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Abstract

Can an agent learn efficiently in a noisy and self adapt-
ing environment with sequential, non-stationary and non-
homogeneous observations? Through trading bots, we illus-
trate how Deep Reinforcement Learning (DRL) can tackle
this challenge. Our contributions are threefold: (i) the use of
contextual information also referred to as augmented state in
DRL, (ii) the impact of a one period lag between observations
and actions that is more realistic for an asset management en-
vironment, (iii) the implementation of a new repetitive train
test method called walk forward analysis, similar in spirit to
cross validation for time series. Although our experiment is
on trading bots, it can easily be translated to other bot envi-
ronments that operate in sequential environment with regime
changes and noisy data. Our experiment for an augmented as-
set manager interested in finding the best portfolio for hedg-
ing strategies shows that AAMDRL achieves superior returns
and lower risk.

Introduction
Can a bot learn efficiently in a noisy and self adapt-
ing environment with sequential, non-stationary and non-
homogeneous observations? By noisy and non homoge-
neous, we mean that data have different statistical proper-
ties across time. By sequential observations, we mean that
chronological order matters and that observations are com-
pletely modified if we change their order. To answer this
question, we use trading bots that offer a perfect example
of noisy data, strongly sequential observations subject to
change of regime. We aim at creating an augmented asset
manager bot for the asset management industry.

Asset management is a well-suited industry to apply
robotic machine learning: large amount of data available due
to electronic tradings and strategic interest in bots as they do
not give any hold on emotional and or behavioral bias largely
described in Kahneman (2011) that can cause the asset man-
ager ruin. However, machine learning is hardly used to make
investment decision. Because of the complexity of the learn-
ing environment, asset managers are still largely relying on
traditional methods, based on human decisions.

This is in sharp contrast with recent advances of deep re-
inforcement learning (DRL) on challenging tasks like game
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(Atari games from raw pixel inputs Mnih et al. (2013, 2015),
Go Silver et al. (2016), StarCraft II Vinyals et al. (2019)),
but also more robotic learning like advanced locomotion and
manipulation skills from raw sensory inputs (Levine et al.
(2015, 2016) Schulman et al. (2015a,b, 2017), Lillicrap et al.
(2015)), autonomous driving (Wang, Jia, and Weng (2018))
and general bot learning (Gu et al. (2017)).

We investigate if deep reinforcement learning can help
creating an augmented asset manager when solving a classi-
cal portfolio allocation problem: finding hedging strategies
to an existing portfolio, the MSCI World index in our exam-
ple. The hedging strategies are different strategies operated
by standard bots that have different logics and perform well
in different market conditions. Knowing when to add and
remove them and when to decrease or increase their asset
under management is a fundamental but challenging ques-
tion for an augmented asset manager.

Related works
At first, reinforcement learning was not used in portfolio al-
location. Initial works focused on trying to use deep net-
works to forecast next period prices, as presented in Fre-
itas, De Souza, and Almeida (2009), Niaki and Hoseinzade
(2013), Heaton, Polson, and Witte (2017). These models
solved a supervised learning task akin to a regression, and
tried to predict prices using past information only and com-
pute portfolio allocations based on forecast. For asset man-
agers, this initial usage of machine learning contains multi-
ple problems. First, it does not ensure that the prediction is
reliable in the near future: financial markets are well known
to be non stationary and to present regime changes as il-
lustrated in Salhi et al. (2015), Dias, Vermunt, and Ramos
(2015), Zheng, Li, and Xu (2019). Second, this approach
does not address the question of finding the optimal portfo-
lio based on some reward metrics. Third, it does not adapt to
changing environment and does not easily incorporate trans-
action costs.

A second stream of research around deep reinforcement
learning has emerged to address those points: Jiang and
Liang (2016); Zhengyao et al. (2017); Liang et al. (2018);
Yu et al. (2019); Wang and Zhou (2019); Liu et al. (2020);
Ye et al. (2020); Li et al. (2019); Xiong et al. (2019). The
dynamic nature of reinforcement learning makes it an ob-
vious candidate for changing environment Jiang and Liang
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(2016); Zhengyao et al. (2017); Liang et al. (2018), Ben-
hamou et al. (2020a), Benhamou et al. (2020b). Transaction
costs can be easily included in rules Liang et al. (2018); Yu
et al. (2019); Wang and Zhou (2019); Liu et al. (2020); Ye
et al. (2020); Yu et al. (2019). However, these works, except
Ye et al. (2020) rely on time series of open high low close
prices, which are known to be very noisy. Secondly, they all
assume an immediate action after observing prices which is
quite different from reality as asset managers need a one day
turnaround to manage new portfolio positions. Thirdly, they
mostly rely on a single reward function and do not measure
the impact of the reward function. Last but not least, they
only do one train and test period, and never test for model
stability.

More generally, DRL has recently been applied to other
problems than portfolio allocation and direct trading strate-
gies Zhang, Zohren, and Roberts (2019), Huang (2018),
Théate and Ernst (2020), Nan, Perumal, and Zaiane (2020),
Wu et al. (2020) or to the case of multi agents Bao and yang
Liu (2019) or to optimal execution Ning, Lin, and Jaimungal
(2018).

Contributions
Our contributions are threefold:

• The addition of contextual information. Using just past
information is not sufficient for bot learning in a noisy and
fast changing environment. The addition of contextual in-
formation improves results significantly. Technically, we
create two sub-networks: one fed with direct observations
(past prices and standard deviation) and another one with
contextual information (level of risk aversion in finan-
cial markets, early warning indicators for future recession,
corporate earnings...).

• One day lag between price observation and action. We
assume that prices are observed at time t but action only
occurs at time t + 1, to be consistent with reality. This
one day lag makes the RL problem more realistic but also
more challenging.

• The walk-forward procedure. Because of the non sta-
tionarity nature of time dependent data and especially fi-
nancial data, it is crucial to test DRL models stability.
We present a new methodology in DRL model evalua-
tion referred to as walk forward analysis that iteratively
trains and tests the model on extending data-set. This can
be seen as the analogy of cross validation for time se-
ries. This allows to validate that selected hyper parameters
work well over time and that resulting models are stable
over time.

Background and mathematical formulation
In standard bot reinforcement learning, models are based
on Markov Decision Process (MDP) as in Sutton and Barto
(2018). MDP assumes that the bot knows all the states of the
environment and has all the information to make the optimal
decision in every state. The Markov property in addition im-
plies that knowing the current state is sufficient.

Yet, the traditional MDP framework is inappropriate here:
noise may arise in financial market data due to unpre-
dictable external events. We prefer to use Partially Ob-
servable Markov Decision Process (POMDP) as presented
initially in Astrom (1969). In POMDP, only a subset of
the information of a given state is available. The partially-
informed agent cannot behave optimally. He uses a window
of past observations to replace states as in a traditional MDP.

Mathematically, POMDP is a generalization of MDP. Re-
call that MDP assumes a 4-tuple (S,A,P,R) where S is
the set of states, A is the set of actions, P is the state action
to next state transition probability functionP : S×A×S →
[0, 1], and R is the immediate reward. The goal of the agent
is to learn a policy that maps states to the optimal action
µ : S → A and that maximizes the expected discounted
reward E[

∑∞
t=0 γ

tRt]. POMPD adds two more variables in
the tuple,O and Z whereO is the set of observations and Z
is the observation transition functionZ : S×A×O → [0, 1].
At each time, the agent is asked to take an action at ∈ A
in a particular environment state st ∈ S, that is followed by
the next state st+1 with transition probabilityP(st+1|st, at).
The next state st+1 is not observed by the agent. It rather
receives an observation ot+1 ∈ O on the state st+1 with
probability Z(ot+1|st+1, at).

From a practical standpoint, the general RL setting is
modified by taking a pseudo state formed with a set of
past observations (ot−n, ot−n−1, . . . , ot−1, ot). In practice
to avoid large dimension and the curse of dimension, it is
useful to reduce this set and take only a subset of these
past observations with j < n past observations, such that
0 < i1 < . . . < ij and ik,1≤k≤j ∈ N is an integer. The set
δ1 = (0, i1, . . . , ij) is called the observation lags. In our ex-
periment we typically use lag periods like (0, 1, 2, 3, 4, 20,
60) for daily data, where the tuple (0, 1, 2, 3, 4) is indeed the
last week observation, 20 is for the one-month ago observa-
tion (as there is approximately 20 business days in a month)
and 60 the three-month ago observation.

Observations

Regular observations There are two types of observa-
tions: regular and contextual information. Regular observa-
tions are data directly linked to the problem to solve. For
a standard bot, these are observations from its environment
like position of the arm, degree, etc. In the case of a trad-
ing bot, regular observations are past prices observed over
a lag period δ = (0 < i1 < . . . < ij). To re-normalize

data, we rather use past returns computed as rkt =
pkt
pkt−1

− 1

where pkt is the price at time t of the asset k. For a financial
asset k, to give information about regime changes, our trad-
ing bot receives also empirical standard deviation computed
over a sliding estimation window denoted by d as follows

σkt =
√

1
d

∑t
u=t−d+1 (r

k
u − µ)

2, where the empirical mean

µk is computed as µk = 1
d

∑t
u=t−d+1 r

k
u. Hence our regu-

lar observations is a three dimensional tensor represented as
follows:
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Returns A1
t

Volatility A2
t

with A1
t =

 r1t−ij ... r
1
t

... ... ...
rmt−ij .... r

m
t

, A2
t =

 σ1
t−ij ... σ

1
t

... ... ...
σmt−ij .... σ

m
t


This setting with two layers (past returns and past volatil-

ities) is quite different from the one presented in Jiang and
Liang (2016); Zhengyao et al. (2017); Liang et al. (2018)
that uses different layers representing open, high, low and
close prices. There are various remarks to be made. First,
high low information does not make sense for portfolio
strategies that are only evaluated daily, which is the case
of all the funds. Secondly, open high low prices tend to be
highly correlated creating some noise in the inputs. Third,
the concept of volatility is crucial to detect regime change
and is surprisingly absent from these works as well as from
other works like Yu et al. (2019); Wang and Zhou (2019);
Liu et al. (2020); Ye et al. (2020); Li et al. (2019); Xiong
et al. (2019).

Context observation Contextual observations are addi-
tional information that provides intuition about current con-
text. For our asset manager bot, they are other financial data
not directly linked to its portfolio assumed to have some
predictive power for portfolio assets. In the case of a finan-
cial portfolio, context information is typically modelled by
a large range of features :

• the level of risk aversion in financial markets, or market
sentiment, measured as an indicator varying between 0 for
maximum risk aversion and 1 for maximum risk appetite,

• the bond/equity historical correlation, a classical ex-
post measure of the diversification benefits of a dura-
tion hedge, measured on a 1-month, 3-month and 1-year
rolling window,

• The credit spreads of global corporate - investment grade,
high yield, in Europe and in the US - known to be an early
indicator of potential economic tensions,

• The equity implied volatility, a measure if the ’fear factor’
in financial market,

• The spread between the yield of Italian government bonds
and the German government bond, a measure of potential
tensions in the European Union,

• The US Treasury slope, a classical early indicator for US
recession,

• And some more financial variables, often used as a gauge
for global trade and activity: the dollar, the level of rates
in the US, the estimated earnings per shares (EPS).

On top of these observations, we also include the maxi-
mum and minimum portfolio strategies return and the maxi-
mum portfolio strategies volatility. The latter information is
like for regular observations motivated by the stylized fact
that standard deviations are useful features to detect crisis.

Contextual observations are stored in a 2D matrix denoted
byCt with stacked past p individual contextual observations.

The contextual state writes as Ct =

 c1t ... c
1
t−ik

... ... ...
cpt .... c

p
t−ik

. The

matrix nature of contextual states Ct implies in particular
that we will use 1D convolutions should we use convolu-
tional layers. All in all, observations that are augmented ob-
servations, write as Ot = [At, Ct], with At = [A1

t , A
2
t ] that

will feed the two sub-networks of our global network as pre-
sented in figure 1.

Figure 1: Network architecture

Action

In our deep reinforcement learning the augmented asset
manager trading bot needs to decide at each period in which
hedging strategy it invests. The augmented asset manager
can invest in l strategies that can be simple strategies or
strategies that are also done by asset management bots. To
cope with reality, the bot will only be able to act after one
period. This is because asset managers have a one day turn
around to change their positions. We will see on experiments
that this one day turnaround lag makes a big difference in re-
sults. As it has access to l potential hedging strategies, the
output is a l dimension vector that provides how much it in-
vests in each hedging strategy. For our deep network, this
means that the last layer is a softmax layer to ensure that
portfolio weights are between 0 and 100% and sum to 1.

Reward

There are multiple choices for our reward. A straightforward
reward function is to compute the final net performance of
the combination of our portfolio computed as the value of
our portfolio at the last train date tT over the initial value
of the portfolio t0 minus one: PtT /Pt0 − 1. Another natu-
ral reward function is to compute the Sortino ratio, that is
a variation of Sharpe ratio where risk is computed by the
downside standard deviation (instead of regular standard de-
viation) whose definition is to compute the standard devi-
ation only on negative daily returns denoted by (r̃t)t=0..T

. Hence the downside standard deviation is computed by√
250× StdDev[(r̃t)t=0..T ].
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Adversarial Policy Gradient
A policy is a mapping from the observation space to the
action space, π : O → A. To achieve this, a pol-
icy is specified by a deep network with a set of parame-
ters ~θ. The action is a vector function of the observation
given the parameters: ~at = π~θ(ot). The performance met-
ric of π~θ for time interval [0, t] is defined as the corre-
sponding total reward function of the interval J[0,t](π~θ) =

R
(
~o1, π~θ(o1), · · · , ~ot, π~θ(ot), ~ot+1

)
. After random initial-

ization, the parameters are continuously updated along the
gradient direction with a learning rate λ: ~θ −→ ~θ +
λ∇~θJ[0,t](π~θ). The gradient ascent optimization is done
with standard Adam (short term for Adaptive Moment Es-
timation) optimizer to have the benefit of adaptive gradient
descent with root mean square propagation Kingma and Ba
(2014). The whole process is summarized in algorithm 1,
called adversarial policy gradient as we introduce randomi-
sation both in the observations and the action (to have stan-
dard exploration exploitation). This two steps randomization
ensures more robust training as we will see in the experi-
ments. Noise in observations has already been suggested to
improve training in Liang et al. (2018).

Algorithm 1 Adversarial Policy Gradient

1: Input: initial policy parameters θ, empty replay bufferD

2: repeat
3: reset replay buffer
4: while not terminal do
5: Observe observation o and select action a = πθ(o)

with probability p and random action with proba-
bility 1− p,

6: Execute a in the environment
7: Observe next observation o′, reward r, and done

signal d to indicate whether o′ is terminal
8: apply noise to next observation o′
9: store (o, a, o′) in replay buffer D

10: if Terminal then
11: for however many updates in D do
12: compute final reward R
13: end for
14: update network parameter with Adam gradient

ascent ~θ −→ ~θ + λ∇~θJ[0,t](π~θ)
15: end if
16: end while
17: until convergence

Walk forward analysis
In machine learning, the standard approach is to do k-fold
cross validation as shown in figure 2. White rectangles rep-
resent training periods while grey rectangles testing periods.
This approach breaks the chronology of data and potentially
uses past data in the test set. Rather, we can take sliding test
set and take past data as training data. We can either take
the training data set with a fixed starting point and grow the
training data set by adding more and more data, which is

what we call extending walk forward as shown in figure 3 or
take always the same amount of data and slide the training
data (figure 4), hence the name of sliding walk forward. Ex-
tending walk forward tends to more stable models as we add
incrementally new data, at each new training step, and share
all past data. The negative effect of this is to adapt slowly
to new information. On the opposite, sliding walk forward
leads to more rapidly changing models as we progressively
drop old data and hence give more weight to more recent
data. To our experience, because we do not have so much
data to train our DRL model, it is better to use extending
walk forward. Last but not least, as the test set is always af-
ter the train set, walk forward analysis gives less steps com-
pared to cross validation. In practice for our data set, we train
our models from 2000 to end of 2006 (to have at least seven
years of data) and use an extending test period of one year.

Test

Test

Test

Test

TestStep 1:

Step 2:

Step 3:

Step 4:

Step 5:

Figure 2: k-fold cross validation

Test

Test

Test

TestStep 1:

Step 2:

Step 3:

Step 4:

Figure 3: Extending Walk Forward

Test

Test

Test

TestStep 1:

Step 2:

Step 3:

Step 4:

Figure 4: Sliding Walk Forward

Experiments
Goal of the experiment
We are interested in finding a hedging strategy for a risky
asset. The experiment is using daily data from 01/05/2000
to 19/06/2020. The risky asset is the MSCI world index
(see https://www.msci.com/ - data source: SG CIB). We
choose the MSCI world index because it is a good proxy
for a wide range of asset manager portfolios. The hedg-
ing strategies are 4 SG CIB proprietary systematic strate-
gies (see https://sgi.sgmarkets.com/ - data source: SG CIB),
computed and executed by trading bots and further described
below. As we use extending walk forward traning, train set
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is initially from 2000 to 2006 with a test set in 2007, then
training set is from 2000 to 2007, with a test set in 2008,
and etc up to the last training set which is from 2000 to 2019
with a test set in 2020.

Data-set description
Systematic strategies are asset management bots that invest
in financial markets according to adaptive and pre-defined
trading rules. Here, we use 4 SG CIB proprietary ’hedg-
ing strategies’, that tend to perform when stock markets are
down:

• Directional hedges - react to small negative return in eq-
uities,

• Gap risk hedges - perform well in sudden market crashes,

• Proxy hedges - tend to perform in some market config-
urations, like for example when highly indebted stocks
under-perform other stocks,

• Duration hedges - invest in bond market, a classical diver-
sifier to equity risk in finance.

The underlying financial instruments vary from put op-
tions, listed futures, single stocks, to government bonds.
Some of those strategies are akin to an insurance contract
and bear a negative cost over the long run. The challenge
consists in balancing cost versus benefits. In practice, asset
managers have to decide how much of these hedging strate-
gies are needed on top of an existing portfolio to achieve
a better risk reward. The decision making process is often
based on contextual information, such as the economic and
geopolitical environment, the level of risk aversion among
investors and other correlation regimes. A cross validation
step selects the most relevant features contextual informa-
tion. In the present case, the first three features are selected.
The rebalancing of strategies in the portfolio comes with
transaction costs, that can be quite high since hedges use
options. Transactions costs are like frictions in physical sys-
tems. They are taken into account dynamically to penalise
solutions with a high turnover rate.

Evaluation metrics
Asset managers use a wide range of metrics to gauge the suc-
cess of their investment decision. For a thorough review of
those metrics, see for example Cogneau and Hübner (2009).
To keep things simple, we use the following metrics:

• annualized return defined as the average annualized com-
pounded return,

• annualized daily based Sharpe ratio defined as the ratio
of the annualized return over the annualized daily based
volatility µ/σ,

• Sortino ratio computed as the ratio of the annualized re-
turn overt the downside standard deviation,

• maximum drawdown denoted by max DD in table 4.

Let PT be the final value of the portfolio at time T and
P0 its initial value at time t = 0. Let τ be the year frac-
tion of the final time T . The annualized return is defined as

µ = (PT /P0)
1/τ − 1. The maximum drawdown is com-

puted as the maximum of all daily drawdowns. The daily
drawdown is computed as the ratio of the difference be-
tween the running maximum of the portfolio value (RMT =
maxt=0..T (Pt) ) and the portfolio value over the running
maximum of the portfolio value. Hence DDT = (RMT −
PT )/RMT and MDDT = maxt=0..T (DDt).

Baseline
Pure risky asset This first evaluation is to compare our
portfolio composed only of the risky asset (in our case, the
MSCI world index) with the one augmented by the trading
bot and composed of the risky asset and the hedging overlay.
If our bot is successful in identifying good hedging strate-
gies, it should improve the overall portfolio and have a better
performance than the risky asset.

Markowitz theory The standard approach for portfolio
allocation in finance is the Markowitz model (Markowitz
(1952)). It computes the portfolio with minimum variance
given an expected return which is taken in our experiment to
be the average return of the hedging strategies over the last
year. The intuition in Markowitz (or mean-variance portfo-
lio) theory is that an investor wants to have the lowest risk for
a given return. In practice, we solve a quadratic program that
finds the minimum portfolio variance under the constraint
that the expected return is greater or equal to the minimum
return. In our baseline, Markowitz portfolio is recomputed
every 6 months to have something dynamic to cope with
regime changes.

Follow the winner This is a simple strategy that consists
in selecting the hedging strategy that was the best performer
in the past year. If there is some persistence over time of the
hedging strategies’ performance, this simple methodology
should work well. It replicates standard investors behavior
that tend to select strategies that performed well in the past.

Follow the loser Follow the loser is the opposite of follow
the winner. It assumes that there is some mean reversion in
strategies’ performance, meaning that strategies tend to per-
form equally well on long term and mean revert around their
trend. Hence if a strategy did not perform well in the past,
and if there is mean reversion, there is a lot of chance that
this strategy will recover with its pairs.

Results and discussion
We compare the performance of the following 5 models:
DRL model based on convolutional networks with contex-
tual states (Sentiment indicator, 6 month correlation between
equity and bonds and credit main index), same DRL model
without contextual states, follow the winner, follow the loser
and Markowitz portfolio. The resulting graphics are dis-
played in figure 5 with the risky asset position alone in blue
and the models in orange. Out of these 5 models, only DRL
and Follow the winner are able to provide significant net
performance increase thanks to an efficient hedging strategy
over the 2007 to 2020 period. The DRL model is in addition
able to better adapt to the Covid crisis and to have better ef-
ficiency in net return but also Sharpe and Sortino ratios over
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3 and 5 years as shown in table 4. In terms of the smallest
maximum drawdown, the follow the loser model is able to
significantly reduce maximum drawdown but at the price of
a lower return, Sharpe and Sortino ratios. Removing con-
textual information deteriorates model performances signif-
icantly and is illustrated by the difference in term of return,
Sharpe, Sortino ratio and maximum drawdown between the
DRL and the DRL no context model. Last but not least,
Markowitz model is not able to adapt to the new regime
change of 2015 onwards despite its good performance from
2007 to 2015. It is the worst performer over the last 3 and
5 years because of this lack of adaptation. For all models,
we use the walk forward analysis as described in the corre-
sponding section. Hence, we start training the models from
2000 to end of 2006 and use the best model on the test set
in 2007. We then train the model from 2000 to end of 2007
and use the best model on the test set in 2008. In total, we do
14 training (from 2007 to 2020). This process ensures that
we detect models that are unstable over time and is similar
in spirit to delayed online training.

Impact of context
In table 1, we provide a list of 32 models based on the fol-
lowing choices: network architecture (LSTM or CNN), ad-
versarial training with noise in data or not, use of contextual
states, and reward function (net profit and Sortino), use of
day lag between observations and actions. We see that the
best DRL model with the day-lag turnover constraint is the
one using convolutional networks, adversarial training, con-
textual states and net profit reward function. These 4 param-
eters are meaningful for our DRL model and change model
performance substantially as illustrated by the table. We also
compare the same model with and without contextual state
and see in table 3 that the use of contextual state improves
model performance substantially. This is quite intuitive as
we provide more meaningful data to the model.

Impact of one day lag
Reminding the fact that asset managers cannot immediately
change their position at the close of the financial markets,
modeling the one day lag turnover to account is also sig-
nificant as shown in table 2. It is not surprising that a de-
layed action after observation makes the learning process
more challenging for the DRL agent as influence of variables
tends to decrease with time. Surprisingly, this salient model-
ing characteristic is ignored in existing literature Zhengyao
et al. (2017); Liang et al. (2018); Yu et al. (2019); Wang and
Zhou (2019); Liu et al. (2020); Ye et al. (2020); Li et al.
(2019).
∗: the number of iterations is at maximum 500 provided we do not
stop because of early stop detection. We do early stop if on the train
set, there is no improvement over the last 50 iterations.

Conclusion
In this paper, we address the challenging task of learning in
a noisy and self adapting environment with sequential, non-
stationary and non-homogeneous observations for a bot and
more specifically for a trading bot. Our approach is based

Table 1: Model comparison based on reward function, net-
work (CNN or LSTM units) adversarial training (noise in
data) and use of contextual state

reward network adversarial contextual performance performance
training states with with

1 day lag 0 day lag

Net Profit CNN Yes Yes 81.8% 123.8%
Net Profit CNN No Yes 75.2% 112.3%
Net Profit LSTM Yes Yes 65.9% 98.8%
Net Profit LSTM No Yes 64.5% 98.5%
Sortino LSTM No Yes 61.8% 87.4%
Net Profit LSTM No No 56.6% 59.8%
Sortino LSTM No No 48.5% 51.4%
Net Profit LSTM Yes No 47.5% 50.8%
Sortino LSTM Yes Yes 29.6% 47.6%
Sortino LSTM Yes No 28.4% 47.0%
Sortino CNN No Yes 26.5% 45.3%
Sortino CNN Yes Yes 26.3% 29.3%
Sortino CNN Yes No -16.7% 16.9%
Net Profit CNN Yes No -29.5% 13.9%
Sortino CNN No No -45.0% 10.6%
Net Profit CNN No No -47.7% 8.6%

Table 2: Impact of day lag

reward network adversarial contextual day lag impact
training states

Net Profit CNN Yes Yes -42.0%
Net Profit CNN No Yes -37.2%
Net Profit LSTM Yes Yes -32.9%
Net Profit LSTM No Yes -34.0%
Sortino LSTM No Yes -25.6%
Net Profit LSTM No No -3.2%
Sortino LSTM No No -2.9%
Net Profit LSTM Yes No -3.3%
Sortino LSTM Yes Yes -18.0%
Sortino LSTM Yes No -18.7%
Sortino CNN No Yes -18.8%
Sortino CNN Yes Yes -3.0%
Sortino CNN Yes No -33.6%
Net Profit CNN Yes No -43.4%
Sortino CNN No No -55.6%
Net Profit CNN No No -56.3%

Table 3: Impact of contextual state

reward network adversarial contextual states
training impact

Net Profit CNN Yes 111.4%
Net Profit CNN No 122.9%
Net Profit LSTM Yes 18.5%
Net Profit LSTM No 7.9%
Sortino LSTM No 13.3%
Sortino LSTM Yes 1.2%
Sortino CNN No 71.5%
Sortino CNN Yes 43.0%
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Figure 5: from left to right and from top to bottom, perfor-
mance for risky asset, DRL, follow the winner, follow the
loser, DRL without context and Markowitz models. Most
models are not able to continuously adapt to regime changes
and consequently under-perform compared to the standalone
risky asset position on a long period like 2007 to 2020.

Table 4: Models comparison over 3 and 5 years

3 Years
return Sortino Sharpe max DD

Risky asset 10.27% 0.34 0.38 - 0.34
DRL 22.45% 1.18 1.17 -0.27
Winner 13.19% 0.66 0.72 -0.35
Loser 9.30% 0.89 0.89 -0.15
DRL no context 8.11% 0.42 0.47 -0.34
Markowitz -0.31% -0.01 -0.01 -0.41

5 Years
return Sortino Sharpe max DD

Risky asset 9.16% 0.54 0.57 - 0.34
DRL 16.42% 0.98 0.96 -0.27
Winner 10.84% 0.65 0.68 -0.35
Loser 7.04% 0.78 0.76 -0.15
DRL no context 6.87% 0.44 0.47 -0.34
Markowitz -0.07% -0.00 -0.00 -0.41

Table 5: Hyper parameters used

hyper-parameters value description

batch size 50 mini-batch size during training

regularization 1e-8 L2 regularization coefficient
coefficient applied to network training

learning rate 0.01 Step size parameter in Adam

standard deviation 20 days period for standard deviation
period in asset states

commission 30 bps commission rate

stride 2,1 stride in convolution networks

conv number 1 5,10 number of convolutions in
sub-network 1

conv number 2 2 number of convolutions in
sub-network 2

lag period 1 [60,20,4,3,2,1,0] lag period for asset states

lag period 2 [60,20,4,3,2,1,0] lag period for contextual states

noise 0.002 adversarial Gaussian standard
deviation

max iterations ∗ 500 maximum number of iterations

early stop 50 early stop criterion
iterations ∗

random seed 12345 random seed

on deep reinforcement learning using contextual informa-
tion thanks to a second sub-network. We also show that the
additional constraint of a delayed action following observa-
tions has a substantial impact that should not be overlooked.
We introduce the novel concept of walk forward to test the
robustness of the deep RL model. This is very important
for regime changing environment that cannot be evaluated
with a simple train validation test procedure, neither a k-fold
cross validation that ignores the strong chronological feature
of observations.

For our trading bots, we take not only past performances
of portfolio strategies over different rolling period, but
also standard deviation to provide predictive variables for
regime changes. Augmented states with contextual informa-
tion make a big difference in the model and help the bot
learning more efficiently in a noisy environment. On ex-
periment, contextual based approach over-performs baseline
methods like Markowitz or naive follow the winner and fol-
low the loser. Last but not least, it is quite important to fine
tune the numerous hyper-parameters of the contextual based
DRL model, namely the various lags (lags period for the sub
network fed by portfolio strategies past returns, lags period
for common contextual features referred to as the common
features in the paper), standard deviation period, learning
rate, etc...

Despite the efficiency of contextual based DRL models,
there is room for improvement. Other information like news
could be incorporated to continue increasing model perfor-
mance. For large stocks, like tech stocks, sentiment informa-
tion based on social media activity could also be relevant.
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