5] for a proof of its
existence. The free-energy is a non-negative, non-decreasing and continuous function of
B € (0,1) (see [27, Thm. 3.2] for a proof, [46, Thm. A.1] for its adaptation to the setup
presented here). In particular there exists a critical value (5. € [0, 1] which is such that
p(B) = 0 if and only if 8 < fe.

This phase transition has been mostly studied in the case where the environment has
a finite second moment E[1?] < co. In the exponential setup, this corresponds to having
E[e?7] < oo (the standard assumption considered in the literature is that 1 has exponential
moment of all orders see e.g. [I]) and under this assumption it has been show that . > 0
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when d > 3, in [12), B5], while 5. = 0 when d = 1 [20] and d = 2 [37]. In particular this
implies that there is no observable transition in dimension d =1 and d = 2.

Intermediate disorder regime and scaling limit. When d < 2, under a finite second moment
assumption, we have
lim Z7 ,=0 and lim Z7 ,=1. 1.4
Nooo B G0 NP (1.4)
A legitimate question is therefore to know how to scale § with N (or N with /3) in order
to observe a non-trivial random behavior for Z7, 5, and P s in the limit N — co.

This problem has been the object of a large number of works [, [16l [I7] (see the re-
view [20] and references therein). When d = 1, the correct scaling is to take /3 proportional
to N~1/4 — note that in this case, N is proportional to the correlation length of the system
which is given by |p(8)|~! = 7% see [3, 42]. The limit is formally obtained by replacing
the random walk path and its environment by their scaling limit, which are respectively
given by Brownian Motion and space-time White Noise. In particular, the scaling limit

of the partition function limpy_,q ZN BN/ is intimately related to the solution of the

Stochastic Heat Equation (SHE) with multiplicative noise [10].

The case of the dimension d = 2 is more delicate, but has witnessed substantial progress
in the recent years [I8|, 19, 33]. Let us also mention [22] and references therein for results
concerning a hierarchical version of the model. One of the several reasons why this case
presents additional difficulty is that the SHE with multiplicative noise in dimension d = 2
is ill-defined, so that the heuristic picture we had in dimension d = 1 cannot be valid. It is
however known that if By is chosen so that ™ X is proportional to N (this corresponds to
taking the size of the system proportional to |p(8)| 7!, see [6]) and if the initial position Sy
of the random walk is randomized, e.g. uniform on a ball of radius v/N, then the partition
function ZX,, 5, converges to a non-trivial limit.

Heavy tailed disorder. Our main motivation is to investigate intermediate disorder limits
beyond the case E[?] < oo. Our interest lies in the case where 7 is in the domain of
attraction of an a-stable law for o € (1,2) and that still holds (we can also consider
the case a € (0,1] if one drops the assumption that n has zero average). To be more
specific, let us assume the tail distribution has a pure power-law decay, ¢.e. that in the
large z limit we have
P(n > 2) = 2 (1 + o(1)). (1.5)
This kind of heavy tail environment has been studied in [46]. In this case, the existence
of a non-trivial weak disorder phase depends on « and the dimension d. We have . = 0 if
and only if d < %, see [46, Thm. 1.1]. Moreover, when d < %, the behavior of the free

energy near criticality (that is, for 3 small) is given by p(8) = 8¥T°) with v = %.

One of our main goal is to identify the intermediate disorder scaling limit of this model
under the assumption (|1 , when o < 1 + g We present in this paper the construction
of the continuum measure that appears as the limit of P NGy in the intermediate disorder
regime. The convergence of the discrete model to the continuum one, when Sy goes to 0

at some adequate rate, is the object of a separate work [§], see Theorem |A| . below.

Remark 1.1. Let us stress that directed polymers in heavy-tail random environment are
also considered in [4,19,28]: the main difference is that in these papers the Gibbs weights are

written under the exponential form exp(S Zg;l Tn.S, ). When the second moment of 7, s,
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is infinite, such a model exhibits very strong localization properties: polymer trajectories
remain in the neighborhood of a single favorite trajectory which visits the high enery sites
(see [4,19] ). Also, the intermediate disorder regime is somehow trivial in this case. Indeed,
in [9] the authors show that there is a specific scaling at which a sharp weak-to-strong
disorder transition occurs. Under this scaling, there is a (random) threshold below which
the partition function goes to 1 and above which it goes to +o0 (see [9, Thms 2.7-2.8] for a
more precise statement). The model we study here has actually a very different behavior.
This comes from the fact the field By, converges after scaling (as a distribution) to a
non trivial limit — this is never the case for exp(Biy ) even after centering because large
values of 7] create too wild fluctuations. Our setting therefore allows for the occurrence of an
intermediate regime in which the entropy of the random walk and the random environment
have balanced roles.

1.2. An informal definition of a continuum polymer with Lévy noise. Before
stating our main result concerning the intermediate disorder regime in a-stable environ-
ment, we need to provide a description of the scaling limit. The object we construct is
formally obtained by considering a Feynman—Kac formula where the random walk and the
environment are replaced by their respective scaling limits.

The scaling limit of our random walk is a Brownian Motion with covariance matrix éId
where I is the identity matrix in R?. To define the continuum polymer, we rather consider
a standard d-dimensional Brownian motion (Bt>te[o,T] (for practical reason it is convenient
to define B only until a fixed finite time horizon T'). We let Q denote the associated
distribution (we omit the dependence in T to lighten notation) on the Wiener space

Co([0,T7]) := {p: [0,T] — R? : ¢ is continuous and ¢(0) = 0}, (1.6)
endowed with the topology of uniform convergence and the associated Borel o-algebra.

When 7 has a finite second moment, the scaling limit for the environment is given by
a space-time Gaussian white noise. In that case a Brownian polymer model in dimension
d = 1 can be (and has been) constructed based on the solution of the Stochastic Heat
Equation, see [2]. On the other hand, in the case where is satisfied for some « € (0, 2),
we have to consider a different object, namely the space-time (1 + d)-dimensional a-
stable noise with Lévy measure supported on R,. This is the multidimensional analog
of the derivative of the a-stable process with only positive jumps. This is a well studied
object, see [29] and references therein, but we try to offer here a short and self-contained
introduction for the sake of completeness. For simplicity, we focus our exposition on the
case « € (1,2), which displays the most interesting phenomenology. However we also treat
below a much more general class of noise which includes the case a € (0, 1].

One-sided a-stable noise in R x RY. Given a € (1,2), we start with a Poisson point
process w on R x R? x R, (time, space, and value of disorder) with intensity

dt ® dz @ av~ ¥ du (1.7)

which is obtained as the scaling limit of the extremal process associated with (1,2) nen zezd
satisfying . As it shall draw no confusion the distribution of w is also denoted by P.
Our a-stable Lévy noise &, is the random distribution which is formally obtained by
summing weighted Dirac masses v d(; ;) corresponding to all the points (t,z,v) € w and
subtracting a non-random quantity so that the obtained distribution is centered in expec-
tation. The delicate part is that, as in the definition of a-stable processes, the counter
term that has to be substracted is infinite.
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Let us thus explain how &, can be obtained using a limiting procedure. We consider w
as a set of points, and for any a € (0,1] we define w® := {(t,z,v) € w: v > a} the
truncated environment. We then let &E,a) be the random measure on R x R% defined by

alal™ -1
55)&) = ( Z 'U]_{,U>a}5(t7x)> - gﬁ, (18)

(t,z,v)ew a—1

where £ denotes Lebesgue measure on R x R? (note that our centering only compensates
the jumps of intensity smaller than one, so that 55,“) is not centered). We define &, as the

distributional limit of &E,a) when a tends to zero.

For the sake of fixing ideas, let us specify a functional space in which this convergence
holds. Given s € R, the Sobolev space H*(R¥*1) is defined as the closure of the space of
smooth compactly supported function with respect to the norm

R 1/2
e = ([ e lPriFoRa:) (19)

where f1 (2) = Sgar1 f(z)e " dz is the Fourier transform of f. We also consider the local
Sobolev space

Hy . = {f . f1 € H® for every C* compactly supported 1/1} ,
considered with the topology induced by the family of semi-norms |9 f| s indexed by .

We then have the following (standard) result: when a € (1,2), then f&a) converges almost
surely in H 7 with s > (1 4 d)/2 towards a limit &, € H 7. In particular, this means

that &, can be integrated against any function in H*(R%*!) which has compact support.

Informal description of the scaling limit. In order to describe the candidate scaling limit of
the model we must make sense of a Feynman—Kac formula analogous to in which
the random walk S is replaced by a Brownian motion B and 7 replaced by the a-stable
noise &,,. Similarly to ([1.3)) we wish to define a polymer model which is a modification of
the Wiener Brownian measure Q obtained via tilting by an energy functional. For T' > 0
and 8 > 0 we would like to define Q“i 5 as

dQ‘fﬂ 8 1
2 (B) = —— :PHe(B). (1.10)
dQ 235
where the energy functional is given by &, integrated against the Brownian trajectory, in
the following sense (d(,,) denotes the dirac mass at (s,y))

H,(B) = &, (JOT Si.50) dt) . (1.11)

At this stage, we only consider this expression at a formal level, as it is quite clear that
the fact that &, € H} 7 is not sufficient to provide a mathematical interpretation of this
expression.

The exponential :e#7«(B): is to be interpreted as an analogous of the time-ordered Wick
exponential which is considered for the continuum directed polymer in white noise, see [2].
Informally, :e#H«(B); is defined via the following expansion

w k
:e'BH“’(B): = Z ﬂkL wa(é(ti,Bti)dti)' (1'12)
k=0

<t <<t <T ;1
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While it is challenging to make sense of the above formula, things become simpler if one
looks at the partition function Z7 5 = Q [:eﬂHW(B):], because a formal integration with
respect to Brownian trajectories makes the integrand more regular. Let us denote

1 [

T)i= ———s€ 2t 1.13

pt( ) (27Tt)d/2 ( )

the heat-kernel on R? associated with the Brownian motion (|z| stands for the Euclidean
norm of z). For 0 <t; <--- <tpand x,...,x% € R?, we also use the short-hand notation

k
o(t,%) = [ [ pri—tsy (i — i), (1.14)
i=1

with by convention tg = 0 and 2y = 0 (in the following, if a different choice is made it
will be duly notified). We will also use the notation dt and dx for Lebesgue measure on
R* and (Rd)k respectively. With these notation, the expectation of (1.12) with respect to

the Wiener measure can be formally defined by
0 k
ZPp =14, ﬁkf f o(t,x) [ [ €u(dt;, dzy). (1.15)
k=1 0 (RA)k i=1
(a)

In order to give a meaning to the above expression, we will approximate &, by &, and
investigate the limiting behavior when a goes to zero. As it will be seen later, giving
a meaning to Z7p 5 is the most important step in order to give a rigorous interpretation
to (|1.10]).

<t1<--<tp<T

2. MODEL AND RESULTS

We can now introduce our results. We present in Section [2.1] our construction of the
continuum measure %ﬁ’ thus defining the continuum directed polymer in Lévy noise.
For pedagogical reason, we first present the case of the a-stable noise with o € (1,2),
since it corresponds to the scaling limit of the model introduced in Section above; we
turn afterwards to the case of a general heavy-tail noise. In Section we present finer
properties of the measure constructed and in Section we discuss the relation between
our model and the Stochastic Heat Equation with multiplicative Lévy noise. Further
comments on the results are made in Section 2.4

2.1. The construction of the continuum polymer in Lévy noise. Our main result
is the construction of a measure on the Wiener space Cy([0,7]), corresponding to the
definition . To ease the exposition, we single out the most important step of this
construction which is the construction of the partition function, that is giving a mathe-
matical interpretation for the formal integral . As mentioned above, we treat the
case of an a-stable noise first, before we turn to more general noises.

The case of an a-stable noise, a € (1,2). Recall the definition (1.8)) of the ¢truncated noise
@ We define, for a > 0,

e¢]
Zee =1+ ), ﬁ’“f
k=1 0

Since f&a) (dt;, dx;) is a locally finite signed measure, the only possible issue with the above
definition is the integrability over ¢;’s and x;’s and summability over k. These conditions

k

o(t,x) [ €4 (i, dzy). (2.1)

<ty <<t <T J;Rd)k i1
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are not difficult to check and this done in Proposition It is also not immediate
from that Z;g is positive (which is a required property for being a partition function),
but this is ensured by Lemma 3.3

We prove that considering the limit of Z?,’Z when a | 0, we obtain a non-trivial (i.e.
disordered) quantity, provided that « is smaller than a critical threshold. Let us define

2 ifd=1,2,

2.2
1+2  ifd>3. 22)

ae = ag(d) = {

Theorem 2.1. Ifa € (1, a.) with o, defined in (2.2)), there exists an almost surely positive
random variable Z;iﬁ such that the following convergence

. w,a _ mw
lim 275 = 27

holds almost surely and in Ly. When d = 3 and « € (o, 2) then for all B > 0 we have
lim, ¢ Z;g = 0 almost surely.
Remark 2.2. Note that the definitions (1.8) and (2.1)) also make sense when a = 2. In

that case &(Ua) does not converge to a limiting distribution but this does a priori prevent
Z}’g from having a non-trivial limit. Proposition below shows that we have in fact

limg)o Z;’g =0 for every a € [a, ) in any dimension d > 1.

Let us now present the construction of the polymer measure described in . Re-
call that our objective is to define a probability on the Wiener space Cy([0,7T]) which
corresponds to the formal definition . We proceed in a similar manner as with
the partition function: we first consider a measure on the Wiener space built with the

truncated noise g&“). Let us introduce the following families of functions on Cy([0,77])
B:={f:Cy(0,T]) > R : f measurable and bounded },
C:={f:Co([0,T]) > R : f continuous and bounded },
By :={feB : Support(f) is bounded },
Cp:={feC : Support(f) is bounded },

Given a bounded Borel-measurable function f € B, we define

(2.3)

k

o(t,x, £) [ [ € (dts, dxs). (2.4)

<t1<-<tp<T j(]l@)’f i=1

50 -+ Y 6 |
k=1 0
where o(t,x, f) is defined by (recall (1.14))

Q(t7X7 f) = Q(t7X)Q[f ((Bt)te[O,T]) ‘VZ € [[Lk]]? Bti =T ] (25)

The conditional measure Q (- | Vi € [1, k], By, = x; ) denotes (with some abuse of notation)
the distribution of the process obtained by concatenating independent Brownian bridges
linking (t;—1,x;—1) to (t;,z;) for i € [1,k]. Note that f +— p(t,x, f) is linear and thus so
is Z775(). From Lemma 3.3 below, Z775(f) = 0 when f > 0 and Z775(1) = 2775 > 0. As
a consequence, for any a > 0, we can define a probability measure Q;aﬁ on Co([0,T]) by
setting
Zw,CL(lA)
T’
QY (A) = L0 (2.6)

7
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for any Borel set A. We write Q;g (f) for the expectation of a function f: Cy([0,T]) —
R with respect to Q‘z‘i’aﬁ In the same way as for the partition function, we define the
measure Q% B as the limit of QT '8 when a goes to zero: this requires a < ag, and the

convergence holds for the weak topology Let Mt denote the space of probability measures
on Cy([0,T]) equipped with the topology of weak convergence.

Theorem 2.3. If a € (1,ac), there exists a probability measure Q7. 5 on Co([0,T1]) such
that the following convergence holds almost surely in M

In other words, we have almost surely for every f € C
lim Q75 (f) = Q7 (f) (2.7)

Since Z775(-) induces a positive measure on Cy([0,77]) the above statement turns out
to be equivalent to the existence of a positive measure Z7 3 such that for every f eC

lim, Z54(1) = Z5,4(1). (23)

Scaling limit of the discrete model. In order to justify the fact that Q7% 7.5 18 the natural
model for a continuum polymer based on «a-stable noise, let mention here the scaling hmlt
result which we prove in [8], namely that the discrete polymer model defined in ,
when properly rescaled, converges to the continuum polymer in Lévy stable noise. We
present the convergence with time horizon 7' = 1 (which yields no loss of generality by
scaling) and set Q‘é = Q%’ L

Let St(N) be the linear interpolation of a random walk trajectory, rescaled diffusively:

d .
SN «/N((l — w) S| + utSthJH) . with u = Nt — [Nt]. (2.9)

We then have the following convergence result.

Theorem A (cf. [§]). Assume that the distm’bution of the environment n satisfies (1.5))
for some a € (1, ), with o, defined in . Setting

IBN _ 52 - ri(l a)N (1+%fa)’ (210)
then we have the following convergence in distribution in My,
N N—o0 w
PR sw <(5( Dietony € ) = Q. (2.11)

Remark 2.4. The prefactor in Sy comes from various factors, including the normaliza-
tion of the Brownian motion and the periodicity of the random walk. The above theorem
remains valid slightly beyond the assumption , one can allow for a slowly varying
function in the tail distribution provided an appropriate correction in the scaling of By is
made. The analogous result is valid also for a € (0,1]. We refer to [8] for details.

The case of a general noise. We have focused until now on the case of an a-stable noise
with « € (1,2), both because our motivation is to describe the scaling limit for the discrete
polymer model with heavy tailed environment and to make the exposition lighter. Our
result can nonetheless be applied to a much larger variety of noise. Let us consider in this
section a Poisson process w on R x R% x R, with density

dt ® dz ® \(dv), (2.12)
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where A is a locally finite measure on (0,00). One may keep in mind the case A(dv) =

av~ () dy with a € (0,2), referred to as a-stable. We define the truncated noise ff,a) for
a > 0 similarly to (1.8)) (recall that £ denotes the Lebesgue measure on R x R%)

é—L(Ua) — ( Z Ul{v)a}é(t,m)> - Iia,c (213)
(t,x,v)ew
where
Ka = J vA(dv), (2.14)
[a,1)

note that we have in particular K, = 0 for ¢« > 1. Similarly as above, we have that
the truncated noise &(Ja) converges to a limit &, € H 7 with s < (1 4+ d)/2, if and only
if S(O,l) v?\(dv) < 0. Note also that if S(O,l) vA(dv) < 400, then Ky < o0 and the def-
inition directly makes sense with a = 0 so this approximation procedure is not
required. We define, similarly to , for any f € By

k

W fy S g @) (. da:
S GECUED Y RSN I ey ) G RCED

i=1

The condition that f has a bounded support ensures that everything is well-defined since
the integration is only over a bounded space-time region (see Proposition below for
details). We also stress that Lemma below ensures that Z“ng( f) = 0 when f is non-
negative. Given an increasing sequence of positive functions f,, € By converging to 1, one
sets

Z05 = Jim 2175 (fn)- (2.16)
Lemma [3.3] also ensures that the above definition does not depend on the choice of f,.

Note that the above definition makes it possible to have Z7°5(f,) = o0, but this does not
occur provided the following condition is satisfied:

J (log v)¥?\(dv) < . (2.17)
[1,00)

Proposition 2.5. Under the assumption (2.17), we have Z;g € (0,00) for any a € (0,1].

The condition (2.17)) is in fact optimal: it is not difficult to check that if it fails to hold
then our partition function is degenerate.

Proposition 2.6. If the measure \ does not satisfy (2.17)) then for any a € (0,1] we have
2175 = o0 almost surely.

Using the partition function ([2.15), we can define a probability measure Q%% on
T3

Co([0,T]) in the same way as in (2.6), i.e. setting Qp3(A) := Z75(14)/275 for any

Borel set A (note that A — Z;’g(l 4) defines a locally finite measure on even when (2.17)

is not satisfied). Our main result in this section is that the limit when a goes to 0 is
non-degenerate if A satisifes the following assumption:

{g(o’l) v\ (dv) < oo, if d =1.

2.18
S(OJ) vPA(dv) < oo for some p <1+ 2, ifd>2. (2.18)
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Theorem 2.7. Under the assumption (2.18), for any f € By the limit
lim Z29(f) = 2#,(/) (2.19)

exists almost surely. We have Z}’ﬂ(f) > 0 if f is non-negative and Q(f) > 0. Further-
more, if (2.17) also holds then the limit

lim Z57% = 24 5 (2.20)

a—0

exists almost surely, is positive and finite. The convergence holds in 1Ly if and only if
S[LOO) vA(dv) < o0. Additionally, there exists a probability measure QF. 5 on Co([0,T])
such that, almost surely, for every f € Cp we have

Tim Q4(f) = Qi (f). (2.21)
If S[LOO) vA(dv) < o, then is true for every f € C.

Remark 2.8. Note that the conditions [2.17)-(2.18) are satisfied when A\(dv) = av~ (1T dw
for a € (0,a.). When « € [a, 0), Proposition below establishes that the limit is de-
generate.

Remark 2.9. When (2.17)) is not satisfied, it is not difficult to check from our proof that
almost surely, the convergence ([2.19)) holds simultaneously for all f € Cy, that is Z;’g( “NA)

converges vaguely (as a measure), for any bounded set A.

The condition (2.18), which prevents Z;75(f) from vanishing as a tends to zero, is close
to optimal. Let us introduce the following alternative and almost equivalent condition

§0.0) V*A(dv) < o0, ifd =1,

§0.) V2 Nog(v)[A(dv) < 0, ifd =2, (2.22)
v+ (dv) < o if d > 3.

S(O 1) )

Then we prove that the limit is degenerate as soon as ([2.22)) is violated. In particular
the following result ensures that one cannot define the continuum polymer model when
S(o 1 v2\(dv) = o0, in which case the noise &, is itself not well-defined.

Proposition 2.10. If the measure A does not satisfies (2.22)) then for any f € By we have
. w,a _
il_l’)% Zr(f) =0 as. (2.23)
If [2.17) also holds, we have lim,_q Z;g =0.
Note that this result proves the last statement of Theorem

Remark 2.11. The difference between the conditions (2.18) and (2.22) when d = 1 leaves
a small family of Lévy measure for which it remains an open question whether Z})’ con-
e1)

verges to a positive limit or to zero. We do not believe that either condition (2.18]) or
are optimal. Although refinements of the proofs presented here could most likely
yield slightly finer condition on both sides, finding the necessary and sufficient condition
remains a challenging issue. Even if the condition is not optimal, the |logv| factor present
m is of importance, since it underlines that in dimension d = 2, in contrast with
the case d = 1, there are some (atomic) noises for which the continuum polymer (and the
noisy stochastic heat equation see Section below) are not defined.
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2.2. Main properties of the Continuum Directed Polymer in Lévy Noise. Let
us assume throughout the rest of this section that Assumptions — are satisfied.
We describe under these assumptions a few key properties of our polymer measure. First,
we underline how Q“TJ’ 5 is in some aspects very similar to the Wiener measure and is in
others very singular with respect to it. Then, we provide an explicit expression for the
finite-dimensional marginal density of the measure, via point-to-point partition functions.

Basic properties of the continuum polymer in Lévy noise. Let us define P x Q%ﬁ the
averaged polymer measure as follows

P> Q7 5(A) := E[QF 5(A)]. (2.24)
Proposition 2.12. For every f € B we have almost surely
Qi5(f) = lim Q34(). (2.25)

As a consequence P x Q% T S absolutely continuous with respect to Q.

The above proposition, while simple to prove, gives a detailed picture since it implies
that Q7 s almost surely inherits all the almost sure properties of the Brownian motion.

Corollary 2.13. For almost every w, a trajectory (By)i[o,r] has Q7 5-a.s. a modulus of
continuity given by /2hlog(1/h): in other words,

w 1 p(t +h) — ()] _ >:
Q75 <{g0 e Cu([0,T1); lmzlisoupogflgl%—h 2 Tos(1/h) 1} 1.

This implies in particular that for any v < 1/2, polymer trajectories are Q. 5-0-S. every-
where locally v-Hélder continuous.

On the other hand we have to mention that Q7 g Is very singular with respect to Q,
most strikingly when S(o 3 vA(dv) = 0. To illustrate this fact, given ¢ € Cy([0,T]) let us
consider A(g,w) the set of times at which the graph of ¢ visits points of w:

Alp,w):={te[0,T] :Jv >0, (t,0(t),v) € w}.

Let us set
Adense(w) := {p € Co([0,T]) : A(go,w) is dense in 0,77},
Aempty (@) :== {@ € Co([0,T]) = A(p,w) = @} (2.26)
A (w) = {p € Co([0,T]) : #A(p,w) = 0},

Proposition 2.14. Under Assumptions (2.17)-(2.18) the following statements hold.

(i) We have almost surely Q(Aempty) = 1.
(ii) If S(o,l) vA(dv) < 0 then QF 5(Aempty) <1 and Q7 5(Ax) =0 a.s.
(iii) If 8(071) vA(dv) = 0 we have Q7 5(Adense) =1 a.s.

Remark 2.15. The technique used for the proof of Proposition[2.14 can possibly be pushed
a bit further to yield the following statement:
o When 5(071) vA(dv) < o then the convergence of Q;aﬁ towards Qf, 5 holds also for
the total variation distance.
o When S 0.1) VA(dv) = o0 then Q7 — Q. gllrv =1 for every a > 0.
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Point-to-point partition functions and finite dimensional marginals. The aim of this sec-
tion is to give an explicit description of the finite-dimensional marginals of Q“i I If we
fix 0 <ty <--- <ty <T, then the distribution of (By,,..., By, ) under Q‘AT is absolutely
continuous with respect to the Lebesgue measure and its density can be expressed using

the so-called point-to-point partition functions. For any a > 0, define for all ¢ > 0 and
x € RY the partition function from (0,0) to (¢,z) as (recall the definition (T.14))

k
| et o= [ €t das.

<ty <--<tp<t J(RA)k =1

(2.27)

if the integral is convergent (and set Zg’a(t,x) = o if not). The following proposition
shows that the point-to-point partition function of our continuum model — defined as the
limit of Zg’a (t,z) when a tends to zero — is well-defined, positive and finite.

w,a .: O ok
25%(t,2) pt(x)—i-];lﬂL

Proposition 2.16. Suppose that (2.17)) holds, then given a € (0,1], t > 0 and x € R? we
have almost surely

Zg’a(t, x) € (0,00). (2.28)
If [2.18) also holds then given t > 0 and x € R, we have almost surely
Z5(t,x) = Cllli% Zg’a(t, x), with 25 (t,z) € (0,0). (2.29)

If S[Loo) vA(dv) < o then the convergence holds in L.

For (s,7) € R x R%, let us define the shifted environment
O(s,y)w = {t—s2—-yv) : (tz,v)ew}
Then, we can define for (t1,z1), (t2, 22) € R x RY, t; < t5 the partition function linking

two arbitrary points:

yw,a

0ty 2
Zg’a[(tl,l‘l), (tg, :1?2)] = Zﬂ(tl’ ! (tQ — 1,29 — 1‘1) . (2.30)

Finally we set

Z5[(tr, 21), (t2, 22)] := limsup Z5°[(t1, 1), (t2, 72)], (2.31)

a—0

and we omit the first coordinate in the notation when it is equal to 0. Note that Propo-
sition together with translation invariance, shows that for any fixed (¢1,x1) (t2,z2)
the limsup in can be replaced by a limit (so the point-to-point partition function
Z5[(t1, 1), (t2, 72)] is almost surely well-defined, positive and finite).

Proposition 2.17. For any 0 <t; <--- <ty =T, the set
{@isme) ¢ vie LK) 251t @), (t20)] = lim Z5° (s, @i), ()] |

has almost surely full Lebesque measure. Furthermore, the convergence

k k

lim 1_{ Z5 (i1, i), (i 20)] = 1_{ Z5[(tim1, mi1), (L, @), (2.32)

holds almost surely in Li((R)*). Additionally, the measure Q7 5((Byy, ..., By) € ) is
absolutely continuous with respect to the Lebesque measure and we have for any bounded
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measurable g on (R%)*

Q% 5(9(Bi, ... By)) f( ) Zg[(ti_l,xi_l), (ti,z;)]dx. (2.33)
R =1
Remark 2.18. For k = 1 the above proposition states that the density of the distribution
of Br under Q% 5 is given by Z5(T, ")/ 2577 -

Remark 2.19. Let us stress that in the above proposition, we fir 0 <t; < -+ - <t =T
before considering a realization of w. This an important point since there are exceptional
times for which Q":ﬁﬁ(Bt € -) admits no density. In fact is not difficult to check that if
(t,z,v) € w then Q5 4(Br = x) > 0.

2.3. Connection with the Stochastic Heat Equation with multiplicative Lévy
noise. In [2] the continuum directed polymer model with white noise is constructed di-
rectly from the solution of the Stochastic Heat Equation (SHE) with multiplicative Gauss-
ian white noise. It is not possible to proceed in this way with a general Lévy noise (simply
because the solution is not regular enough) and our approach here is quite different. The
continuum model constructed in Theorem bears nonetheless a strong connection with
the SHE with multiplicative Lévy noise. We discuss here this connection in some more
detail and compare our results with the ex1sting ones concerning the SHE with Lévy noise.
Our formal definition Z7 5 = Q [ :ePHo(B :] (see (1.12)) corresponds to a Feynman—Kac
formula associated with the following equation

dyu ﬁAu—i- By u. (2.34)

More precisely, the point-to-point partition function Zg(t,x) defined in (2.27)) formally
corresponds to the solution of (2.34)) with dp initial condition. Starting from an arbitrary
initial condition ug (a locally finite signed measure), the solution of (2.34)) should take the
form

u(t,z) = fRd 22[(0,9), (t. )] uo(dy) (2.35)

In the case ug(dy) = go(y)dy for some bounded and measurable function gg, the fact
that (2.35) is well-defined derives from Proposition [2.17 (in the case k = 1), combined

with a time-reversal argument giving

(Z5100.9). (£ 0)]) e D (2100, 2), (1, 1) e

that ensures that ZF[(0,-), (t,z)] € L1(R%) almost surely. For the general case where ug
is a measure, we refer to Proposition below for the well-posedness of .

The equation has been extensively studied (often under a more general form, see
e.g. [41, [43]). To our knowledge the most complete results concerning the existence of
solutions have been given in [21I]. More precisely, in [21] the existence of solutions in the
integral form

t
uta) = | =) +8 | | e —puls ey (230)
are obtained under the condition

f vPA(dv) < oo and J viIX(d(v)) < oo, (2.37)
(0,1) [1,00)



14 QUENTIN BERGER AND HUBERT LACOIN

with p € (0,1 + %) and (2 + % —p) ! < ¢ < pand for ug = go(y)dy with go bounded
and measurable. Uniqueness has been established earlier [43] under the more stringent
assumption S(o, ) vPA(dv) < oo for some p € [1,1+ %), which for instance excludes a-stable
noises. Let us stress that the above is a very partial account of the results in [2I] since
the existence results deal with a more general class of equations and allows for a wider
variety of noise (it allows for complex jumps and when d = 1 for a Gaussian white noise
part as well as for space-time inhomogeneities)

While our assumptions (| - 2.18) are less restrictive than , we cannot prove
that ( solves the equation 2.36 under these assumptions. However we can show
that the solution of the equation with a truncated noise converges almost surely when
the truncation levels goes to zero and infinity respectively. Additionally, we keep quite
a large freedom concerning the choice of the initial condition. Let us write this result in
full detail for completeness. We are going to make the following assumption on the initial

condition wug:
1
limsup 72 log (|uo| ([, r1h) < = (2.38)
s 2T
where |ug| is the total variation of the measure ug. This condition is present to ensure
that (2.35 is Well defined and almost surely finite on the interval [0,7"]. For b > a, let us

introduce §w the noise truncated at levels a and b

glod) = Z V1 efap)Ote) T (Kb — Ka)L (2.39)

(t,x,v)ew

and (setting by convention the quantity to be co when the integral is not well-defined)
k) 7b
ul(t,2) = | Z51V0,9), (42)] woldy). (2.40)
where Z;;’[“’b)[(o,y), (t,x)] is defined as in (2.27) with §U(Ja) replaced by &Ea’b). By Theo-
rem 1.2.1 in [43], if ug is absolutely continuous with bounded density w.r.t. to the Lebesgue
measure, then ul®? is the unique solution (in some reasonable functional space) of (2.36)
(with noise &E,a’b)). We first observe that ul®®) converges when b tends to infinity under

very mild assumptions.

Proposition 2.20. Assume that (2.17)) holds, and that uy satisfies (2.38)). Then for any
given t € [0,T] and x € R, for any a > 0

w(t.o)i= [ 25°10.0). (t.a)] wola) (2.41)
is almost surely finite.

Remark 2.21. WhenS U)\ (dv) < o0, and for bounded initial conditions, Theorem 1.2.1
in [43] ensures that u (t x) 1s the unique solution solution of (| - For noise with heavier
tails, u®(t, x) should also be a solution of and coincide with the solution considered
in [2I] whenever it is well-defined. Since this is not the main focus of the paper we do not
include a proof of this statement, which in any case would only provide a minor extension
on the class of noises considered [21] which includes S yU PA(dv) < oo for allp > 0. We
do not have an argument establishing uniqueness in that case.

Let us now present the result. It establishes the convergence of u* when a tends to 0.
While the limit is the natural candidate to be a solution to ([2.36)) under less restrictive
assumptions than those considered in [2I], we could not verify that u solves the equation.
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Proposition 2.22. Assume that (2.17)-(2.18)) are satisfied. Given ug a locally finite signed
measure on RY satisfying (2.38)), then for (t,z) € [0,T] x R? the integral defining u(t, )
in (2.35)) is almost surely finite (and well-defined) and we have

lim u®(t,x) = u(t,x),
a—0

except on a set of Lebesque measure zero.

Remark 2.23. When (2.37)) is satisfied and the initial condition has a bounded density
w.r.t to the Lebesgue measure, it follows from results of [21] and [43] that u is the solution
of (2.36) constructed in [21, Theorem 3.1].

2.4. Further discussion on the results. Let us now comment further on our results,
and explain how they compare with the literature, how they can be extended and what
interesting open questions remain to be solved.

Scaling properties in the case of a-stable Lévy noise. Let us come back further on the case
of the a-stable noise, that is when \(dv) = aw~ 1+ dv, with a € (0,2). We have already
seen that in that case Assumptions ([2.17))-(2.18]|) are satisfied provided that a € (0, ), so
Theorem and more importantly (2.21) holds, so that Q7. ; is well-defined. Now, notice
that in the a-stable case the Poisson point process w has the following scaling property

w9 {(rt, sz, (rs®)/v); (t,z,v) € w} for any r,s > 0. Using additionally the Brownian

scaling, one can then check that the continuum polymer in a-stable Lévy environment
satisfies the following scaling property: if a € (0, a.), for all 7 > 0

(d) .
Q7p = Qp,cg,  with (=gL(1+7—a). (2.42)

SHE with Lévy noise: advantages and disadvantages of our method. Let us now compare
our Proposition with the results of Chong [2I]. First of all, as we already stressed in
Section our Proposition gives a weaker notion of solution to the SHE than
existence of solutions in the integral form , as proven in [2I]. Additionally, Chong’s
results allows to deal with a larger class of integral equations

t
Y(t,z) = Yo(t,x) + Jo N G(t,x;s,y)0(Y(s,y))M(ds,dy), (2.43)

where: (i) M is a noise that can include a white noise part when d = 1 and a (signed) pure
jump component; (ii) o is a globally Lipschitz function; (iii) G(t, x, s,y) is measurable and
dominated by a constant times the heat kernel p,_s(z — y).

We have presented our results in the case where M = &, (i.e. has no white noise
component and only positive jumps), o(Y) = Y and G(t,z;s,y) = pi—s(z —y). Let us
now present the advantages of our method, and in which directions it can be generalized.

a) First and foremost, our method enables us to make sense of Feynman-Kac formulas
containing a functional f of the Brownian Motion, that is Z(f) (see Theorem ([2-19)).
This is something absolutely required to be able to define the continuum model.

b) Our tail assumptions (2.17)-(2.18) on the Lévy measure are less restrictive than
those ([2.37)) which are used in [2I]. In particular our method allows to treat the integra-
bility issues at 0 and oo separately. Note also that in view of Propositions and

our assumptions (2.17)-(2.18) are close to being optimal.
¢) We are able to deal with more singular initial conditions than in [2I]. For the
application we have in mind, it is of the utmost importance to be able to deal with Dirac
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initial condition, which corresponds to the point-to-point partition function Zg (t,z) and
appears to be excluded in [21].

d) We can easily adapt our proof to the case of an arbitrary kernel p; (in particular,
not only the ones dominated by Gaussians), but this would require to adapt the con-
ditions — In particular, we could replace the Laplacian A with more general
operators. For instance, in dimension 1, we could replace the Brownian Motion by a Lévy
process, see the paragraph below for further discussion.

e) At first glance, dealing with a non-negative globally Lipschitz function o (instead of
o(Y) =Y) does not seem to be an issue. However, we refrain from being too assertive
here since there may be some unexpected technical issues.

f) To conclude, we stress that maybe the most problematic part would be to extend our
results to a more general noise. In particular, our method does not allow to deal with gen-
eral complex (or signed) noise: the issue essentially arises in the proof of Proposition
which shows that (Zg’a)ae(()’l] is uniformly integrable (if S[LOO) vA(dv) < 0); all the other
points extend quite easily. In view of our techniques (in particular Sections , this
appears to be manageable in dimension d = 1, but it is possibly more problematic in
dimension d > 2 (the truncation we use is based on a multi-body functional that needs to
be adapted in the case of a complex or signed noise). Similarly, in accordance with the
literature on directed polymer models, adding a white-noise component should be feasible
in dimension d = 1, but it is likely that in dimension d > 2 it would make the limit
degenerate (in analogy with the SHE with multiplicative white noise in dimension d = 2,
see [19, 33]).

Applications of our method to other disordered systems. Our method appears robust
enough to be adapted to the setting of other models with heavy-tail disorder. In par-
ticular, in analogy with [I7], one should be able to consider several (discrete) models, and
construct their continuum counterpart with Lévy noise. This includes for instance:

(A) the (1 + d)-dimensional long-range directed polymer, see [23, 47] for the case of
dimension d = 1, where the underlying random walk (S,,),>0 is in the ~-stable
domain of attraction, with v € (0, 2);

(B) the disordered pinning model, see [31] for an overview (it has been studied in [3§]
in the case of a heavy-tail noise).

We could also consider other disordered models, such as the copolymer model (see [30
Ch. 6] for an overview and [13],[15] for the question of the scaling limit) or the random field
Ising model (see [14, Ch. 7] for an overview and [17] for the question of the scaling limit).
We however chose to focus on the two examples (A)-(B) above, which might provide
a sufficient illustration on how general our construction is. In both cases (A) and (B)
we only briefly present the models and discuss how the assumptions 1} have
to be adapted to ensure the convergence of the partition function. In order to be fully
understood, the discussion below requires to be familiarized with the proof of our main
result. It can be thus be skipped during the first reading.

(A) The continuum (1 + d)-dimensional long-range directed polymer in Lévy noise. The
idea is to replace in the definitions the Brownian motion (By)i>o by a d-dimensional 7-
stable process (X¢)i=0 with v € (0, 2), that we suppose centered and isotropic for simplicity.
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More precisely, we can define, analogously to (| @, the partition function

Ziiong = 1+ Zﬂkf

=1 O<ty<--<tp<T JRd

Hpt o (@i — i) ng (dt;,dx;) , (2.44)

where p(v)( ) is the transition kernel of our v-stable process, and is defined by

1
pfﬂ)( )= @) JRd e A cos(x - 2)dz.
While p(’Y) does not admit a closed expression, its asymptotic properties are well known
(dating back to [36], see also [44, Ch. 2]). It is a bounded radial function and has the
following asymptotic behavior

()

P (@) ~ eaqllz| 7

as |z|| — 0. (2.45)

The scaling relation ,0(7)( ) =t~ py(t~Y7z) also implies that |\p§”) oo = c’dﬁt_dm.

Now let us discuss under which condition on the Lévy measure A the partition function

in (2.44)) remains finite. Note first that if S[l’oo) vA(v) < 0, then we have E[Z ] < o0

from Lemma (or rather its straightfoward adaptation to this case) and a discussion
is necessary only for the integrability of heavier-tailed noises. In analogy with (2.17)), we
want to make sure that the weight of Poisson points with large intensity is compensated
by the cost of making a long jump to visit them, which by is of order |z|~(¢*+7),
Hence we need a condition that ensures that

sup {v(1 + [|lz[)~ (d+7) (t z,v) €w, te[0,T]} < 0. (2.46)

We should require in fact a bit more than (2.46|) but not much more (we opt not to stretch
the discussion any further) and we beheve a condltlon that ensures that Z3 < o0 and

,long
thus replaces (2.17)) in this case is
J vIX(dv) < 0 for some g > %. (2.47)
[1,0)

On the other hand, the condition (2.18]) prevents the possible accumulation of small
weights that would make the limiting partition function degenerate. It is intimately related

()

to the local limit behavior of pm( ) at small times, more precisely to §z.(p;" (z))*da

which by scaling is equal to ¢4 Sa( )(x))Qdm. In analogy with (2.18)), a (near-optimal)
condition that ensures that lim,_.q ZB long is non-degenerate should therefore be

f VvPA(dv) < oo,  for some p <min (1 + ,2). (2.48)
(0,1)

We therefore conjecture that if (2.47))-(2.48|) hold, then the partition function Zﬁ Jong

defined in converges a.s. to a non-degenerate limit and that one can construct a con-
tinuum measure corresponding to the (1 + d)-dimensional long-range directed polymer in
Lévy noise. Let us stress that in the case of an a-stable noise (i.e. A(dv) = av~ 1+ dy),
the conditions - ) translate into the condltlon S < a < min (1 + 4 2) Addi-
tionally, in analogy with Theorem [A] the continuum long—range directed polymer model
in a-stable noise should appear as the scaling limit of the long-range directed polymer
model, defined as in with a random walk (S;,)n>0 in the domain of attraction of a
~v-stable law and heavy tailed disorder satisfying .
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(B) The continuum disordered pinning model in Lévy noise. The disordered pinning model
describes a renewal process 7 = {19 = 0,71, 72,...} on N (representing contact points)
interacting with an inhomogeneous defect line. In the case of a heavy tailed environment
(N2 )zen, it is convenient to write the partition function of the model as follows, see [3§]:

N
2= E[ [ [ (1 Bnnl{ner})] , (2.49)
n=1

where h in an additional (homogeneous) pinning parameter. A standard (and natural)
assumption in the literature is that P(r; = n) = (1+0(1))en=1+7) as n goes to infinity, for
some v > 0. Under this assumption, if v € (0, 1), then the set of contact points 7 n [0, V],
properly scaled, converges to what is called the regenerative set of index . This leads
us to make the following definition for the truncated partition function of the continuum
disordered pinning model: for § > 0 and h € R,

Zﬁhpln‘_1+2ﬁkf

O<ti<--<tp<l;_7

:w

k
(i —tioa) [ [ + hey(aty) (2.50)
i=1

where u, (t) := c,t~(177) is the transition kernel of the regenerative set of index .

Here, no condition analogue to (2.17)) is needed to keep Zg Z i 8. finite, since there
is no spatial dimension. On the other hand, in analogy with , in view of the form
u(t) = ¢,t~1177) and since there is no spatial dimension, a (near—optimal) condition that
ensures that lim, g Zﬁ hpin 1S non-degenerate should therefore be

J vPA(dv) < oo,  for some p < min (ﬁ, 2). (2.51)
(0,1)

Hence, we conjecture that if holds, the partition function ZZ’; ;f pin defined in
converges a.s. to a non-degenerate limit, and that one can construct a continuum measure
corresponding to the disordered pinning model in Lévy noise. In the case of an a-stable
noise (i.e. A(dv) = av~ (7% dy), the condition translates into @ < min (ﬁﬂ),
which corresponds to the disorder relevance condition found in [38] (where the roles of ~y
and « are exchanged). Additionally, in analogy with Theorem [Al the continuum pinning
model in a-stable noise should then appear as the scaling limit of the disordered pinning

model defined above in ([2.49)) and heavy tailed disorder satisfying ([1.5)).

Other open questions. To conclude this section, we present a brief list of interesting open
questions.

a) A first question that we already raised is that of considering a more general noise.
We leave as an open problem the issue of adding a white-noise component to the noise &,.
More precisely, show on one hand that in dimension d = 1 the partition function converges
to a non-degenerate limit and define a continuum polymer model with such noise. On the
other hand, show that in dimension d > 2, the white-noise makes the partition function
degenerate in the limit.

b) Another natural question is that of the LL,, convergence in Theorem It is natural
to expect some L, convergence to hold, but this appears to be technically challenging. We
leave as an open problem to show that, if S(o 1) vp)\(dv) < o for some p < min(1 + %, 2)

and So 3 vIA(dv) < oo for some ¢ = 1, then Z T converges to Z§ in Lyin(p.q)-
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¢) To conclude, let us mention an important and challenging question. In the case of an
a-stable noise, we have treated the case @ < a, = min(1 + %, 2); in particular, o, < 2 in
dimension d > 3. It would then be an interesting question to investigate the case a = a,
called marginal (in particular in the case where a. < 2, since marginal behavior may
depend on «.). In analogy with other marginally relevant disordered systems (see [18] in
the context of scaling limits), one would then expect Zj 7 to grow as a power of |logal as
a — 0. A a first step would be to identify, in the case a = ., an exponent v > 0 such
that (Z;g/ |log al”)ae(0,1] is tight. A more ambitious goal would then be to prove that

Z;g — c|log al”, when properly renormalized, converges in law to a random distribution.

2.5. Organisation of the rest of the paper. Let us briefly present how the rest of the
paper is organized, and outline the ideas of the proofs of Theorems [2.1] and

e In Section [3| we present preliminary results concerning the partition function with
truncated noise Z;:g that are needed in the rest of the paper. We prove in particular its
well-posedness (Proposition , its positivity (Lemma which provides an important
alternative representation for the partition function), and a martingale property (under
suitable integrability condition, see Lemma . We also give an enlightening representa-
tion of the size-biased law of the environment (i.e. its law biased by the partition function,
see the definition (3.13))) and we recall Mecke’s multivariate equation for Poisson point
processes, which is used throughout the paper.

e In Section 4| we prove our main result, that is, Theorem (Theorems and
being only particular cases). The proof needs to be decomposed in several steps, a de-
tailed account of which is given in Section Most of the proofs of this section can be
adapted to control the point-to-point partition function, and thus we prove along the way
Proposition [2.16] and Proposition [2.20

e In Section [f] we study the cases where the limiting partition function degenerates
either to zero or infinity, that is we prove Proposition [2.6| and Proposition [2.10

e In Section [0 we prove the various properties of the continuum directed polymer in
Lévy noise that are gathered in Section that is Proposition [2.12] Proposition and

Proposition [2.17}
e In Section [}, we prove our statement concerning the convergence of the solution of
the SHE with truncated noise, Proposition [2.22

Finally, we collect in the appendix several technical results that are used along the paper.

Notational warning. For simplicity we assume in the rest of the paper that T'= 1, and
we drop the dependence in 7" in all notations.

3. PRELIMINARIES: SOME PROPERTIES OF ZZ;’“

We let |§£Ja)\ denote the total variation associated with the locally finite signed measure
U(Ja) defined in (2.13)), and we let

xk .= {tz(tl,...,tk)eRk P 0<t <<ty <1},

denote the open simplex.
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3.1. Well-posedness. Our first task is to check that our definitions Zg’a in (2.1) and

Zg’a( f) in (2.15)) are well posed. This is given by the following result.

Proposition 3.1. For any choice of locally finite X, for any f € By, the function o(t,x, f)

defined on X x (R)* is almost surely integrable with respect to the product measure |§£}a) |®k,
Moreover we almost surely have, for any 8 > 0,

k
S e[t an) <o (3.1
k=0 (R)* i=1
If p:= S[l ) vA(dv) < o, then o(t,x) is integrable and
f o(t,x ]‘[ €D (dty, day) < 0. (3.2)
Xk x (R2)k i=1

Furthermore, we have for all f € By

Vae (0,1, E[Z5°(f)] =e™Q(f). (3.3)
Proof. Let us start with the case S[l, 0) vA(dv) < co. It is sufficient to check that the
expectation of the Lh.s. in is finite. Now using the definition for &81) we have

on XF x (R,
B [k 60, = (|

Letting C, := S U/\(dv) + Kq < 0, we therefore get that

k k
E J o(t,x (a |(dt;, dx;) zCkJ o(t,x) | |dt; d:z:l——.
[ xkx( k H| }:kx(]Rd ]‘_[ .

This implies both the convergence of the integral and the summability in k.

The fact that E[Zga( )] = e’#Q(f) directly follows from the definition (2.1) and
Fubini, using that Hf;l &(Ja) (dt;, dz;) has mean (uLl)®F.

Now let us prove (3.1)) when S[1 ) vA(dv) = . For this we first consider a truncated

version of the noise to place ourselves back in the integrable case, and then let the trunca-
tion threshold go to infinity. This procedure is going to be used repeatedly in the paper.

For b > a, recall the definition (2.39)) of fu[f’b). Using the assumption f € By, we let M > 0
be such that f(¢) = 0if [¢|lw = M. Then o(t,x, f) = 0 if max? | |z;]lc = M. Therefore

there exists bg(M, w) such that for every b > by, the restriction of &E]a) on [0,1] x [-M, M]¢

coincides with that of &[ua’b). Hence it is sufficient to show that (3.1) holds for &E,a’b) for
every b > 1, which we can do by repeating the proof of (3.2). O

k
vA(dv) + /<;a> ; H dt;dz; .
i=1

a7w)

Remark 3.2. Notice that we have the analogous result for the point-to-point partition
function Zg’a(t,x). For any x € RY, the function o(t,x)pi_¢, (v — x) is almost surely

integrable on X* x [—M, M]¥ for any M > 0 with respect to the product measure ]&Sa)\,
and it is integrable on X* x (RH)* 4f S[l ) vA(dv) < 0. We also have

Vae (0,1, E[Z5°( )] = ™ pi(x). (3.4)
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3.2. The partition function Zg’a as a sum. Let us now present an alternative expres-
sion for Zg’a, from which it will be clear that Zg’a is positive. We let P 1)(w) denote the
set of finite collections of points in w whose time coordinates belong to the interval [0, T.
When T' = 1 we simply write P(w). We define similarly Pjo 7 (@) and P(w®) the sets
of finite collections of points in w(®. For o € P(w) we let |o| denote its cardinality and we

lo

use the notation (¢;, z;,u;);_; to denote the points in o ordered in increasing time. Given

a > 0 we define the following weight function w, g(c) on P(w)

lo|

wa,5(0) == e 75 B17lo(t, x) [ [uiliuza) - (3.5)
=1

Let us stress here that w, g puts a positive weights only on elements of P(w(“)). By
convention, we say that the empty set belongs to P(w) and we set

Wa () = e e,
Similarly, for any f € B, we define

lo]

’waﬁ(O', f) = e_ﬁﬁaﬁhf‘g(t, X, f) H ul’l{m}a}?
i-1 (3.6)

wa,5(D, f) := e 7 Q(f).
o]

Let £%(o) denote the collection of k space-time points which include (;,;);”'; and no
other space-points of the Poisson process, that is

Sk(a) = {(t,x) € xF x (Rd)k st ) le Nn7(w) =m(o)}, (3.7)

where 7 denote the projection on the first two coordinates. The following lemma shows
that w, g(0) corresponds to the contribution to the partition function of the integral over
the disjoint unions of £¥(c), k = |o|. It’s proof is an exercise: we give the details in

Appendix

Lemma 3.3. For any f € B, and any given o € P(w) we have

was(o, f) = Y] 6’“J

k>lo]  VEM(O)

k
Q(t7 X, f) H gg;a) (dtia dxl)? (38)
i=1

(when o = & the term k = 0 in the sum is by convention equal to Q(f)). As a consequence,
given a > 0, >0, and f € By we have

ZENf) = ) waplo,f). (3.9)

o€P(w)
In particular Zg’a(f) >04f f =0 and Q(f) > 0. Also, by monotone convergence, recalling
the definition (2.16)) we have
250 = > weplo). (3.10)
oeP(w)

Let us stress that the representations (3.9)) and (3.10)) are valid without any assumption
on the intensity measure A, since all the terms in the sums are positive, but it may be the
case that both sides of (3.10) are infinite.
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Remark 3.4. Similarly, for the point-to-point partition function, the following identity

holds
Z3tta) = Y, waplo (), (3.11)

O'E'P[O’t] (w)

with wg (0, (t,2)) := e PFaplolo(t, x) pr_y, (v — x) HEI Uil{y,;>q}, as long as the r.h.s. is
finite. Note that by Fubini’s theorem this gives that, for any a > 0

fRd Z7(t x)de = 237 (3.12)

3.3. Martingale property. In the case S[lm) vA(dv) < o, the convergence of Z*(f)
as a | 0 is an immediate consequence of the following observation.

Lemma 3.5. Let F = (Fa)ae(0,1] be the filtration where F, is the o-field generated by w(@),
If the measure \ satisfies p := Sl [1,00) ¥ vA(v)dv < o, then the following processes are (time-

reversed) martingales for the filtration F:
o (Zgﬂ(f))ae(o,l] for any f € B, and in particular (Zg’a)ae(()’l] ;
o (Zg’a(t,a:))ae(()’l] for any (t,z) € R% x R4,
The mean of these martingales are E[Zg’a(f))] = ePrQ(f) and E[Zg’a(t,x)] = eBrtpy(z).

Moreover, if g is a bounded measurable function of ¢ and w and g(¢,w) is Fa,-measurable
for every ¢, then (Z;”a(g(-,w))) is a (time-reversed) martingale.

ag(0,a0]

Proof. Using the expression ([2.15)) (or (2.27) for the point-to-point partition function),
the result follows from the fact that the sequence of measures (Hle (@ (dts, dTi))ae(0,1]
on X* x (R%)* is a martingale. Indeed for b < a <1 we have

k
[Héb) dt;, dz;) — | &l (dti, das)
i=1

:iE[(ﬁg (dt;, dz;) )(5“’) £9)(dt;, da;) ( H gla dtj,dxj))‘fa} —0,
=1

=1 Jj=i+1

]

where in the last equality we used that by construction (&(f’) - &(Ja))(dti, dz;) is of zero av-
erage, independent of F, and conditionnaly independent of ]_[;;11 &b)(dtj, dz;). The proof
for a random function follows the same line, using that o(t,x, ¢(-,w)) if F,, measurable
for all t and x. O

Since Z;” 0, this directly implies in the case S vA(v)dv < oo that lim, lOZ “

exists almost surely. We will show that if addmonally assumptlon ) holds, the mar-
tingale is uniformly integrable.

Remark 3.6. In the case S[1 ) vA(v)dv = o0, we will consider the truncated partition

function Z[a b)(f) defined as in (2.4]) but with &(Ja) replaced by the truncated noise §U[Ja’b)
defined in 1) — this corresponds to considering the intensity measure A0 (dv) :=
1y<pyA(dv). Then, for any b > 0, Lemma shows that (Z ( la, b)(f))ae(()’b] is a martingale.
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3.4. A representation for the size-biased measure. When y := S[LOC) vA(v)dv < o,
since o

Zg’a = e_B“Z;;’a
is non-negative and of average one, one can define an alternative measure I?’% for the

environment, defined by
~ =Sw,a
Ph(we A) := E[Z5 1uea] - (3.13)

The measure ]IND% is often referred to as the size-biased measure — the probability of
an event is biased by the “size” of the partition function. Convenient representations
of the size-biased measure have been given for directed polymers [I1, Lemma 1] and
similar models such as branching random walks (see [45, Ch. 4] and references therein) or
the disordered pinning model [38] §5.2]. The size-biased measure for all these models is
obtained by tilting the distribution of the environment along a randomly chosen trajectory.
The result we present below is a strict analog in a continuous setup.

We let P, be the distribution of a Poisson point process w), on [0, 1] x R, whose intensity
is dt ® BuliyzqA(dv), (that is dt ® Bav™*1(,>4dv in the a-stable case) and we recall
that Q is the distribution of a standard Brownian motion. We then introduce the random
set of points @(w,w’, B) in R x R% x R, defined by

©=wu{(t, B,v) : (t,v)ew,}. (3.14)
Then, the distribution of w under the measure IF’% can be described as follows.

Lemma 3.7. Suppose that p := S[1 ) vA(v)dv < . Then with the notation defined
above, for any measurable bounded function g we have

P4 [g(w)] = PP, ® Q[g(@(w,w,, B))] (3.15)

In other words, the distribution of w under IP’% 1s obtained by adding to the original point
process an independent Poisson process of intensity dt @ Buly,>qA(dv) drawn on the
trajectory a Brownian Motion.

The proof, though elementary, requires some cumbersome computation. We present it
in Appendix for completeness.

3.5. An important tool: Mecke’s multivariate equation. Let us recall here a classi-
cal formula for Poisson point processes which we will repeatingly use in our computations.
It is a particular case of Mecke’s multivariate equation (see e.g. [39, Theorem 4.4)).

Proposition 3.8. Given A\ a sigma-finite measure on X, and w a Poisson point process
with intensity A, then for any k € N and any measureable function g : X¥ — R, such that
g(x1,...,x,) = 0 as soon as x; = xj for some i # j then

E[ 2 g(:nl,...,xk)} = Jxk glxy, ..., zp) Ak (dxy, . .. day). (3.16)

(21,28 ) EWF

Of course we are going to apply this formula for the Poisson process w. In our appli-
cations we mostly deal with sums running on subsets of w whose cardinality is not fixed,
see the expression for the partition function above. Hence, in practice, the formula
we will use is rather

[Z Z gk(azl,...,zk)} = Z Lgk gk(azl,...,xk))\®k(dggl,...,dxk), (3.17)
k=1

k=1 (z1,...,0p )ewk
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where g, is a sequence of positive functions on X¥.

4. CONVERGENCE OF THE PARTITION FUNCTION AND OF THE MEASURE: PROOF OF
THEOREM 2.7

4.1. Organization of the section. The proof of the theorem is going to be decomposed
in several steps. Let us provide the full detail of this decomposition before going to the
core of the proof.

First step. Our first and main task is to prove the convergence of the partition function
under the additional assumption S[l ) vA(dv) < 0.

Proposition 4.1. If the measure \ satisfies S[l ) vA(dv) < 0 and (2.18), then the mar-

tingale (Z;’a%e(o,l] s uniformly integrable. As a consequence there exists ZZ}’ such that
the convergence

1 w,a w
% =

holds almost surely and in L.

Since from Lemmawe know that (Zg’a)ae(o,l] is a positive martingale , it is sufficient
to show that (Zg’a)ae(o,l] is uniformly integrable. Our strategy consists in considering a se-
quence of approximation (Zg’;)q;l of Zg’a, obtained by somehow restricting the partition

function to “not-too-large” weights. We choose our restriction so that two key properties
are satisfied

(A) For large ¢’s, ZA;J’; is a good approximation of Zg’a in L1, uniformly in a.

(B) For any ¢, (257 )ac(0,1] is bounded in Ly.

We refer to Section [£.2] for a more detailed description of this strategy, which is then
implemented in Section £.3] in dimension d = 1 and in Section [£.4] in dimension d > 2,
where the restriction strategy is more subtle.

Notice that from Lemma 3.3 (in particular (3.10)), we have that Z5“(f) < | f[«Z5™ for
any f € B. Hence an immediate consequence of Proposition [4.1] is the following.

Corollary 4.2. If the measure X satisfies S[1 ) vA(dv) < o and (2.18)), then for every

f € B the martingale (Zg’a(f))ae(oﬂ is uniformly integrable, and the following convergence
holds almost surely and in IL;

lim 25 (f) = Z5(/).

a—0

Second step. Our second task is to prove Proposition 2.5 and use it to prove the following

lemma (which corresponds to (2.19)-([2.20))).

Lemma 4.3. Under the assumption (2.18|), for every f € By the following convergence
holds almost surely

lim Z2°(f) = 25(f).

a—0
Furthermore if (2.17)) also holds then
ii_r% Z9" =23 e (0,). (4.1)
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This is done in Section Along the way we also prove Proposition [2.20, and the first
part of Proposition that is ([2.28)).

Third step. Our third task, which is crucial to for the convergence of Qg’a, is to ensure that
the limiting partition function is positive (let us record the statement as a proposition).

Proposition 4.4. If X satisfies (2.18)), then for any non-negative f € By with Q(f) > 0,
we have almost surely

Z75(f) > 0. (4.2)
As a consequence, if \ satisfies (2.17)-(2.18]) then we have almost surely
Zr5€(0,00). (4.3)

Fourth step. Finally we will complete the proof of Theorem by proving the convergence
of QZ’“. Note that Corollary and Proposition imply for any given f € B the almost

sure convergence of Qg’a( f). Hence we will only need to prove tightness.

Proposition 4.5. If \ satisfies (2.18))-(2.17)), the family of measures (Qg’a)ae(o,ﬂ is tight
for the topology of convergence in probability.

The reader can then check that combining all the statements above yields the complete
proof of Theorem

Let us finally comment on how the proof of the second part of Proposition (the
convergence to a positive limit) is completed. We simply need to show that Propo-
sition and Proposition (that is Equation (4.3])) remain valid for the point-to-point
partition function. Since the proofs are nearly identical we will point at the end of the
various proofs which modifications are required, when there are any.

4.2. A uniform integrability criterion. As outlined above, our proof of uniform inte-
grability is going to rely on a second moment computations. This requires to overcome
some subtleties since the second moment of Z;”“ is infinite for every a > 0. We follow

an approach similar to the one used in [5] for the proof of the convergence of Gaussian
Multiplicative Chaos. We look for a family of restrictions of the partition functions which
is bounded in Lo but does not produce any loss of mass at infinity. Let us summarize our
approach in the form of a proposition.
Proposition 4.6. Consider (Xa).e(0,1] @ collection of positive random variables. Assume
that there exists XC(Lq) a sequence of approzimation of X, indexed by q = 1, which satisfies:
(A) lim sup E[]X(gq) — X,|] =0;
9% 4e(0,1]

(B) sup E[(Xé‘”)ﬂ <o  for every q = 1.
ag(0,1]

Then (Xa)ae(o,1] i uniformly integrable.

Proof. We may write, for any M > 0 and a > 0,

E[|XalLyx, =00 ] SE[IXS — Xo[] + E[(X2)2]*P(1Xa| > M)"?,
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where we have used Cauchy—Schwarz inequality for the second term. Applying Markov’s
inequality and taking the supremum over a € (0, 1], we therefore get

sup E[\Xa|1{\xa\>M}] < sup E[|X§q> — Xa|]
ag(0,1] ag(0,1]
+ M2 sup IE[(XL(ﬂ))Q]l/2 sup IE[\Xa]]l/2 .
ae(0,1] ae(0,1]
The first term can be made smaller than €/2 by choosing ¢ sufficiently large. Then once ¢ is

fixed, we can make the second term smaller than £/2 by choosing M large (our assumptions
imply that (Xa)ee(0,1] is bounded in Ly). O

Our idea is now to apply Propositionto variables XC(Lq) which are obtained by consid-
ering the sum of the weights w, g(c) on a strict subset of P(w) (recall the representation

of Z;”a in Lemma .

4.3. Proof of Proposition in dimension d = 1. The case d = 1 gives us the
occasion to apply Proposition with a relatively simple setup. In this case, the only
thing that prevents Zg’a from being bounded in Ly are the large values of u;. The modified
partition function obtained by ignoring these points in the Poisson point process w turns
out to be bounded in LLy. The idea is thus to apply Proposition for partition functions

with truncated environment, taking X(SQ) = Zg’[a’q) (recall the definition in (2.40)). We
then prove the following.

Proposition 4.7. Suppose that \ satisfies pu := S[1 ) vA(dv) < oo and that (2.18) holds.
For every d = 1, we have

lim sup IE[Z“’“ - Z“’[“’q)] ~0. (4.4)
979 4e(0,1] A A

Moreover, when d = 1, we additionally have that for every q = 1

sup E[(Zg’[a’q))z] < . (4.5)
ag(0,1]

These statements imply that both requirement of Proposition are satisfied and
therefore that (Zg’a)ae(o,l] is uniformly integrable and converges in IL;. As can be checked
from the proof, is false when d > 2 and in that case we will need a more subtle
restriction for the set of trajectories (developed in the next subsection). While the latter
restriction also covers the d = 1 case, the proof presented in this section is considerably
simpler, and may prepare the reader for the more involved proof in dimension d > 2.
Additionally note that is valid when d > 2; it will be used in Section

Proof of Proposition[{.7. To compute the expectation in (4.4) we use Proposition
recalling the definition (3.5)) of w, (o), we obtain

w,a w,[a,q)
E|25" - 25 Q]ZE{ Z( waﬁ@l{aiem,wm,Wq}]
oeP(w)

k
k
1 o(t,x)dtdx | [uily,>aA(du;). (4.6)
&1 ka(Rd)kx(o,oo)k { i wiza} E el
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Note that the integral in x and t readily simplifies since we have (recall that ps(x) is a
probability density)

J o(t,x)dx =1 and f dt = l (4.7)
(Rd)k Xk k‘

Hence, denoting p := S[l vA(dv) and pq 1= S U)\ (dv), the r.h.s. of (4.6]) is equal to

Zﬁkf R uz/q}l_[u@ (dus)

k:>]. 1<i<k
gk .
Z J 1_[uZ (du;) — J Huz’)\(dui)
=1 ook i la,9)% =1
ﬂk I k k
= 20 G [t ) = (o )| = Pt — Sl ()
k=1 """
Hence we have
E_Z;;,a o 2;7[(17(1)] — eﬂ# _ eﬁ”q7 (49)

which does not depend on a, and converges to 0 as ¢ — o (notice that this is true even
for d > 2). To check ([@.5), set Ay = {(t;,zi,u;)f | : Vie [1,k], u; < ¢}. By Lemma

we have

E[(Zg’[“’q))2] _ E[ Z waﬁ(al)waﬁ(ag)lAq(01)1Aq(ag)]. (4.10)

01,02€P(w)
In order to facilitate the of use Mecke’s multivariate equation (Proposition [3.8) we set
¢=o01noy and ¢ =o0;\¢ fori=1,2. (4.11)
By removing the constraint that u < ¢ on &;, we obtain
E [(Z/,’\g’g)?] < E{ Z w(s1 Us)w(sa uc)ly, (g)] . (4.12)
§1,62,66P(w) disjoints

Now we can apply Proposition To do so, we split the sum according to the cardinality
of ¢ (= {(ti, i, u;)}" ), and also according to the number of points in ¢; and ¢ in each of
the intervals (t;—1,%;), i € [1,m + 1] (to = 0 t;41 = 1). After factorizing we obtain that

the r.h.s. in (4.12)) is equal to

an 2 250 ((tic1, wim1), (ti, i ?

) j j() j[a’q)mﬁ [ 2t 200 (20)
<f z/g,a((tm,xm),(1,x))dx>2ndtidxi/\(dui), (4.13)

Rd i=1

where 23, ((t,z), (t',2')) is the expected value of the point-to-point partition function for
the polymer in the environment w(@. With the convention so =t, spp1 =t and yo = =,



28 QUENTIN BERGER AND HUBERT LACOIN

Yes1 = ', it is given by

Zﬁ,a((ty $)7 (tlv :L'/>) = e_ﬁﬁa(t/_t) [ﬂt/_t(l'/ — 1‘)

0 I+1
+ Eﬁﬁf J f HPSJ —s; (Y — Y1 Hdsjdijj/\(dvj)] (4.14)
=1 t<sy<--<sp<t' J(R4) J[a,00)¢ j=1
To see that (4.13)) holds, observe that expanding all the products we obtain a sum over

the indices m (standing for the number of points in ¢) and Egl), EZ@) (we need two indices
to expand zﬁ ) which stands for the number of points of ¢; and ¢y in the time interval
(ti—1,t;) (the term py_4(2' — x) in (4.14]) corresponding to ¢ = 0). The expression of

28.q((t,x), (t',2")) simplifies after integration over all intermediate variables

2,a((t, ), (¢, 7))

0 I N\¥ ,
= e_ﬁ'{“(t/_t),ot/,t(x/ — ) Z [Plia + )(F — 8] = entt _t)Pt’ft(xl —x). (4.15)

= 14

Reinjecting this into (4.13) and performing the integral over u; € (0,q) instead of [a,q)
— this yields an upper bound which is uniform in @ —, we obtain that

E [(zg ;)2] 3 (ﬁew”V) J olt,x)%dxdt, (4.16)
where we also used that (g4 p1—+,, (z — 2y)dz)? = 1, and defined V; := $i0.0 2\(dv) <
(recall (2.18)). Now using the definition (1.13)) of p;(z), we have

f (pu())2da = 2-4(et) /2. (4.17)
R4

Hence, in dimension d = 1 we can conclude that

m
E [(éw,a)Q] < Z (2—17r—1/26€26uv) J H (4.18)
ﬁ7 q —
q >0 ol Vi tZ_

To conclude, it is sufficient to observe that the radius of convergence of the series

n t; T dy 1/2)m+1

Um :f H A <a;n f H ( / )
me T Vit —ti—1 m Wt —ti—1 F((m+1)/2)

(with ¢,,+1 = 1) is infinite, so that the r.h.s. of (| is finite for every value of q. O

Remark 4.8. In the case of the point-to-point partition function Zg’a(t,:n), one uses

X(SQ) = ZE’[a’b) (t,z) instead of Zg’[a’b) and the representation instead of to
compute the first an second moment. The proof is carried out in an identical manner as
above, replacing o(t,x) with o(t,x)pi—t, (x — x1) (whose integral on (R is py(x)). The
main difference is in where there is an extra p;_, (T — )% in the last integral. An
easy induction on m yields that

, , o—llzl2/t
| et g (o = mnde = (4.19)
(Rd)m T2 l_[?:{ t; —ti1

This leads us to having al, instead of a, in the series (4.18) (with an extra t™ if t # 1)
and does not change the conclusion.
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4.4. Proof of Proposition [4.1| in dimension d > 2. The proof of the previous section
cannot apply to higher dimension. From a purely technical point of view the reason for
this is that the r.h.s. of is not integrable in ¢ when d > 2, making the r.h.s. of
infinite.

To circumvent this problem we need to refine our selection of trajectories. As the
divergence in comes from small values of ¢, we want to add a restriction that
forbids favorable sites to have an abnormaly high concentration in a small time frame.
Our selection scheme presents some formal analogy and was inspired by the multibody
techniques used in [7, B2] in the very different context of disordered pinning models at
marginality.

Fine tuning our parameters, under the assumption (2.18]) we find a restriction of the
trajectories based on this idea which allows to apply Proposition

Remark 4.9. An alternative proof of the uniform integrability of Zg’a for d = 2 was

brought to our attention by C. Chong. Once (4.4)) has been proven, it is sufficient to show
that

sup E [(z;;’[“’q))p] <o, (4.20)
ag(0,1]

for some p > 1 (the conclusion of Proposition remains valid, using Hélder’s inequality
instead of Cauchy—Schwarz). This last bound can be extracted from [43] after observing

that Zg’[a’Q) is the solution at time 1 and coordinate O of the Stochastic Heat Equation with
initial condition ug = 1. To extend this argument to the point-to-point partition function,
some more care is required since in this case one has to consider the solution of the SHE
with Dirac initial condition (not treated in [43]) but the argument should in principle also
work.

However, our argument presents a few advantages. Firstly, it does not rely on any
tool of stochastic integration and only marginally on the properties of the heat-kernel:
it is therefore easily adaptable to the context of other disordered systems presented in
Section . Also, our proof of Theorem in [8] relies on a similar strategy and we believe
that the proof in the continuum setup (which is much simpler than that in the discrete
one) could be of use for potential readers of [§].

A finer restriction of the set of trajectories. Let us now consider the restriction of the
partition function to “good trajectories” . Thanks to assumption (2.18)), we can fix some
pe (1,1 + %) with p < 2 such that S(o 1 vPA(dv) < 0. We then fix for the rest of this

section a parameter v > 0 which satisfies

d—2 1 . d
m<7<}f1 (i.e. y(p—1)<1 and 5—7(2—p)<1). (4.21)

The assumption p € (1,1+ %) entails that v = d/2 is always a valid choice, but we prefer to

write the two separate conditions we have on v to make the requirements more transparent.
Then, for any ¢ > 1, we define B, as

|o’| |o’|
B, := {a eP(w) : Vo' co, H uj < ¢! H(t; - t;l)v} (4.22)
j=1 j=1
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where ¢ and v/ is used to denote the coordinates of time ordered points in o’ (with ¢, = 0
by convention). We set in this section.

25t = ), wap(0)ls,(0). (4.23)
oeP(w)

Note that o € B, implies in particular that u; < ¢ for ¢ € [1, |o|] and hence ZAZ;; < zoled),
Now, Theorem is a consequence of Propositions and below (which allow to
control respectively the first and second moment of Z“*;) and of Proposition

s . 1
Proposition 4.10. Assuming that v < o-1 we have

lim sup ]E[Z‘”’“ - z“*“] ~0. (4.24)
=D o] L b
Proposition 4.11. Assuming that v > ﬁ, for every q = 1 we have
sup E[(ZAE’;)Q] <. (4.25)
ag(0,1] ’

The proof of Propositions and are technically more involved than that of
Proposition This is in particular because the restriction B, produces an integral that
does not factorize as well as the one obtained when only A, is considered. We first need
to introduce some technical bounds on some type of multivariate integrals which appear
in our first and second moment computations respectively.

Technical preliminaries: an upper bound on multivariate integrals. The following upper
bounds are the key ingredients in the proof of Proposition [£.10] and [:11] as they allow
to control the multivariate integrals produced by the application of Mecke’s multivariate
equation (Proposition [3.8)).

Lemma 4.12. Assume that §, ;, vPA(dv) < o for some p € (1,2) and also that S[1 o) VA(dV) <

0. Then for any q = 1 there is a constant cq, verifying limg_,o ¢4 = 0, such that for every
m =1 and every h € (0,1), we have

m 1 (C )mhl—p 1
1¢ uMdu;) < a log(1/h . 4.26
f(o,q)m {112,y | [ 100 < 5= T [los(1/m)] (4.26)
In particular, for any 0 < e <p — 1, we have
- (ca/)™ p1p-
1 m ul)\ duz < 2L piTPTE 4.97

Lemma 4.13. Assume that S(o 3 vPA(dv) < o for some p € (1,2). Then for any q > 1
there is a constant C, such that for every m > 1 and every h € (0,1), we have
- 2-p)"

- 2 . 2—p m
\[(O’q)m 1{H;nluj<hqm}£|1:uz>\(duz) < h (Cq) Z _€)|

( [log(1/h)]" ", (4.28)
/=1

In particular, for any 0 < e < 2 — p, we have

. 2 (Cq/s)m 9
J(O Q" I{H;n:l“j<hqm} EUZA(dUZ) < 2—p—¢ WP (4.29)
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For both lemmas, the idea is to compare the integrals with some integrals with respect
to the Lebesgue measure: we postpone to the Appendix the proof of the two following
claims (presented as Propositions and |B respectively)

Claim 1. Under the assumptions of Lemma |4.19, there exists a constant c, verifying
limg o5 cqq' 7P = 0 such that

1 iA(du;) < m 16 .. —Pd i. (4.30
LO,Q)W {H%uﬁhqm}gu (dui) < (cq) f(ozq)m {Hj_luj>hq’"}i11“1 ui.  (4.30)

Claim 2. Under the assumptions of Lemmam there exists a constant Cy such that

—-p
f(o’q)m 1{H] luj\hqm} Hu )\ dul \ C ) JO,q)m 1{1_[] 1U3\hqm} HU dul (4 31)

Proof of Lemma[].13. Thanks to (4.30), we only have to prove that for any h € (0,1)

_ hi=p (1-p)m .
J;O2q {HJ 11U = hqm}l—[u Pdui < _1(?2_1)! [log(l/h)] 1- (4.32)

and then set ¢, := 2c,q' 7P (which verifies lim, . c; = 0). First of all, notice that by a
change of variable v = u/2q it is sufficient to prove (4.32)) only in the case 2q = 1. We set,
for all h e (0,1),

k
h) = (p—1)hP~! 1, . “Pdu; .
e WO T b

By a direct calculation, we have pi(h) = 1 — hP~1 <1 for all h € (0,1), which gives the
result for m = 1. Then we can proceed by induction. Integrating with respect to the value
of u; and using the change of variable v = log(u;/h), we obtain

L h\17P log(1/h)
pr+1(h) = hp_lf uy? () pr(h/uy)duy = hf pr(e”?)dv.
h Uy 0
From this and p;(h) < 1 we easily obtain by induction that for all 4 € (0, 1)

pr(h) < (k_ll)!aogu/h))“,

which proves (4.32)). To obtain (4.27)) from (4.26]), we just observe that for any ¢t > 0 and
any k = 0, we have k(log() + 1) < te, so that we get

k k
th < et () <klefte™, (4.33)
ee
where we also used that k! > (k/e)* for all k > 0. Applying this to ¢ = log(1/h) and
k =m — 1, we get the bound (4.27)). O

Proof of Lemma[{.13, Similarly to Lemma thanks to (4.31)) we only have to prove
that for any h € (0,1)

1 Pdl h2p 2pmm 1 Uh g. 134
j(o,q)m {Hj 1u]\hqm}Hu u ;1 Og( / )] ( )
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Again, by a change of variable it is sufficient to prove (4.34]) only in the case ¢ = 1. We
set, for all h € (0,1),

k
pi(h) = hP~2 1 T Pdu;
Bi () f(O,l)k {11, uj<n} Hul o

and a direct calculation gives that pj(h) = (2 — p)~!, which yields the result for m = 1.
For the induction step, decomposing according to whether uy <h or u; > h, we get that

~ p—2 " 1-p ! 1—p : Ly, (h P
Dr+1(h) =h uy Tduy v P ) + | — Dr(h/u1)duy
0 0 h u1

1 k+1 log(1/h)
= () + hf pr(e”)do,

2—p 0

where we also used a change of variable v = log(u/h) for the last identity. From this we
easily obtain by induction that

koo _ )
k) < 3 CEL s dosu/m) -,
=1 ’

which is the desired result. Now, to obtain (4.29) from (4.26)), we use the inequality (4.33])
with ¢t = log(1/h) to get that for any 0 <e <2 —p

m _ k
5 ot osm] ™ < > (5 )” Sy e ()
(=1 :

et 2—0p 2—p+e¢

This concludes the proof of (4.29)). O

Proof of Proposition |4.10, Note that as we have already proven (4.4), it is sufficient to
prove that

lim sup E[Zw’[“’Q) - 2“*“] ~0 (4.36
7% ae(0,1] 7 pa )

Decomposing over the cardinality of o, using Proposition as in (4.6)) and integrating
over the space variable (recall (4.7])) we obtain

gt = Zg] =t ot [ e [t o

k>0 Xk x[a,q)* el

o

Here, with some abuse of notation, we identified Bg and its image by the projection
(t,x,u) — (t,u); note that B, does not involve the space variable. To estimate the above
integral, we use a union bound for I(Bq)c(t, u). When the value of k is fixed we have

k
Lige(tu) < ) 2 L vz T (gt 7}

m=11<1<<im <k

With this done, we can perform first the integral with respect to u; and t; for j ¢
{i1,...,im}: summing over the number of points k; that can be fitted between two points
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ip < ig4+1, we obtain after factorization that the r.h.s. in (4.37)) is smaller than
S B b
e
ngl 0<ty<-<tm<1 J[a,q {Hl 1 iz [T (ti—tiza)? }

m 0
><H<Zﬁ’“f Gy J Hu @) dt(>HuZ (duy)dt;, (4.38)
i=0 \k;=0 ti<ty’ <<ty <t1+1 [a,g)%i 5

=1

where we used the convention tg = 0 and tm+1 = 1. Now we can compute explicitly each
term of the product in the second line above (as in ) Replacing g by oo in the domain
of integration, which yields an upper bound and makes the computation simpler, we get,
recalling that S yuA(du) = kq + i,

2 gk f LOO H“ Nt = eBlratitiva=t),

ti<tV <zt )<t1+1
The product of these terms gives a factor eﬁ(”“ #) and we therefore get the inequality

w’[a7q) Aw7a‘
E[Zﬁ — 2y ]

B m . ) . )
< e Z f e a q /8 1{ H;nll wi=qm H;il(ti*tifl)ﬁl} H uz)\(duz)dtl ] (439)

m>1 TVL

The r.h.s. in can be bounded above using Lemma More specifically we use
to bound the integral over u;, setting a to 0 to obtain an upper bound that does
not depend on a. We fix £ small enough so that v(p + e — 1) < 1 (recall that we have
v(p — 1) < 1 by assumption) and by (4.27) we obtain

C(I/E)m = ) . (1_ _ )
fa q)m {HL 1uz>q H’m tz_tz 1 } Huz duz = p _ 1 H(tl - tl*l),y p=e . (440)

i=1

We therefore obtain that ( - is smaller than

p—

ﬁCQ/g J H i — ti— 1 y(i=p= E)dtz
1 mo

ebu

B m T(Q—=v(p+e—1)"
1 ﬂ; (Bea/e) T —ypre—1)11n’ 4

where in the last equality we used that v(p+¢&—1) < 1. The sum in the r.h.s. of (4.41)) is
finite for any value of ¢ > 1, and can be made arbitrarily small by choosing ¢ large (with
¢ and 7 fixed), since Lemma ensures that the constant c, goes to 0 as ¢ — 0. O

Proof of Proposition[{.11. We have

]E[(ZA;:;)Z]:]E[ 3 waﬁ(al)wa,ﬁ(@)lgq(al)lgq(02)}. (4.42)

01,026P(w)

m>

We use again the notation ¢ = o1 nog and ¢; = 0;\¢. Let us relax the condition o1, 09 € B,
to obtain something which is easier to handle in the computation. Formally the divergence
of the second moment of the (unrestricted) partition is obtained when integrating the
contribution of the environment at the points in the replica intersection o1 N o9, hence we
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should not be loosing too much if we restrict our constraint to ¢. With this in mind, we

set
[s] [s]

D, = {§ = (ti,l‘i,uz')‘ii'l ©omax u; <q, Huz < g H(ti — tif1)7}-
1<i<ld] i1 i1
and observe that
E [(ZZ;(?)Q] < IE{ Z Wq,5(S1 U S)wq g(s2 U S)1p, (g)] (4.43)

61,62,s€P(w) disjoints

Using again Proposition [3.8|as in (4.13]) and using (4.14]) to integrate over all the variables
associated with &; and & we obtain

E{ > Wa,p(s1 U §)wa,p(s2 U )1p, (<)}

$1,52,s€P(w) disjoints

- Z 5’”{ 1p,(t,x, u)o(t, x)? Hu?)\(dui)dtidxi. (4.44)
m=0 %mX(Rd)mX[a@O)m i=1

Now integrating over x and using (4.17)), we obtain that the r.h.s. above is equal to

m m dt;
—dp_—d/2 b 2 :
Z (2 /Bﬂ- ) J‘xmx[a’q)m 1{1—[?;1 uiéqm H?ll(ti_tifl)’y} H (tl . tl—l)d/Quz A(duz) .

m=0
(4.45)
To estimate the integral over uy, . .., Un,, we use (4.29)) in Lemma We integrate over
(0, q) to get an upper bound which is uniform in a. We fix ¢ such that %l —2-p—e)y<1
(recall that ¢ — (2 — p)y < 1 by assumption) and by ([{.29) we obtain

m C /E)m m _
1 2 ) < (Cq/e)™ st q) 1P 24e)
j[a,q)m {HZ1 u;<q™ 1_[211(151'7151'_1)7} 211 Ui )\(du ) 2—a—¢ E(t t 1)
Reinjected in (4.45)), this yields
~ar? (274Bn=42C, /)™ f n dt;
E|(Z% < . 4.46
[( 5"1) ] m2>0 2—p—c¢ mg (t )%—(p—2+e)v ( )

i —ti1

To conclude we just need to show that the above sum is finite. To check this, we simply
observe that, thanks to the fact that % — (2 —p—¢) <1, the integral in t is equal to
Frl—(p—-2+¢e)y+d/2)™
Tm[l—(p—2+¢e)y+d/2]+1)’
and that the corresponding series in m has an infinite radius of convergence. U
Remark 4.14. For the proof of Propositions |4.10) in the case of the point-to-point

partition function Zg’a(t, x), we need to slightly change the definition of B, to take care of
the end point, setting

o] lo’|+1
B, = {a e P(w) : Vo' <o, Hu; < ¢ H (t; — t;_l)w},
i=1 j=1

with the convention that t , = t. For the proof of Proposition there is an ad-

o’|
ditional term py(z) in (4.37), coming from the integration of o(t,x)pi—t, (x — xx) over
the space variable, but the main difference comes in (4.40) when applying Lemma .
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The computation in (4.41) is different (we have the integral of H?:{l(tz — t;_q)(=p=e)
over X™ after scaling by t if t # 1) but the conclusion is identical. For the proof of

Proposition there is an additional term p;_y, (x — xm)? in ({.44). We proceed as
in (4.19) when integrating on x1,...,x, and this yields only an extra multiplicative term

Ce PP/t (t — ¢,,)=42. Then, the integral in ([£.46) is different (we have the integral of

l—[?f{l(ti — tifl)_%+7(7’_2+€) over X™) but this does not change the conclusion.

4.5. Finiteness of partition functions. We are going to prove here simultaneously

Proposition the first part of Proposition (2.28) and Proposition Note that

the fact that Zg’a and other partition functions are positive is a direct consequence of

the rewriting given in (3.10]). It remains to prove that under assumption (2.17) they are
almost surely finite. This is the following statement.

Proposition 4.15. If (2.17) is satisfied, then for every ug satisfying (2.38|) (with T =1)
we have for any t € [0, 1], almost surely

JRd Z5(t, ) uo(de) < 0. (4.47)

In particular the cases ug = §, and ug(dx) = dx respectively give

Z7%(tx) <o and 257 <o (4.48)

Remark 4.16. Proposition and (2.28]) are direct consequences of (4.48)). Proposi-
tion also follows by observing that by time reversal and translation invariance we
have the following identity in distribution

250 ) @ | 25y~ aun(ay

and thus we just need to apply the result to ug translated by x.

Proof of Proposition[4.15. For o = (t;,x;, ui)‘»all € P(w) (with ¢ <1), we define

1=

lo]

and G(o):= Z log(u;) . (4.49)
i=1

O s — i

H(o) := P———

=1

The quantity H (o) and G(o) corresponds roughly to the cost and gains at the exponential
level to visit all the points in 0. We refer to H(o) as the entropy of the path. Our
statement is an almost direct consequence of the following lemma.

Lemma 4.17. If (2.17) holds, for any fixed ¢ > 0, we have almost surely

T(w):= sup {G(o)—5H(0)} < 0. (4.50)
oeP(w)

We postpone the proof of this lemma and first deduce the proposition from it.

Using the representation (3.10)) of the partition function (recall that w(®) denote the set
of points in the environment with intensity larger than a) and applying Lemma we
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can write for ¢t <1

e zgte) = Y B ot x)pry, (@ — wp)
UEP[O,t] (w(a))

lo|

< Z gloleT+3H() HQ t,X)pe—t, (x — )

Plo,4 (w(®)

||<7|-&-1

— T Z <<1_i)d/2> lo H Pt—t;, (T — xp)

42°
7€Plo 1) (@) o1 (2m(t; —tim1)/(1 =€)
so that setting ¢’ = /(1 — €) and assuming ¢ < 1/2

6_7325’“@,15) e Pha Z (292B)llo((1 + Nt X)p(1gen (-t (T — Tk) - (4.51)
O’EIP[Qt] (UJ)

By Mecke’s formula (Proposition we conclude that

g —2s—q |2
—(1—g) e T 1T
( )2(’%*%71) ,

E {e’”"’) fRd Z5°(, x>uo<dx>] < SN fRd pren(@uo(dz).  (4.52)

Using assumption (2.38) on ug and fixing &’ sufﬁciently small so that p(j e (w) is in-
tegrable w.r.t. |ug| (recall t<T = 1), we get that is ﬁnite. This proves that
Sra 257 (t, x)ug(dx) < oo almost surely finite thanks to Lemma O

Proof of Lemma[].17. First of all, notice that if o = (¢;, x;, uz)lazl1 has a point with u; < 1,
then by removing this point from o we obtain a set ¢’ with (strictly) smaller entropy
H(o') < H(0) and (strictly) higher energy G(o’) > G(o). In the supremum, we therefore
can restrict ourselves to points (t,z,v) € w with v > 1. Let us now separate points
according to their intensity. For each k > 1 we define

wg i={(t,z,v) ew: te [0,1] and logv € [¢" ", e")},

and we let 7(wg) be its projection on the first two coordinates. Note that the 7(wy)’s are
independent Poisson processes on [0, 1] x R? with respective intensity A\idt ® dz, where

A o= )\([exp(ek_l),exp(ek))) .
One can then easily see that our assumption (2.17)) is equivalent to having
Z )\ke%k < . (4.53)
k=1

Our proof is based on the following statement, proven below.

Lemma 4.18. Fiz 0 € (1, 1+ é) and let K > 0 be arbitrary. Let Ay, be the event that
there exists a path of n points in wy, whose entropy is smaller than KnPe*, i.e.

Appn = U {H(U)SKnaek}.

)

oeP(wn), lo|=n

Then, assuming (2.17), we have 3 P(Ag,) < 0.
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Given o, we let ng(o) denote the number of points that the path displays in wg. We have

o0

G(o) < )| Fng(o). (4.54)
k=1

We let ko(w), no(w) be such that Ay, holds for every k > kg (for every n), and for every
n = nyg (for every k). For every k, we have

ne(0) < (K H(o)e ™M + nolgapey- (4.55)
and in particular ny(c) = 0 for k > 1 + max(ko,log(K ~'H(c))). This yields

[log(K " H(q))]

ko
o) < D efng+ (K TH(0)? Y MO0
k=1

k=0
<COW)+(1—ea) 'K ' H(o).

Since K is arbitrary, fixing K > 2(1—e(1=9/9)~1 yields that G(0) < C(w) + £H (o) almost
surely, which concludes the proof. O

Proof of Lemma[{.18. Let us start with the case n = 1. Using that H(o) > |z|? if o =
(t,z,v) is reduced to one point (recall t<1), we get that Ay < U(t@,v)ewk{HxHZ < Kek};
in other words, if Ay j, is verified then there is a point in wy, within a distance v K eF/? from
the origin. The probability of A is therefore smaller than a constant times K d/2ekd/2 )
and this is summable over k thanks to (4.53)). The case n = 2 can be treated similarly.

When n > 3, let 0 = (¢;,x;,u;)_; be a path of points in wy, staisfying our event, i.e.
H(o) < Kne*. We make the two following claims.

Claim 1. The path cannot venture too far:

max ||z < VEn??e*? . (4.56)
i€[1,n]

Claim 2. There are three consecutive points in our path in a relatively small cylinder:
there exists i € [1,n — 2] satisfying

4
tiyoa —t; < 5 and  |zip1 — 2 + |ziv2 — 2io1]? < (4.57)

2

Before provmg the two claims -, let us use them to conclude the proof
of Lemma We can cover [0, ] [ VEnP2ek 2 \/Knf?ek/2]¢ with a collection of
Cgn't¢ overlapping cylinders (of the type [t,t + L] x [z, + 25 \/7719/2 k/21d for
a collections of t’s distant by 2 and of z’s distant by A \/> ne/ 2 k/ 2). Thanks to
the above claims, if Ay, is verlﬁed then there exists some path o € P(w) of length n
satisfying —, meaning that at least one of the constructed cylinders contains
three points in 7(wy). By a union bound, since each cylinder is of area bounded by

C’}(ngef(dﬂ)ekdﬂ, we therefore get that

P(Ak.n) < Crn' x (C}(n%é)—(d—&-l)ekdm)\k)?’<C},(()\kek;d/2)3 so_(d+1)

We conclude simply by observing that this upper bound is summable over k£ and n, thanks
to (4.53) and since %de —2(d+1) < —1(d + 1) thanks to our choice § < 1 + 1.
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The first claim (4.56]) just follows by observing that the entropy of the path is larger
than ||z;|2/t; = ||=;|? for every i € [1,n]. For the second claim (4.57)), we observe that we
have Z;:f (ti+2 — t;) < 2, which means that setting

4
I:= {z’e [[1,n—2]], tivo — t; < 7},

n—2
we have |I| > . We also have, by definition of I,
2 2 o | 2541 — xZH H$i+2 - %‘4—1“ SH( )
Tit1 — Ti||” + | Tiv2 — Tit1 <
; H 1+ z” H 1+ i+ ” Z tz+1 1t t2‘+2 — ti+1 _ 2
Then (4.57)) is simply a consequence of the fact that the smallest element of the sum is
smaller than the average and that H (o) < KnPeF. O

4.6. Proof of Lemma We now adapt Proposition [4.1] to prove the convergence of
Z7(f) and Zg* without the condition S[1 o) VA(dv) < 0, i.e. we prove Lemma

Recall the definition (2.39) and set for f € B

k
zg by =1 4 2 B’“J ot x, f) [ [P (ati, da) . (4.58)

k=1 =1
Note that Proposition |4.1| (or rather Corollary , applied to the measure A\, defined by
Mp(A) = AMAn[0,b)) (4.59)

automatically yields the following convergence of Zg’[a’b)( f).

Corollary 4.19. Under the assumption (2.18)), for any f € B and any fixred b = 1 we have
that (Zw’[a’b)(f))ae(()’l] 1s a uniformly integrable time-reversed martingale. The following
convergence therefore holds almost surely and in Lq:

lim 2140 (f) = 25190 ().
Note also that we have E[Z1@0) ()] = P Q(f) for all a € (0,1], with p, := S[1 b) vA(dv).

We now prove the convergence of Zg’a( f) for f € By. Repeating the argument from
the proof of Proposition there exists bg(w, f) such that for b > by, we have Zg’a(f) =

Zg’[a’b)(f) for every a € (0,1]. Thus we have, from Corollary 4.19

lim 25°°(f) = 25 ().

The positivity follows from Proposition [£.4] proven below. It only remains to prove that
limg_o Z;”a exists and is finite when (2.17) also holds. This is a consequence of the
following statement, valid for any € > 0,

lim IP’( sup (25 — zolaby o 5) = lim supIP’( sup zolat) - gwlab)y o 5) = 0.
b—c0 ae(o,l]( p A ) b= pr>p ae(O,l]( B p )

(4.60)

To prove , we observe that the process {z-: A Zg’[a’b) — Zg’[a’b))'a € (0,1] } is

a time- reversed positive super-martingale, thanks to Lemma [3.5] Using Doob’s optlonal
stopping theorem we thus obtain that

P sup (2500 - 2510 > ¢) <

1
ae(0,1] €

B[ (2509 - 2519) ne. (4.61)
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Sending b’ to infinity on both sides, we obtain
: [a,b) 1 1 [1.6)
]P’( sup (25" —25""7) > 8) < E]E[(Zﬁw —Z57) A e]. (4.62)
ae(0,1]
The right-hand side goes to zero by dominated convergence, thanks to Proposition[2.5l [
4.7. Almost sure positivity of Z¥(f). Let f € B, be non-negative and such that
Q(f) > 0. Recall the definitions (2.39) and (4.58)) of the truncated noise and of the corre-

sponding partition function. We are going to show first that the positivity of Z;;[O’b)( f)
does not depend on the value of b, for any 0 < b <’ < 1.

IP’({Z;;’[O’I’)( n>ora{zs ) > o}) — 0. (4.63)

where A stands for the symmetric difference (in other words the events are equal in the L;
sense and in particular have the same probability). Applying Lemma to the measure

Ap (recall (4.59))) we obtain that

lo]

’ ?b - a
Zg [a )(f) —e ﬁ(li ﬂb) Z B‘J|Q(t7 X, f) H uil{uie[a,b)} . (464)
oe€P(w) i=1
This last expression implies that for every a < b <b we have almost surely
Zg,a(f> > e—ﬁnbzg,[a,b)(f) > e Bry ng[a,b')(f) 7 (4.65)
and taking the limit when a tends to zero we obtain
Z5(f) = e Pz OV(p) = ez 100 () (4.66)

This yields
P({z51(r) > op\{25* (1) > 0}) = 0.
On the other hand, the same argument as in Lemma yields that (Zg’[a’b)( I)ee(a1] 18
a martingale (in b) for the filtration G, defined by
Gy :=o({(t,z,v) Ew: v <b}). (4.67)

Taking a to zero in the conditional expectation (using uniform integrability cf. Corol-

lary [4.19)) we obtain that
w,[0,b w,[0,b
E[251 ()]G = 2517 (1), (4.68)
which yields the second inclusion of (4.63))
w,[0,b w,[0,b
({25170 > 00250 (r) > 0}) 0.

Now let us fix a decreasing sequence b, € (0,1] with b, | 0 and consider the event
A(f) = Mnz0 Unsm {Zg’[o’bn)(f) > 0}. An immediate consequence of (4.63) is that

]P’(Zg’[o’l)( ) > o) — P[A(f)]. (4.69)

Now A(f) is measurable with respect to the o-algebra Gy := ﬂbe(o’l Gp. Therefore, by
Kolmogorov’s 0—1 law, it has probability either 0 or 1. From Corollarythe martingale

(Zw,[a,l))

5 ae(0,1] 1s uniformly integrable and thus

B[z (1] = Q(f) > 0.
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Combining these two facts we obtain that necessarily ]P’(Zg’[o’l)( f) > 0) = 1, which
concludes the proof using (4.65)). O

Remark 4.20. The proofs in Section [{.0H4.7 apply verbatim to the point-to-point par-
tition function. They give that for any (t,x) € R} x R? we have the a.s. convergence
limg o0 Zg’a(t, x) = Zg(t,:n), with Zg(t, x) positive and finite almost surely.

4.8. Proof of Proposition We now show that (Qigﬂ)ae(o,l] is tight. We need to
find a sequence of compact sets /I such that almost surely

lim sup QU*K%)=0.
N—=0 4e(0,1] g (Kx)

Since Z;”a converges to a positive limit, this is of course equivalent to proving
lim sup Z:*(Kf) =0. (4.70)
N—=0 4e(0,1]

In the case p := S[l ) vA(dv) < oo, since E[Zg’a(lA)] = eP*Q(A), using Doob’s maxi-
mal inequality we have
1
IP’( sup 25" (L ) > 5) < -eQlKY]. (4.71)
ag(0,1] €
It is then easy to show that (4.70) holds for an arbitry increasing sequence of compacts
verifying limy_,o Q[Kn] = 1; for instance taking Ky := {¢ € Co([0,1]): o(t) < Nt1/4}.
In the case S[l ) vA(dv) = o0, we proceed analogously with the truncated partition

function Zg’[a’b). We obtain that for any b > 0,

lim sup Zw’[a’b)(l ¢ )=0.
N=0 4e(0,1] g K

We then conclude using (4.60)), to get that a.s.

3 ) ) 1b) 3 w,a wv[avb)
lim sup sup (Zwa(l )=zl . )) < lim sup (Z - Z ) =0.
b= qe(0,1] NeN oKy P M) oo ae(0,1] g ’ O

5. DEGENERATION OF THE PARTITION FUNCTION: PROPOSITIONS AND [2.10)

5.1. Proof of Proposition Let us assume that S[l OO)(log v)¥2\(dv) = 0 and show
that the partition function Z’ is a.s. infinite. We use the representation (3.10)). Keeping

only paths o with cardinality one in the sum and keeping only those with ¢ € [1/2,1] we
have

76‘%&
—Bka e _ 2
290> eF Z pe(z)v = — Z ve @l (5.1)
(t,x,v)ew(@) (t,z,v)ew(@) t=>1/2
Hence to conclude it is sufficient to show that almost surely
sup {logv — |z|*} = o0. (5.2)

(tyx,v)ew: te[1/2,1]
For this it is sufficient to check that almost surely, the event A; defined by
Aj={3tzv)ew telz 1] |z]o e [271,27), logv > #F1}.

is satisfied for infinitely many j. By Borel-Cantelli, since the A; are by construction
independent it suffices to show that Z;i1 P(A;) = co. The number of points (¢, z,v) € w
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such that ¢ € [1,1], |z]o € [2971,27) and logv > 4771 is a Poisson random variable with
mean

Aj = 12%(1 — 279 \([exp(47T), 0)) .

0

Hence we have P(A;) = 1 — e~ and we simply need to show that 2.j=1A; = 0. But this
is a direct consequence of our assumption S[l OO)(log v)¥2\(dv) = o since

4 ©  rexp(47t?) d/ 2 d X
log v)¥?\(dv) < f 47242\ (du) < 4NN
.ﬂLa»( NS R | @) € o 3,

j=1 |:|

5.2. Proof of Proposition Since the use of the size-biased measure is at the heart

of our proof we are going first to assume that p := S[l ) vA(v)dv < o0, in order to be able

to use Lemma At the end of the proof we explain how to deal with the case p = oo.
Note that Zg’a converges almost surely, as a consequence of the martingale property:

we only need to prove that it converges to zero in probability. Since ?Z’a . e_B”Zg’a is a
positive variable with mean 1 it is sufficient to identify a sequence of events J, such that

g%E[Zﬁ 15,] =0 and g%P(Ja) =1, (5.3)

as it implies that ?‘g’al 7, and thus Zg’a converge to zero in probability. This is equivalent

to proving that the total variation distance between the two measures P and Iﬁ"é goes to 1.
That is, according to Lemma [3.7, we need to prove that

iii%HP(we-)—Q(@E@E;(@e-) |y = 1. (5.4)

Our proof’s strategy relies on finding a statistic that helps to distinguish between w and &
for most realizations of the Brownian trajectory. More precisely, we use the second moment
method. We are going to define a functional Y, (w) which verifies

(QRE®E, [Va(@)] - E[Ya(w)])*

1m
a—0 Varp(Y,(w)) + Varqgege, (Ya(w))

= 0. (5.5)

The above implies that asymptotically Y, (&) and Y, (w) concentrate around different values
and thus that (5.4)) holds (see [40, Prop 7.12] for a quantitative statement and its proof).
We treat separately the cases d > 3, d = 1 and d = 2, in that order.

The case d > 3. We assume that S( 1+3A(dv) = 0. In order to find a statistic that

01 Y
allows us to distinguish between P and IP’%, the idea here is to find a region of R x R? x R,

where ]ﬁ’% displays significantly more points than P. We consider a sequence R, going
(slowly) to infinity (we set its value latter on) and we set

Yo (w) := #{(t,:c,u) ew : |z < RVt, u> (av td/Q)}. (5.6)

Under P, Y, is a Poisson variable with mean given by

E[Yy(w)] := (2R,)? Ll 42X\ ([a v 192, 00)) dt. (5.7)
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Note that our assumption on A readily implies that Sé t%2X([a v t%2,0))dt and hence
E[Yy(w)] go to infinity as a | 0. On the other hand, conditionally on (B)e[o,1], under
P ® P, we have that Y,(©) is a Poisson random variable with mean

1
EQE, [Ya(@)] = (zRa)df 42X\ ([a v 192, 00))dt + A, , (5.8)
0
where we have set .
X, = 1 vA(dv)dt. 5.9
fo {1Bi] < Ral) J[avtd/zm) (dv) (5.9)
Before averaging with respect to the Brownian motion, since R, tends to infinity, notice

that we can almost replace l{IBtléRa\/i} by 1, so X, is close to m, := S(l) S[avtd/g ) vA(dv)dt.

With this in mind (and the fact that the variance of a Poisson variable is equal to its
expectation), the important part that has to be checked for ([5.5) to hold is that

2
lim - 4 = 0. (5.10)
=0 (Ry)? § t¥2X([a v t9/2, 00))dt

Since m, = So § [av t4/2,00) vA(dv)dt = SO t42X\([avt¥?, 0))dt, we have that ([5.10) is satisfied
as long as R, dlverges slowly enough. We can choose for instance

1 3a
R, = (j t72\([a v td/2,oo))dt) .
0

Now that all the notation have been set, let us complete the proof of (5.5). Setting
¢a = Q (|B1] < Ry), we have by that Brownian scaling that

m

- q“f Lvtd/z Mdv)dt = gorma, (5.11)
Varg (&, > Q(x, Q(?@) (1 —a)m.
As a consequence, recalling (5 , we have that
QOERE, [Yo(@)] - E[Ya(w)] = Bgama- (5.12)

We also have
Varqeeer, [Yo(@)] = Q (Val“lp@m (Ya(@)) + ,BQVarQ (Xa)
1
< (2Ra)" f t2N([a v ¢72,00))dt + Bgama + 5*(1 — ¢2)my.  (5.13)
0

Now we can conclude that (5.5 holds, simply by using (5.10) and the fact that g, tends

to 1 as a | 0 (using also that m, = o(m2) since m, goes to o). O

The case d = 1. We assume that S(o 1) v?2\(dv) = co. In this case we set
Vo (w) := ( Z) VLot 0] ol <R} (5.14)
t,x,v)Ew

where again R, is a sequence going to infinity sufficiently slowly (it is chosen below).
Then, we have

E[Y,(w)] = 2R, f[ L), V() = QRQJ[ @) (5.15)
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Additionally, setting this time ¢, := Sé Q (|Bt| < R,) dt we have

QIEQE,[Y,([®)] = 2Raf[ )

and using a variant of the argument used in (5.11])

v\(dv) + Bqa f[ : Vi (dv), (5.16)

Vargqaren [Yo(@] <28, | @)t [ o sati-ad ([ vta)

a71) [a,l)

< (2Ru + Baa) f
[a,1)

where we simply used that v <1 for the second inequality. Now, since ¢, goes to 1 as
a | 0, to conclude that (5.5) holds it is sufficient to have R, = of S[a 1 v?*A(dv)) which can

be obtained by setting R, = (S[a 1 v\ (dv)) V2. D

V2A(dv) + B2(1 — qg)(f[a ) A@) . (5.17)

The case d = 2. We assume that S(o 1) v?|log v|A(dv) = co. In this case we define

Yow)= Y 1 : (5.18)

tv v {vela),tef0.1], |z]0<Ravi}
(t,z,v)ew

where R, goes to infinity slowly enough (it is chosen below). In that case, we have

1 v
E[Ya(w)] = (2R,)? f[ ) fo i)

1 ) (5.19)
2f J U gea(dv)
Y, = (2R, — .
Var(o(w) = @R | | o
Now with g, := Q (|B1]| < R,) we have,
QRERE,[Y, (dv). (5.20)
[a,1) [a,1)
Using again a variant of - ) to bound the variance from above we obtain
VaI'Q®p®[p>/ [Y ( )] 2R fa 3 J t v U th(dU)
o ———dtA(d (1 —qq . (521
+qﬁfa1)f tvu)? (dv) + 54 %) fal ) (5:21)

To conclude we need to check that - holds. It is not difficult to show that the second
and third term appearing in the variance of Y,(®) can be neglected (recall that g, goes
to 1) and hence to conclude one only needs to ensure that

(T dedv))
a=0 (ZRG) Sa 1) SO (t\/v)2 dt)\(dv)

= 0. (5.22)

Now this can be done by setting R, = (X v?|log U|dv)1/4 since both integrals in the

numerator and the denominator are comparable to S v?|log v|dv. U
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Conclusion of the proof of Proposition . When S[l ) vA(v)dv < o0, we have shown
that if (2.22)) is not satisfied, then lim,_, Zg’a = 0 almost surely. If f € B, simply using
that [Z5(f)] < | flw25 gives us limg—o Z5*(f) = 0.

Let us now turn to the case S[ vA(v)dv = w0,. For f € By, we can replace the noise &(f)

1,00)
by a truncated one fLa’b) (recall (2.39)), like in the proof of Proposition using that f
has a bounded support. We therefore conclude that we also have lim,_q Zga( f)=0.

It remains to show that if (2.17) holds, then we also have lim,_,o ZZ;’“ =0 a.s. We set
fu(B) = Limaxero | Bil<n} @nd fn =1— fu. We have for any n lim, g Z;”a(fn) =0 a.s.
and we can thus conclude if we prove that

lim sup Zg’a(fn) =0 (5.23)
=% 4e(0,1]

Using Doob’s maximal inequality for the super-martingale (Zg’[a’b) (fn) A €)ae(o,1]> We get
— 1 _
P( sup Zg’[a’b)(fn) > 5) < -E [ZZ’[I’b)(fn) A 5] . (5.24)
ae(0,1] €

Sending b to infinity on both sides we get P(supge(o 1] Zga(?n) >¢) < %E[Zgl(?n) A €],
which proves ([5.23)) by dominated convergence, thanks to Proposition ]

6. PROPERTIES OF THE CONTINUUM DIRECTED POLYMER IN LEVY NOISE

In this section, we prove various properties of the measure Q‘g constructed in Theo-

rem We always suppose that Assumptions (2.17)-(2.18)) are satisfied.

6.1. Proof of Proposition To check (2.25), we only need to verify that for any
bounded measurable set A we almost surely have

lim Q(4) = Q(4), (6.1)

(this allows to check that ([2.25]) is satisfied for simple functions with bounded support
and we can conclude using monotone convergence for positive functions). Now since Q is
a regular measure, one can find an increasing sequence of closed set Ag) and a decreasing

sequence of bounded open sets Ag) such that

Vn=1,A0 c Ac A®  and lingo QAN AWM = 0. (6.2)
By the Portmanteau theorem, we have for every n
limsup Q4 (A) < Q3(A)) and  lim inf Q5 (AD) = Q5(AD). (6.3)
a—0 a—

Hence to conclude it is sufficient to check that almost surely

i w( A\ Ay —

By the Portmanteau theorem (again), since A%Q)\A%I) is open, it is sufficient to check that
ZE(IAS)\AS)) goes to 0 as n — oo0. If we assume that p := S[LOO) vA(dv) < oo, then from

Corollary [4.2] we obtain that

E[ZEJ(]'AQ)\AS}))] = eBNQ(Ag)\Ag)) 99 (65)
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and thus (6.4]) follows from (6.2)). Now if 8[1 ) vA(dv) = oo, the previous argument yields
that for any b,

1 7[07b)
iy 2500 (10, 0) 0.

Since Ag) \AS) c Agz) for all n with AgQ) bounded, we have that for b sufficiently large,

25(1,0,0) = 2507 (10 40)

for every n. This allows to conclude that Zg(1 AD\ () goes to 0 also in that case.
Finally, if Q(A) = 0 then Q3“(A) = 0 for all a € (0,1] and thus (6.1) implies that
Q5 (A) = 0 almost surely, yielding that P x Qg (A) = 0. O

6.2. Proof of Proposition Let us start with the item (i), Q(Aempty(w)) = 1, which
is the easiest statement. Note that for any ¢ > 0 and € R? we have Q(B; = z) = 0.
Hence,

Q(‘A(Empty) < Z Q(Bt = .CC) =0. (66)
(t,x,v)ew
Now, to prove item (ii), we notice that when ko := S(o 1 vA(dv) < oo then the Q-
probability of an event A is given by
w 1
Qj(A) = ng Z wo,5(0,14) (6.7)
o€P(w)

where wg g(0,14) is defined as in (3.6). To see this, since the r.h.s. of (6.7) defines a
probability, it is sufficient check that for f € C we have

m Q3 () = 55 O, woslo. ), (63)

a0 B oeP(w)

which follows from the expression (3.9) of Z3"*(f) by dominated convergence. In partic-

ular, from we have

e—Bro
Zs

For A the same argument as in item (i) shows that wg g(co,14,) = 0, since Ay requires

that the trajectory visits at least one point outside of o (recall that o is finite).

Let us now turn to the more delicate item (iii). Our idea is to find a sequence A,, of
sets in Cp([0,1]) which are such that

nli_r}rolo Q%’(AEL) =0 as. and limsupA4, := ﬂ U Ap < Adense - (6.10)

n=0m=n

QUB)(Aempty) = > 0. (69)

We will then get that almost surely
Q3 (Adense) > Iim Q5 ( | An) ~1. (6.11)

m=n
By (2.25]) the first requirement in (6.10]) is equivalent to lim,,_,q limg_g Qg’a(AEL) =0 and
thus to
lim lim Z59(1 ) =0, (6.12)

n—00 a—0 s
since Z/Zf’a converges to a positive limit and is thus bounded away from 0. The obvious
way to bound Zg’a(AEL) is via the computation of its expectation. For this reason we first
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assume that p = S[1 ) vA(dv) < 0. Let us denote z(a, p,w) the maximal spacing in the

times of visit to points in w(@, i.e.

z(a, p,w) 1= sup {s :3te 0,1 —s], A(gp,w(“)) N[t t+s] = @} ,
and let us set
ap, = inf{a: kK, = n},
which goes to 0 as n tends to infinity. We then define
An =+ 2(an, 9, w) < (logn)/n}. (6.13)

and notice that Agense is satisfied as soon as infinitely many A,’s are satisfied. Now, from
Lemma (3.5 we have that (25" (A%))ae(0,0,] i & martingale which is uniformly integrable:
we can extend therefore extend it at 0. By Markov’s inequality we have

P (lim 25(45) > n") < nE[Z5°"(A5)], (6.14)
The 1.h.s. can be computed explicitly: we have (recall tg = 0, t|5|4+1 = 1)

,an C
Z5"(4;,) = > Wa,, 8(0).
oeP(wlan))  Jig[0,|o]], tir1—t:>(logn)2/n
Hence we have (we set ky, := Kq, = n and K, := i + Kq, to lighten notation)
o0
E[Zg (AL)] < e Prmm Z (BFn)" Lk L(gie[0, k], ti1 —ti>(log n)2/m}ydt .
k=0

Now, by symmetry, we have for any k£ > 1

k(1 — (log n)Q/n)k
Lk 1(3ic[0,k] i1 —t; > (log n)2/n} At < kLk 141, <1-(logn)2/nydt = i :

Thus, for n sufficiently large we have
E[25"( AD)] < e P (1 n 6Eneﬁﬁn(l—(logn)2/n)) < e P 4 Br,ePreBlogn) < =3,
We therefore get that for n sufficiently large
P (lim Z5(A5) > n7") <n?, (6.15)

which is summable, so we conclude that (6.12)) holds a.s. by Borel-Cantelli lemma. When
S[l ) vA(dv) = 0, in order to prove (6.12)) (for the same A,,), we observe that

w,a w,a w,|a,b w,[a,b
2204 < (zﬂv —zyl >) + 251D (AL, (6.16)

The second term goes to zero by the above proof and the first one can be made arbitrarily
small by choosing b large, thanks to Proposition 2.5 ]
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6.3. Point-to-point partition functions and finite-dimensional marginals. Recall
that Z§ (¢, z) := limsup,_,g Zg’a(t, x) and that Proposition (which has been proven in
Section ensures that the lim sup can a.s. be replaced by a limit, with Zg’a(t, x) € (0,00).

Proof of Proposition[2.17. Given 0 < t; <--- <ty = 1, for any fixed (z1,...,z) a direct
consequence of Proposition [2.16] and of translation invariance is that

P (32 € Hl, k]], Zg[(ti—lg xi_l), (ti, l’z)] > lim i(I)lf Zg’a[(ti_l, xi_1), (ti, a:z)]> = 0. (617)
Thus, as a consequence of Fubini’s theorem, the set
{(xl, coswg) s de [LE], ZE[(tio1, mie1), (i, 7)) > lign_)iglf Zg’a[(ti_l, xi—1), (ti, ;)] }

has almost surely zero Lebesgue measure. Now, let g be a bounded continuous function
of k variables in R?, satisfying 0 < g < 1. Applying (2.25) with g(¢) := g((t1), ..., o(t)),

we have

Q3 (9(Bty, ..., By,)) = alg%o Q5 “(9(Byys -, By,)) a.s. (6.18)
For any a > 0 we have
k
1
Q:*(9(Brys-- -5 Bt)) = =z g(x) sz’a[(ti—hﬂ?z‘—l)’ (ti, z;)]dx. (6.19)
’ 25" Jmeyx =1 g
To conclude, we only need to show that almost surely
k k
tim [ g0 [ 2", i 1), (11, 21)}das = f 99 T [ 281 (timrs i), (81, 2:)]dx.
a—0 d\k . d\k ;
(R) i=1 (R9) i=1
(6.20)
In particular, taking g = 1, this will give that (recall (3.12]))
k
zy :f [ 12511, wi1), (s, z5)]da; . (6.21)
Rk 57
Let us first treat the case S[l ) vA(dv) < 0. In that case we have
k k
E 9(x) | [ 25 [(ticr, wim1), (G 2a)]dx — | g(x) [ | Z5[(tim1, wio1), (ti, )]dx
B B
(Rd)k im1 (Rd)k ie1
k k
< f ) kg(X)EU 1125t wi), (b )] = [ | 251 (timr, i), (tz‘,fﬁi)]”dx
(R¢) i=1 i=1
Now, thanks to Proposition and the fact that the product of independent variables

converging in L also converges in Ly, we have for almost every z,...,z; € R?

k k
lim E“ [125° (i wim), (b)) = [ | Z51(tim1, wi1), (ks xi)]” = 0. (6.22)
=1

0
o i=1

Morever, we have (recall (3.4))
k

k
| [[125° 1,000, (0] = [ ] 2510001, (00| < 260t (629
=1 =1

and thus the convergence (|6.20) holds in L.; by dominated convergence. The fact that the
convergence is also almost sure comes from the fact that the Lh.s. in (6.20)) is a martingale.
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In the case S[1 ) vA(dv) = o0, we can apply (6.20) for the truncated environment and
obtain that almost surely

k
lim X zlab) ti—1,®i-1), (ti, ;) ]dx
a—0 (Rd)kg( )E B [( 1 1) ( )]
u 0,b
_ f( e 29094y 2y 0), (1, 20)]dx. (6.24)
i=1

[

Bounding above Zg’ a.b) by Zg’a in the Lh.s. and using monotone convergence for the

r.h.s., we obtain that

k

k
li Zw’a i— i—1) (bgy Ly = 25 i—1, Li—1), \bi, Ly .
ti [ 960 T 257102 0). 0l f(Rd)kg@)E St 1,70 0), (10, 21)x
(6.25)

Since the same inequality is also valid for 1 — g, to conclude it is sufficient to check that
we have equality when g = 1. This corresponds to checking that

k
f(Rd)k Ezg[(ti_l,xi_l), (ti, xi)|dz; = 2§ . (6.26)

But thanks to (6.20)) (see in particular (6.21])), we have
k
b b
J HZZ’[O’ M(timr, i), (b, 20)]day = ZE’[O’ ),
Rk 57
for all b, so ([6.26)) follows by monotone convergence. O

7. STOCHASTIC HEAT EQUATION WITH LEVY NOISE: PROOF OF PROPOSITION [2.22]

Recall that Proposition has been proven in Section 4] (see Remark |4.16]). It remains
to show that for fixed ¢ € [0,1] and = € R?, we have

i [ 2500, (o wolay) = [ 25000 Colwtay) ()
a—0 Jpd Rd

and that the right-hand-side is finite. For simplicity, we assume that ug is a positive
measure, since otherwise we simply treat the positive and negative parts of ug separately.

In the case S[l ) vA(dv) < 0, we can repeat the proof of Proposition w We have

BlJu(t.a) —u(t. )] < | B[[2510.0), (6.2)] = 2510, () ().

Using ([6.22))-(6.23) with k = 1 together with the fact that {p, p¢(y — x)uo(dy) < oo thanks
to our assumption ([2.38)), we conclude by dominated convergence that

lir% u(t,x) = u(t,x)

in Ly and almost surely (since (u®(t,2))qe(0,1] 18 @ martingale).
Let us now turn to the case 8[1 ) vA(dv) = o0. Recall the definition (2.40) of ul®®) and

notice that for all a € (0,1] and b > 1 we have ul®® (t,z) <u®(t,z) < oo almost surely.
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Applying the L; and a.s. convergence with the truncated environment, we get that

lim ul*?) (¢, 2) = ul®V (¢, 2) := f Z20010,9), (8, 2)] uo(dy),  as. (7.2)
Rd

a—0

To conclude, we need to show that we can take the limit b — oo uniformly for a € (0, 1].
More precisely, similarly to (4.60]), we show that for any £ > 0 we have

lim IP’( sup (u(t,z) — ul®®) (¢, z)) > 6) =0. (7.3)
b= \ge(0,1]

Indeed, for any b’ > b > 1, considering the super-martingale aA(u[“’b/)(t, x)—ul®b) (¢, 7)) ae(0,1]
and applying Doob’s inequality, we get

]P’( sup (u[“’b/)(t, z) —ul®®) (¢, z)) > 6) < 1E[€ A (u[l’b/)(t,x) — ) (t,x))] .
ae(0,1] €

Sending b’ to infinity we therefore get by monotone convergence (analogously to (4.62)))

IF’( sup (u(t,z) — ul®®) (¢, z)) > E) < %E[E A (ul(t z) — utb) (t,x))] .

ae(0,1]

Then, since u'(t,z) < oo, the limit (7.3]) follows by dominated convergence. As a by-
product, this shows that u(t,z) < o a.s. O

APPENDIX A. PROOFS OF SOME PROPERTIES OF Zw,a

A.1. Alternative representation of Z “: proof of Lemma In order to lighten
notations, we write the proof only in the case of a function f = 1. We assume that
S[1 ) v)\(dv) < o so that all the integrals below are well defined (recall Proposition .

The general case with a function f € B, (for which all terms are well defined without
restriction on A, thanks to Proposition [3.1]) is a mere adaptation of notation.

Proof of Lemma([3.3 We only prove (3.8)) since the other claims follow directly from it.
Let o be a fixed set of points with |o| = ¢ > 1 (the case 0 = J can be checked
separately) and le- (t;,z;,u;)f_, denote the (time ordered) points in o. Given i € [0, /],

and (s,y) € EF(0), we let sg- ), y]( ), J < k; denote the space time points of (s,y) in the time
interval (¢;,t;+1) (note that k; here is a function of (s,y)). Then by splitting the integrals
according the the value of the k;’s, grouping the terms and factorizing, we obtain that

k
WA j e[ [ ats dzy
=1

k=/ (o

-1 o
= Be H ui+11{uz'+1>a} Z (=B(ka — ’ib))ki
=0 ki=0
ki+1
xj f H ;s Ajyt) Hds dyjl (A1)
t¢<s( ) <. <s§€)<t i+1

S [ J (Lessotano) oo

k=0 tp<sy
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with the convention Ajs(i) = sg»i) - Sy_)l, séi) = t;, Sl(c?ﬂ = t;+1 and analogously for yj(l)

When k; = 0 resp. ky, = 0, the value of the above integrals are by convention

ki+1
Li<s(> (4) J( (H pAJS<Z) Jy ) Hds dy] pti+1*ti(l‘i+l — ;)

<8y <tig

and

‘ ' ;s iy ds ) gyt?
L<SY)<"'<S,§2<1 JRd)kﬁ (U 0l ) H j

Now, one can check that

[¢) ki+1 0
ki (2
kZO (k) Jt-<5( ) (@) f ( H pAJS(Z ) H dS dy]

< <5k <tiy1

ki
_ o (4)
Pl ($2+1 xl (1 N Z 5Ka L (%) (3) H dS] )

<§77<-+ <Sk <tz+1] 1

= Ptig1—t:(Tiy1 — Ti)e Praltisi=ti),

and similarly

a0
— Bk '“"f | f INRCIONT dsdy(" = e=Prali=t0),
Z ( ) <ng)<m<s Rd)ké H A 4) j H

ky=0 te j=1

which concludes the proof. U

Proof of (3.11] - The proof of (3.11]) works exactly as above when S v)\ (dv) < oo. For

the general case, one needs ﬁrst to have an identity for a posmve 1ntegral so that we
have no trouble with our definition. Truncating the environment and using monotone
convergence we have

0
+ ka j o(t,x)pi—¢, (x — f(a) dtz‘,dl‘i
kz_ll O<ty <<t <t J(RI)F ( ) t tk( k) H ’ ‘( )

%atﬁ Z wa(o, (t,2)). (A.2)

Pro, i (w)
This ensures that the sum and integrals in are convergent if and only if we have
ZP[O,t] () w(o, (t,2)) < 0. Then, repeating the proof above, we obtain that holds.
O

A.2. The size-biased measure: proof of Lemma Let us recall here, for the
sake of clarity, the content of Lemma ﬁ The size-biased measure P is defined as

IF%(J ) = E[?;’al 7). Then Lemma states that for all bounded measurable function f,

Pi[f(w)] =POP, ®Q[f(@(w,w,,B))] ,

where &(w,w),, B) = w u {(t, By,u): (t,u) € w,}, with Q the distribution of a standard
Brownian motion B, P/, the distribution of a Poisson point process w), on [0,1] x R*
with intensity dt ® Bavly,sq3A(du) and P the distribution of the Poisson point process w
introduced in (|1.7)). Recall that we assume that p := S[lm) vA(dv) <
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Proof of Lemma([3.7. Tt is sufficient to check that the distributions of the two point pro-
cesses in Equation (3.15)) coincide when restricted to [0,1] x R? x [a, o0), since their dis-
tributions outside of this set are unaltered by the size-biasing and remain independent of
the rest.

Given a bounded measurable subset A of [0,1] x R? x [a, ), we define

Ny = #(wn A) (A.3)

Our proof starts with the observation that the distribution of simple point processes is
completely characterized by P (N4 = 0) for all bounded and measurable set A, see [39,
Theorem 6.11], and hence a fortiori by the distribution of A4.

Hence, setting N A= #(0n A), it is sufficient for us to prove that for every set A and
any k>0

%ﬁgm(m —1)-- (N4 — k)] = %P@P; @QNaWa— 1) (Na—k)|  (A4)

and that the quantities above do not grow faster than exponentially, so that the distribu-
tions of N4 and N4 are indeed characterized by their moments.
Let us define f = fi a: ([O, 1] x R? x [a, oo))k — R by
k
Froa((tiy @i wi)iy) o= Ly <ty H 1a(ti, zi, ug).

i=1
Since almost surely, there are no two points in w with the same time coordinate we have
almost-surely

> Froa (i, ziyus)iy) = %NA(NA —1)---(Na— k) (A.5)

(ts,iui)¥_jewk

and the analogous identity is valid for N4. Hence we can check that the identity (3.15))
holds simply by applying Mecke’s formula (Proposition to each side in (A.4]).
Let us start with the (easier) case of @, i.e. the right-hand side of (A.4). We set

Ak = {(ti,xi,ui)f:i € Ak i<ty <-- < tk}

and we obtain (recalling the definition of )

P@Pg[ Z fk,A((tz'a%i,Ui)f:i)]

(ti,miug)f_ € ok

k
- L [T (atidwan(dus) + Btids, (dajuih(dus) )

k=1

Now expanding the product and averaging with respect to the Brownian Motion B we
obtain that the right-hand side in (A.4) is equal to

k
L 1 BMurpr(t,x) [ [ dtidziA(dus) (A.6)
=1

k Ic[1,k]

where ur = [[,c;wi and pr(tx) = HLI=|1 pt; —t; (5, — xj,_,) with (z])|]12|1 the ordered

indices of I (by convention iy = 0 and ty = 0, xg = 0).
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Now let us move to the left-hand side of (| - that is the expectation with respect to

the size-biased measure. Recalling the definition (3.13)) of IP’“ and the representation (|3.10))
of Zﬁ , it is equal to

INE“B[ Z Fra((ti; i, uz)f_z)]

(ti,ziyui)k_ e oF

:eﬁﬂE[ > waplo) ), fk,A((tz‘a%Ui)f—l)} (A.T)

o€eP(w) (ti7xi,ui)?:i€ wk

We are going to decompose the sum above according to how ¢ intersects with the points
(ti,zi,w;)¥_, that are arguments of f 4. For any given I < [1,k] with [I|] = m and
0= (£)") we set

Pre = {U ePW) : (o0 (i, ui)iy) = (ti, i w)ier
and Yj € [1,m + 1], #{(t,x,u) €o, te (tl-jfl,tij)} = EJ},
where (z]);”:1 are the ordered elements of I, with ig = 0 and 4,41 = k + 1 (and ¢y = 0,

ti+1 = 1) by convention. For this computation we introduce &, = S[a ) vA(dv) = Kq + .

Using again Mecke’s formula and recalling the definition (3.5)) of w, g(o), we have, for any
such I and ¢

E[ > wap(o) > fk,A((tiaxiaui)f—i)]

Uepl,é (ti,xi,ui)i?:ie wk
m k
— ¢ Pra Hg(tim s L s Em) 1_[ G%(tij,1 R tij yTij_q15 Tig fj)ﬁmlu H dtldﬂjz)\(duz) ,
Ap j=1 i=1
where we set
{+1
G%(t,t’,x,x’,ﬁ) = /BZJ f J (H pa;s(Aiy > Hds dy;viA(dw;)
t<sy<--<sp<t’' J(R)L

Y
- (Br.)" “K”pt/ (o — ),

with Ajs = s; —s;-1 (S0 = t, ser1 = ') and Ay = yi — yim1 (Yo = @, Yey1 = 2') by
convention; and we also set

Hi(t,z,0) = 6£J f f pa;s(Aiy) ds;dy;v;A(dv;)
? t<si<--<sp<l J(R2)E J(a,00)¢ H H

 (1—2)f

= (BRa) 5
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Replacing Gg and Hg by their value we obtain (recall that ¢,,11 = 1 by convention)

E{ Z wq,5(0) Z fk,A((tz‘axi’ui)?—i)]

o€Pr (t“xz,ul k ka
m+1 t 1)
f H Blfa 73@“2”,01 t,x Hdt dz; A (du;) .
Ay j=1 =1

Summing over all the possible ¢; just results in a factor ePFa — ePrefra and thus after
summing over I we obtain

INE%[ Z ka((tl’x’wuz)f z)] = P Z J 5‘ lUIP] t,x 1_[(1151(311'Z (duy;) .

(tisaiui)f_ € OF IC[1,k]

All together, we find that (A.7)) is equal to (A.6]). This proves (A.4)), which concludes the
proof of Lemma [3.7] O

APPENDIX B. STOCHASTIC COMPARISONS

We provide here two results enabling us to compare some integrals with respect to the
measure A to integrals with respect to the Lebesgue measure. In particular, they establish

the two claims (4.30)-(4.31)).

Proposition B.1. Assume that p = S[LOO) vA(dv) < oo and also that 5(071) vPA(dv) < o
for some p e (1,2). Then for ¢ =1 there is a constant c,, verifying lingo cqqlfp = 0, such
q—)

that for every m > 1 and any non-decreasing function g : R™ — R with Support(g) <
(g,00)™ for some € > 0, we have

g(uy,...,u wiA(du;) < (o)™ f g(uy,...,u u; Pdu;
J(M) H (0,2g)™ H

Proof. Let us begin with a few observations. First, we only need to treat the case m =1
since applying the result successively to the functions u; — f(uq,...,uy) concludes the
proof. Second, we can work with a differentiable and bounded function g, the general case
being obtained by monotone convergence.

By an integration by part, defining i, (u) := S(u,q) vA(dv), we get that

f g(u)uA(du) = f g(u)ur(du) = j g ()i (u)du (B.1)
(0,9) [e.9) [e,u)
Now, an important observation is that under our assumptions we have that
R = [ oA <eut T voe (L), (B.2)
(w,q)

for a constant ¢, verifying limg_o cqqlfp = 0. Let us postpone the proof of (B.2)), but we
can already see that plugged in (B.1]) and using that ¢’(u) > 0, it implies that

J g(u)u(du) < cqf g'(u)ul_pdu == cqg(q)ql_p +(p— 1)cqf g(u)ul_pdu
(0,q) [e,u) [e.q)
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where we have used another integration by parts in the last identity. Using again that ¢
is non-decreasing, we get that S[ng) g(u)u=Pdu = ﬁ(l —217P)g(q)¢' P, and we therefore
end up with
j g(u)ud(du) <cpcy f g(uw)utPdu,
(0,9) (0,29)

where the constant c, only depends on p. This concludes the proof.

It remains to see why (B.2) is true. We consider the cases u < 1 and u > 1 separately.
If u < 1, we use the fact that ¢, = S(o 1y VPA(dv) < +00 to get that

fig(u) < f VI TPYP \(dv) + J vA(dv) <, "ut P+ < pu =p
(u,1) [1,00)

since p > 1. If u > 1, we simply use that
Tg(w) < cgu'™P  with ¢ := sup 71 (u)/u'"P
ue(1,9)

and notice that since fi,(u) is non-increasing and goes to 0 as u — o0 this implies that
limg o0 qlff”cg = 0. Combining the above estimates gives (B.2)). O

Proposition B.2. Assume that 8(01 vPA(dv) < oo for some p € (1,2). Then for any

> 1 there is a constant Cy, such that for every m = 1 and any non-increasing function
g Rm — R4+ we have

j g(ut, ... Um) Huf)\(dul) <(Cy)™ J g(ui,. .. 1_[uZ Pdu .
(07Q)m =1 (O’q)

=1

Proof. The proof is similar to that of Proposition above. Again, we only have to treat
the case m = 1 and of a bounded and differentiable function g, with [g]« <1 to simplify.
Setting F'(u S v?\(dv) (which is finite for any u > 0), an integration by parts

gives that

J Q(U)UQA(dU)=g(q)F(q)—f ¢ (u)F(u)du.
(0,9)

(0,9)

Now, notice that there is a constant C; := S(o d vPA(dv) < oo such that

F(u) = J VE PP A(dv) < Cu* P Vue(0,q]. (B.3)
(0,u]
Using that ¢'(u) <0, we therefore get that
J g(u)u*X(du) < Cyg(q) -y f > Pdu = (2 - p)C, f w)u'"Pdu,
(0,9) 0,q)
where we used another integration by parts for the last identity. O
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