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THE SCALING LIMIT OF THE DIRECTED POLYMER

WITH POWER-LAW TAIL DISORDER

QUENTIN BERGER AND HUBERT LACOIN

Abstract. In this paper, we study the so-called intermediate disorder regime for a
directed polymer in a random environment with heavy-tail. Consider a simple symmetric
random walk pSnqně0 on Zd, with d ě 1, and modify its law using Gibbs weights in the

product form
śN
n“1p1`βηn,Snq, where pηn,xqně0,xPZd is a field of i.i.d. random variables

whose distribution satisfies Ppη ą zq „ z´α as z Ñ 8, for some α P p0, 2q. We prove
that if α ă minp1` d

2
, 2q, when sending N to infinity and rescaling the disorder intensity

by taking β “ βN „ N´γ with γ “ d
2α
p1 ` 2

d
´ αq, the distribution of the trajectory

under diffusive scaling converges in law towards a random limit, which is the continuum
polymer with Lévy α-stable noise constructed in the companion paper [8].

1. Introduction

We consider in this article the directed polymer model, which has been introduced by
Huse and Henley [29] as an effective model for a p1` 1q-dimensional interface in the Ising
model with impurities. It has then been generalized and used as a model for a p1 ` dq-
dimensional stretched polymer placed in a heterogeneous solvant and has received a lot of
attention over the past decades: we refer to [21] for an overview. The main achievement of
the present paper is to identify, in the case of a power-law tail environment, a continuum
limit for the model when:

‚ The size of the system N tends to infinity;
‚ Space and time are rescaled diffusively;
‚ The intensity of the disorder β “ βN is sent to zero at an appropriate rate.

1.1. The directed polymer model. Let pSnqně0 be a simple symmetric random walk
on Zd with d ě 1, starting from the origin. Its law is denoted P. Let also pηn,xqpn,xqPNˆZd
be a p1` dq-dimensional field of i.i.d. random variables, whose law is denoted P. We will
denote by η a generic random variable with the same law as ηn,x. We make the assumption
that

Ppη ą ´1q “ 1 and either Erηs “ 0 or Erηs “ 8. (1.1)

Now, for a fixed realization of the environment pηn,xqpn,xqPNˆZd and given a parameter

β P p0, 1q which tunes the disorder’s strength, we define for N P N the Gibbs measure Pη
N,β

by

dPη
N,β

dP
pSq :“

1

ZηN,β

N
ź

n“1

`

1` βηn,Sn
˘

, (1.2)
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2 THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER

where ZηN,β is the partition function that normalizes Pη
N,β to a probability measure, i.e.

ZηN,β :“ E
”

N
ź

n“1

`

1` βηn,Sn
˘

ı

. (1.3)

The graph of pSnq
N
n“0 models the spatial configuration of the random polymer, and the

field pηn,xqpn,xqPNˆZd accounts for the heterogeneous environment. The probability mea-

sure Pη
N,β then favors trajectories of the random walk that visit space-time points in the

environment with a large value of η. Let us stress that the assumptions in (1.1) are merely
practical. The first one ensures that 1`βηn,Sn is always positive (which is required for our
density (1.2) to be positive), the second assumption is present for the sake of normalization
so that ErZηN,βs “ 1 when the expectation is finite.

In the present paper, we focus on the case of a disordered field whose tail distribution
has a power-law decay. More precisely, we are going to assume that there exists α P p0, 2q
and ϕ a slowly varying function (see [11] for a definition) such that for every z ě 0 we
have1

Pp1` η ą zq “ ϕpzqz´α, (1.4)

We investigate here the existence of a non-trivial scaling limit of the model in a so-called
intermediate disorder regime, where the intensity of the disorder is also rescaled with the
size of the system.

To motivate this research, let us provide a short and necessarily incomplete review of
results that can be found in the literature concerning the localization transition for directed
polymer, and convergence towards a continuum model after rescaling. For a complement
we refer to [21] for an introduction to the directed polymer model, with an extensive list
of references. Before we start, let us mention that the bulk of the litterature on directed
polymer (including [21]) uses a different formalism and writes the Gibbs weight in the

exponential form exp
`
řN
n“1 βrηn,Sn

˘

, rather than
śN
n“1

`

1 ` βηn,Sn
˘

, and assumes that
the variable rη have finite exponential moments of all orders; most of the results remain
valid in our setup under the assumption Erη2s ă 8. We will later comment on the
necessity to adopt the product form in this work, see Remark 1.2.

The localization transition. The typical behavior of pSnq
N
n“1 under Pη

N,β in the large N

limit depends on the asymptotic behavior of the partition function. Under the assumption
Erηs “ 0, the sequence pZηN,βqNě1 is a martingale for the natural filtration associated

with η, see [12], and thus converges almost surely towards a limit Zη
8,β. A simple tail

sigma-algebra argument yields the following dichotomy

PrZη
8,β “ 0s P t0, 1u. (1.5)

Whether Zη
8,β ą 0 or Zη

8,β “ 0 holds almost surely depends on the dimension, on β and on

the distribution of η. The regime where Zη
8,β ą 0 is called weak disorder regime and the

one where Zη
8,β “ 0 is referred to as strong disorder regime. In the weak disorder regime,

the influence of the environment is not noticeable on large scale. It has been proved that
under weak disorder, the distribution of pSnq

N
n“1 rescaled diffusively converged to that of

a Brownian Motion (see [25] and references therein).

1The choice to consider 1 ` η rather than η in (1.4) is for convenience, because it is a non-negative
quantity, but this detail is of no importance for this introduction.
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Under the strong disorder assumption, it is believed that the environment has an influ-
ence on the trajectories behavior noticeable even on large scale. So far, this phenomenon
has been better understood in the sub-regime of very strong disorder which corresponds
to exponential decay to zero of the partition function, or more precisely when

ppβq :“ lim
NÑ8

´
1

N
logZηN,β ą 0, (1.6)

where the limit is in the almost sure sense (the existence of ppβq is proved in [23]). In the
very strong disorder regime, trajectories are believed to localize around favorite corridors
of the environment. Rigorous localization results for the end point of the trajectories have
proved in [19, 22] and recently refined in [6].

It has been proved in [25] that the quantity ppβq is increasing in β (in the case of
exponential Gibbs weight, see in [38, App. A] how the proof adapts to the present setup),
meaning that there exists βc P r0, 1s such that very strong disorder holds if and only
if β ą βc. The critical intensity βc (when positive) should mark the transition from a
diffusive to a localized regime : it is believed that weak disorder holds as long as β ă βc
(see [39] for a recent development on this conjecture).

Remark 1.1. The weak/strong disorder terminology has been defined in the case where
ZηN,β has finite expectation, that is Erηs “ 0. When Erηs “ 8 we say by convention that

very strong disorder holds for every β ą 0 (strong localization properties have been proved
in that case, see [37]).

This phase transition has been studied, mostly under the assumption that Erη2s ă 8

(the common assumption in the exponential setup is that Ereβrηs ă 8 for all β). Under
this assumption, it has been showed that a diffusive phase exists in dimension d ě 3 for
sufficiently small β, i.e. βc ą 0, see [12, 30]. On the other hand, in dimension d “ 1, 2
there is no phase transition and the polymer is localized for all β ą 0, i.e. βc “ 0, see [24]
for d “ 1 and [31] for d “ 2 (see also [19, 22] for earlier result in this direction).

The intermediate disorder regime. Under the assumption Erη2s ă 8, dimensions d “ 1
and d “ 2 are the only dimensions where the value of βc is known. Hence they are the
ideal setup in which one can study the crossover regime between a diffusive behavior (at
β “ 0) and localized behavior (for β ą 0). The idea is tune the disorder intensity βN to

zero as N tends to infinity so that the probability Pη
N,βN

ppSrNts{
?
NqtPr0,1s P ¨q converges

(in distribution) to a random continuum distribution (which is not the Wiener measure,
obtained when β “ 0).

This has been called the intermediate disorder regime in the litterature, and has been
sucessfully studied in the case d “ 1 [1, 2, 3]. In this case the approach is simply to find
βN such that ZηN,βN converges in distribution to a non-degenerate limit. For the directed

polymer model in dimension d “ 1, when Erη2s ă 8, the correct scaling turns out to

be βN „ pβN´1{4; note that it makes the length N of the system proportional to the
correlation length |ppβq|´1 — β´4, see [4, 35].

The scaling limit which is obtained, called the continuum directed polymer, is the analog
of the discrete model where the random walk S and the environement η are replaced by
their respective scaling limit : Brownian Motion and the space time Gaussian white noise
(see below for more details on this construction). This continuum model is intimately
related to the Stochastic Heat Equation (SHE) with multiplicative white noise.
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In dimension d “ 2, the situation is more complicated. The description of the crossover
regime in that case is far from complete but has witnessed important progress in recent
years. One of the reasons why this case is more delicate is that the SHE with multiplicative
white-noise is ill-defined (see [10]) so that the limit must be of a different nature. We as-
sume in the following discussion that Erη2s “ 1 for normalization purpose. In [16] the scal-

ing under which ZηN,βN admits a non-trivial limit has been identified (βN „ pβplogNq´1{2

with pβ ă
?
π), but is has been later shown that in that regime, disorder disappears in

the scaling limit of Pη
N,βN

ppSrNts{
?
NqtPr0,1s P ¨q, see [18]. In order to obtain a disordered

scaling limit one needs to take βN “
?
πplogNq´1{2p1 ` bplogNq´1q, with b P R as a

variable parameter (note that this choice for βN also makes the length N of the system

proportional to the correlation length |ppβq|´1 — eπ{β
2
, see [7]). More precisely it has

been shown in this regime that the distribution of the partition function is tight and that
its subsequential limits are non-trivial, but uniqueness and the description of the limit
remain challenging open problems. Progresses have been made recently in this direction
see [17, 28], and the existence of a scaling limit for the polymer measure has been derived
for the related hierarchical model [20].

Power-law disorder and crossover regime. The case Erη2s “ 8 has been investigated more
recently in [38], where the author studied the localization transition under the assumption
that Ppη ą zq „ z´α as z tends to infinity, for some α P p1, 2q. (When α P p0, 1s according
to Remark 1.1, we necessarily have very strong disorder for every β when α P p0, 1s,
and the case Erη2s ă 8 covers the case α ą 2.) In that case the presence of a phase
transition depends on the dimension but also on the value of α. If d ą 2

α´1 a weak

disorder phase exists (i.e. βc ą 0), and if d6 2
α´1 there is no phase transition (i.e. βc “ 0).

Additionally, when d ă 2
α´1 , then the behavior of the free energy close to criticality is

given by |ppβq| “ βν`op1q as β Ó 0, with ν “ 2α
2´αpd´1q .

The main goal of this article is to study the intermediate disorder regime when η is in the
domain of attraction of an α-stable law for some α P p0, 2q that is assuming that (1.4) holds.

The continuum object towards which Pη
N,βN

ppSNt{
?
NqtPr0,1s P ¨q should converge has been

constructed in the companion paper [8] and is the (α-stable) Lévy noise counterpart of
the Gaussian continuum polymer considered in [2], that we mentioned above. Contrary
to the Gaussian model which only exists in dimension 1, the Lévy continuum polymer can
be constructed in arbitrary dimension provided that the Lévy measure associated with
the noise satisfies some requirement, which depends on the dimension and includes the
α-stable noise when α ă minp1` 2

d , 2q.
The main achievement of this paper is to prove that the convergence hold if βN is

scaled correctly. The correct scaling is given by taking βN proportional to N´γ`op1q with
γ “ d

2αp1`
2
d ´ αq; the op1q correction depends on the slowly varying function considered

in (1.4). Note that this makes N roughly proportional to |ppβq|´1, see above.

Remark 1.2. Let us mention that the directed polymer model with a heavy-tail environ-
ment has already been considered, for instance in [5, 9, 26], but in the setup where the

Gibbs weights are in the exponential form expp
řN
n“1 βrηn,Snq. Let us simply stress that

in this setup, when the distribution of rη has power-law decay, polymer trajectories localize
very strongly close to a single trajectory which gets its energy mostly from high energy sites
(in fact this is the case even with a tail exponent α ě 2 since, also in that case, eβrηn,Sn

has infinite expectation). Additionally, the intermediate disorder regime is degenerate: if
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βN is sent to zero the partition function either goes to 1 or to 8, see [9, 26]. Our frame-
work (1.3) allows for the appearance non-trivial intermediate disorder regime even when η
has a heavy tail. This is essentially due to the fact that after rescaling pηn,xqpn,xqPNˆZd

possesses a scaling limit as a distribution, whereas peβrηn,Sn qpn,xqPNˆZd never does for heavy
tail environements, even after recentering.

1.2. The continuum directed polymer with Lévy α-stable noise. Let us now de-
scribe briefly how the continuum model is constructed. In doing so, we introduce some
important notation and results that will be useful in the rest of the paper. For more de-
tails on the construction and the main properties of the continuum model we refer to the
introduction of [8]. Formally the model is obtained by replacing the random walk pSnqně1

and the field pηn,xqpn,xqPNˆZd in (1.2) by their corresponding scaling limits. A rigorous
presentation of this object requires the introduction of a few definitions and notation.

Let us fix some finite time horizon T “ 1 for simplicity and let pBtqtPr0,1s be a d-
dimensional standard Brownian motion. We denote Q its law and ρtpxq its transition
kernel, that is

ρtpxq “
1

p2πtqd{2
e´

}x}2

2t . (1.7)

Let us also introduce, for 0 ă t1 ă ¨ ¨ ¨ ă tk and x1, . . . , xk P Rd the multi-steps kernel

%pt,xq “
k
ź

i“1

ρti´ti´1pxi ´ xi´1q , (1.8)

with the convention t0 “ 0 and x0 “ 0. The scaling limit of the field pηn,xqpn,xqPNˆZd is a

one-sided Lévy α-stable noise on RˆRd. Let us briefly introduce this object. Consider ω
a Poisson point process on Rˆ Rd ˆ p0,8q with intensity

dtb dxb αυ´p1`αqdυ , (1.9)

whose law we also denote P (it will draw no confusion). Then formally, in the case
α P p1, 2q, the α-stable noise ξω is a random measure obtained by summing weighted dirac
masses υδpt,xq on points pt, x, υq P ω and subtracting a non-random quantity so that it is
centered in expectation. The main difficulty is that when α P p1, 2q the centering term is
infinite, so we need an approximation procedure. For a P p0, 1s, interpreting ω as a set of
points, we introduce the random measure

ξpaqω :“
´

ÿ

pt,x,υqPω

υ1tυěauδpt,xq

¯

´ κaL , (1.10)

where L is the Lebesgue measure on Rˆ Rd and

κa :“

$

’

&

’

%

0 if α P p0, 1q,

logp1{aq if α “ 1,
α
α´1a

1´α if α P p1, 2q.

(1.11)

The Lévy α-stable noise ξω is then defined as the distributional limit of ξ
paq
ω . Let us

stress that when α P p0, 1q the sum (1.10) yields a locally finite Borel measure ξω :“ ξ
p0q
ω

so the approximation procedure is not needed. When α P r1, 2q, the total variation |ξ
paq
ω |

diverges when a Ó 0, but ξ
paq
ω converges to a limiting distribution in the local Sobolev space

H´sloc pR
d`1q for s ą d`1

2 . (The definition of this functional space is recalled in Appendix B.)
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Once we have defined the continuum counterparts of pSnqně0 and pηn,xqpn,xqPNˆZd (namely

pBtqtě0 and ξω), then formally the partition function of the continuum polymer in Lévy
α-stable noise is defined as

Zω
β “

8
ÿ

k“0

βk
ż

XkˆpRdqk
%pt,xq

k
ź

i“1

ξωpdti,dxiq , (1.12)

where Xk :“ tpt1, . . . tkq P pRdqk : 0 ă t1 ă ¨ ¨ ¨ ă tk ă 1u. This formally corresponds
to the Wick expansion of Er: exppβHωpBqq:s, where the energy functional is HωpBq “

ξω
` ş1

0 δpt,Btqdt
˘

, i.e. ξω integrated against the Brownian trajectory pBtqtPr0,1s. The main
result of [8] is to give a mathematical interpretation for the formal integral (1.12) and of
the corresponding probability measure Qω

β on the Wiener space

C0pr0, 1sq :“
 

ϕ : r0, 1s Ñ Rd : ϕ is continuous and ϕp0q “ 0
(

,

endowed with the topology of uniform convergence. This mathematical construction relies
on an approximation procedure which we now outline. Let us introduce two families of
functions on C0pr0, 1sq

B :“ t f : C0pr0, 1sq Ñ R : f measurable and bounded u ,

C :“ t f : C0pr0, 1sq Ñ R : f continuous and bounded u .
(1.13)

We also denote Bb (resp. Cb) the set of functions f P B (resp. f P C) with bounded support.
For a ą 0, we define for any f P B

Zω,a
β pfq “ Qpfq `

8
ÿ

k“1

βk
ż

XkˆpRdqk
%pt,x, fqξpaqω pdti,dxiq , (1.14)

where

%pt,x, fq “ %pt,xqQ
”

fppBtqtPr0,1sq
ˇ

ˇ

ˇ
Bti “ xi @i P J1, kK

ı

.

The notation Qp ¨ |Bti “ xi @i P J1, kKq is a shortcut to designate the law of the concate-
nation of k independent Brownian bridges connecting pti´1, xi´1q to pti, xiq for i P J1, kK.
To see that (1.14) makes sense requires some work, and is ensured by [8, Prop. 2.5 &
Prop. 3.1]. Let us now state another result of [8], which gives a representation of the
partition function Zω,a

β pfq as a sum that will be useful in what follows, and ensures in

particular the positivity of Zω,a
T,βpfq for positive f .

Lemma 1.3. [8, Lem. 3.3] We have, for any f P B

Zω,a
β pfq :“

ÿ

σPPpωq
wa,βpσ, fq (1.15)

where Ppωq is the set of finite subsets of ω, and if σ :“ tpti, xi, uiq, i “ 1, . . . , ku with
0 ď t1 ă ¨ ¨ ¨ ă tk ď 1, we define wa,βpσ, fq as

wa,βpσ, fq :“ e´βκaβ|σ|%pt,x, fq
k
ź

i“1

ui1tuiěau .

Note that f ÞÑ %pt,x, fq is linear and so is f ÞÑ Zω,a
β pfq. The above result ensures that

that Zω,a
β pfq ě 0 if f ě 0 and that Zω,a

β :“ Zω,a
β p1q is positive and finite. Therefore, for
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a ą 0, we can define the polymer measure with truncated noise Qω,a
β on C0pr0, 1sq by

Qω,a
β pAq :“

1

Zω,a
β

Zω,a
β p1Aq , (1.16)

for any Borel set A Ă C0pr0, 1sq. The main result of [8] shows that if α is smaller than a
critical threshold, then Qω,a

β converges almost surely for the weak topology on probability

measures, to a non-trivial (i.e. disordered) probability measure Qω
β , referred to as the

continuum polymer with stable noise. Let us define

αc “ αcpdq “ min
´

1`
2

d
, 2
¯

. (1.17)

Theorem A (see [8]). Assume α P p0, αcq with αc defined in (1.17). Then there exists a
random probability on Qω

β on C0pr0, 1sq such that almost surely we have limaÑ0 Qω,a
β “ Qω

β .

More precisely we have almost surely

lim
aÑ0

Zω,a
β “ Zω

β P p0,8q, (1.18)

and there exists a linear form Zω
β p¨q on C such that P-almost surely,

@f P C, lim
aÑ0

Zω,a
β pfq “ Zω

β pfq . (1.19)

Remark 1.4. We stress that in the case α ě αc, Proposition 2.9 in [8] shows that
limaÑ0 Zω,a

β “ 0 a.s., so the limiting partition function is degenerate. Hence, the con-

tinuum polymer model is ill-defined in that case.

Remark 1.5. Let us mention that for practical reason the centering term κa for the noise
considered in (1.11) differs from the one adopted in [8] when α ‰ 1. More precisely, in [8]
we use the centering

κ1a :“
α

α´ 1
pa1´α ´ 1q if α P p0, 1q Y p1, 2q. (1.20)

This only changes the definition of Zω,a
β pfq and thus that of Zω

β pfq by a multiplicative

factor eβpκa´κ
1
aq “ e

βα
α´1 , and thus does not affect the definition of Qω,a

β and of Qω
β .

2. Main results

2.1. Convergence to the continuum polymer in α-stable noise. Our main result
shows that the martingale limit Zω

β corresponds to the scaling limit of the partition func-
tion of the directed polymer with heavy tail disorder, when βN is sent to 0 with the
appropriate rate. We first state the convergence of the partition function, which is simpler
but instructive, before we turn to the convergence of the probability measure Pη

N,βN
. In

order to describe the scaling regime that we are considering for the intensity βN , we need
to introduce a couple of notation.

Let pϕ be a slowly varying function such that u ÞÑ pϕp1{uqu´1{α is a generalized inverse

of z ÞÑ Ppη ě zq, meaning that Ppη ě pϕp1{uqu´1{αq „ u as u Ó 0; recall (1.4). We define

VN :“ p2dd{2q´1{αN
1
αp1`

d
2 q
pϕpN1` d

2 q (2.1)

Note that we have Prη ą VN s „ 2dd{2N´p1`
d
2
q as N Ñ 8, so that VN is the order of

magnitude of the maximal value of the field pηn,xqpn,xqPNˆZd inside the region r0, N s ˆ

r´
?
N,
?
N sd.
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Theorem 2.1. Let us assume that the distribution of the environment η satisfies (1.4)
for some α P p0, αcq, with αc “ minp1` 2

d , 2q as in (1.17). Setting

βN :“
1

2
pβ
´N

d

¯d{2
V ´1
N , (2.2)

then when α P p0, 1q Y p1, αcq we have the following convergence in distribution

ZηN,βN
NÑ8
ùñ Zω

pβ
. (2.3)

When α “ 1, if one sets γN :“ 1
2dd{2

N1` d
2 V ´1

N E
“

η1t1`ηďVN u
‰

, then we have

e´γN
pβZηN,βN

NÑ8
ùñ Zω

pβ
. (2.4)

Let us stress that our choice (2.2) gives βN “ N´ν`op1q with ν “ d
2αp1 `

d
2 ´ αq. Our

assumption that α ă αc ensures in particular that limNÑ8 βN “ 0.

Remark 2.2. Let us stress that in the case α “ 1, we have γN 6 0 if Erηs “ 0 and
γN ě 0 if Erηs “ 8 (at least for N large). Note also that by definition of VN , we have

V ´1
N ϕpVN q „ 2dd{2N´p1`

d
2
q, so that

γN „ ϕpVN q
´1Erη1t1`η6VN us as N Ñ8 .

Setting Lptq :“ Erη1t1`η6 tus, we get from [11, Prop. 1.5.9.a.] that Lp¨q is a slowly varying
function, with |Lptq|{ϕptq Ñ 8 as t Ñ 8. This proves in particular that γN is slowly
varying, with limNÑ8 |γN | “ `8.

Our convergence result is in fact much richer than Theorem 2.1 in various ways. First we
do not prove the convergence of the partition function alone, but also that of the measure
Pη
N,βN

towards Qω
pβ
. Additionally, we show that the continuous environment ω appearing

in the limit corresponds to the scaling limit of η as a distribution. Let us introduce ξN,η
the measure on R1`d obtained by rescaling the discrete environment (on a diffusive scale)

ξN,η :“
1

VN

ÿ

pn,xqPHd

`

ηn,x ´ Erη1tη6VN us1tα“1u

˘

δp n
N
, x?

N{d
q , (2.5)

where Hd denotes the set of time-space lattice points that can be reached by a random
walk starting from 0, that is the set of points pn, xq in Nˆ Zd such that n and }x}1 have
the same parity.

We let M1 denote the space of probability distributions on C0pr0, 1sq equipped with the

topology of weak convergence. Finally, let S
pNq
t be the linear interpolation of a random

walk trajectory, rescaled diffusively:

S
pNq
t :“

c

d

N

´

p1´ αtqStNtu ` αtStNtu`1

¯

, with αt “ Nt´ tNtu . (2.6)

The definition of the local Sobolev space H´sloc is recalled in Appendix B

Theorem 2.3. With the same assumption as for Theorem 2.1, we have the following
convergence in distribution in H´sloc ˆM1, s ą d

´

ξN,η , Pη
N,βN

´

pS
pNq
t qtPr0,1s P ¨

¯¯

NÑ8
ùñ

`

ξω,Q
ω
pβ

˘

. (2.7)
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Remark 2.4. The powers of 2 in the definition of VN (and βN ) just comes from the
fact that our random walk can only visit half of the lattice sites (just like the

?
2 factor

appearing in [3]). They would not appear if one considered a lazy random walk, adjusting
the diffusion coefficient in the definition of ρtpxq accordingly. The powers of d in VN
(and in βN and (2.6)) comes from the adjustment of the diffusion coefficient of the simple
random walk.

Remark 2.5. Let us mention that the joint convergence of the environment and of the
partition function is not specific to the case of heavy-tailed environments. It also holds
for systems with disorder in the Gaussian universality class [3, 14, 15], in which case the
environment converges to the Gaussian white noise that appears in the construction of the
limiting partition function. This fact is however usually not mentioned in the literature
on the subject (a notable exception is the recent contribution [13] on the random field Ising
model), even though it can be deduced almost directly from the proofs presented in [3, 14, 15]
(according to personal communication with Caravenna, Sun and Zygouras). The situation
of systems with marginal disorder such as the two dimension directed polymer, discussed
in [16, 17, 20, 28] is very different: in that case, the randomness appearing in the limit is
expected to be independent of the distributional limit of the environment.

2.2. Possible extensions of the result. We now comment on some directions in which
our result could be extended.

Point-to-point partition functions. In the above, we only treat the case of a point-to-line
partition function, but we could also consider the point-to-point partition functions: for
integers n16n2 and x1, x2 P Zd such that }x2´x1}1 has the same parity as n2´n1, define

ZηβN

“

pn1, x1q, pn2, x2q
‰

:“ E
”

n2
ź

n“n1`1

`

1` βηn,Sn
˘

1tSn2“x2u

ˇ

ˇ

ˇ
Sn1 “ x1

ı

.

Then, choosing βN as in (2.2) and taking n1, n2 P N and x1, x2 P Zd (with }x2´x1}1 having
the same parity as n2´n1), such that limNÑ8N

´1n1 “ t P R`, limNÑ8N
´1n2 “ t1 P R`

and also limNÑ8pN{dq
´1{2x1 “ x P Rd, limNÑ8pN{dq

´1{2x2 “ x1 P Rd, one should obtain
the following convergence in distribution, in the case α P p0, αcq

1
2p

1
dNq

d{2 e´
pβγN1tα“1uZηβN

“

pn1, x1q, pn2, x2q
‰ NÑ8
ùñ Zω

pβ

“

pt, xq, pt1, x1q
‰

. (2.8)

The limit Zω
pβ
rpt, xq, pt1, x1qs is the continuum point-to-point partition function introduced

in [8, Section 2.2]. The convergence (2.8) could also be extended to the joint distribution
of finitely many point-to-point partition functions. We choose not to to present the proof
of such a result in order to keep the paper lighter and because it does not bring much
more insight than Theorem 2.3.

Random walks in the Gaussian domain of attraction. In this paper, we only consider the
model based on the nearest neighbor symmetric simple random walk. The main reason for
it is that it is the most frequent setup in which directed polymer is presented. However,
our proofs are quite flexible and other types of random walks may be considered provided
that they remain within the Gaussian universality class. Indeed, we only make use of the
local central limit theorem to establish our result (and a little bit more when α ď 1).

Let us assume that the walk (starting from the origin) has i.i.d. increments with finite
second moment, mean m and invertible covariance matrix Σ2, meaning that for any i, j

ErSpiq1 s “ mi and CovpS
piq
1 , S

pjq
1 q “ Σ2pi, jq, (2.9)
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where S
piq
1 is the i-th coordinate of S1. Our matrix Σ is implicitely defined as the positive

definite matrix whose square is the covariance matrix. For the commodity of exposition,
let us also assume that our walk is irreducible and aperiodic, that is for every x there
exists some n0pxq such that PpSn “ xq ą 0 for n ě n0 (doing without these assumptions
only entails additional constants in the normalization).

In the case α ď 1, we must have an additional assumption on the tail of the increments
which guaranties that the walk does not reach for atypically attractive sites beyond the
scale

?
N . We assume that

Er|S1|
γs ă 8 for some γ ą

dp1´ αq

α
. (2.10)

(This ensures that the bound (4.23) holds for all n ě 1, for some θ ă α). Note that the
condition (2.10) is stronger than the finite variance assumption only when α ă d

d`2 . Let
us also stress that this restriction is by no mean due to technical limitation: indeed, if

for instance PpSn “ xq “ p1 ` op1qq}x}´d´γ for some 2 ă γ ă dp1´αq
α , then the directed

polymer itself is not well defined, in the sense that ZωN,β “ 8 a.s. for every β ą 0 (and in

particular Theorem 2.6 below fails to hold). Before stating the extension of our result, let
us redefine the scaling parameters: we set

S
pNq
t :“

1
?
N

Σ´1
´

p1´ αtqStNtu ` αtStNtu`1 ´mNt
¯

,

VN :“ DetpΣq1{αN
1
αp1`

d
2 q
pϕpN1` d

2 q ,

ξN,η :“
1

VN

ÿ

pn,xqPNˆZd

`

ηn,x ´ Erη1tη6VN us1tα“1u

˘

δp n
N
, x?

N{d
´mNq .

(2.11)

One can extend the proof of Theorem 2.3 to prove the following.

Theorem 2.6. Assume that the distribution of the environment η satisfies (1.4) for some
α P p0, αcq, with αc “ minp1` 2

d , 2q as in (1.17). Under the assumption (2.9) and (2.10),
then setting

βN “ DetpΣqN
d
2 pVN q

´1 ,

we have the following convergence in distribution in H´sloc ˆM1, s ą d
´

ξN,η , Pη
N,βN

´

pS
pNq
t qtPr0,1s P ¨

¯¯

NÑ8
ùñ

`

ξω,Q
ω
pβ

˘

. (2.12)

Extension to γ-stable walks. A natural question that now comes to mind is whether the
system admits a similar scaling limit when S is in the domain of attraction of a stable
process with exponent γ P p0, 2q. For the simplicity of exposition, let us assume that
PpSn “ xq “ p1` op1qq}x}´d´γ as }x} Ñ 8.

In that case we strongly believe that our proof techniques can be adapted without major
changes. The procedure starts with defining the continuum model, replacing the Brownian
kernel by that of an isotropic γ-stable kernel — this part is discussed in [8, Section 2.4].
Then the proof in the present paper, which mostly relies on the local limit theorem, should
go through. Note that in that case our requirement on α becomes

d

d` γ
ă α ă

´

1`
γ

d

¯

^ 2. (2.13)

For a descrition of the scaling limit, we refer to [8, Section 2.4].
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Extension to the disordered pinning model. Since most of the techniques used in the proof
do not rely on the specificity of the directed polymer model, we believe that similar results
can be derived for other disordered model. One specific model for which we are confident
that our techniques could adapt is the disordered pinning mode (see [27] for a general
introduction): we refer to [14] for a study of the scaling limit when the environment has
a finite second moment and to [32] for a study of the model with power-tail disorder).

Consider a sequence pηnqnPN of i.i.d. random variables with a distribution satisfying
(1.4) and a reccurent renewal process τ “ tτ0 “ 0, τ1, τ2, . . .u on N whose inter-arrival law

satisfies Prτ1 “ ns
nÑ8
„ n´p1`γq, γ P p0, 1q. The disordered pinning model is then defined

as the modification of the renewal distribution defined by

dPη
N,β,h

dP
:“

1

ZηN,β,h
E
”

N
ź

n“1

eh1tnPτu
`

1` βηn1tnPτu
˘

ı

,

with ZηN,β,h :“ E
”

N
ź

n“1

eh1tnPτu
`

1` βηn1tnPτu
˘

ı

.

(2.14)

We believe that the approach used in the present paper could be used to prove the exis-
tence of a non trivial limit for the distribution of the rescaled renewal set 1

N pr0, N s X τq

(considering the Hausdorff topology for subsets of r0, 1s) when α ă minp 1
1´γ , 2q, if βN

and hN are scaled as pβN1´γ´ 1
α
`op1q and phN´γ`op1q. The op1q in the exponent accounts

for a slowly varying correction which is absent if ϕ in (1.4) is asymptotically equivalent to
a constant. For a description of the scaling limit, we refer again to [8, Section 2.4].

3. Main steps of the proof of Theorem 2.3

In this section, we outline our proof strategy, and highlight the main steps needed to
obtain our main theorem. Some important notation are introduced.

3.1. Convergence of marginals and tightness. Recall here that C denote the set of
real valued continuous and bounded functions on C0pr0, 1sq. Recalling the definition (2.6)

and writing SpNq for pS
pNq
t qtPr0,1s we define for any f P C

ZηN,βN pfq :“ E
”

fpSpNqq
N
ź

n“1

`

1` βNηn,Sn
˘

ı

. (3.1)

Our main task in the proof of Theorem 2.3 is to prove the convergence of finite dimensional
marginals. Since both ξN,η and ZηN,βN p¨q are linear forms, it is in fact sufficient to prove

the convergence for one-dimensional marginals.

Proposition 3.1. Given ψ a smooth compactly supported function on Rd`1 and f P C, we
have the following joint convergence in distribution, under the assumptions of Theorem 2.1,

´

xξN,η, ψy, e
´pβγN1tα“1uZηN,βN pfq

¯

NÑ8
ùñ

´

xξω, ψy,Zω
pβ
pfq

¯

. (3.2)

The proof of Proposition 3.1 is the core of the paper and its steps are outlined in
Section 3.2 below; the actual proof is carried out in Sections 7 and 8. Once we have
Proposition 3.1, it only remains to prove tightness of ξN,η and Pη

N,pβ
pSpNq P ¨ q. The first

result is standard; a proof is included in Appendix B for completeness.

Lemma 3.2. The sequence of distributions of pξN,ηqNě1 under P is tight in H´sloc for s ą d.
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For the second tightness result, proven in Section 5 below, recall that M1 denotes the
set of probability distributions on C0pr0, 1sq equipped with the weak convergence topology.

Proposition 3.3. The sequence of distributions of random probabilities Pη
N,βN

pSpNq P ¨ q

under P is tight in M1.

Our main results then follows readily from the above statements, as we now show.

Proof of Theorem 2.3 using Propositions 3.1 and 3.3. Since tightness is already proven,
one only needs to prove the convergence for the marginals of the type

´

xξN,η, ψy,E
η
N,βN

`

fpSpNqq
˘

¯

“

˜

xξN,η, ψy,
ZηN,βN pfq

ZηN,βN

¸

. (3.3)

But this follows immediately from the almost-sure positivity of Zω
pβ

(cf. (1.18)) and from

Proposition 3.1, which yields as a corollary
´

xξN,η, ψy, e
´pβγN1tα“1uZηN,βN pfq, e

´pβγN1tα“1uZηN,βN

¯

NÑ8
ùñ

´

xξω, ψy,Zω
pβ
pfq,Zω

pβ

¯

. (3.4)

This concludes the proof of Theorem 2.1. �

3.2. Proposition 3.1 via cutoff approximation. Let us now describe the main ingre-
dients in the proof of Proposition 3.1. Firstly, we replace pZηN,βN pfqq by a cutoff approx-

imation, analogous to the one used in the continuous case, see (1.14). This martingale
approximation is obtained by keeping the environment only at sites where η is larger than
a certain threshold. We fix the threshold to be equal to aVN , recall (2.1). The scaling VN
is chosen so that the region typically visited by the polymer, i.e. a cylinder of length N
and width

?
N according to the diffusive scaling of the random walk, contains only finitely

many points above the threshold. These points, in the limit, correspond to the points in
the Poisson point process ω (defined in (1.9)) for which u ě a. When ηn,x is smaller than
this value we replace it by its conditional average. Given a P p0, 1s, we set

ηpaqn,x :“

#

ηn,x if 1` ηn,x ě aVN ,

´κ
paq
N if 1` ηn,x ă aVN ,

(3.5)

with

κ
paq
N :“

#

´E
“

ηn,x
ˇ

ˇ 1` ηn,x ă aVN
‰

if α P r1, 2q ,

0 if α P p0, 1q.
(3.6)

The assumption Ppη ą ´1q “ 1 ensures that ηp0q “ η almost surely. Note that κ
paq
N is

positive for large N when α ‰ 1 but it is negative when α “ 1 and Erηs “ 8. When

Erηs “ 0 (this implies α ě 1), note that η
paq
n,x is still a centered variable, and that pη

paq
n,xqaPp0,1s

is a càdlàg time-reversed martingale for the filtration

Ga “ GpNqa :“ σ
`

ηn,x1tp1`ηn,xqěaVN u, pn, xq P Nˆ Zd
˘

. (3.7)

We also set for b ą a a truncated version of ηpaq

ηra,bqn,x :“

$

’

&

’

%

´κ
paq
N if 1` ηn,x ă aVN ,

ηn,x if 1` ηn,x P raVN , bVN q ,

0 if 1` ηn,x ě bVN .

(3.8)

With some abuse of notation, we will denote ηpaq (resp. ηra,bq) a generic random variable

with the same law as η
paq
n,x (resp. η

ra,bq
n,x ).



THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER 13

We now define, for f P C, the approximation Zη,aN,βN pfq of ZηN,βN using the above cutoff:

Zη,aN,βN pfq :“ E
”

fpSpNqq
N
ź

i“1

`

1` βNη
paq
n,Sn

˘

ı

,

Z
η,ra,bq
N,βN

pfq :“ E
”

fpSpNqq
N
ź

i“1

`

1` βNη
ra,bq
n,Sn

˘

ı

.

(3.9)

Let us stress that if f ě 0 we have Z
η,ra,qq
N,βN

pfq6Zη,aN,βN pfq. Note that when Erηs “ 0 (which

implies α ě 1) we have

Zη,aN,βN pfq “ E
”

ZηN,βN pfq
ˇ

ˇ

ˇ
Ga
ı

and Z
η,ra,bq
N,βN

pfq :“ E
”

Z
η,r0,bq
N,βN

pfq
ˇ

ˇ

ˇ
Ga
ı

. (3.10)

These identities are also valid when Erηs “ 8 (which implies α6 1) but only in the
case f ě 0 for which the conditional expectations are unambiguously defined.

To prove Theorem 2.1, we are first going to prove first that Zη,aN,βN pfq converges to the

corresponding continuum (truncated) partition function Zω,a
pβ
pfq defined in (1.14). In fact

we even prove a joint convergence with the cutoff approximation of the environment.

Proposition 3.4. For any a ą 0, given ψ a smooth compactly supported function on Rd`1

and f P C, we have the following joint convergence in distribution
´

xξ
paq
N,η, ψy, e

´pβγN1tα“1uZη,aN,βN pfq
¯

NÑ8
ùñ

´

xξpaqω , ψy,Zω,a
pβ
pfq

¯

,

where ξ
paq
N,η is the cutoff approximation of ξN,η,

ξ
paq
N,η :“

1

VN

ÿ

pn,xqPHd

`

ηpaqn,x ´ Erη1tη6VN us1tα“1u

˘

δp n
N
, x?

N{d
q . (3.11)

While the proof of Proposition 3.4 requires some care, it follows a quite standard
roadmap. The proof is carried out in Section 6.

To complete the proof of Theorem 2.1, we need to show that when a is close to 0,

then Zη,aN,βN pfq and xξ
paq
N,η, ψy are close to Zη,0

N,pβ
pfqand xξN,η, ψy respectively, uniformly in N .

Recall that from Theorem A (more precisely (1.18)), we already know that Zω,a
pβ
pfq is close

to Zω
pβ
pfq; similarly, xξ

paq
ω , ψy is close to xξω, ψy as a result of convergence of ξ

paq
ω in H´sloc ,

s ą pd` 1q{2.

Proposition 3.5. If α P p0, 2q, we have for any f P C

lim
aÑ0

sup
Ně1

E
” ´

e´
pβγN1tα“1u

ˇ

ˇZη,aN,βN pfq ´ Z
η,0
N,βN

pfq
ˇ

ˇ

¯

^ 1
ı

“ 0 . (3.12)

Remark 3.6. When α P p1, 2q, we can in fact prove uniform convergence in L1 in (3.12)
instead of convergence in probability, that is

lim
aÑ0

sup
Ně1

E
”

ˇ

ˇZη,aN,βN pfq ´ Z
η,0
N,βN

pfq
ˇ

ˇ

ı

“ 0 .

Let us also state the analogous result for xξN,η, ψy, whose proof is easy (and postponed
to Appendix B).
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Lemma 3.7. If α P p0, 2q, then for any smooth and compactly supported ψ we have

lim
aÑ0

sup
Ně1

E
”

xψ, ξN,η ´ ξ
paq
N,ηy

2
ı

“ 0 . (3.13)

We stress that the core of the proof actually lies in Proposition 3.5. Its proof is carried
out in Section 8 and follows some of the ideas developed in [8, Sec. 4] for the construction
of the continuum partition function, but present additional technical challenges.

Proof of Proposition 3.1 from Propositions 3.4 and 3.5. Given an arbitrary δ, a compactly
supported smooth function ψ and f P C, we are going to show that there is some
N0 “ N0pδ, ψq such that for every N ě N0, we can find a coupling between η and ω
(with some abuse of notation we use P for the law of the coupling) such that

P
´

ˇ

ˇZηN,βN pfq ´ Zω
pβ
pfq

ˇ

ˇ ą δ
¯

ď δ and P
`ˇ

ˇxψ, ξN,η ´ ξωy
ˇ

ˇ ą δ
˘

6 δ . (3.14)

First we want to approximate the two partition functions by their counterparts with
truncated environment. Using Proposition 3.5 and Theorem A-(1.18), we can choose
a0 “ a0pδq small enough such that for every value of N we have for all a ď a0pδq

P
´

e´
pβγN1tα“1u

ˇ

ˇZη,aN,βN pfq ´ Z
η
N,βN

pfq
ˇ

ˇ ą δ{3
¯

ď δ{3,

P
´

ˇ

ˇZω,a
pβ
pfq ´ Zω

pβ
pfq

ˇ

ˇ ą δ{3
¯

ď δ{3.
(3.15)

Similarly, thanks to Lemma 3.7 and since ξ
paq
ω converges to ξω in H´sloc pR

d`1q, have for
a ď a0pδq (lowering the value of a0 if necessary) and every value of N

P
`ˇ

ˇxψ, ξN,η ´ ξ
paq
N,ηy

ˇ

ˇ ą δ{3
˘

ď δ{3,

P
`ˇ

ˇxψ, ξω ´ ξ
paq
ω y

ˇ

ˇ ą δ{3
˘

ď δ{3.
(3.16)

Now we can conclude by observing that from Proposition 3.4 , for N ě N0 sufficiently
large one can find a coupling of η and ω (depending of course on N) which is such that
with probability larger than 1´ δ{3 one has

P
”

|e´
pβγN1tα“1uZη,aN,βN ´ Zω,a

pβ
pfq| ą δ{3

ı

ď δ{3,

P
”

|xψ, ξ
paq
N,η ´ ξ

paq
ω y| ą δ{3

ı

ď δ{3,
(3.17)

which combined with (3.15)-(3.16) implies (3.14). �

3.3. Organization of the rest of the paper. Now that we have outlined the main steps
of the proof, let us briefly describe how the different parts of the proof are articulated.

‚ In Section 4.1, some technical preliminaries are presented; in particular we de-
scribe an expansion of the partition function analogous to (1.15) and give some

comparison estimates between Zη,aN,βN pfq and Z
η,ra,bq
N,βN

pfq.

‚ In Section 5, we prove the tightness of Pη
N,βN

pSpNq P ¨q, i.e. Proposition 3.3. Note

that the tightness of pξN,ηq is proven in Appendix B.
‚ In Section 6, we carry out the proof of Proposition 3.4, i.e. of the convergence of

the partition function with cutoff environment.
‚ Section 8 contains the proof of Proposition 3.5, i.e. of the uniformity (in N) of the

martingale convergence of Zη,aN,βN as a Ó 0. This is the most technical part of the

paper and adapts ideas developed in [8] in the continuum setting.
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‚ In the Appendix, some further technical estimates are collected: in Appendix A,
we prove an estimate that allows us to control different expectations with respect
to η; in Appendix B, we collect results on the measure ξN,η and in particular we
prove Lemma 3.7.

4. Technical preliminaries

4.1. A collection of useful estimates. Let us collect here a few identities and asymp-
totic equivalents that will be useful in the computations in the rest of the paper. By
definition (2.1) of VN , we have

V ´αN ϕpVN q „ N´p1`
d
2
q as N Ñ8 .

Also, by definition βN :“ 1
2
pβpNd q

d{2V ´1
N , see (2.2), so it verifies

βNVN “ 1
2
pβ
`

N
d

˘
d
2 ,

βNV
1´α
N ϕpVN q

NÑ8
„ pβN´1,

β2
NV

2´α
N ϕpVN q

NÑ8
„ 1

2d
´d{2

pβ2N
d
2
´1.

(4.1)

In the case α “ 1, we will also use that by definition of γN ,

βNErη1t1`η6VN us “ pβN´1γN . (4.2)

As far as truncated first and second moment of η are concerned, we have asymptotically
for large u

Erη1tp1`ηqăuus “
α

1´ α
u1´αϕpuqp1` op1qq, for α P p0, 1q Y p1, 2q

Erη21tp1`ηqăuus “
α

2´ α
u2´αϕpuqp1` op1qq.

(4.3)

We therefore find that when α P p1, 2q, κ
paq
N defined in (3.6) satisfies, as N Ñ8

βNκ
paq
N “ ´βNE

“

η
ˇ

ˇ p1` ηq ă aVN s “ pβ κaN
´1p1` op1qq, (4.4)

where we used (4.3) and the second relation in (4.1). Note that when α P p0, 1q we have

set κ
paq
N “ 0 and κa “ 0, so that we can formally use βNκ

paq
N “ pβ κaN

´1p1` op1qq also in
that case. When α “ 1, after a straightforward computation (and using (4.2)), we have

βNκ
paq
N “ ´pβN´1γN ` pβ κaN

´1p1` op1qq. (4.5)

All together, in view of the definition of βN and γN , we can rewrite (4.4)-(4.5) as

βNκ
paq
N “ ´pβN´1γN1tα“1u `

pβκaN
´1p1` op1qq.

In particular, we see that for any a P p0, 1q

lim
NÑ8

e´
pβγN1tα“1up1´ βNκ

paq
N q

N “ e´
pβκa . (4.6)
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4.2. Expansion of the partition function. In order to prove the convergence of the
truncated partition function, we are going to rewrite it as a sum, which is the discrete
equivalent of (1.15). Then the convergence of the partition function is going to follow
from the convergence of each individual term. Let us define, for a P r0, 1s and b P p1,8s,

Ω
ra,bq
N pηq :“

 

pn, xq P J1, NKˆ Zd : 1` ηn,x P raVN , bVnq
(

, (4.7)

and let PpΩra,qqN q denote the set of finite sequences pni, xiq
k
i“1 taking value of Ω

ra,bq
N and

satisfying n1 ă n2 ă ¨ ¨ ¨ ă nk. We let pn,xq “ pxi, niq
|n,x|
i“1 denote a generic element of

PpΩra,qqN q where |n,x| ě 0 is the length of the sequence (a length zero corresponds to the
empty sequence). We set pnpxq “ PpSn “ xq, and using the convention n0 “ 0, x0 “ 0 we
define

ppn,x, fq “ E
“

fpSpNqq1t@iPJ1,|n,x|K , Sni“xiu
‰

and ηn,x “

|n,x|
ź

i“1

ηni,xi (4.8)

Let us set for a P p0, 1s

Z
η,ra,bq
N,βN

pfq :“ E
”

fpSpNqq
N
ź

n“1

`

1` βNηn,Sn1tp1`ηn,Sn qPraVN ,bVN qu
˘

ı

“
ÿ

pn,xqPPpΩra,bqN q

β
|n,x|
N ppn,x, fq ηn,x , (4.9)

where the second expression is simply obtained by performing an expansion of the product

and taking the expectation of each term. We write Ω
paq
N pηq and Z

η,a

N,pβ
when q “ 8. Recal

that Bb designates the set of bounded functions with bounded support on C0pr0, 1sq.

Proposition 4.1. For any non-negative function f P Bb, and any a P p0, 1s and q P p1,8s
we have the following convergence in probability

lim
NÑ8

e´
pβγN1tα“1uZ

η,ra,bq
N,βN

pfq

Z
η,ra,bq
N,βN

pfq
“ e´

pβκa (4.10)

Furthermore, any non-negative function g, a P p0, 1s and q P p1,8s for any N ě N0paq
sufficiently large we have

e´
pβγN1tα“1uZ

η,ra,qq
N,βN

pgq ď 2e´
pβκaZ

η,ra,bq
N,2βN

pgq. (4.11)

Proof. For notational simplicity we prove the result only for b “ 8. We are going to
control the quotient for the contribution of every single trajectory. We have for any
neareast neighbor trajectory

śN
n“1p1` βNη

paq
n,Sn

q
śN
n“1p1` βNηn,Sn1tp1`ηn,Sn qąaVN uq

“ p1´ κ
paq
N βN q

N´#tnPJ1,NK,p1`ηn,Sn qąaVN u. (4.12)

Recalling (4.6), we just have to verify that the term p1´κ
paq
N βN q

´#tnPJ1,NK,p1`ηn,Sn qąaVN u,
can be controlled uniformly over the set of trajectory which are contributing to the par-
tition function.



THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER 17

Recall that we assumed that f has bounded support: we let A “ Af be such that

fpϕq “ 0 if }ϕ}8 ě A. For any realization of S such that fpSpNqq ą 0 we have

#tn P J1, NK, p1` ηn,Snq ą aVNu

ď #tpn, xq P J1, NKˆ J´A
a

N{d,A
a

N{dKd, p1` ηn,xq ą aVNu. (4.13)

Now, with our definition of VN , the r.h.s. in (4.13) has an expectation which uniformly

bounded in N . Since βNκ
paq
N tends to 0, this implies in particular that

lim
NÑ8

p1´ βNκ
paq
N q

#tpn,xqPJ1,NKˆJ´A
?
N{d,A

?
N{dKd,p1`ηn,xqąaVN u “ 1 (4.14)

in probability, from which we can conclude that (4.10) holds.
For (4.11), we simply note that we have

śN
n“1p1` βNη

paq
n,Sn

q
śN
n“1p1` 2βNηn,Sn1tp1`ηn,Sn qąaVN uq

“ p1´ βNκ
paq
N q

N
N
ź

n“1

1` βNηn,Sn1tp1`ηn,Sn qąaVN u

p1´ βNκ
paq
N 1tp1`ηn,Sn qąaVN uqp1` 2βNηn,Sn1tp1`ηn,Sn qąaVN uq

.

(4.15)

Now, this is bounded by p1´ βNκ
paq
N q

N since for N sufficiently large all terms in the last
product are smaller than one. Then one concludes thanks to (4.6). �

4.3. Truncating large weights. We prove here the following proposition, which allows
us to truncate large weights in the partition function (this is especially needed when
α P p0, 1s).

Proposition 4.2. We have for any α P p0, 2q,

lim
bÑ8

sup
Ně1
aPr0,1s

E
”´

e´
pβγN1tα“1u

`

Zη,aN,βN ´ Z
η,ra,bq
N,βN

˘

¯

^ 1
ı

“ 0 . (4.16)

Proof. First, let us get rid of the small jumps in the noise. We observe that by using
conditional Jensen’s inequality (recall (3.7)) the quantity we have to bound is smaller
than

E
”´

e´
pβγN1tα“1uE

“

Zη,aN,βN ´ Z
η,ra,bq
N,βN

ˇ

ˇG1

‰

¯

^ 1
ı

. (4.17)

Now we have ErZη,aN,βN ´ Z
η,ra,bq
N,βN

|G1s “ pZη,1N,βN
´ Z

η,r1,bq
N,βN

q for α ě 1 (recall (3.10)). For

α P p0, 1q (this distinction is necessary because of our choice κ
paq
N “ 0 in that case) we have

for every a ě 0

ErZη,aN,βN ´ Z
η,ra,bq
N,βN

|G1s ď p1` βNErη | η ď VN sq
N
pZη,1N,βN

´ Z
η,r1,bq
N,βN

q

ď C
pβ
pZη,1N,βN

´ Z
η,r1,bq
N,βN

q. (4.18)

Therefore, it is sufficient to prove that e´
pβγN1tα“1upZη,1N,βN

´ Z
η,r1,bq
N,βN

q converges to 0 in

probability as b Ñ 8, uniformly in N . Using Proposition 4.1-(4.11), it is sufficient to
show that for some θ P p0, 1^ αq we have

lim
bÑ8

sup
Ně1

E
„

´

Z
η,1
N,2βN

´ Z
η,r1,bq
N,2βN

¯θ


“ 0 . (4.19)
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Now, using the representation (4.9) and since θ ă 1 we have
´

Z
η,1
N,2βN

´ Z
η,r1,bq
N,2βN

¯θ
ď

ÿ

pn,xqPPpΩ1
N qzPpΩ

r1,qq
N q

´

p2βN q
|n,x|

ppn,xqηn,x

¯θ
. (4.20)

Note that since pn,xq P PpΩ1
N q we have 1`ηni,xi ě VN for all i P J1, |n,x|K; in particular we

have ηn,x ě 0. Taking the expectation with respect to the η’s and recalling the definition

of PpΩ1
N q, PpΩ

r1,qq
N q, we obtain that

E
„

´

Z
η,1
N,2βN

´ Z
η,r1,bq
N,2βN

¯θ


ď

8
ÿ

k“1

p2βN q
kθE

„

´

k
ź

i“1

ηi

¯θ
1t@iPJ1,kK,ηiěVN ;DjPJ1,kK, ηjěbVN u



ÿ

n1ăn2ă¨¨¨ănk
xPpZdqk

ppn,xqθ.

Now, we have

E
„

´

k
ź

i“1

ηi

¯θ
1t@iPJ1,kK,ηiěVN ;DjPJ1,kK, ηjěbVN u



ď E
„

´

k
ź

i“1

ηi

¯θ k
ÿ

j“1

1t@iPJ1,kK,ηiěVN ; ηjěbVN u



“ kE
“

ηθ1tηěVN u
‰pk´1qE

“

ηθ1tηěbVN u
‰

(4.21)

One can then easily check (using Potter’s bound) that there is a constant C such that and
such that for any c ě 1 (we will use it with c “ 1 or c “ b), for all N sufficiently large,

E
“

ηθ1tηěcVN u
‰

6Cc
1
2
pθ´αqV θ´α

N ϕpVN q.

Together with (4.21) this implies that

E
„

´

k
ź

i“1

ηi

¯θ
1t@iPJ1,kK,ηiěVN ; DjPJ1,kK, ηjěbVN u



ď kCkb
1
2
pθ´αqV θk

N N´kp1`
d
2 q . (4.22)

Now let us observe that as a consequence of (a sharp version of) the local central limit
theorem, see [33, Thm. 2.3.11], there exists a constant C 1 “ C 1θ such that

ÿ

xPZd
pn
`

x
˘θ
ď C 1 n

d
2
p1´θq (4.23)

and hence

ÿ

n1ăn2ă¨¨¨ănk
xPpZdqk

ppn,xqθ ď pC 1qk
ˆ

N

k

˙

Nk d
2
p1´θq6

pC 1qk

k!
Nkp d

2
p1´θq`1q. (4.24)

Combining these bounds and replacing βN by its value (recall (4.1)), we obtain that

E
„

´

Z
η,1
N,βN

´ Z
η,r1,bq
N,βN

¯θ


ď

8
ÿ

k“1

k
ppβC2qk

k!
b

1
2 pθ´αq6C

pβ
b
1
2
pθ´αq , (4.25)

which proves (4.19). �
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5. Proof of Proposition 3.3

In this section we prove Proposition 3.3 assuming that Proposition 3.1 holds. We start
with the easier case α P p1, 2q. We wish to find an increasing sequence of compact sets
Kn ĂM1 which are such that for all n and N we have

P
”

Pη
N,βN

pSpNq P ¨ q R Kn

ı

ď 2´n. (5.1)

Using the tightness of pZηN,βN q
´1, which is ensured by Proposition 3.1 and the positivity

of the limit Zω
pβ

(recall (1.18)), we consider a sequence δm going to zero such that for all

N and m
P
`

ZηN,βN ď δm
˘

ď 2´m´2. (5.2)

Then, we consider Km a sequence of compact subsets of C0pr0, 1sq such that

PpSpNq R Kmq ď 4´mδm . (5.3)

Note that such a sequence exists simply by the fact that PrSpNq P ¨ s is a convergent
sequence (and hence is tight). Finally, we set

Kn :“
 

µ PM1 : @m ě n, µpKA
mq ď 22´m

(

. (5.4)

The set Kn is closed and any sequence in Kn is tight and thus Kn is compact. Now, we
have by a union bound

P
”

Pη
N,βN

pSpNq P ¨ q R Kn

ı

ď

8
ÿ

m“n

P
”

Pη
N,βN

pSpNq R Kmq ě 22´m
ı

, (5.5)

and finally

P
”

Pη
N,βN

pSpNq R Kmq ě 22´m
ı

ď P
´

ZηN,βN p1KAmq ě 22´mδm

¯

` P
´

ZηN,βN ď δm

¯

ď 2m´2pδmq
´1PpSpNq R Kmq ` 2´m´2 ď 2´m´1 , (5.6)

where we used Markov’s inequality and the fact that ErZηN,βN p1KAmqs “ PpSpNq R Kmq

since Erηs “ 0. Combined with (5.5), this gives (5.1).

For the case α P p0, 1q, we need to use the truncated version of the partition function
(recall (3.9)). We start with the same sequence δm as above (see (5.2)), then thanks to
Proposition 4.2 we can fix bm such that

P
´

ZηN,βN ´ Z
η,r0,bmq
N,βN

ě 21´mδm

¯

ď 2´m´3 . (5.7)

Then we choose Km a sequence of compacts such that

P
`

SpNq R Km

˘

ď 4´m´2δme
´

2 pβα
1´α

b1´αm , (5.8)

and we define Kn as in (5.4). Then,

P
”

Pη
N,βN

pSpNq R Kmq ě 22´m
ı

ď P
´

ZηN,βN p1KAmq ě 22´mδm

¯

` P
´

ZηN,βN ď δm

¯

ď P
´

ZηN,βN ´ Z
η,r0,bmq
N,βN

ě 21´mδm

¯

` P
´

Z
η,r0,bmq
N,βN

p1KAmq ě 21´mδm

¯

` 2´m´2

ď 2´m´3 ` E
”

Z
η,r0,bmq
N,βN

p1KAmq
ı

2m´1pδmq
´1 ` 2´m´2 ď 2´m´1 .

In the last inequality we used the fact that for sufficiently large m

E
”

Z
η,r0,bmq
N,βN

p1KAmq
ı

“
`

1` βNErηr0,bmqs
˘N

P
`

SpNq R Km

˘

ď 4´m´2δm , (5.9)
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using also (4.1)-(4.3) for the last inequality. Finally for α “ 1 we repeat exactly the same
procedure but considering rather the normalized partition functions

e´
pβγNZηN,βN and e´

pβγNZ
r0,bmq
N,βN

,

and with α
1´αb

1´α
m replaced by log bm (using also (4.6) in the analogous of (5.9)). �

6. proof of Proposition 3.4

6.1. Convergence of Zη,aN,βN pfq. We are going to assume (without loss of generality) that

06 f 6 1.

Step 1: Reduction to functions f with bounded support. As a first step, we reduce to
proving a statement for a function f with bounded support. For A ą 0, let hA P Cb be
defined by hApϕq “ 1 ^ p}ϕ}8 ´ Aq`, and for f P C define fA “ fhA P Cb. In particular,
fA “ f on A :“ tϕ P C0pr0, 1sq, }ϕ}86Au.

Lemma 6.1. We have, for any a ą 0,

lim
AÑ8

sup
Ně1

E
”

e´
pβγN1tα“1u

`

Zη,aN,βN pfq ´ Z
η,a
N,βN

pfAq
˘

^ 1
ı

“ 0 . (6.1)

Proof. In the case α P p1, 2q, recalling that Erηs “ 0 we have

E
”

Zη,aN,βN pfq ´ Z
η,a
N,βN

pfAq
ı

ď P
`

SpNq P AA
˘

“ P
´

sup
tPr0,1s

S
pNq
t ě A

¯

, (6.2)

which can be made arbitrarily small by choosing A large (uniformly in N). In the case

when α P p0, 1q (and similarly for α “ 1 with the e´
pβγN prefactor) we observe that the

quantity we have to bound is smaller than

E
” ´

Zη,aN,βN pfq ´ Z
η,ra,bq
N,βN

pfAq
¯

^ 1
ı

6E
”

`

Zη,aN,βN pfq ´ Z
η,ra,bq
N,βN

pfq
˘

^ 1
ı

` E
”

Z
η,ra,bq
N,βN

p1AAq
ı

.

(6.3)
The first term can be made arbitrarily small by taking q large by Proposition 4.2. The
second term is equal to

`

1` βNErη1tp1`ηqăbVN s
¯N

P
`

SpNq P AA
˘

ď CbP
`

SpNq P AA
˘

thanks to (4.1)-(4.3). This can be made arbitrarily small by choosing A large (the case
α “ 1 is similar). �

Step 2: convergence for f P Cb. We now show the convergence of the partition function
in Proposition 3.4 with f P Cb instead of f P C. Also, thanks to Proposition 4.1, we prove

the convergence of Z
η,a
N,βN

pfq rather than e´
pβγN1tα“1uZη,aN,βN pfq.

Lemma 6.2. For any f P Cb, we have the following convergence in distribution

Z
η,a
N,βN

pfq
NÑ8
ùñ e

pβκaZω,a
pβ
pfq .

Proof. Let us define ηpNq :“ V ´1
N η the rescaled environment, and notice that thanks

to (1.4) we get that for any t ą a,

P
`

1` ηpNqn,x ą t
˘ NÑ8
„ 2dd{2t´αN´p1`

d
2
q .
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We want to show that the point process
`

n
N ,

x?
N{d

, η
pNq
n,x 1tp1`ηqěaVN u

˘

pn,xqPHd
converges in

distribution towards the Poisson point process ω (recall (1.9)) restricted to weights larger
than or equal to a. Let us specify here a topology. We consider

W :“ tw Ă Rˆ Rd ˆ R`,#tw XAu ă 8 when A is boundedu,

equipped with the smallest topology which makes

ϕg : w ÞÑ
ÿ

pt,x,uqPw

gpt, x, uq

continuous for every continuous function g with bounded support. As a consequence of
the convergence of binomials to Poisson variables we have the following convergence in W
!´ n

N
,

x
a

N{d
, ηpNqn,x

¯

, pn, xq P Ωa
N

)

NÑ8
ùñ ωpaq “

 

pt, x, uq P ω X pr0, 1s ˆ Rd ˆ ra,8qq
(

.

(6.4)
Now, defining Ppwq like in Proposition 1.3, notice that the function

w ÞÑ
ÿ

σPPpwq

pβ|σ|%pt,x, fq

|σ|
ź

i“1

ui (6.5)

is continuous in W (this is not a difficult statement but the proof requires some care). As
a consequence we have the following convergence

ÿ

px,nqPPpΩaN q

pβ|x,n|%
´ t

N
,

x
a

N{d
, f
¯

|n,x|
ź

i“1

ηpNqx,n

NÑ8
ùñ

ÿ

σPPpωpaqq

pβ|σ|%pt,x, fq

|σ|
ź

i“1

ui “ e
pβκaZω,a

pβ
pfq . (6.6)

Now, to conclude from this that Z
η,a
N,βN

pfq converges, using the definition (4.9) and our

choice for βN , we simply need to show that one can replace %p t
N ,

x?
N{d

, fq in the l.h.s. by

N |n,x|
d
2 ppn,x, fq. This is a consequence of the local central limit theorem for the simple

random walk [33] and of the invariance principle for random walk bridges [34]. �

Step 3: conclusion. Now, to conclude the proof of Proposition 3.4, we simply need to let
A Ñ 8, and check that Zω,a

pβ
pfAq converges to Zω,a

pβ
pfq in probability. But this is simply

a consequence of monotone convergence, recalling the representation (1.15). Combined
with Lemma 6.1 and Lemma 6.2, this concludes the proof that for any f P C, we have the

convergence e´
pβγN1tα“1uZη,a

N,pβ
pfq ñ Zω,a

pβ
pfq.

6.2. Joint convergence with xψ, ξ
paq
N,ηy. To prove the joint convergence of the environ-

ment and the partition function, we simply need to adapt slightly the proof above: in
particular, we only need to adapt the proof of the second step.

Lemma 6.3. For any a ą 0, given ψ a smooth compactly supported function on Rd`1 and
f P Cb we have the following joint convergence in distribution

´

xψ, ξ
paq
N,ηy , Z

η,a
N,βN

pfq
¯

ùñ

´

xψ, ξpaqω y , e
pβκaZω,a

pβ
pfq

¯

.
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Proof. Notice that in view of (3.11), for any fixed a ą 0, we can rewrite

ξ
paq
N,η :“ V ´1

N

ÿ

pn,xqPHd

´

`

ηn,x`κ
paq
N

˘

1 
1`ηn,xěa1VN

(´
`

κ
paq
N `Erη1tη6VN us1tα“1u

˘

¯

δp n
N
, x?

N{d
q

“ p1`op1qq

ˆ

ÿ

pn,xqPHd

ηpNqn,x 1 
1`ηn,xěaVN

( δp n
N
, x?

N{d
q´κaN

´p1` d
2
q 1

2dd{2

ÿ

pn,xqPHd

δp n
N
, x?

N{d
q

˙

,

(6.7)

where the op1q is a quantity that goes to 0 as N Ñ 8 (and does not depend on the

realization ofuniformly in η), see the calculations in Section 4.1; recall that ηpNq :“ V ´1
N η.

Now, we observe that

w ÞÑ
´

xψ,
ÿ

pt,x,uqPw

u δpt,xqy ,
ÿ

σPPpwq

pβ|σ|%pt,x, fq

|σ|
ź

i“1

ui

¯

is continuous on W. From the Poisson convergence (6.4) in W, using (6.7) above and the

definition 4.9 of Z
η,a
N,βN

pfq (together with the local limit theorem analogously to (6.6)), we
deduce that

´

xψ, ξ
paq
N,ηy , Z

η,a
N,βN

pfq
¯

NÑ8
ùñ

´

xψ,
ÿ

pt,x,uqPωpaq

u δpt,xqy ´ κaxψ,Ly,
ÿ

σPPpωpaqq

pβ|σ|%pt,x, fq

|σ|
ź

i“1

ui

¯

.

Recalling the definitions (3.11) and (1.15). we see that the r.h.s. is equal to pxψ, ξ
paq
ω y , e

pβκaZω,a
pβ
pfqq,

which concludes the proof. �

7. Proof of Proposition 3.5: the easy cases

Proposition 3.5 is the main technical difficulty of the paper. Its proof is considerably
simpler in special cases α P p0, 1q (for any d) and d “ 1 (for any α). These cases are
treated in the present section.

When α P p0, 1q, the convergence can be deduced from a first moment computation,
after using the truncation argument from Proposition 4.2. The details are carried in
Section 7.1.

When α P r1, 2q, second moment computations are necessary. Since the variables η
themselves do not have a second moment, a truncation procedure is needed. A general
result which describes the requirement we have for our truncated partition function is
given in Section 7.2. Like for the proof of Theorem A in [8], the truncation procedure that
needs to be applied is considerably simpler for d “ 1 than for d ě 2.

When d “ 1, only the large values of η are a problem so that, after using Proposition 4.2,
we only need to perform a relatively simple second moment. This is done in Section 7.3.

When d ě 2 (and α P r1, 2q) a simple truncation is not sufficient: before applying the
second moment method, the partition function must undergo a more advanced surgery.
These details of the procedure and the computations are postponed to Section 8.

7.1. The case α P p0, 1q. We assume without loss of generality that 0 ď f ď 1. Note

that with our choice κ
paq
N “ 0, Zη,aN,βN pfq is a decreasing function of a. Thus we want to

show that for a P p0, 1s sufficiently small we have

sup
Ně1

E
”

`

Zη,0N,βN
pfq ´ Zη,aN,βN pfq

˘

^ 1
ı

ď ε . (7.1)
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For this we observe that the quantity we have to bound is smaller than

sup
Ně1

E
”

Z
η,r0,bq
N,βN

pfq ´ Z
η,ra,bq
N,βN

pfq
ı

` sup
Ně1

E
”

`

ZηN,βN ´ Z
η,r0,bq
N,βN

˘

^ 1
ı

. (7.2)

From Proposition 4.2 the second term can be made smaller than ε{2 by choosing b “ bpεq
large. Concerning the first one, note that we have

E
”

Z
η,r0,bq
N,βN

pfq ´ Z
η,ra,bq
N,βN

pfq
ı

ď ErfpSpNqqs
´

E
“

1` βNη
r0,bq
n

‰N
´ E

“

1` βNη
ra,bq

‰N
¯

.

Now, thanks to calculations done in Section 4.1, there are constants Cb anc C
pβ

such that

E
“

βNη
r0,bq

‰

6E
“

βNη
r0,bq

‰

ď CbN
´1 and E

”

βN
`

ηr0,bq ´ ηra,bq
˘

ı

ď C
pβ
N´1a1´α. (7.3)

Hence we have for a sufficiently small (depending on ε and b)

E
”

Z
η,r0,bq
N,βN

pfq ´ Z
η,ra,bq
N,βN

pfq
ı

ď eCbpe
C

pβ
a1´α

´ 1q ď ε{2 , (7.4)

uniformly in N . This concludes the proof. �

7.2. The case α P r1, 2q: a uniformity criterion. The task is more delicate in the
case α P r1, 2q. We are going to prove some uniform L2 convergence. The following
statement, that we are going to apply to our partition function, may help to understand
this difference.

Proposition 7.1. Consider pXN,aqaPr0,1q,Ně1 a collection of positive random variables.

Assume that there exists X
pqq
N,a a sequence of approximation of XN,a, indexed by q ě 1,

which satisfies

pAq lim
qÑ8

sup
Ně1

sup
aPr0,1q

E
“

|X
pqq
N,a ´XN,a|

‰

“ 0 ;

pBq lim
aÑ0`

sup
Ně1

E
“

pX
pqq
N,a ´X

pqq
N,0q

2
‰

“ 0 for every q ě 1.

Then we have

lim
aÑ0

sup
Ně1

E
“

|XN,a ´XN,0|
‰

“ 0. (7.5)

If we replace pAq by

pA1q lim
qÑ8

sup
Ně1

sup
aPr0,1q

E
“

|X
pqq
N,a ´XN,a| ^ 1

‰

“ 0

then we have

lim
aÑ0

sup
Ně1

E
“

|XN,a ´XN,0| ^ 1
‰

“ 0. (7.6)

The assumption pA1q allows to treat the case α “ 1 for which the L1 convergence of the
partition function does not hold.

Proof. This simply comes from the fact that

E
“

|XN,a ´XN,0|
‰

ď E
“

pX
pqq
N,a ´X

pqq
N,0q

2
‰1{2

` E
“

|X
pqq
N,a ´XN,a|

‰

` E
“

|X
pqq
N,0 ´XN,0|

‰

,

and the right-hand side can be made arbitrary small uniformly in N , by taking first q
large and then taking aÑ 0. A similar reasoning holds for pA1q. �
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7.3. The case of dimension d “ 1. For notational simplicity we will write the proof for
the case f ” 1, the modification to treat the case f P C are straightforward. Let us set

X
pqq
N,a :“ e´

pβγN1tα“1uZ
η,ra,qq
N,βN

. (7.7)

We now only need to check that the assumptions of Proposition 7.1 are satisfied.

When α ą 1 since Z
η,ra,qq
N,βN

ď Zη,a
N,pβ

and ErZη,a
N,pβ
s “ 1, Assumption pAq in Proposition 7.1 is

equivalent to the uniform convergence to 1 of the first moment. When α “ 1, Assumption
pA1q has been already checked in Proposition 4.2.

Lemma 7.2. In dimension d “ 1 (note that αc “ 2 in that case), we have

prAq lim
qÑ8

inf
Ně1

inf
aPr0,1q

E
”

Z
η,ra,qq
N,βN

ı

“ 1 for α P p1, 2q;

pBq lim
aÓ0

sup
Ně1

E
“

e´2pβγN1tα“1upZ
η,ra,qq
N,βN

´ Z
η,ra,qq
N,βN

q2
‰

“ 0 for every q ě 1 and α P r1, 2q.

Proof. The proof of p rAq is straightforward. We have

E
”

Z
η,ra,qq
N,βN

ı

“ E
“

1` βNη
ra,qq

‰N
“

`

1` βNE
“

η1t1`ηăqVN u
‰˘N

. (7.8)

From (4.3) and the second relation in (4.1), we have for every N, q ě 1 (recall Erηs “ 0)

βNE
“

η1t1`ηăqVN u
‰

ě ´pβCα
ϕpqNq

ϕpNq
q1´αN´1 ě ´C 1q

1´α
2 N´1, (7.9)

where we used Potter’s bound for the last inequality. Using that p1 ´ xqN ě 1 ´Nx for
all x ě 0, we get from (7.8) that for all N ě 1

1 ě inf
aPr0,1q

E
”

Z
η,ra,qq
N

ı

ě 1´ C 1q
1´α
2 , (7.10)

which concludes the proof of item p rAq.

For the second moment estimate pBq, let us notice that Z
η,ra,qq
N,βN

is a (time-reversed)

martingale for the filtration Ga (recall (3.7)) in particular we have

E
“

pZ
η,r0,qq
N,βN

´ Z
η,ra,qq
N,βN

q2
‰

“ E
“

pZ
η,r0,qq
N,βN

q2
‰

´ E
“

pZ
η,ra,qq
N,βN

q2
‰

. (7.11)

Hence to show that the convergence in L2 is uniform in N , it is sufficient to show that the
convergence

lim
aÓ0

e´2pβγN1tα“1uE
“

pZ
η,ra,qq
N,βN

q2
‰

“ e´2pβγN1tα“1uE
“

pZ
η,r0,qq
N,βN

q2
‰

is uniform in N . Note that e´
pβγN1tα“1uE

“

Z
η,ra,qq
N,βN

‰

does not depend on a. In the case α ą 1,

thanks to (7.8) and (7.9), we find that it is bounded away from 0 uniformly in q ě 0 and
N ě 1. In the case α “ 1, a straightforward calculation (recall (4.2)) gives that (7.9) is
replaced with

βNE
“

η1t1`ηăqVN u
‰

“ pβγNN
´1 ` pβplog qqN´1p1` op1qq , (7.12)

so we get that e´
pβγNE

“

Z
η,ra,qq
N,βN

‰

is bounded away from 0 uniformly in q ě 0 and N ě 1.

All together, what we need to show is equivalent to

lim
aÓ0

sup
Ně1

ˆE
“

pZ
η,r0,qq
N,βN

q2
‰

E
“

Z
η,r0,qq
N,βN

‰2
´

E
“

pZ
η,ra,qq
N,βN

q2
‰

E
“

Z
η,ra,qq
N,βN

‰2

˙

“ 0. (7.13)
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Let us set

ra,qN :“
E
“

p1` βNη
ra,qqq2

‰

E
“

1` βNηra,qq
‰2 ´ 1 “

β2
NVarpηra,qqq

E
“

1` βNηra,qq
‰2 , (7.14)

and let us stress that ra,qN is non-increasing in a. A direct computation yields

E
“

pZ
η,ra,qq
N,βN

q2
‰

E
“

Z
η,ra,qq
N,βN

‰2
“ Eb2

“

p1` ra,qN q
LN

‰

, (7.15)

where Eb2 is the expectation with respect to two independent walks Sp1q and Sp2q and
LN :“

řN
n“1 1

tS
p1q
N “S

p2q
N u

is the replica overlap. By convexity of x ÞÑ p1`xqLn , we therefore

get

E
“

pZ
η,r0,qq
N,βN

q2
‰

E
“

Z
η,r0,qq
N,βN

‰2
´

E
“

pZ
η,ra,qq
N,βN

q2
‰

E
“

Z
η,ra,qq
N,βN

‰2
ď pr0,q

N ´ ra,qN qE
b2
“

LN p1` r
0,q
N q

LN
‰

ď
r0,q
N ´ ra,qN
r0,q
N

Eb2
“

pr0,q
N LN qe

r0,qN LN
‰

(7.16)

Now in order to conclude, it is sufficient to show that

lim
aÑ0

sup
Ně1

r0,q
N ´ ra,qN
r0,q
N

“ 0 and r0,q
N ď CqN

´1{2. (7.17)

Indeed using the second statement in (7.17), we get that

Eb2
“

pr0,q
N LN qe

r0,qN LN
‰

ď Eb2
“

e2r0,qN LN
‰

ď Eb2
“

e2CqN´1{2LN
‰

, (7.18)

which is uniformly bounded in N , as it is standard for the intersection time of independent
random walks, see e.g. [36, Lemma 4.2] for a general version (with renewal processes).

Let us now prove the two estimates in (7.17). We have

β2
NE

“

pηra,qqq2
‰

“ pβNκ
paq
N q

2P
`

1` η ă aVN
˘

` β2
NE

”

η21t1`ηPraVN ,qVN qu

ı

. (7.19)

Using (1.4) together with (4.3) and the third part of (4.1), after simplifications (in partic-
ular, the first term is negligible), we find that for any fixed a P r0, 1q and q ą 1, we have
asymptotically for large N

β2
NE

“

pηra,qqq2
‰

“ p1` op1qq
αpβ2d´d{2

2p2´ αq
N

d´2
2 pq2´α ´ a2´αq. (7.20)

On the other hand (7.9) and (7.12) ensures that Erηra,qqs2 is always negligible w.r.t.

Erpηra,qqq2s which is thus asymptotically equivalent to the variance. Note that we have

Erηra,qqs “ Erηr0,qqs “ Erη1t1`ηăqVN us for any a P p0, 1q and any q ě 1, and from (7.12) we

get that Er1 ` βNη
r0,qqs tends to one, so that ra,qN „ β2

NE
“

pηra,qqq2
‰

. We therefore obtain
that for any fixed a P r0, 1q and q ą 1 (recall (4.1))

ra,qN
NÑ8
„

αpβ2d´d{2

2p2´ αq
N

d´2
2 pq2´α ´ a2´αq. (7.21)

This, together with the monotonicity in a of ra,qN , allows us to deduce both statements
in (7.17) and therefore concludes the proof of part (B) of Lemma 7.2. �
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To conclude this section let us stress that this strategy cannot be applied in dimension

d ě 2 because we still have in that case ra,qN — N
d´2
2 , and the second moment ErpZη,ra,qqN,βN

q2s

diverges with N for any value of a and q (recall (7.15)). We need a finer restriction on the
set of trajectories, analogously to what is done in [8, Section 4.4].

8. Proof of Proposition 3.5: the hard case

In this Section we prove Proposition 3.5 when α P r1, αcq and d ě 2. We rely again on
Proposition 7.1, but with a more sophisticated truncation procedure detailed in Section 8.1
below. We consider for notational simplicity only the case f ” 1. The modification which
are required to treat the general case f P C are provided at the end of the section (in
Section 8.5).

8.1. The truncation procedure. Instead of simply capping the value of η at level q, we
impose a restriction on the set of paths, to avoid counting atypical paths with high value
of η which give an important contribution to the second moment of Zη,aN,βN . Let α P r1, αcq

and let us fix γ satisfying

d´ 2

2p2´ αq
ă γ ă

1

α´ 1

`

i.e. γpα´ 1q ă 1 and
d

2
´ γp2´ αq ă 1

˘

. (8.1)

and also γ ă d
2 , which is compatible with (8.1) when α ă αc “ 1` 2

d . We define

BN,qpSq :“
!

@I Ă J1, NK :
ź

iPI

p1` ηi,Siq ă q|I|V
|I|
N

`

N´|I|ΠI

˘γ
)

, (8.2)

where ΠI :“
ś|I|
j“1pij ´ ij´1q, with i1 ă ¨ ¨ ¨ ă i|I| the ordered elements of I, and i0 “ 0.

Notice in particular that on the event BN,qpSq we have 1 ` ηi,Si ă qVN for all 16 i6N .
We then set

W a,q
N :“ E

„ N
ź

n“1

`

1` βNη
paq
n,Sn

˘

1BN,qpSq



“ E

„ N
ź

n“1

`

1` βNη
ra,qq
n,Sn

˘

1BN,qpSq



. (8.3)

We apply Proposition 7.1 to W a,q
N which reduces the proof of Proposition 3.5 to that of

the following statements.

Lemma 8.1. When α P p1, αcq we have

lim
qÑ8

inf
aPr0,1q

inf
Ně1

E
“

W a,q
N

‰

“ 1 (8.4)

Lemma 8.2. When α “ 1 we have

lim
qÑ8

sup
aPr0,1q

sup
Ně1

E
”´

e´
pβγN

`

Zη,aN,βN ´W
a,q
N

˘

¯

^ 1
ı

“ 0. (8.5)

Proposition 8.3. We have for every q ą 0

lim
aÑ0

sup
Ně0

E
“

pW a,q
N ´W 0,q

N q2
‰

“ 0. (8.6)

These three results are similar to Lemma 7.2 (and Proposition 4.2 in the case α “ 1),
but the required computation to prove them are considerably more involved. We prove
each one separately in Sections 8.2, 8.3 and 8.4 respectively.
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8.2. Proof of Lemma 8.1. Let rPaS be the probability measure whose density with respect
to P is

drPaS
dP

“

N
ź

n“1

`

1` βNη
paq
n,Sn

˘

. (8.7)

We stress here that since Erηs “ 0 we have E
“
śN
n“1p1 ` βNη

paq
n,Sn

q
‰

“ 1. By Fubini, we

have ErW a,q
N s “ E

“

rEaSr1BN,qpSqs
‰

and hence we simply need to prove that

lim
qÑ8

sup
aPr0,1q

sup
Ně1

sup
S

rPaS
`

BAN,qpSq
˘

“ 0. (8.8)

Let us make two important observations:

(i) In view of the definition (8.2) of the event BN,q, the above probability does not
depend on the specific trajectory S: indeed BN,qpSq is a function of the random
sequence pηn,Snqně1 which is i.i.d. distributed, and in particular has the same
distribution for every S.

(ii) The event BAN,qpSq is increasing in η, and the measures prPaSqaě0 are stochastically
decreasing: the supremum in a is thus attained for a “ 0.

To check point (ii), since we are dealing with product measures it is sufficient to check the
domination for one dimensional marginal. Recall the continuous version of Chebychev’s
sum inequality: for any probability measure ν on R and f and g non-decreasing functions,
we have

ż

fpxqgpxqνpdxq ě

ż

fpxqνpdxq

ż

gpxqνpdxq. (8.9)

This implies that for any non-decreasing f we have

E
“

p1` βNηqfpηq
‰

´ E
“

p1` βNη
paqqfpηq

‰

“ βNPp1` η ă aVN qE
“

fpηq
`

η ´ Erη | 1` η ă aVN s
˘ ˇ

ˇ 1` η ă aVN
‰

ě 0 , (8.10)

which proves that rPp0qS stochastically dominates rPpaqS for a P p0, 1q.

We therefore only have to prove that

lim
qÑ8

sup
Ně1

rPN pBAN,qq “ 0 , (8.11)

where

BN,q :“
!

@I Ă J1, NK,
ź

iPI

p1` ηiq ă q|I|V
|I|
N

`

N´|I|ΠI

˘γ
)

, (8.12)

with pηiq1ďiďN i.i.d. random variables distributed as η under P and rPN the probability

measure with density
śN
n“1p1` βNηnq with respect to P. First of all, by a union bound,

we have

rPN pBAN,qq6
N
ÿ

n“1

rPN
`

1` ηn ě qVN
˘

` rPN
`

BAN,q ; @ i P J1, NK, 1` ηi ă qVN
˘

. (8.13)

Now, thanks to (4.3) and the second relation in (4.1), we get

rPN
`

1` ηn ě qVN
˘

“ E
“

p1` βNηq1t1`ηěqVN u
‰ NÑ8
„

αpβ

α´ 1
q1´αN´1 . (8.14)

This proves that the first sum in (8.13) is bounded by Cq1´α uniformly in N ě 1, and
this upper bound vanishes as q Ñ8. To estimate the remaining probability in (8.13), we
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are going to perform another union bound. The following claim will allow us to reduce
the amount of error produced by this bound.

Claim 1. If q ě 2γ and BN,q is not satisfied, then there exists some non-empty set of
indices I Ă J1, NK such that both the following conditions are satisfied

ź

iPI

p1` ηiq ě q|I|V
|I|
N

`

N´|I|ΠI

˘γ
and @i P I , 1` ηi ě N´γVN . (8.15)

Proof. Note that the existence of a set of indices I0 satisfying the first condition in (8.15)
simply comes from the definition of BN,q.

Now, if a set I satisfies the first condition in (8.15) and if there exists some j0 with
1` ηij0 ă N´γVN (where ij0 is the j0-th element of I), we necessarily have that I is not
reduced to ij0 , and

ź

iPI 1“Iztij0u

p1` ηiq ě
´

q|I|´1V
|I|´1
N

`

N1´|I|ΠI 1
˘γ
¯

ˆ q

ˆ

ΠI

ΠI 1

˙γ

. (8.16)

Recalling the definition of ΠI , we have that ΠI
ΠI1

“
pij0´ij0´1qpij0`1´ij0 q

pij0`1´ij0´1q
ě 1

2 : the second

factor in (8.16) is thus larger than q2´γ ě 1; the same reasoning applies if j0 “ |I|. Hence,
the set I 1 “ Iztij0u is non-empty and also satisfies the first condition in (8.15). Starting
from I0 and proceeding by induction, we therefore end up with a non-empty set verifying
both conditions in (8.15). �

Thanks to Claim 1, we apply a union bound over the possible choices for the set of
indices I satisfying both conditions in (8.15). Recalling also the definition (8.12) of BN,q,
we obtain that the last term in (8.13) is bounded by

ÿ

IĂJ1,NK

rPN
´

ź

iPI

p1` ηiq1tN´γVN 6 1`ηiăqVN u ě q|I|V
|I|
N

`

N´|I|ΠI

˘γ
¯

. (8.17)

To conclude, we estimate the probabilities in the sum thanks to the following lemma,
whose proof is postponed.

Lemma 8.4. There is some N0 ě 1 such that for all N ě N0, for any k ě 1, any t P p0, 1q

and any ε P p0, 1q there is a constant C (allowed to depend on ϕ, pβ and ε) such that

rPN

˜

k
ź

i“1

p1` ηiq1tN´γVN 6 1`ηiăqVN u ě tpqVN q
k

¸

ď pCqε`1´αqk t1´α´εN´k . (8.18)

Now, applying Lemma 8.4 to the probabilities in (8.17) with

t “
`

N´|I|ΠI

˘γ
“

|I|
ź

j“1

ˆ

ij ´ ij´1

N

˙γ

,

we obtain that (8.17) is smaller than

N
ÿ

k“1

pCqε`1´αqk
ÿ

16 i1ă¨¨¨ăik 6N

N´k
k
ź

j“1

ˆ

ij ´ ij´1

N

˙p1´α´εqγ

6
N
ÿ

k“1

pCqε`1´αqk2kpα`ε´1q

ż

0ăs1ă¨¨¨ăskă1

k
ź

i“1

psi ´ si´1q
p1´α´εqγdsi , (8.19)



THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER 29

where we used a standard comparison argument for the last inequality. The last integral is
easily computed. Provided that ε has been fixed small enough so that ϑ :“ γpα`ε´1q ă 1,

it is equal to Γp1´ϑqk

Γpkp1´ϑq`1q . All together, we obtain that (8.17) is bounded by

N
ÿ

k“1

`

C 1
α,pβ,ε

qε`1´α
˘k Γp1´ ϑqk

Γpkp1´ ϑq ` 1q
.

This series converges, and can be made arbitrarily small by choosing q large, provided
that ε is small enough so that ε ` 1 ´ α ă 0. Together with (8.13) and (8.14), this
concludes the proof of (8.11) and hence the proof of Lemma 8.1. �

Proof of Lemma 8.4. First of all, recalling that βNVNN
´γ “ 1

2d
´d{2

pβN
d
2
´γ (see (4.1))

and the fact that we chose γ ă d
2 , we have that βNηi ě 1 if ηi ě N´γVN , at least for

large N . Hence, recalling the definition of rPN , the probability we want to bound is

E
”´

k
ź

i“1

p1` βNηiq1tp1`ηiqPrN´γVN ,qVN qu

¯

1 śk
i“1p1`ηiqětpqVN q

k
(

ı

6 p2βN q
kE

„

´

k
ź

i“1

p1` ηiq1tp1`ηiqPrN´γVN ,qVN qu

¯

1 śk
i“1p1`ηiqětpqVN q

k
(



. (8.20)

Then, Proposition A.1 in the Appendix allows us to compare this expectation to an integral
with respect to the measure u´p1`αqϕpuqdu (which is not a probability measure). Applying
Proposition A.1, we get that there is a constant C (that depends on α) such that for N
large enough the right-hand side of (8.20) is bounded by

CkβkN

ż

r0,2qVN qk
1 śk

i“1 uiětpqVN q
k
(

k
ź

i“1

ϕpuiqu
´α
i dui . (8.21)

With a change of variable ui “ VNvi, and using that βNV
1´α
N “ pβN´1ϕpVN q

´1, we get
that this is bounded by

pC
α,pβ
qkN´k

ż

r0,2qqk
1 śk

i“1 viětq
k
(

k
ź

i“1

ϕpVNviq

ϕpVN q
v´αi dvi

ď
`

C
α,pβ,ε

qε
˘k
N´k

ż

r0,2qqk
1 śk

i“1 viětq
k
(

k
ź

i“1

v
´α´ ε

2
i dvi, (8.22)

where we used Potter’s bound to get that ϕpVNvq6Cεv´ε{2ϕpVN q if v6 1 and that

ϕpVNvq6Cεvε{2ϕpVN q if v P r1, 2qq, with vε{26 p2qqεv´ε{2 for v P r1, 2qq. An estimate for
the integral in the r.h.s. of (8.22) has been proved in [8]: we apply [8, Equation (4.32)] to
conclude the proof. �

8.3. Proof of Lemma 8.2. Let us consider b ą 1. We have

Zη,aN,βN ´W
a,q
N “ E

”

N
ź

n“1

`

1` βNη
paq
n,Sn

˘

1BAN,qpSq

ı

ď
`

Zη,aN,βN ´ Z
η,ra,bq
N,βN

˘

`E
”

N
ź

n“1

`

1` βNη
paq
n,Sn

1tp1`ηn,Sn qăbVN u
˘

1BAN,qpSq

ı

. (8.23)
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Proposition 4.2 establishes that e´
pβγN pZη,aN,βN ´ Z

η,ra,bq
N,βN

q converges to zero in probability

when bÑ8. To conclude we thus only have to show that the second term also converges
to zero in probability, or using first moment estimates, that for every b ą 1,

lim
qÑ8

sup
Ně1

e´
pβγNE

„

E
”

N
ź

n“1

`

1` βNη
paq
n,Sn

1tp1`ηn,SnăbVN u
˘

1BAN,qpSq

ı



“ 0. (8.24)

Like for the proof of Lemma 8.1 (note that (8.10) remains valid when adding the restriction

1tηăbVN u), we consider the probability measure rPpbqN defined by

drPpbqN
dP

“

śN
n“1

`

1` βNη
r0,bq
n

˘

E
“

1` βNη
r0,bq
n

‰N
. (8.25)

and we obtain that

e´
pβγNE

„

E
”

N
ź

n“1

`

1` βNη
paq
n,Sn

1tp1`ηn,Sn qďbVN u
˘

1BAN,qpSq

ı



ď
e´

pβγN rPpbqN rB
A
N,qs

E
“

1` βNη
r0,bq
n

‰N
. (8.26)

From (7.12), there exists a constant C
b,pβ

such that for every N ě 1

e´
pβγNE

“

1` βNη
r0,bq
n

‰´N
ď C

b,pβ

so that we only need to bound rPpbqN rB
A
N,qs. Using Claim 1 and a union bound, we can

conclude the proof as in the previous section, replacing Lemma 8.4 with the following:
there exists a constant Cb such that the following holds for all large N

rPN

˜

k
ź

i“1

p1` ηiq1tN´γVN 6 1`ηiăqVN u ě tpqVN q
k

¸

ď pC
b,pβ
qkq´εk t´εN´k . (8.27)

To prove (8.27), we observe that similarly to (8.20), for large values of N the l.h.s. of (8.27)
is bounded by

E
“

1` βNη
r0,bq

‰´k
p2βN q

kE
„

´

k
ź

i“1

p1` ηiq1tp1`ηiqăbVN u

¯

1
t
śk
i“1p1`ηiqětpqVN q

ku



. (8.28)

Similarly to (8.21) we then have that it is bounded by

pCβN q
kE

„

´

k
ź

i“1

p1` ηiq1tp1`ηiqăbVN u

¯

1
t
śk
i“1p1`ηiqětpqVN q

ku



ď pC 1βN q
k

ż

r0,2bVN qk
1 śk

i“1 uiětpqVN q
k
(

k
ź

i“1

ϕpuiq

ui
dui .

ď pC 1
b,pβ
N´1qk

ż

r0,2bqk
1 śk

i“1 uiětq
k
(

k
ź

i“1

u
´1´ε{2
i dui , (8.29)

where we used a change of variable and the fact that ϕpVNuiq6CbϕpVN qu
´ε{2
i uniformly

for ui P p0, 2bq, by Potter’s bound. Then, (8.27) finally follows from [8, Equation (4.32)]
applied to h “ tpq{bqk (note that when h ě 1 then (8.28) is equal to 0). �
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8.4. Proof of Proposition 8.3. We need to control the value of

ErpW q,a
N ´W q,0

N q2s “ ErpW q,a
N q2s ´ 2ErW q,a

N W q,0
N s ` ErpW q,0

N q2s. (8.30)

and prove that it converges to 0 when a tends to 0, uniformly in N (when α “ 1 we

must multiply this by e´2pβγN ). This is the most delicate part of the proof. For didacti-
cal purpose and for the sake of making computations more readable, we first show that
ErpW q,a

N q2s is uniformly bounded in a and N when α P p1, αcq; in the case α “ 1 we bound

e´
pβγNErpW q,a

N q2s. While this is not a required intermediate step, most of the computation
made to prove this are going to be recycled for the actual proof of the Proposition 8.3.

8.4.1. The second moment is uniformly bounded. Let us prove the following estimate.

Lemma 8.5. We have for any q ě 1

sup
aPr0,1q

sup
Ně1

e´2pβγN1tα“1uE
“

pW q,a
N q2

‰

ă 8. (8.31)

Proof. Let us first treat the case α P p1, αcq; we deal with the case α “ 1 at the end of the
proof. First of all, notice that by definition (8.3) of W a,q

N we have

ErpW a,q
N q2s “ Eb2E

„ N
ź

n“1

`

1` βNη
paq

n,S
p1q
n

˘`

1` βNη
paq

n,S
p2q
n

˘

1 
BN,qpSp1qqXBN,qpSp2qq

(



, (8.32)

where Eb2 is the expectation with respect to two independent walks Sp1q and Sp2q. Now

we can consider the set IN pS
p1q, Sp2qq :“ tn P J1, NK, Sp1qn “ S

p2q
n u. As we are interested in

an upper bound we can replace BN,qpS
p1qq XBN,qpS

p2qq by the larger event
"

@I Ă IN pS
p1q, Sp2qq,

ź

iPI

p1` ηi,Siq ď q|I|V
|I|
N

`

N´|I|ΠI

˘γ
*

. (8.33)

The expectation with respect to η
n,S

p1q
n
, η
n,S

p2q
n

then simplifies for n R IN pS
p1q, Sp2qq, and

we obtain

E
“

pW q,a
N q2

‰

ď Eb2
“

H
`

IN pS
p1q, Sp2qq

˘‰

, (8.34)

where for I Ă J1, nK we defined

HpIq :“ E
„

ź

iPI

`

1` βNη
paq
i

˘2
1
rBN,qpIq



, (8.35)

with rBN,qpIq defined by

rBN,qpIq :“
!

@I 1 Ă I,
ź

iPI 1

p1` ηiq ă q|I
1|V

|I 1|
N

`

N´|I
1|ΠI 1

˘γ
)

. (8.36)

In (8.35), the pηiqiě1 are i.i.d. random variables with the same distribution as ηn,x. Writing

p1` βNη
paq
i q

2 “
`

1` 2βN p1´ βN qη
paq
i ´ β2

N

˘

` β2
N

`

1` η
paq
i

˘2

and expanding the product in HpIq, we obtain HpIq “
ř

JĂI β
2|J |
N HpI, Jq with

HpI, Jq :“ E
„

ź

iPIzJ

`

1` 2βN p1´ βN qη
paq
i ´ β2

N

˘

ź

jPJ

p1` η
paq
j q

21
rBN,qpIq



. (8.37)
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Denoting pI :“ Pb2pIN pS
p1q, Sp2qq “ Iq, we therefore get that

ErpW a,q
N q2s6

ÿ

IĂJ1,NK

pI
ÿ

JĂI

β
2|J |
N HpI, Jq . (8.38)

Now, for J Ă I, we define

pBN,qpJq “

"

ź

iPJ

p1` ηiq ă pqVN q
|J |
`

N´|J |ΠJ

˘γ
*

X t@i P J, p1` ηiq ă qVNu . (8.39)

Of course rBN,qpIq Ă pBN,qpJq since the bound on ηi is obtained when considering I 1 “ tiu
in (8.36). We therefore get

HpI, Jq ď E
„

ź

iPIzJ

p1` 2βN p1´ βN qη
paq
i ´ β2

N q
ź

jPJ

`

1` η
paq
j

˘2
1
pBN,qpJq



6 p1´ β2
N q
|I|´|J |E

”

ź

iPJ

p1` η
paq
j q

21
pBN,qpJq

ı

,

(8.40)

Overall, using that for any fixed J we have that
ř

IĄJ pI “ Pb2p@n P J, S
p1q
n “ S

p2q
n q, we

obtain that

E
“

pW q,a
N q2

‰

ď
ÿ

JĂJ1,NK

β
2|J |
N E

”

ź

iPJ

p1` η
paq
j q

21
pBN,qpJq

ı

Pb2
`

@n P J, Sp1qn “ Sp2qn
˘

,

ď
ÿ

JĂJ1,NK

β
2|J |
N E

”

ź

iPJ

p1` η
paq
j q

21
pBN,qpJq

ı

C
|J |
0 pΠJq

´ d
2 ,

(8.41)

the last line being a simple application of the local central limit theorem. Now we use of
the following estimate which will allow us to conclude (its proof is postponed).

Lemma 8.6. Fix 0 ă ε ă 2´α. Then for any k ě 1 and any t P p0, 1q, there exists some
C1 “ C

α,pβ,q,ε
such that

β2k
N E

„ k
ź

i“1

`

1`η
paq
i

˘2
1 śk

i“1 ηiďtpqVN q
k
( 1t@iPJ1,kK,p1`ηiqďqVN u



ď Ck1N
kp d

2
´1qt2´α´ε. (8.42)

Now, using Lemma 8.6 with t “ pN´|J |ΠJq
γ “

ś|J |
i“1

` ji´ji´1

N

˘γ
(recall the defini-

tion (8.39) of pBN,qpJq), we finally obtain in (8.41)

ErpW q,a
N q2s ď

ÿ

kě0

pC0C1q
k

Nk

ÿ

1ďj1ă¨¨¨ăjkďN

k
ź

i“1

ˆ

ji ´ ji´1

N

˙γp2´α´εq´ d
2

ď
ÿ

kě0

pC 1qk
ż

0ďt1ă¨¨¨ătkď1

k
ź

j“1

ptj ´ tj´1q
γp2´α´εq´ d

2 dtj .

(8.43)

We conclude by noticing that, provided that ε has been fixed small enough so that τ :“

d{2´ p2´ α´ εqγ ă 1, the last integral is equal to Γp1´τqk

Γpkp1´τq`1q . Hence, the sum in (8.43)

is finite.

The case α “ 1. We can proceed exactly in the same way, except that instead of (8.32)
we start with

ErpW a,q
N q2s “ Eb2E

„ N
ź

n“1

`

1` βNη
ra,qq

n,S
p1q
n

˘`

1` βNη
ra,qq

n,S
p2q
n

˘

1 
BN,qpSp1qqXBN,qpSp2qq

(



. (8.44)
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Then we replace BN,qpS
p1qq X BN,qpS

p2q by the larger event in Equation (8.33): when

integrating over η
n,S

piq
n

for n R I “ IN pS
p1q, Sp2qq, this adds a factor

E
“

1` βNη
ra,qq

‰2pN´|I|q
. (8.45)

Using (7.12), we therefore can replace (8.38) with

e´2pβγNErpW a,q
N q2s6Cq

ÿ

IĂJ1,NK

pIe
´2pβγN |I|{N

ÿ

JĂI

β
2|J |
N HpI, Jq .

Using again (7.12) to bound above E
“

1` 2βN p1´ βN qη
ra,qq ´ β2

N

‰

, we may replace (8.40)
with

HpI, Jq6C 1qe
2pβγNN

´1p|I|´|J |qE
”

ź

iPJ

p1` η
paq
j q

21
pBN,qpJq

ı

. (8.46)

We finally end up with the following inequality in place of (8.41):

e´2pβγNE
“

pW q,a
N q2

‰

ď C2q
ÿ

JĂJ1,NK

`

C0e
´2pβγNN

´1˘|J |
β

2|J |
N pΠJq

´ d
2E

”

ź

iPJ

p1` η
paq
j q

21
pBN,qpJq

ı

.

Since e´2pβγNN
´1

is bounded above by a constant (recall that γN is slowly varying), it
can be omitted if one changes the value of C0. We can then conclude similarly using

Lemma 8.6 and the following computations: we get that supNPN e
´2pβγNErpW a,q

N q2s6Cq
for a constant Cq that depends only on q. �

Proof of Lemma 8.6. Note that there exists a constant C such that for every a P r0, 1q
and any t ě 0, we have

P
`

1` ηpaq ě t
˘

ď Cϕptqt´α .

Hence we can apply Proposition A.2 with µ the distribution of 1` ηpaq, with a constant C
that does not depend on a. After applying Proposition A.2 the l.h.s. of (8.42) is thus
bounded by

ż

R`
1 śk

i“1 uiďtpqVN q
k
( 1t@iPJ0,kK,uiăqVN u

k
ź

i“1

u1´α
i ϕpuiqdui

6 pcqq
kV

kp2´αq
N ϕpVN q

k

ż

p0,qqk
1 śk

i“1 viďtq
k
(

k
ź

i“1

v
1´α´ ε

2
i dvi .

where we used a change of variable, together with the fact that ϕpVNvq{ϕpVN q6 cqv´ε{2

for all N and v P p0, qq, by Potter’s bound. The last integral has been studied in [8]:
from [8, Equations (4.34)-(4.35)], we get that it is bounded above by pCα,ε,qq

kt2´α´ε. We
therefore end up with a constant C 1α,ε,q such that the l.h.s. of (8.42) is bounded by

β2k
N E

„ k
ź

i“1

`

1` η
paq
i

˘2
1 śk

i“1 ηiďtpqVN q
k
( 1t@iPJ1,kK,ηiăqVN u



ď pC 1α,q,εβ
2
NV

p2´αq
N ϕpVN q

˘k
t2´α´ε .

Together with (4.1), this yields the conclusion. �
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8.4.2. Convergence of the second moment. Building on the techniques that we used to
prove Lemma 8.5, we are going to prove Proposition 8.3. It follows from the following
convergence results

lim
aÑ0

sup
Ně1

e´2pβγN1tα“1u
ˇ

ˇErpW q,a
N q2s ´ ErpW q,0

N q2s
ˇ

ˇ “ 0,

lim
aÑ0

sup
Ně1

e´2pβγN1tα“1u
ˇ

ˇErW q,a
N W q,0

N s ´ ErpW q,0
N q2s

ˇ

ˇ “ 0 .
(8.47)

Again, we focus the exposition on the case α P p1, αcq and we comment on the case α “ 1

along the proof. Also, we focus on estimating ErpW q,a
N q2s ´ ErpW q,0

N q2s since the other
convergence is proved similarly — notice however that unlike in Section 7.3 we do not in
general have ErW q,a

N W q,0
N s “ ErpW q,a

N q2s, since W q,a
N is not a martingale in a. We want to

bound

Eb2E
”

N
ź

n“1

`

1` βNη
paq

n,S
p1q
n

˘`

1` βNη
paq

n,S
p2q
n

˘

1tBN,qpSp1qqXBn,qpSp2qqu

ı

´Eb2E
”

N
ź

n“1

`

1` βNηn,Sp1qn

˘`

1` βNηn,Sp2qn

˘

1tBn,qpSp1qqXBN,qpSp2qqu

ı

.

Let us stress that from the definition of BN,qpSq, we can replace ηpaq with ηra,qq (and

η “ ηp0q with ηr0,qq). Note that the expectations with respect to η and ηpaq depend on

Sp1q, Sp2q only via the set IN pS
p1q, Sp2qq “ tn P J1, nK : S

p1q
n “ S

p2q
n u. We use this fact

to simplify the expression. Let pηnqně0, pηn,1qně0 and pηn,2qně0 be i.i.d. random variables

with the same distribution as η, and let pI :“ Pb2pIN pS
p1q, Sp2qq “ Iq. Then, denoting

IA “ J1, NKzI, we can rewrite the above quantity as

ÿ

IĂJ1,NK

pI

ˆ

E
”

ź

nPIA

`

1` βNη
paq
n,1

˘`

1` βNη
paq
n,2

˘

ź

nPI

`

1` βNη
paq
n

˘2
1BN,qpIq

ı

´ E
”

ź

nPIA

`

1` βNηn,1
˘`

1` βNηn,2
˘

ź

nPI

`

1` βNηn
˘2

1BN,qpIq

ı

˙

, (8.48)

where BN,qpIq is defined as
"

@K Ă J1, NK,@r P t1, 2u,
ź

iPIAXK

p1`ηi,rq
ź

iPIXK

p1`ηiq ă pqVN q
|K|

`

N´|K|ΠK

˘γ
*

. (8.49)

We can perform a second decomposition of (8.48) by expanding the squares and developing
the products, as in (8.37)-(8.38). We obtain the following upper bound

ˇ

ˇ

ˇ
ErpW q,a

N q2s ´ ErpW q,0
N q2s

ˇ

ˇ

ˇ
6

ÿ

IĂJ1,NK

ÿ

JĂI

pIβ
2|J |
N

ˇ

ˇ rHpaqpI, Jq ´ rHpI, Jq
ˇ

ˇ (8.50)

where for J Ă I we have defined rHpaqpI, Jq to be equal to

E
”

ź

nPIA

`

1`βNη
paq
n,1

˘`

1`βNη
paq
n,2

˘

ź

nPIzJ

`

1`2βN p1´βN qη
paq
n ´β2

N

˘

ź

nPJ

p1`ηpaqn q
21BN,qpIq

ı

,

(8.51)

and rHpI, Jq “ rHp0qpI, Jq (recall that ηp0q “ η). In the case α “ 1, we define similarly
rHpaqpI, Jq using ηra,qq in place of ηpaq (and ηr0,qq in place of η in rHpI, Jq).
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We are now going to prove upper bounds for every term in the r.h.s. of (8.50). Let
us fix some δ ą 0 small. We will use different estimates for the sets J whose points are
macroscopically δ-spaced, that is sets J belonging to

Ξpδ,Nq :“
 

J Ă J1, NK : for all tj, j1u Ă J Y t0, Nu we have |j1 ´ j| ě δN
(

,

and for the sets J with at least a pair of points at distance smaller than δN . The most
difficult part will consist in estimating the contribution of sets J P Ξpδ,Nq. By convention,

the empty set J “ H belongs to Ξpδ,Nq. Also, we denote pjiq
|J |
i“1 the ordered points of J ,

with by convention j0 “ 0.

(a) Estimate for sets J R Ξpδ,Nq. For sets J that are not macroscopically δ-spaced, we
can use the computations made in the previous section to prove that their contribution to
the sum in (8.50) is negligible.

Lemma 8.7. For every q ě 1 and 0 ă ε ă 2´α fixed (with d{2´ γp2´α´ εq ă 1), there
exists a constant C “ C

α,pβ,q,ε
ą 0 such that for all N ě 1, a P r0, 1q we have for all set

J Ă J1, NK

e´2pβγN1tα“1u

ÿ

IĂJ1,NK
IĄJ

pIβ
2|J |
N

rHpaqpI, Jq ď

ˆ

C

N

˙|J | |J |
ź

i“1

ˆ

ji ´ ji´1

N

˙γp2´α´εq´ d
2

. (8.52)

As a consequence, for all ζ ą 0 and any q ě 1, there exists δ “ δpε, qq such that

sup
aPr0,1q

sup
NPN

e´2pβγN1tα“1u

ÿ

IĂJ1,NK

ÿ

JĂI
JR Ξpδ,Nq

pIβ
2|J |
N

ˇ

ˇ rHpaqpI, Jq ´ rHpI, Jq
ˇ

ˇ ď ζ . (8.53)

Proof. For the inequality (8.52), recalling the definition (8.39) of pBN,qpJq and observing

that BN,qpIq Ă pBN,qpJq, we get as in (8.40) that for α ą 1 we have

rHpaqpI, Jq ď E
”

ź

nPJ

`

1` ηpaqn
˘2

1
pBN,qpJq

ı

. (8.54)

In the case α “ 1, integrating over η
ra,qq
n,r for n R I and η

ra,qq
n for n P IzJ in analogy

with (8.45)-(8.46), and using that e´2βNγNN
´1

is bounded by a constant C, this is replaced
with

e´2pβγN
rHpaqpI, Jq6C 1qC

|J |E
”

ź

nPJ

`

1` ηpaqn
˘2

1
pBN,qpJq

ı

.

Summing over sets I containing J and using that
ř

IĄJ pI “ Pb2
`

@n P J, S
p1q
n “ S

p2q
n

˘

,
we therefore get, analogously to (8.41),

e´2pβγN1tα“1u

ÿ

IĄJ

pIβ
2|J |
N

rHpaqpI, Jq ď C 1qpC
1
0q
|J |β

2|J |
N E

”

ź

nPJ

`

1` ηpaqn
˘2

1
pBN,qpJq

ı

pΠJq
´ d

2

ď C 1qpC
1q|J |

`

N´|J |ΠJ

˘γp2´α´εq´ d
2 .

where we used Lemma 8.6 for the second inequality with t “ pN´|J |ΠJq
γ . This proves (8.53).
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Now, summing (8.53) over all J R Ξpδ,Nq (we necessarily have |J | ě 1), we obtain from
a standard sum-integral comparison that for all a P r0, 1q

e´2pβγN1tα“1u

ÿ

JĂI
JRΞpδ,Nq

pIβ
2|J |
N

`

rHpaqpI, Jq ` rHpI, Jq
˘

ď 2
8
ÿ

k“1

pC 1qk
ż

0ăt1ă¨¨¨ătkă1
1tminipti´ti´1qďδu

k
ź

i“1

pti ´ ti´1q
´τ dti . (8.55)

By symmetry, we can assume that the minimum minipti ´ ti´1q is attained for i “ 1, i.e.
that t16 δ, loosing only a factor k. We therefore get that the l.h.s. of (8.53) is bounded
by

2
´

ż δ

0
t
γp2´α´εq´ d

2
1 dt1

¯

ˆ

8
ÿ

k“1

kpC 1qk
ż

0ăt2ă¨¨¨ătkă1

k
ź

i“2

pti ´ ti´1q
γp2´α´εq´ d

2 dti ,

where by convention we set the integral inside the sum is equal to 1 for k “ 1. As for (8.43),

the last integral is equal to Γp1´τqk

Γpkp1´τq`1q with τ “ d{2 ´ γp2 ´ α ´ εq ă 1, and the series

converges. Then, the first integral can be made arbitrarily small by taking δ small. �

(b) Estimate for sets J P Ξpδ,Nq. We now turn to the case of sets J that are macroscop-
ically δ-spaced: we give an estimate on the contribution to the r.h.s. of (8.50) of the sets
J P Ξpδ,Nq that enables us to conclude the proof of Proposition 8.3.

Lemma 8.8. For any ζ ą 0, for all δ ą 0, q ě 1, there exists a0 “ a0pζ, δ, qq such that
for any N ě 1 and every J P Ξpδ,Nq we have, for all a6 a0

e´2pβγN1tα“1u

ÿ

IĂJ1,NK
IĄJ

pIβ
2|J |
N

ˇ

ˇ rHpaqpI, Jq ´ rHpI, Jq
ˇ

ˇ ď ζN´|J |. (8.56)

As a consequence we obtain that, for all N ě 1, for all a6 a0,

e´2pβγN1tα“1u

ÿ

IĂJ1,NK

ÿ

JĂI
JPΞpδ,Nq

pIβ
2|J |
N

ˇ

ˇ rHpaqpI, Jq ´ rHpI, Jq
ˇ

ˇ ď e ζ. (8.57)

Combining this lemma with Lemma 8.7 shows that for any fixed q, (8.50) can be made
arbitrarily small uniformly in N by choosing first δ small (so that (8.53) holds) and then a
small (so that (8.57) holds). This therefore shows the first part in (8.47).

Proof of Lemma 8.8. Of course, (8.57) follows easily from (8.56). Indeed from (8.56) the
sum in the r.h.s. of (8.57) is smaller than (using the binomial expansion)

ζ
ÿ

JĂJ1,NK

N´|J | “ ζp1`N´1qN . (8.58)

Let us warn the reader that the proof of (8.56) is quite lengthy and technical. We are

going to use another representation for rHpaqpI, Jq and rHpI, Jq as probabilities. Define,
for J Ă I Ă J1, NK,

Y paqpI, Jq “
ź

nPIA

`

1`βNη
paq
n,1

˘`

1`βNη
paq
n,2

˘

ź

nPIzJ

`

1`2βN p1´βN qη
paq
n ´β2

N

˘

ź

nPJ

p1`ηpaqn q
2

ˆ 1 
@iPI,1`ηiăqVN

(

X

 

@iPIc,@rPt1,2u,1`ηi,răqVN

( (8.59)
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and Y pI, Jq “ Y paqpI, Jq; we omit the dependence in pηn,1q, pηn,2q, pηnq in the notation

for simplicity. This way, we have rHpaqpI, Jq “ ErY paqpI, Jq1BN,qpIqs We now interpret

Y paqpI, Jq and Y pI, Jq as probability densities for pηn, ηn,1, ηn,2q
N
n“1. We define for J Ă

I Ă J1, NK

drPpaqI,J
dP

:“
Y paqpI, Jq

E
“

Y paqpI, Jq
‰ , (8.60)

and rPI,J “ rPp0qI,J . We have therefore reduced the problem to comparing the probability

of the event BN,qpIq under rPpaqI,J and rPI,J . By the triangle inequality, the left-hand side

of (8.56) is smaller than

ÿ

IĂJ1,NK
IĄJ

pIβ
2|J |
N E

“

Y pI, Jq
‰

ˇ

ˇ

ˇ

ˇ

ˇ

E
“

Y paqpI, Jq
‰

E
“

Y pI, Jq
‰

rPpaqI,J
`

BN,qpIq
˘

´ rPI,J
`

BN,qpIq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

. (8.61)

The expectation of Y paq and Y can be expressed as follows

E
“

Y paqpI, Jq
‰

“

´

1` βNE
“

η1t1`ηăqVN u
‰

¯2pN´|I|q

ˆ

´

1´ β2
N ` 2βN p1´ βN qE

“

η1
t1`ηăqVN

(

‰

¯|I|´|J |
E
“

p1` ηpaqq21t1`ηăqVN u
‰|J |

. (8.62)

In particular, when α ą 1, using that Erηs “ 0 we get that E
“

η1t1`ηăqVN us6 0, so

E
“

Y paqpI, Jq
‰

ď E
“

p1` ηpaqq21t1`ηăqVN u
‰|J |

.

When α “ 1, using again (7.12) (or see (8.45)-(8.46)) and the fact that e´
pβγNN

´1
is

bounded by a constant, we get that

e´2pβγNE
“

Y paqpI, Jq
‰

6C 1qC
|J |E

“

p1` ηpaqq21t1`ηăqVN u
‰|J |

.

In particular, we obtain that

e´2pβγN1tα“1u

ÿ

IĂJ1,NK
IĄJ

pIβ
2|J |
N E

“

Y pI, Jq
‰

ď C 1qC
|J |β

2|J |
N E

“

p1` ηq21t1`ηăqVN u
‰|J |

Pb2
`

@n P J, Sp1qn “ Sp2qn
˘

. (8.63)

Now, we can use that we are working with J P Ξpδ,Nq, for which we have

Pb2
`

@n P J, Sp1qn “ Sp2qn
˘

6
´ C0

pδNqd{2

¯|J |
6CδN

´ d
2
|J | ,

where Cδ “ pC0δ
´d{2q1{δ, using that |J |6 1{δ for J P Ξpδ,Nq. From the calculations of

Section 4.1 (or from (7.20)), we have β2
NE

“

p1` ηq21t1`ηďqVN u
‰

ď C
pβ,q
N

d
2
´1, so we that

e´2pβγN1tα“1u

ÿ

IĂJ1,NK
IĄJ

pIβ
2|J |
N E

“

Y pI, Jq
‰

ď C 1
pβ,q,δ

N´|J | , (8.64)
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with C 1
pβ,q,δ

“ CδpCpβ,q
q1{δ (using again that |J |6 1{δ). Hence to prove that (8.61) converges

indeed to 0 uniformly in N , we need to prove that for a fixed value of q and δ we have

lim
aÑ0

sup
Ně1

sup
JPΞpδ,Nq
JĂIĂJ1,NK

ˇ

ˇ

ˇ

ˇ

ˇ

E
“

Y paqpI, Jq
‰

E
“

Y pI, Jq
‰

rPpaqI,J
`

BN,qpIq
˘

´ rPI,J
`

BN,qpIq
˘

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 . (8.65)

Now, recalling the expression (8.62), we get that

E
“

Y paqpI, Jq
‰

E
“

Y pI, Jq
‰ “

E
“

p1` ηpaqq21t1`ηăqVN u
‰|J |

E
“

p1` ηq21t1`ηăqVN u
‰|J |

.

Analogously to the calculation done in (7.19), thanks to (4.3) we find that for any fixed
q ě 1 and a P r0, 1q we have, as N Ñ8,

E
“

p1` ηpaqq21t1`ηăqVN u
‰

“ E
”

p1` ηq21taVN 6 1`ηăqVN u

ı

` pκ
paq
N q

2P
`

1` η6 aVN
˘

“ p1` op1qq
α

2´ α

`

q2´α ´ a2´α
˘

V 2´α
N ϕpVN q. (8.66)

where the op1q term is uniform in a. Using the fact that |J |6 1{δ for any J P Ξpδ,Nq, we
therefore get that for every N ě 1

ˇ

ˇ

ˇ

ˇ

ˇ

E
“

Y paqpI, Jq
‰

E
“

Y pI, Jq
‰ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ˆE
“

p1` ηpaqq21t1`ηăqVN u
‰

E
“

p1` ηq21t1`ηăqVN u
‰

˙|J |

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď Cq,δ a
2´α . (8.67)

Hence to prove (8.65) we only need to check that (changing both events by their comple-
ment has no effect)

lim
aÑ0

sup
Ně1

sup
JPΞpδ,Nq
JĂIĂJ1,NK

ˇ

ˇ

ˇ

rPpaqI,J
`

B
A

N,qpIq
˘

´ rPI,J
`

B
A

N,qpIq
˘

ˇ

ˇ

ˇ
“ 0 . (8.68)

Now recalling the definition (8.49) of BN,q, we have that BN,qpIq does not occur if the
product of the variables η for some subset K Ă J1, NK assumes a high value. We are going
to split this event according to whether the points in K are well spaced or not. Given
δ1 ą 0 (which we are going to chose small and depending on δ) we have

B
A

N,qpIq “ C
p1q
q,δ1pIq Y C

p2q
q,δ1pIq, (8.69)

where

C
p1q
q,δ1pIq :“

ď

r“1,2

!

DK P Ξpδ1, Nq,
ź

iPKXI

p1` ηiq
ź

iPKXIA

p1` ηi,rq ě pqVN q
|K|

`

N´|K|ΠK

˘γ
)

,

C
p2q
q,δ1pIq :“

ď

r“1,2

!

DK R Ξpδ1, Nq,
ź

iPKXI

p1` ηiq
ź

iPKXIA

p1` ηi,rq ě pqVN q
|K|

`

N´|K|ΠK

˘γ
)

.

Hence we have
ˇ

ˇ

ˇ

rPpaqI,J
`

B
A

N,qpIq
˘

´ rPI,J
`

B
A

N,qpIq
˘

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

rPpaqI,J
`

C
p1q
q,δ1pIq

˘

´ rPI,J
`

C
p1q
q,δ1pIq

˘

ˇ

ˇ

ˇ

` rPpaqI,J
`

C
p2q
q,δ1pIq

˘

` rPI,J
`

C
p2q
q,δ1pIq

˘

,

and we need to show that all three terms are small. To estimate the probability of C
p2q
q,δ1pIq

under rPpaqI,J (and rPI,J), we use a union bound and estimates which are similar to the ones



THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER 39

previously used in Lemma 8.7. The calculations are heavy and we postpone the details to
the end of the section: the conclusion is summarized by the following lemma.

Lemma 8.9. For any ζ ą 0 and any fixed δ, q, there exists δ1 “ δ1pδ, q, ζq such that for
all J P Ξpδ,Nq and a P r0, 1q we have

rPpaqI,J
`

C
p2q
q,δ1pIq

˘

ď ζ. (8.70)

To conclude the proof of (8.68) (and thus of Lemma 8.8) we therefore need to show
that for fixed ζ, δ1, δ, q, if a is sufficiently small, i.e. if a ď a0pζ, δ

1, δ, qq, then we have for
all J P Ξpδ,Nq

ˇ

ˇ

ˇ

rPpaqI,J
`

C
p1q
q,δ1pIq

˘

´ rPI,J
`

C
p1q
q,δ1pIq

˘

ˇ

ˇ

ˇ
ď ζ . (8.71)

To show this we are going to prove that:

(˚) If a is sufficiently small, then for all values of N , the event C
p1q
q,δ1pIq is measurable

with respect to the σ-field

σ
`

pηpaqn , η
paq
n,1, η

paq
n,2q

N
n“1

˘

.

(˚˚) The two distributions

rPpaqI,J
´

pηpaqn , η
paq
n,1, η

paq
n,2qnPJ1,NK P ¨

¯

and rPI,J
´

pηpaqn , η
paq
n,1, η

paq
n,2qnPJ1,NK P ¨

¯

are close in total variation.

(˚). Note that we have, by definition of Ξpδ1, Nq and ΠK

@K P Ξpδ1, Nq,
`

N´|K|ΠK

˘

ě pδ1q|K| ě pδ1q1{δ
1

.

Also, recalling the definition (8.59) of Y paqpI, Jq, we notice that under both rPpaqI,J and rPI,J
all the environment variables 1` ηi, 1` ηi,r are capped by qVN . Hence, in order to have

ź

iPKXI

p1` ηiq
ź

iPKXIA

p1` ηi,rq ě pqVN q
|K|

`

N´|K|ΠK

˘γ
, for some K P Ξpδ1, Nq ,

it is necessary that all of the variables 1` ηi, 1` ηi,r involved are larger than qpδ1qγ{δ
1

VN
and thus part (˚) of the statement holds for a ď pδ1qγ{δ

1

.

(˚˚). Let us prove the following lemma, corresponding to our claim (˚˚).

Lemma 8.10. There exists a coupling Q between rPI,J and rPpaqI,J (the marginals of Q are

denoted pηn, ηn,1, ηn,2q
N
n“1, ppηn, pηn,1pηn,2q

N
n“1) which is such that Q-a.s.

#

η
paq
n,r “ pη

paq
n,r for r P 1, 2, @n P IA ,

η
paq
n “ pη

paq
n for n P IzJ,

(8.72)

and
Q
`

Dn P J, ηn ‰ pηn
˘

ď C |J | a2´α. (8.73)

Proof. Recalling the definition (8.59) of Y paqpI, Jq, we observe that both rPI,J and rPpaqI,J are
product measures. We then use three independent couplings for the marginals of both
measures, i.e. we couple ηn with pηn, ηn,1 with pηn,1 and ηn,2 with pηn,2, independently. To
obtain a coupling such that (8.72) holds, it is only sufficient to observe that the density
of the distributions of ηn,r and pηn,r coincide on raVN ,8q for r “ 1, 2 and n P IA, and
similarly for ηn and pηn for n P IzJ . For (8.73), we only need to check that the total
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variation between the two marginal distributions of ηn and pηn is small (for n P J): it is
sufficient to prove that

E

«ˇ

ˇ

ˇ

ˇ

ˇ

p1` ηq21t1`ηăqVN u

E
“

p1` ηq21tηăqVN u
‰ ´

p1` ηpaqq21t1`ηăqVN u

E
“

p1` ηpaqq21t1`ηăqVN u
‰

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď C
q,α,pβ

a2´α . (8.74)

The above inequality can be checked using the the computation in (8.66). �

We can now conclude the proof of (8.71). Using the coupling Q of Lemma 8.10, and using

that C
p1q
q,δ1pIq is measurable with respect to pηpaq, η

paq
1 , η

paq
2 q for a6 pδ1qγ{δ

1

, we therefore get

for a6 pδ1qγ{δ
1

ˇ

ˇ

ˇ

rPpaqI,J
`

C
p1q
q,δ1pIq

˘

´ rPI,J
`

C
p1q
q,δ1pIq

˘

ˇ

ˇ

ˇ
ď Q

´

pηpaq, η
paq
1 , η

paq
2 q ‰ ppηpaq, pη

paq
1 , pη

paq
2 q

¯

ď C|J |a2´α,

which can be made arbitrarily small by taking a small (recall that |J |6 1{δ for J P Ξpδ, nq).
Hence, we have established (8.71) and we are only left with proving Lemma 8.9. �

Proof of Lemma 8.9. First of all, notice that instead of considering the event C
p2q
q,δ1pIq, we

may by symmetry consider only the event corresponding to r “ 1. To simplify notation,

we may also consider only one sequence pηnq
N
n“1. We let pPpaqI,J denote the corresponding

reduced version of rPpaqI,J , defined by

dpPpaqI,J
dP

:“
pY paqpI, Jq

E
“

pY paqpI, Jq
‰
,

where pY paqpI, Jq is the reduced version of Y paqpI, Jq, i.e.

pY paqpI, Jq :“
ź

nPIA

`

1` βNη
paq
n

˘

ź

nPIzJ

`

1` 2βN p1´ βN qη
paq
n ´ β2

N

˘

ź

nPJ

p1` ηpaqn q
2

ˆ 1 
@nPJ1,NK,1`ηnăqVN

( .

Recalling the definition of the event Cq,δ1pIq, we also define its reduced version

Dq,δ1 :“
!

DK R Ξpδ1, Nq,
ź

iPK

p1` ηiq ě pqVN q
|K|

`

N´|K|ΠK

˘γ
)

. (8.75)

We therefore need to prove that if δ1 is fixed sufficiently small (depending on δ, q and ζ

but not on a), we have pPpaqI,JpDq,δ1q6 ζ{2 for any J P Ξpδ,Nq and I Ą J (uniformly in N).
Here, one difficulty is that the set K in the event Dq,δ1 may have non-empty intersection

with J and JA, on which the densities of ηn are very different. We are hence going to
simplify once more the problem, to reduce the event Dq,δ1 to sets K Ă JA. Since Dq,δ1

is an increasing event, it is sufficient to bound the probability of Dq,δ1 for a probability

that stochastically dominates pPpaqI,J . For instance we can consider a (product) measure pPpaqJ
under which 1` η

paq
n “ qVN for n P J and for which all the other coordinates have density

1`2βNη
paq
n (instead of 1`βNη

paq
n or 1`2βN p1´βN qη

paq
n ´β2

N ). The stochastic domination
follows from the fact that the functions

η ÞÑ
1` 2βNη

paq

1` βNηpaq
and η ÞÑ

1` 2βNη
paq

1´ β2
N ` 2βN p1´ βN qηpaq
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are non-decreasing and (8.9). Then we can observe repeating the computation (8.10) that
pPpaqJ is stochastically dominated by pPp0qJ “ pPJ .

Under pPJ , since 1 ` ηn “ qVN for n P J , the description of the event Dq,δ1 may be
simplified. In fact, we can observe that if K R Ξpδ1, Nq satisfies the condition in Dq,δ1 then
K Y J also does. Indeed, setting K 1 “ JzK we have

ź

iPKYJ

p1` ηiq “
ź

iPK

p1` ηiqpqVN q
|K1| ě pqVN q

´|KYJ |
`

N´|K|ΠK

˘γ

ě pqVN q
´|KYJ |

`

N´|KYJ |ΠKYJ

˘γ
, (8.76)

the last inequality follows from the fact that
`

N´|K|ΠK

˘

decreases when points are added.

We have thus pPJpDq,δ1q “
pPJp pDq,δ1pJqq, where we define

pDq,δ1pJq :“
!

DK Ă JA, K Y J R Ξpδ1, Nq,
ź

iPK

p1` ηiq ě pqVN q
|K|

`

N´|KYJ |ΠKYJ

˘γ
)

.

Noticing now that pDq,δ1pJq does not depend on ηn for n P J , we may change the distribution

of ηn for n P J . In other words, we have pPJp pDq,δ1pJqq “ pPN p pDq,δ1pJqq where pPN is the
measure defined by

dpPN
dP

:“
1

E
“

p1` 2βNηq1t1`ηăqVN u
‰N

N
ź

n“1

`

1` 2βNηn
˘

1t@nPJ1,NK,1`ηnăqVN u. (8.77)

For this, we will use some of the computations made in the proof of Lemma 8.1. Then,
recalling Claim 1 (in particular (8.15)), we can add the condition that for all n P K one

has 1` η
paq
n ě N´γVN , without modifying the event pDq,δ1pJq. Hence using a union bound

like in (8.17) we simply need to show that when δ1 is small the following sum is small

e´2pβγN1tα“1u

ÿ

KĂJA

KYJRΞpδ1,Nq

pPN
´

ź

iPK

p1` ηiq1t1`ηiěN´γVN u ě pqVN q
|K|

`

N´|K|´|J |ΠKYJ

˘γ
¯

,

uniformly in N and J P Ξpδ,Nq. We can use Lemma 8.4 with pPN instead of rPN to bound
the above sum. We can easily reduce to (8.20), replacing the factor 2 in the upper bound
by some larger constant —there is a factor 2 in front of βN in the l.h.s., using also that
Erp1`2βNηq1t1`ηăqVN us is bounded below by a positive constant. We stress that the rest
of the proof of Lemma 8.4 is also valid when α “ 1, since we only need that α ` ε

2 ą 1

in (8.22). Therefore, applying the conclusion of Lemma 8.4 with t “ pN´|KYJ |ΠKYJq
γ we

obtain for any arbitrary ε ą 0

pPN
`

pDq,δ1pJq
˘

ď
ÿ

KĂJA

KYJRΞpδ1,Nq

C
|K|
pβ,q,ε

N´K
`

N´|KYJ |ΠKYJ

˘γp1´α´εq
. (8.78)

We assume for the rest of the proof that ϑ :“ γpα ´ 1 ` εq P p0, 1q. Let s1 ă ¨ ¨ ¨ ă sm
denote the position of the points of J divided by N (we work with fixed values of psiq

N
i“0);

recall that by assumption we have J P Ξpδ,Nq so that si ´ si´1 ě δ. By a sum/integral
comparison, we therefore get that

pPN
`

pDq,δ1pJq
˘

ď

8
ÿ

k“1

pC 1
pβ,q,ε

qk
ż

∆kps,δ1q
πsptq

´ϑdt1 . . . dtk , (8.79)



42 THE SCALING LIMIT OF THE DIRECTED POLYMER WITH POWER-LAW TAIL DISORDER

where the set ∆kps, δ
1q is defined by (we set s0 “ 0 and sm`1 “ 1 by convention)

∆kps, δ
1q :“

"

0 ă t1 ă ¨ ¨ ¨ ă tk ă 1 : min
iPJ1,k´1K

pti`1 ´ tiq ^ min
iPJ1,kK

jPJ0,m`1K

|ti ´ sj | ď δ1
*

,

and the function πsptq is defined by

πsptq :“
k`m
ź

i“0

pui`1 ´ uiq,

where the puiq
k`m
i“1 are the ordered elements of ttiu

k
i“1Ytsju

m
j“1, u0 “ 0, uk`m`1 “ 1. Note

that we have added a last factor in the product πsptq compared to ΠKYJ , but it is smaller
than one and the exponent is ´ϑ ă 0. Now we have to bound (8.79) uniformly over all
sets s that are δ-spaced, which still requires some work. Let us define, for j P J0,mK, the
following subset of ∆kps, δ

1q:

∆j
kps, δ

1q “
 

0 ă t1 ă ¨ ¨ ¨ ă tk ă 1 : Di P J1, kK,

sj ď ti ă sj`1, and minpti ´ sj , ti ´ ti´1, sj`1 ´ tiq ď δ1
(

, (8.80)

with by convention sm`1 “ 1, s0 “ t0 “ 0. From (8.79), and using that ∆kps, δ
1q “

Ťm
j“0 ∆j

kps, δ
1q, we therefore get that

pPN
`

pDq,δ1pJq
˘

ď

m
ÿ

j“0

8
ÿ

k“1

pC 1
pβ,q,ε

qk
ż

∆j
kps,δ

1q

πpt, sq´ϑdt1 . . . dtk , (8.81)

and we control each integral in the last sum. Decomposing over the number `i of points tr
falling in psi, si`1q (which may be equal to 0 except for i “ j), we have after scaling on
each interval psi, si`1q

ż

∆j
kps,δ

1q

πpt, sq´ϑdt1 . . . dtk

“
ÿ

`0,...,`m, `jě1
`0`¨¨¨``m“k

ź

iPJ0,mKztju

psi`1 ´ siq
p1´ϑq`i´ϑ

Γp1´ ϑq`i`1

Γpp`i ` 1qp1´ ϑqq

ˆ psj`1 ´ sjq
p1´ϑq`j´ϑ

ż

0ăt1ă¨¨¨ăt`jă1

min06 r6 `j ptr`1´trq6 δ1{psj`1´sjq

`j
ź

r“0

ptr`1 ´ trq
´ϑdt1 . . . dtk .

In the last integral, we can use that sj`1 ´ sj ě δ. By symmetry, we can assume that the
minimum min06 r6 `j ptr`1 ´ trq is attained for r “ 1, losing a factor `j . This allows to
bound the integral in the last line by

`j

ż

0ăt1ă¨¨¨ăt`jă1

`j
ź

r“0

ptr`1 ´ trq
´ϑ1tt1ďδ1{δudt1 . . . dtk

“
`jΓp1´ ϑq

`i

Γp`ip1´ ϑqq

ż δ1{δ

0
t´ϑ1 p1´ t1q

p1´ϑqp`j´1q´ϑdt1 . (8.82)
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All together, bounding all the other psi`1 ´ siq by either 1 or δ and using that `j ě 1,
we get that

ż

∆j
kps,δ

1q

πpt, sq1´ϑdt1 . . . dtk

6
ÿ

`0,...,`m,`jě1
`1`¨¨¨``m“k

¨

˝

ź

iPJ0,mKztju

δ´ϑΓp1´ ϑq`i`1

Γpp`i ` 1qp1´ ϑqq

˛

‚ˆ
δ´ϑ`jΓp1´ ϑq

`i

Γp`ip1´ ϑqq

p1´ δ1{δq´ϑ

p1´ ϑq
pδ1{δq1´ϑ .

Note that by symmetry the upper bound does not depend on j. Going back to (8.81),
summing of all values for j and k and factorizing the sum we get that

pPN
`

pDq,δ1pJq
˘

6 pm` 1q

ˆ 8
ÿ

`“0

pC 1
pβ,q,ε

q`
δ´ϑΓp1´ ϑqq`

Γpp`` 1qp1´ ϑq ` 1qq

˙m´1

ˆ
p1´ δ1{δq´ϑ

p1´ ϑq
pδ1{δq1´ϑ

8
ÿ

`“1

` pC 1
pβ,q,ε

q`
Γp1´ ϑqq`

Γp`p1´ ϑqq
.

All the sums are finite, and using that m “ |J |6 1{δ (recall that J P Ξpδ,Nq), we can

therefore choose δ1 small enough (how small depends only on δ) so that pPN p pDq,δ1pJqq6 ζ{2.
�

8.5. Adapting the proof to the case of general bounded f . Let us focus on the
proof developped for d ě 2, since it also works in dimension 1. For simplicity of notation,
we assume here that α P p1, αcq but the case α “ 1 is exactly the same. We define

W a,q
N pfq :“ E

„

fpSpNqq
N
ź

n“1

`

1` βNη
paq
n,Sn

˘

1BN,qpSq



. (8.83)

Similarly to Lemma 8.1 and Proposition 8.3, we need to prove

lim
qÑ8

sup
aPr0,1q

sup
Ně1

E
“

|W a,q
N pfq ´ ZaN pfq|

‰

“ 0

lim
aÑ0

sup
Ně1

E
”

`

W a,q
N pfq ´W 0,q

N pfq
˘2
ı

“ 0.
(8.84)

For the first line, recalling (8.7) we have

E
“

|W a,q
N pfq ´W a

N pfq|
‰

s ď E
”

|fpSpNqq| rPpaqS rB
A
N,qpSqs

ı

ď }f}8E
”

rPpaqS rB
A
N,qpSqs

ı

, (8.85)

and we can conclude using the proof of Lemma 8.1 (recall we proved (8.8)). Now for the
second line of (8.84), we need to prove the analog of (8.47). As in the case f ” 1 we focus
on

lim
aÑ0

sup
Ně1

´

E
“

W a,q
N pfq2

‰

´ E
“

W 0,q
N pfq2

‰

¯

“ 0. (8.86)

We can follow the computation of Section 8.4.2. We can rewrite the above quantity as in
(8.48) but replacing pI by

pIpfq :“ Eb2
”

fpSpN,1qqfpSpN,2qq1tIN pSp1q,Sp2qq“Iu

ı

where, with some abuse of notation SpN,1q and SpN,2q denote the rescaled version of the
two independent random walks Sp1q and Sp2q. One can then proceed with the proof exactly
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as above, observing that since pIpfq ď }f}
2
8pI , Lemma 8.7 and Lemma 8.8 remain valid

when pI is replaced by pIpfq. �

Appendix A. Stochastic comparison: expectation vs. integrals

We introduce here a technical result which allows to replace some expectations with
respect to a random variable whose law µ satisfies µpru,`8qq “ ϕpuqu´α by integrals

with respect to the measure with density αu´p1`αqϕpuqdu (which is not necessarily a
probability).

Proposition A.1. Let µ be a probability measure on R` that satisfies µ
`

rt,`8q
˘

“

ϕptqt´α for some slowly varying ϕ. There exist constants C and B0 (depending on ϕ and
α) such that for all k P N and for all non-decreasing function f : Rk` Ñ R` with fp0q “ 0,
and all B ě B0, we have

ż

r0,Bqk
fpu1, ¨ ¨ ¨ , ukq

k
ź

i“1

µpdukq ď Ck
ż

r0,2Bqk
fpu1, ¨ ¨ ¨ , ukq

k
ź

i“1

u
´p1`αq
i ϕpuiqdui .

Proof. The first remark is that we need to show the result only in the case k “ 1. In-
tegrating successively the functions ui ÞÑ fpu1, . . . , ukq then yields the result. Also, it is
sufficient to check the result for a function f that is differentiable and bounded (the other
cases can be obtained by monotone convergence). We set F puq “ µpru,8qq. Using an
integration by part, and applying these inequalities (recall that f 1puq ě 0) we get

ż

r0,Bq
fpuqµpduq “

ż

r0,Bq
f 1puqF puqdu´ fpBqF pBq (A.1)

Now we set

ϕpuq :“ uα
ż 8

u
αv´p1`αqϕpvqdv.

Since ϕ is asymptotically equivalent to ϕ at 8, and to αuα log u at 0, we have ϕ ď Cϕ.

ż

r0,Bq
f 1puqF puqdu ď C

ż

r0,Bq
f 1puqu´αϕpuqdu

“ Cα

˜

ż

r0,Bq
fpuqu´p1´αqϕpuqdu` fpBqB´αϕpBq

¸

. (A.2)

where we used another integration by part for the last identity. Hence we obtain that
ż

r0,Bq
fpuqµpduq ď Cα

ż

r0,Bq
fpuqu´p1´αqϕpuqdu` pCα´ 1qfpBqB´αϕpBq. (A.3)

Now, to conclude with use that f is non-decreasing and that ϕ and ϕ are asymptotically
equivalent to obtain that for B sufficiently large

fpBqB´αϕpBq ď C 1
ż

rB,2Bq
fpuqu´p1`αqϕpuqdu,

so that the second term in (A.3) can be absorbed into the first one. �
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Proposition A.2. Let µ be a probability measure on R` such that µ
`

rt,8q
˘

6 t´αϕptq
for all t ě 0, for some constant C, with α P r1, 2q. Then for all k P N and for all
non-increasing function f : Rk` Ñ R` with bounded support, we have

ż

Rk`
fpu1, ¨ ¨ ¨ , ukq

k
ź

i“1

u2
iµpduiq ď Ck

ż

Rk`
fpu1, ¨ ¨ ¨ , ukq

k
ź

i“1

u1´α
i ϕpuiqdu. (A.4)

Proof. As for Proposition A.1, we only need to prove the result in the case k “ 1, for a
differentiable function f . Let T be such that the support of f is included in r0, T q and
that of f 1 is included in p0, T q. We define rϕ by

rϕpuq “ p2´ αquα´2

ż t

0
ϕpuqu1´αdu. (A.5)

We also let rµ denote the measure on r0, T s defined by rµpdtq “ t2µpdtq. By an integration
by parts, we get that our assumption implies that for t sufficiently large

rµpr0, tqq “

ż t

0
s2µpdsq “ ´t2´αϕptq `

ż t

0
2s1´αϕpsqds ď

2α

2´ α
t2´α rϕptq.

Note that the inequality is also valid for small t (using u´αϕpuq ď 1 which implies that
rϕptq ď Ctα) with some different constant. Therefore, thanks to an integration by parts
(using that fpT q “ 0), we get that

ż

r0,T s
fpuqu2µpduq “ ´

ż

r0,T s
f 1puqrµpr0, usqdu ď C

ż

r0,T s
p´f 1puqqu2´α

rϕpuqdu ,

where we have used that ´f 1puq ě 0 so the inequality goes in the right direction. We
conclude the proof by another integration by parts. �

Appendix B. Tightness for ξηN

First of all, let us recall the definition of the functional space Hs
locpRd`1q. Given s P R,

let HspRd`1q be the space defined as the topological closure of the space of smooth and
compactly supported function, with respect to the norm

}f}Hs “

´

ż

Rd`1

p1` |z|2qs| pfpzq|2dz
¯1{2

,

where pfpzq “
ş

Rd`1 fpxqe
´ix¨zdx is the Fourier transform of f . The associated local Sobolev

space is given by

Hs
locpRd`1q :“

 

f : fψ P Hs for every compactly supported ψ P C8
(

with the topology induced by the family of semi-norms p}fψ}Hsqψ.

Proof of Lemma 3.7. First of all, let us notice that with

ξN,η ´ ξ
pbq
N,η :“

1

VN

ÿ

pn,xqPHd

ηpbqn,x δp nN ,
x?
N{d

q , (B.1)

where

ηpbqn,x :“
`

ηn,x ´ E
“

η
ˇ

ˇ η ă bVN
‰˘

1tηn,xăbVN u . (B.2)
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Notice that Erηpbqn,xs “ 0 and V ´2
N Erpηpbqn,xq2s6Cb2´αN´p

d
2
`1q for N ě N0pbq sufficiently

large thanks to (4.3). Hence we have

E
”

xξN,η ´ ξ
pbq
N,η, ψy

2
ı

ď Cb2´αN´p
d
2
`1q

ÿ

pn,xqPHd
ψ

˜

n

N
,

x
a

N{d

¸2

. (B.3)

Since the Rieman sum in the r.h.s. converges, this is sufficient to conclude the proof. �

Proof of Proposition 3.2. We have to show that for every smooth ψ with compact support,

the sequence ξη,ψN :“ ψ ˆ ξηN is tight in HspRd`1q. This corresponds to showing that pξη,ψN
is tight in L2pµsq for µs “ p1` |z|2q´sdz.

We are going to show that with large probability pξη,ψN P KR where KR is defined (for a
fixed s1 ą s)

KR :“

"

f :

ż

|fpzq|2p1` |z|2q´s
1

dz ď R

and @a P Rd`1,

ż

|fpz ` aq ´ fpzq|2p1` |z|2q´sdz ď R|a|

*

. (B.4)

Since KR is compact (by Frechet-Kolmogorov criterion) this is sufficient to conclude that

the distribution of ξη,ψN is tight.

To see that pξη,ψN P KR with large probability, we first observe that ξη,ψN coincides with

large probability with ξ
η,ψ,r0,bq
N (constructed from the environment ηr0,bq, recall (3.8)). Then

we have by a computation similar to (B.3), for all N sufficiently large

E
”

ˇ

ˇpξ
η,ψ,r0,bq
N pzq

ˇ

ˇ

2
ı

ď Cb

´

ż

|ψ|2
¯

(B.5)

so that

P
„
ż

ˇ

ˇ

ˇ

pξ
η,ψ,r0,bq
N pzq

ˇ

ˇ

ˇ

2
p1` |z|2q´s

1

ds1 ě R



ď
1

R
Cb,ψ . (B.6)

For the second point we observe that

E
„

ˇ

ˇ

ˇ

pξ
η,ψ,r0,bq
N pz ` aq ´ pξ

η,ψ,r0,bq
N paq

ˇ

ˇ

ˇ

2


ď C 1b,ψ|a|
2

ż

|x|2|ψpxq|2dx. (B.7)

(Note that pξ
η,ψ,r0,bq
N pz` aq´ pξ

η,ψ,r0,bq
N paq is the Fourrier transform of peia.¨´ 1qψˆ ξ

η,ψ,r0,bq
N ,

so we are simply bounding the first factor by |a||x|.) We therefore have that

P
ˆ
ż

ˇ

ˇ

ˇ

pξ
η,ψ,r0,bq
N pz ` aq ´ pξ

η,ψ,r0,bq
N paq

ˇ

ˇ

ˇ

2
p1` |z|2q´sds ě |a|

˙

ď C2b,ψ|a|. (B.8)

Hence, using a union bound, we obtain that

P
ˆ

Dk ě k0, Di P J1, dK
ż

ˇ

ˇ

ˇ

pξ
η,ψ,r0,bq
N pz ` 2´keiq ´ pξ

η,ψ,r0,bq
N pzq

ˇ

ˇ

ˇ

2
p1` |z|2q´sds ě 2´k

˙

ď εpk0q,

with limk0Ñ8 εpk0q “ 0. This is sufficient to conclude that pξ
η,ψ,r0,bq
N P KR with probability

close to one, and thus so is pξη,ψN . �
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